ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis
The advent of single-cell chromatin accessibility profiling has accelerated the ability to map gene regulatory landscapes but has outpaced the development of scalable software to rapidly extract biological meaning from these data. Here we present a software suite for single-cell analysis of regulato...
Saved in:
| Published in: | Nature genetics Vol. 53; no. 3; pp. 403 - 411 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Nature Publishing Group US
01.03.2021
Nature Publishing Group |
| Subjects: | |
| ISSN: | 1061-4036, 1546-1718, 1546-1718 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The advent of single-cell chromatin accessibility profiling has accelerated the ability to map gene regulatory landscapes but has outpaced the development of scalable software to rapidly extract biological meaning from these data. Here we present a software suite for single-cell analysis of regulatory chromatin in R (ArchR;
https://www.archrproject.com/
) that enables fast and comprehensive analysis of single-cell chromatin accessibility data. ArchR provides an intuitive, user-focused interface for complex single-cell analyses, including doublet removal, single-cell clustering and cell type identification, unified peak set generation, cellular trajectory identification, DNA element-to-gene linkage, transcription factor footprinting, mRNA expression level prediction from chromatin accessibility and multi-omic integration with single-cell RNA sequencing (scRNA-seq). Enabling the analysis of over 1.2 million single cells within 8 h on a standard Unix laptop, ArchR is a comprehensive software suite for end-to-end analysis of single-cell chromatin accessibility that will accelerate the understanding of gene regulation at the resolution of individual cells.
ArchR is a software suite that enables efficient and end-to-end analysis of single-cell chromatin accessibility data (scATAC-seq). |
|---|---|
| AbstractList | The advent of single-cell chromatin accessibility profiling has accelerated the ability to map gene regulatory landscapes but has outpaced the development of scalable software to rapidly extract biological meaning from these data. Here we present a software suite for single-cell analysis of regulatory chromatin in R (ArchR; https://www.archrproject.com/ ) that enables fast and comprehensive analysis of single-cell chromatin accessibility data. ArchR provides an intuitive, user-focused interface for complex single-cell analyses, including doublet removal, single-cell clustering and cell type identification, unified peak set generation, cellular trajectory identification, DNA element-to-gene linkage, transcription factor footprinting, mRNA expression level prediction from chromatin accessibility and multi-omic integration with single-cell RNA sequencing (scRNA-seq). Enabling the analysis of over 1.2 million single cells within 8 h on a standard Unix laptop, ArchR is a comprehensive software suite for end-to-end analysis of single-cell chromatin accessibility that will accelerate the understanding of gene regulation at the resolution of individual cells.The advent of single-cell chromatin accessibility profiling has accelerated the ability to map gene regulatory landscapes but has outpaced the development of scalable software to rapidly extract biological meaning from these data. Here we present a software suite for single-cell analysis of regulatory chromatin in R (ArchR; https://www.archrproject.com/ ) that enables fast and comprehensive analysis of single-cell chromatin accessibility data. ArchR provides an intuitive, user-focused interface for complex single-cell analyses, including doublet removal, single-cell clustering and cell type identification, unified peak set generation, cellular trajectory identification, DNA element-to-gene linkage, transcription factor footprinting, mRNA expression level prediction from chromatin accessibility and multi-omic integration with single-cell RNA sequencing (scRNA-seq). Enabling the analysis of over 1.2 million single cells within 8 h on a standard Unix laptop, ArchR is a comprehensive software suite for end-to-end analysis of single-cell chromatin accessibility that will accelerate the understanding of gene regulation at the resolution of individual cells. The advent of single-cell chromatin accessibility profiling has accelerated the ability to map gene regulatory landscapes but has outpaced the development of scalable software to rapidly extract biological meaning from these data. Here we present a software suite for single-cell analysis of regulatory chromatin in R (ArchR; https://www.archrproject.com/) that enables fast and comprehensive analysis of single-cell chromatin accessibility data. ArchR provides an intuitive, user-focused interface for complex single-cell analyses, including doublet removal, single-cell clustering and cell type identification, unified peak set generation, cellular trajectory identification, DNA element-to-gene linkage, transcription factor footprinting, mRNA expression level prediction from chromatin accessibility and multi-omic integration with single-cell RNA sequencing (scRNA-seq). Enabling the analysis of over 1.2 million single cells within 8 h on a standard Unix laptop, ArchR is a comprehensive software suite for end-to-end analysis of single-cell chromatin accessibility that will accelerate the understanding of gene regulation at the resolution of individual cells. The advent of single-cell chromatin accessibility profiling has accelerated the ability to map gene regulatory landscapes but has outpaced the development of scalable software to rapidly extract biological meaning from these data. Here we present a software suite for single-cell analysis of regulatory chromatin in R (ArchR; ArchR is a software suite that enables efficient and end-to-end analysis of single-cell chromatin accessibility data (scATAC-seq). The advent of single-cell chromatin accessibility profiling has accelerated the ability to map gene regulatory landscapes but has outpaced the development of scalable software to rapidly extract biological meaning from these data. Here we present a software suite for single-cell analysis of regulatory chromatin in R (ArchR; https://www.archrproject.com/ ) that enables fast and comprehensive analysis of single-cell chromatin accessibility data. ArchR provides an intuitive, user-focused interface for complex single-cell analyses, including doublet removal, single-cell clustering and cell type identification, unified peak set generation, cellular trajectory identification, DNA element-to-gene linkage, transcription factor footprinting, mRNA expression level prediction from chromatin accessibility and multi-omic integration with single-cell RNA sequencing (scRNA-seq). Enabling the analysis of over 1.2 million single cells within 8 h on a standard Unix laptop, ArchR is a comprehensive software suite for end-to-end analysis of single-cell chromatin accessibility that will accelerate the understanding of gene regulation at the resolution of individual cells. The advent of single-cell chromatin accessibility profiling has accelerated the ability to map gene regulatory landscapes but has outpaced the development of scalable software to rapidly extract biological meaning from these data. Here we present a software suite for single-cell analysis of regulatory chromatin in R (ArchR; https://vww.archrproject.com/) that enables fast and comprehensive analysis of single-cell chromatin accessibility data. ArchR provides an intuitive, user-focused interface for complex single-cell analyses, including doublet removal, single-cell clustering and cell type identification, unified peak set generation, cellular trajectory identification, DNA element-to-gene linkage, transcription factor footprinting, mRNA expression level prediction from chromatin accessibility and multi-omic integration with single-cell RNA sequencing (scRNA-seq). Enabling the analysis of over 1.2 million single cells within 8h on a standard Unix laptop, ArchR is a comprehensive software suite for end-to-end analysis of single-cell chromatin accessibility that will accelerate the understanding of gene regulation at the resolution of individual cells. The advent of single-cell chromatin accessibility profiling has accelerated the ability to map gene regulatory landscapes but has outpaced the development of scalable software to rapidly extract biological meaning from these data. Here we present a software suite for single-cell analysis of regulatory chromatin in R (ArchR; https://www.archrproject.com/) that enables fast and comprehensive analysis of single-cell chromatin accessibility data. ArchR provides an intuitive, user-focused interface for complex single-cell analyses, including doublet removal, single-cell clustering and cell type identification, unified peak set generation, cellular trajectory identification, DNA element-to-gene linkage, transcription factor footprinting, mRNA expression level prediction from chromatin accessibility and multi-omic integration with single-cell RNA sequencing (scRNA-seq). Enabling the analysis of over 1.2 million single cells within 8 h on a standard Unix laptop, ArchR is a comprehensive software suite for end-to-end analysis of single-cell chromatin accessibility that will accelerate the understanding of gene regulation at the resolution of individual cells. ArchR is a software suite that enables efficient and end-to-end analysis of single-cell chromatin accessibility data (scATAC-seq). The advent of single-cell chromatin accessibility profiling has accelerated the ability to map gene regulatory landscapes but has outpaced the development of scalable software to rapidly extract biological meaning from these data. Here we present a software suite for single-cell analysis of regulatory chromatin in R (ArchR; https://www.archrproject.com/ ) that enables fast and comprehensive analysis of single-cell chromatin accessibility data. ArchR provides an intuitive, user-focused interface for complex single-cell analyses, including doublet removal, single-cell clustering and cell type identification, unified peak set generation, cellular trajectory identification, DNA element-to-gene linkage, transcription factor footprinting, mRNA expression level prediction from chromatin accessibility and multi-omic integration with single-cell RNA sequencing (scRNA-seq). Enabling the analysis of over 1.2 million single cells within 8 h on a standard Unix laptop, ArchR is a comprehensive software suite for end-to-end analysis of single-cell chromatin accessibility that will accelerate the understanding of gene regulation at the resolution of individual cells. ArchR is a software suite that enables efficient and end-to-end analysis of single-cell chromatin accessibility data (scATAC-seq). |
| Audience | Academic |
| Author | Bagdatli, S. Tansu Greenleaf, William J. Granja, Jeffrey M. Chang, Howard Y. Corces, M. Ryan Choudhry, Hani Pierce, Sarah E. |
| Author_xml | – sequence: 1 givenname: Jeffrey M. orcidid: 0000-0001-8402-3442 surname: Granja fullname: Granja, Jeffrey M. email: jgranja.stanford@gmail.com organization: Department of Genetics, Stanford University School of Medicine, Program in Biophysics, Stanford University, Center for Personal Dynamic Regulomes, Stanford University – sequence: 2 givenname: M. Ryan surname: Corces fullname: Corces, M. Ryan organization: Center for Personal Dynamic Regulomes, Stanford University, Department of Pathology, Stanford University School of Medicine, Gladstone Institute of Neurological Disease, Gladstone Institute of Data Science and Biotechnology, Department of Neurology, University of California San Francisco – sequence: 3 givenname: Sarah E. surname: Pierce fullname: Pierce, Sarah E. organization: Department of Genetics, Stanford University School of Medicine, Program in Cancer Biology, Stanford University School of Medicine – sequence: 4 givenname: S. Tansu surname: Bagdatli fullname: Bagdatli, S. Tansu organization: Department of Genetics, Stanford University School of Medicine – sequence: 5 givenname: Hani surname: Choudhry fullname: Choudhry, Hani organization: Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University – sequence: 6 givenname: Howard Y. orcidid: 0000-0002-9459-4393 surname: Chang fullname: Chang, Howard Y. email: howchang@stanford.edu organization: Department of Genetics, Stanford University School of Medicine, Center for Personal Dynamic Regulomes, Stanford University, Howard Hughes Medical Institute, Stanford University – sequence: 7 givenname: William J. orcidid: 0000-0003-1409-3095 surname: Greenleaf fullname: Greenleaf, William J. email: wjg@stanford.edu organization: Department of Genetics, Stanford University School of Medicine, Center for Personal Dynamic Regulomes, Stanford University, Department of Applied Physics, Stanford University, Chan Zuckerberg Biohub |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33633365$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl1rHCEUhqWkNMm2f6AXRehNezGpjh8z3hSW0I9AIJB-3MpZx5k1dXWrM2n339ftJk03lFBEPOjzHvH1PUYHIQaL0HNKTihh7ZvMqWjbitS0IqRRpJKP0BEVXFa0oe1BqYmkFSdMHqLjnK8IoZyT9gk6ZEyyMsURgnkyy0vsMgacDXhYeItz7McfkCxeg_kGg8V9TNiF0Q4JRnddABcGbytjvcdmmeKqbAcMxtic3cJ5N24wBPCb7PJT9LgHn-2zm3WGvrx_9_n0Y3V-8eHsdH5eGdmIsTKGCiEV1Ep1XAIXPaOSMCW6UjBbK06AdrI3QhpBFFjZy1YYo3qiWkOBzdDbXd_1tFjZztgwJvB6ndwK0kZHcHr_JLilHuK1bgmt62LoDL26aZDi98nmUa9c3j4Rgo1T1jVXvG6UqpuCvryHXsUplQcXShDaykZKfkcN4K12oY_lXrNtqudSiIY2itJCnfyDKqOzK2fKj_eu7O8JXu8JCjPan-MAU8767NPl_7MXX_fZF38b-Me527AUoN0BJsWck-21cWP5-bj103lNid7mUu9yqUsu9e9calmk9T3pbfcHRWwnygUOg013Lj-g-gXecfJk |
| CitedBy_id | crossref_primary_10_1016_j_molcel_2021_10_013 crossref_primary_10_1016_j_tig_2021_08_012 crossref_primary_10_1038_s41421_023_00559_7 crossref_primary_10_1016_j_molcel_2022_12_029 crossref_primary_10_1126_science_abg7216 crossref_primary_10_1016_j_tibtech_2024_07_006 crossref_primary_10_1016_j_devcel_2022_11_013 crossref_primary_10_1084_jem_20242078 crossref_primary_10_1016_j_cell_2022_01_012 crossref_primary_10_1084_jem_20210582 crossref_primary_10_1242_bio_060323 crossref_primary_10_1038_s41586_025_09083_y crossref_primary_10_1093_nargab_lqab101 crossref_primary_10_1080_21541264_2023_2295044 crossref_primary_10_1038_s41467_024_53717_0 crossref_primary_10_1038_s41588_024_01855_y crossref_primary_10_3390_ijms26157199 crossref_primary_10_1016_j_xgen_2025_100848 crossref_primary_10_1016_j_celrep_2025_115523 crossref_primary_10_1093_nar_gkae1100 crossref_primary_10_1016_j_celrep_2025_115645 crossref_primary_10_3390_cimb46060316 crossref_primary_10_1016_j_stem_2024_05_008 crossref_primary_10_1002_glia_24621 crossref_primary_10_1038_s41467_023_44305_9 crossref_primary_10_1038_s41587_023_01935_0 crossref_primary_10_1016_j_tig_2025_01_001 crossref_primary_10_1210_endocr_bqac156 crossref_primary_10_3389_fimmu_2024_1405748 crossref_primary_10_1016_j_gpb_2022_05_007 crossref_primary_10_1038_s41467_022_31770_x crossref_primary_10_1083_jcb_202211073 crossref_primary_10_1038_s41592_023_02144_y crossref_primary_10_1016_j_cub_2024_11_027 crossref_primary_10_1038_s41467_023_40611_4 crossref_primary_10_1038_s42003_025_08730_4 crossref_primary_10_1016_j_cotox_2024_100477 crossref_primary_10_1186_s12864_023_09792_6 crossref_primary_10_1016_j_cell_2025_06_020 crossref_primary_10_1007_s10157_025_02679_8 crossref_primary_10_1038_s41467_022_28067_4 crossref_primary_10_1038_s41467_023_39043_x crossref_primary_10_1016_j_stem_2022_01_014 crossref_primary_10_1016_j_celrep_2024_115118 crossref_primary_10_1016_j_celrep_2025_115673 crossref_primary_10_1038_s41467_024_48990_y crossref_primary_10_1038_s41388_025_03309_z crossref_primary_10_1016_j_immuni_2024_01_006 crossref_primary_10_1158_2159_8290_CD_21_0865 crossref_primary_10_1038_s41588_025_02148_8 crossref_primary_10_1093_nar_gkad901 crossref_primary_10_1016_j_bbrc_2022_03_132 crossref_primary_10_1016_j_medj_2025_100704 crossref_primary_10_1021_acssynbio_4c00864 crossref_primary_10_1146_annurev_cancerbio_070620_094453 crossref_primary_10_1126_science_abm7993 crossref_primary_10_1186_s13059_024_03374_9 crossref_primary_10_1093_nar_gkac819 crossref_primary_10_1016_j_cell_2025_06_031 crossref_primary_10_1016_j_ygeno_2024_110944 crossref_primary_10_1038_s41556_024_01583_9 crossref_primary_10_3389_fcell_2022_981859 crossref_primary_10_1093_ecco_jcc_jjae055 crossref_primary_10_1038_s41587_023_01716_9 crossref_primary_10_1002_1873_3468_14884 crossref_primary_10_1038_s41467_025_56212_2 crossref_primary_10_1016_j_devcel_2022_04_016 crossref_primary_10_1126_science_adk9217 crossref_primary_10_1186_s13059_024_03265_z crossref_primary_10_1038_s44161_023_00412_w crossref_primary_10_3390_ijms241713053 crossref_primary_10_1186_s12915_022_01473_2 crossref_primary_10_3389_fimmu_2024_1506305 crossref_primary_10_1016_j_molcel_2022_11_017 crossref_primary_10_1016_j_cell_2024_05_004 crossref_primary_10_1038_s41591_023_02397_2 crossref_primary_10_1038_s41590_025_02203_w crossref_primary_10_1038_s41586_025_09424_x crossref_primary_10_1002_pro_4458 crossref_primary_10_1093_bib_bbac540 crossref_primary_10_1038_s41467_023_44184_0 crossref_primary_10_1038_s41467_022_33184_1 crossref_primary_10_1126_science_adp4319 crossref_primary_10_3389_fimmu_2023_1232511 crossref_primary_10_1038_s41392_022_00990_4 crossref_primary_10_1038_s41467_023_36559_0 crossref_primary_10_1016_j_neuron_2025_07_001 crossref_primary_10_1371_journal_pcbi_1012356 crossref_primary_10_1182_blood_2021014670 crossref_primary_10_1038_s41592_024_02302_w crossref_primary_10_1242_dev_201229 crossref_primary_10_1093_molbev_msac090 crossref_primary_10_1038_s41540_022_00245_6 crossref_primary_10_1038_s41597_022_01447_7 crossref_primary_10_1016_j_immuni_2023_05_008 crossref_primary_10_1016_j_compbiomed_2024_108230 crossref_primary_10_1038_s41467_023_41795_5 crossref_primary_10_1016_j_celrep_2023_112979 crossref_primary_10_12688_f1000research_73600_2 crossref_primary_10_12688_f1000research_73600_1 crossref_primary_10_1038_s41467_022_29414_1 crossref_primary_10_1038_s41467_021_26865_w crossref_primary_10_1016_j_isci_2023_106920 crossref_primary_10_1073_pnas_2419818122 crossref_primary_10_1038_s41587_024_02347_4 crossref_primary_10_1016_j_stem_2023_02_008 crossref_primary_10_1016_j_xgen_2025_100806 crossref_primary_10_1126_science_adp7710 crossref_primary_10_1038_s41590_022_01369_x crossref_primary_10_3389_fcvm_2022_948492 crossref_primary_10_1016_j_stem_2024_04_015 crossref_primary_10_1016_j_stem_2024_04_010 crossref_primary_10_1093_nar_gkac847 crossref_primary_10_1126_science_adh3253 crossref_primary_10_1096_fj_202300131RRR crossref_primary_10_1093_bib_bbab473 crossref_primary_10_1016_j_immuni_2024_07_021 crossref_primary_10_1136_gutjnl_2024_332095 crossref_primary_10_1073_pnas_2423270121 crossref_primary_10_1016_j_ccell_2022_09_015 crossref_primary_10_1038_s41467_024_55447_9 crossref_primary_10_1038_s41586_024_07388_y crossref_primary_10_1038_s41592_024_02579_x crossref_primary_10_1093_schbul_sbae083 crossref_primary_10_1016_j_devcel_2025_08_001 crossref_primary_10_1038_s41467_023_37432_w crossref_primary_10_1038_s41586_022_05487_2 crossref_primary_10_1038_s41467_024_52306_5 crossref_primary_10_1093_nar_gkae913 crossref_primary_10_1016_j_isci_2024_110104 crossref_primary_10_1073_pnas_2102698118 crossref_primary_10_1186_s12864_025_11423_1 crossref_primary_10_1186_s13059_024_03250_6 crossref_primary_10_1038_s41467_024_49811_y crossref_primary_10_1038_s41598_022_25729_7 crossref_primary_10_1038_s44319_024_00097_7 crossref_primary_10_1038_s41588_025_02249_4 crossref_primary_10_1002_advs_202409642 crossref_primary_10_1016_j_ccell_2025_05_002 crossref_primary_10_1186_s12864_024_10376_1 crossref_primary_10_1038_s41467_023_36173_0 crossref_primary_10_1038_s41467_024_52394_3 crossref_primary_10_1038_s41598_022_15668_8 crossref_primary_10_1038_s41588_025_02139_9 crossref_primary_10_1093_pcmedi_pbac002 crossref_primary_10_1016_j_celrep_2025_116312 crossref_primary_10_4049_jimmunol_2300283 crossref_primary_10_1038_s41576_023_00598_6 crossref_primary_10_1038_s41467_023_41492_3 crossref_primary_10_1158_0008_5472_CAN_25_0999 crossref_primary_10_1038_s41588_024_01689_8 crossref_primary_10_1038_s41588_023_01433_8 crossref_primary_10_1016_j_devcel_2023_11_008 crossref_primary_10_1038_s41586_024_07348_6 crossref_primary_10_1038_s41586_022_04625_0 crossref_primary_10_3389_fgene_2023_1267368 crossref_primary_10_1038_s44321_025_00230_6 crossref_primary_10_1093_lifemedi_lnae012 crossref_primary_10_1093_lifemedi_lnae015 crossref_primary_10_1016_j_cels_2023_12_005 crossref_primary_10_1016_j_immuni_2024_06_001 crossref_primary_10_1038_s41467_024_48620_7 crossref_primary_10_1126_science_adp4753 crossref_primary_10_1242_dev_202516 crossref_primary_10_1038_s41588_023_01577_7 crossref_primary_10_1038_s41591_024_03073_9 crossref_primary_10_1016_j_immuni_2023_01_028 crossref_primary_10_1016_j_jgg_2025_07_008 crossref_primary_10_1038_s41586_023_05915_x crossref_primary_10_1038_s41588_023_01445_4 crossref_primary_10_1186_s13059_021_02577_8 crossref_primary_10_1016_j_eswa_2025_128999 crossref_primary_10_1126_science_abg4696 crossref_primary_10_1038_s41592_022_01562_8 crossref_primary_10_1038_s41592_023_02112_6 crossref_primary_10_1038_s41421_024_00656_1 crossref_primary_10_1038_s41590_021_01086_x crossref_primary_10_1038_s43018_022_00391_0 crossref_primary_10_1016_j_cell_2025_04_017 crossref_primary_10_1016_j_immuni_2024_06_015 crossref_primary_10_1016_j_immuni_2024_06_014 crossref_primary_10_1016_j_xpro_2024_103501 crossref_primary_10_1186_s13059_022_02679_x crossref_primary_10_1002_alz_70593 crossref_primary_10_1186_s13072_023_00486_7 crossref_primary_10_1016_j_devcel_2024_01_015 crossref_primary_10_1093_nargab_lqae007 crossref_primary_10_1007_s11427_023_2561_0 crossref_primary_10_1016_j_devcel_2024_01_011 crossref_primary_10_1038_s42003_022_03430_9 crossref_primary_10_1038_s41586_024_07861_8 crossref_primary_10_1038_s42003_024_06833_y crossref_primary_10_1002_advs_202415681 crossref_primary_10_1073_pnas_2311566120 crossref_primary_10_1016_j_immuni_2025_05_026 crossref_primary_10_1186_s12967_025_06659_0 crossref_primary_10_1038_s41467_023_40584_4 crossref_primary_10_7554_eLife_69571 crossref_primary_10_1038_s44318_025_00376_6 crossref_primary_10_1371_journal_pgen_1010261 crossref_primary_10_1038_s41597_023_02533_0 crossref_primary_10_1038_s41467_024_50612_6 crossref_primary_10_1016_j_mocell_2025_100263 crossref_primary_10_1038_s41597_025_04928_7 crossref_primary_10_1016_j_tig_2024_04_008 crossref_primary_10_1038_s41467_023_42762_w crossref_primary_10_1016_j_crmeth_2025_101167 crossref_primary_10_1016_j_jtos_2024_09_003 crossref_primary_10_1038_s41592_024_02576_0 crossref_primary_10_1161_CIRCRESAHA_123_323184 crossref_primary_10_1016_j_celrep_2025_115384 crossref_primary_10_1111_acel_13789 crossref_primary_10_3390_sym13081467 crossref_primary_10_1038_s41596_022_00795_3 crossref_primary_10_1093_nargab_lqab094 crossref_primary_10_1093_lifemedi_lnae028 crossref_primary_10_1186_s13059_021_02469_x crossref_primary_10_1038_s44161_023_00260_8 crossref_primary_10_1016_j_celrep_2025_116236 crossref_primary_10_1371_journal_pgen_1010251 crossref_primary_10_1042_BST20230917 crossref_primary_10_1007_s00018_025_05721_w crossref_primary_10_1016_j_cell_2025_05_002 crossref_primary_10_1038_s41467_025_61125_1 crossref_primary_10_1158_2159_8290_CD_24_0234 crossref_primary_10_1073_pnas_2425992122 crossref_primary_10_1038_s41467_023_40505_5 crossref_primary_10_1016_j_molmet_2023_101735 crossref_primary_10_1038_s41586_024_08189_z crossref_primary_10_1126_science_add6371 crossref_primary_10_1038_s41593_025_01999_y crossref_primary_10_3390_genes13040621 crossref_primary_10_1038_s41467_025_57480_8 crossref_primary_10_1016_j_cell_2025_06_040 crossref_primary_10_1038_s44320_024_00045_6 crossref_primary_10_1126_sciimmunol_adf8776 crossref_primary_10_1016_j_xgen_2025_100879 crossref_primary_10_3389_fcell_2022_833392 crossref_primary_10_1080_0886022X_2025_2526722 crossref_primary_10_1186_s13059_022_02642_w crossref_primary_10_1038_s41467_022_34413_3 crossref_primary_10_1126_sciimmunol_abh3768 crossref_primary_10_1002_advs_202413161 crossref_primary_10_1038_s41596_023_00905_9 crossref_primary_10_1038_s41590_023_01641_8 crossref_primary_10_1080_15384047_2023_2269637 crossref_primary_10_7554_eLife_105565_3 crossref_primary_10_1016_j_xpro_2025_103960 crossref_primary_10_1038_s41467_024_47758_8 crossref_primary_10_1038_s41586_025_08973_5 crossref_primary_10_1038_s41588_022_01088_x crossref_primary_10_1002_advs_202406751 crossref_primary_10_1038_s41592_024_02257_y crossref_primary_10_1038_s41467_024_52463_7 crossref_primary_10_1038_s43018_024_00892_0 crossref_primary_10_1038_s41590_022_01337_5 crossref_primary_10_1186_s13059_024_03338_z crossref_primary_10_1016_j_csbj_2023_10_032 crossref_primary_10_1038_s41467_024_55580_5 crossref_primary_10_1038_s41467_025_60899_8 crossref_primary_10_1126_scitranslmed_adi6148 crossref_primary_10_1186_s13059_023_03150_1 crossref_primary_10_1093_gigascience_giad095 crossref_primary_10_1038_s42003_025_08710_8 crossref_primary_10_1038_s41467_025_57931_2 crossref_primary_10_1038_s41592_024_02586_y crossref_primary_10_1016_j_xgen_2025_100765 crossref_primary_10_1016_j_xgen_2025_100886 crossref_primary_10_1038_s41592_024_02453_w crossref_primary_10_1038_s41586_022_04593_5 crossref_primary_10_1016_j_xgen_2025_100881 crossref_primary_10_1158_0008_5472_CAN_23_3995 crossref_primary_10_1038_s41586_023_05795_1 crossref_primary_10_1126_science_abn3943 crossref_primary_10_1016_j_cels_2024_09_003 crossref_primary_10_1038_s41586_022_05060_x crossref_primary_10_1093_nar_gkab598 crossref_primary_10_1016_j_crmeth_2023_100625 crossref_primary_10_1038_s41467_025_62252_5 crossref_primary_10_1038_s41592_023_02103_7 crossref_primary_10_1073_pnas_2411301121 crossref_primary_10_1186_s12967_025_06154_6 crossref_primary_10_3389_fimmu_2025_1538384 crossref_primary_10_26508_lsa_202402736 crossref_primary_10_1101_gr_276655_122 crossref_primary_10_1038_s41588_021_00894_z crossref_primary_10_1038_s41556_021_00728_4 crossref_primary_10_1038_s42003_023_05420_x crossref_primary_10_1007_s11427_024_2578_6 crossref_primary_10_1038_s41586_022_05094_1 crossref_primary_10_1038_s41467_022_28197_9 crossref_primary_10_1136_gutjnl_2024_332121 crossref_primary_10_1186_s13059_025_03652_0 crossref_primary_10_1016_j_pld_2024_03_008 crossref_primary_10_1038_s41590_024_01901_1 crossref_primary_10_1038_s44400_025_00012_4 crossref_primary_10_1016_j_stem_2023_04_012 crossref_primary_10_1038_s41587_023_01718_7 crossref_primary_10_1038_s41588_024_01904_6 crossref_primary_10_1111_acel_13982 crossref_primary_10_1016_j_cell_2022_09_039 crossref_primary_10_1016_j_xpro_2024_103209 crossref_primary_10_1186_s13073_023_01175_6 crossref_primary_10_1016_j_ccell_2023_10_008 crossref_primary_10_1016_j_omtn_2025_102696 crossref_primary_10_1016_j_xcrm_2025_102159 crossref_primary_10_1038_s41467_024_49448_x crossref_primary_10_1016_j_intimp_2023_110624 crossref_primary_10_1016_j_jgg_2023_09_011 crossref_primary_10_1016_j_cell_2024_08_019 crossref_primary_10_1038_s41588_024_01662_5 crossref_primary_10_1038_s41597_024_03382_1 crossref_primary_10_3389_fnins_2023_1170355 crossref_primary_10_1038_s41556_024_01435_6 crossref_primary_10_1126_sciadv_adt2771 crossref_primary_10_1186_s13059_021_02339_6 crossref_primary_10_1126_science_adj4857 crossref_primary_10_1038_s41467_022_35020_y crossref_primary_10_1038_s41592_023_01971_3 crossref_primary_10_1016_j_matbio_2023_06_008 crossref_primary_10_1038_s41587_022_01341_y crossref_primary_10_1038_s41375_023_01808_0 crossref_primary_10_4254_wjh_v17_i6_107329 crossref_primary_10_1038_s41588_022_01179_9 crossref_primary_10_1038_s41592_023_02139_9 crossref_primary_10_1038_s41586_022_04739_5 crossref_primary_10_1093_nargab_lqae073 crossref_primary_10_1371_journal_pone_0322538 crossref_primary_10_1093_gpbjnl_qzae014 crossref_primary_10_1016_j_neuron_2024_01_013 crossref_primary_10_3389_freae_2023_1245879 crossref_primary_10_1038_s41588_022_01069_0 crossref_primary_10_1038_s41586_022_05309_5 crossref_primary_10_1146_annurev_biodatasci_020722_120642 crossref_primary_10_1186_s13059_024_03446_w crossref_primary_10_1038_s41467_025_56535_0 crossref_primary_10_1093_nargab_lqae178 crossref_primary_10_1016_j_devcel_2022_07_014 crossref_primary_10_1038_s42003_025_08257_8 crossref_primary_10_1093_procel_pwaf003 crossref_primary_10_1073_pnas_2426714122 crossref_primary_10_3389_fnetp_2023_1256104 crossref_primary_10_7554_eLife_94833 crossref_primary_10_1002_advs_202308438 crossref_primary_10_15252_embj_2022112590 crossref_primary_10_1038_s41422_022_00730_x crossref_primary_10_1038_s41586_024_08129_x crossref_primary_10_1007_s12035_025_05184_x crossref_primary_10_1016_j_crmeth_2023_100547 crossref_primary_10_3390_genes15121551 crossref_primary_10_1038_s41467_022_32097_3 crossref_primary_10_1038_s41467_024_52846_w crossref_primary_10_1093_bioinformatics_btae457 crossref_primary_10_1093_cvr_cvaf101 crossref_primary_10_1073_pnas_2110025118 crossref_primary_10_1016_j_scib_2024_09_004 crossref_primary_10_1038_s41590_023_01490_5 crossref_primary_10_1186_s13059_023_03067_9 crossref_primary_10_1089_cmb_2021_0596 crossref_primary_10_1007_s42994_022_00082_5 crossref_primary_10_1038_s42003_022_03531_5 crossref_primary_10_1016_j_canlet_2023_216319 crossref_primary_10_1038_s41576_023_00580_2 crossref_primary_10_1093_bib_bbaf069 crossref_primary_10_1167_iovs_66_3_9 crossref_primary_10_1038_s41467_025_60482_1 crossref_primary_10_1016_j_atherosclerosis_2023_01_019 crossref_primary_10_1016_j_devcel_2023_08_010 crossref_primary_10_1016_j_isci_2023_107755 crossref_primary_10_1038_s41523_022_00438_6 crossref_primary_10_1016_j_celrep_2025_116082 crossref_primary_10_1080_15592294_2023_2293411 crossref_primary_10_1158_2159_8290_CD_22_0952 crossref_primary_10_1038_s41467_024_47837_w crossref_primary_10_1038_s44161_025_00660_y crossref_primary_10_1167_iovs_65_13_8 crossref_primary_10_3389_fimmu_2022_878226 crossref_primary_10_1093_nar_gkae685 crossref_primary_10_1681_ASN_2021091213 crossref_primary_10_1073_pnas_2305046120 crossref_primary_10_1186_s13040_024_00421_w crossref_primary_10_1038_s41592_023_01884_1 crossref_primary_10_1038_s41596_025_01145_9 crossref_primary_10_1093_bib_bbaf253 crossref_primary_10_1016_j_compbiomed_2025_110662 crossref_primary_10_1038_s41592_023_01909_9 crossref_primary_10_1016_j_cels_2022_05_007 crossref_primary_10_1038_s41467_024_49883_w crossref_primary_10_1038_s41586_021_04116_8 crossref_primary_10_1186_s12943_025_02331_9 crossref_primary_10_1038_s41467_022_31919_8 crossref_primary_10_1038_s41587_021_00927_2 crossref_primary_10_1210_endocr_bqaf081 crossref_primary_10_1158_2159_8290_CD_23_1445 crossref_primary_10_1016_j_cell_2023_07_019 crossref_primary_10_1161_CIRCRESAHA_122_321692 crossref_primary_10_1093_bioadv_vbae055 crossref_primary_10_1182_blood_2023019758 crossref_primary_10_1038_s41586_023_06837_4 crossref_primary_10_1016_j_crmeth_2023_100498 crossref_primary_10_1136_jitc_2022_004874 crossref_primary_10_1038_s41590_022_01371_3 crossref_primary_10_1016_j_cell_2023_08_040 crossref_primary_10_1093_nargab_lqae135 crossref_primary_10_1016_j_scib_2023_09_021 crossref_primary_10_1016_j_bbagen_2023_130360 crossref_primary_10_1016_j_cell_2023_08_044 crossref_primary_10_1038_s41598_025_87351_7 crossref_primary_10_1038_s41592_023_01899_8 crossref_primary_10_1126_sciimmunol_abq3109 crossref_primary_10_1007_s00018_024_05118_1 crossref_primary_10_1038_s41467_024_54764_3 crossref_primary_10_1016_j_celrep_2023_113380 crossref_primary_10_3390_genes16070817 crossref_primary_10_1016_j_exphem_2024_104286 crossref_primary_10_1093_nar_gkab1032 crossref_primary_10_1038_s41588_024_01682_1 crossref_primary_10_1002_alz_13075 crossref_primary_10_1038_s41586_024_08391_z crossref_primary_10_1016_j_cell_2023_08_037 crossref_primary_10_1126_sciimmunol_adg1094 crossref_primary_10_1016_j_celrep_2023_113018 crossref_primary_10_1038_s41467_024_50853_5 crossref_primary_10_1016_j_jpha_2023_04_013 crossref_primary_10_1016_j_crmeth_2022_100182 crossref_primary_10_1158_2159_8290_CD_21_0276 crossref_primary_10_1016_j_celrep_2025_115913 crossref_primary_10_1093_nargab_lqae047 crossref_primary_10_1007_s11704_025_41390_5 crossref_primary_10_1073_pnas_2206450119 crossref_primary_10_1038_s41586_024_08085_6 crossref_primary_10_1038_s44161_022_00124_7 crossref_primary_10_1038_s41467_023_37439_3 crossref_primary_10_1038_s41592_021_01336_8 crossref_primary_10_1038_s41592_025_02700_8 crossref_primary_10_1038_s41597_025_04367_4 crossref_primary_10_1093_nargab_lqae051 crossref_primary_10_1093_nar_gkad026 crossref_primary_10_1038_s43588_024_00622_7 crossref_primary_10_7554_eLife_105565 crossref_primary_10_1186_s12915_025_02181_3 crossref_primary_10_1016_j_devcel_2025_04_022 crossref_primary_10_1016_j_devcel_2024_02_010 crossref_primary_10_1038_s42003_025_08115_7 crossref_primary_10_1186_s13059_024_03235_5 crossref_primary_10_1126_sciadv_adq2290 crossref_primary_10_1002_advs_202309554 crossref_primary_10_1016_j_scib_2021_11_013 crossref_primary_10_1172_JCI170848 crossref_primary_10_1016_j_cmet_2024_02_015 crossref_primary_10_1038_s41467_025_61448_z crossref_primary_10_1093_jimmun_vkaf026 crossref_primary_10_1182_blood_2024025618 crossref_primary_10_1007_s11427_022_2345_2 crossref_primary_10_1016_j_isci_2025_112387 crossref_primary_10_1038_s41467_025_59306_z crossref_primary_10_1038_s41588_025_02188_0 crossref_primary_10_1126_science_add5327 crossref_primary_10_1038_s41467_023_40893_8 crossref_primary_10_1038_s41586_025_08603_0 crossref_primary_10_1182_bloodadvances_2024012600 crossref_primary_10_1038_s41586_024_07510_0 crossref_primary_10_1371_journal_pcbi_1010863 crossref_primary_10_1038_s41556_023_01169_x crossref_primary_10_1038_s41588_023_01647_w crossref_primary_10_1038_s42003_024_06582_y crossref_primary_10_1093_bioinformatics_btaf364 crossref_primary_10_1038_s41593_021_01002_4 crossref_primary_10_1093_bioinformatics_btaf483 crossref_primary_10_1038_s41467_024_53089_5 crossref_primary_10_1038_s41556_021_00690_1 crossref_primary_10_1016_j_neuron_2025_04_030 crossref_primary_10_1038_s41467_024_52356_9 crossref_primary_10_1038_s41380_025_02929_x crossref_primary_10_1016_j_devcel_2024_05_013 crossref_primary_10_1038_s44161_025_00628_y crossref_primary_10_1016_j_celrep_2024_114569 crossref_primary_10_3389_fgene_2023_1089936 crossref_primary_10_1126_sciimmunol_ado5986 crossref_primary_10_1093_bib_bbae369 crossref_primary_10_1038_s41586_021_04262_z crossref_primary_10_1038_s41586_022_04686_1 crossref_primary_10_1038_s41421_023_00642_z crossref_primary_10_1038_s41467_023_44121_1 crossref_primary_10_1038_s41467_023_41033_y crossref_primary_10_1038_s42003_023_05120_6 crossref_primary_10_1038_s41593_024_01677_5 crossref_primary_10_1038_s41590_023_01527_9 crossref_primary_10_3390_biom15070938 crossref_primary_10_1038_s41467_023_40108_0 crossref_primary_10_1016_j_stem_2022_07_006 crossref_primary_10_1038_s41592_024_02274_x crossref_primary_10_1016_j_ajog_2024_08_041 crossref_primary_10_1038_s41467_021_26530_2 crossref_primary_10_1002_advs_202417163 crossref_primary_10_1038_s41587_024_02241_z crossref_primary_10_1016_j_cell_2022_03_043 crossref_primary_10_1093_bib_bbad268 crossref_primary_10_1038_s41586_021_04081_2 crossref_primary_10_1111_nph_70160 crossref_primary_10_1038_s43587_025_00909_y crossref_primary_10_1016_j_tcb_2025_05_001 crossref_primary_10_1038_s41422_022_00635_9 crossref_primary_10_1093_nar_gkaf031 crossref_primary_10_1038_s41467_022_30624_w crossref_primary_10_1038_s41590_023_01517_x crossref_primary_10_1038_s41592_023_01938_4 crossref_primary_10_1038_s42003_024_07171_9 crossref_primary_10_1016_j_cell_2022_11_028 crossref_primary_10_1016_j_jgg_2024_02_003 crossref_primary_10_1038_s41596_024_01013_y crossref_primary_10_1038_s41587_023_01931_4 crossref_primary_10_26508_lsa_202201823 crossref_primary_10_1016_j_cell_2024_06_028 crossref_primary_10_1038_s41422_022_00668_0 crossref_primary_10_1186_s13059_023_03111_8 crossref_primary_10_1093_bioinformatics_btaf268 crossref_primary_10_1167_iovs_64_3_30 crossref_primary_10_1038_s41576_023_00618_5 crossref_primary_10_1093_bib_bbae382 crossref_primary_10_1016_j_devcel_2022_02_018 crossref_primary_10_7554_eLife_93019 crossref_primary_10_1038_s41467_022_33194_z crossref_primary_10_1038_s41586_022_04587_3 crossref_primary_10_1161_CIRCULATIONAHA_123_063760 crossref_primary_10_1038_s41467_024_53628_0 crossref_primary_10_1038_s41576_023_00586_w crossref_primary_10_1186_s13059_024_03356_x crossref_primary_10_1016_j_celrep_2024_114558 crossref_primary_10_1038_s41467_023_44484_5 crossref_primary_10_1038_s41588_025_02220_3 crossref_primary_10_1038_s41596_023_00932_6 crossref_primary_10_1093_bib_bbaf465 crossref_primary_10_1038_s44161_023_00367_y crossref_primary_10_1126_sciimmunol_adq8970 crossref_primary_10_1016_j_cels_2024_10_006 crossref_primary_10_1093_bib_bbad166 crossref_primary_10_1186_s13059_025_03735_y crossref_primary_10_3390_ijms25031479 crossref_primary_10_1038_s41587_021_00865_z crossref_primary_10_1084_jem_20210759 crossref_primary_10_3389_fnmol_2021_651355 crossref_primary_10_1158_0008_5472_CAN_22_2872 crossref_primary_10_26508_lsa_202301988 crossref_primary_10_1016_j_cell_2022_11_005 crossref_primary_10_1186_s13073_022_01081_3 crossref_primary_10_1146_annurev_biodatasci_020422_050645 crossref_primary_10_1038_s41590_025_02240_5 crossref_primary_10_1038_s41588_023_01518_4 crossref_primary_10_1186_s12864_023_09832_1 crossref_primary_10_3390_cells11050870 crossref_primary_10_1111_cpr_13786 crossref_primary_10_1089_crispr_2023_0033 crossref_primary_10_1007_s12551_023_01091_4 crossref_primary_10_1038_s41586_024_08443_4 crossref_primary_10_1016_j_cell_2023_12_037 crossref_primary_10_1038_s41467_025_60269_4 crossref_primary_10_1038_s41593_024_01806_0 crossref_primary_10_1038_s43588_023_00476_5 crossref_primary_10_1038_s42256_022_00443_1 crossref_primary_10_1038_s41467_025_63957_3 crossref_primary_10_1093_bioadv_vbad003 crossref_primary_10_1007_s11357_025_01556_2 crossref_primary_10_1038_s41576_022_00509_1 crossref_primary_10_1038_s43018_023_00625_9 crossref_primary_10_1016_j_celrep_2025_115730 crossref_primary_10_1016_j_cels_2025_101266 crossref_primary_10_1038_s41592_021_01282_5 crossref_primary_10_1038_s41556_023_01174_0 crossref_primary_10_1038_s41556_021_00766_y crossref_primary_10_1186_s12915_025_02244_5 crossref_primary_10_1016_j_molcel_2021_08_004 crossref_primary_10_1126_scitranslmed_adl3381 crossref_primary_10_3390_biom12070874 crossref_primary_10_1038_s41467_024_45706_0 crossref_primary_10_1038_s41467_024_47981_3 crossref_primary_10_3390_ijms23126796 crossref_primary_10_1016_j_devcel_2025_06_001 crossref_primary_10_1038_s41597_024_03558_9 crossref_primary_10_1093_bib_bbad458 crossref_primary_10_1161_ATVBAHA_124_320259 crossref_primary_10_1073_pnas_2212696120 crossref_primary_10_1371_journal_pone_0261783 crossref_primary_10_1038_s41467_024_47280_x crossref_primary_10_1186_s13024_022_00517_z crossref_primary_10_1016_j_celrep_2024_114257 crossref_primary_10_1038_s41586_024_08356_2 crossref_primary_10_1038_s41596_022_00692_9 crossref_primary_10_1038_s41588_021_00941_9 crossref_primary_10_1186_s12967_024_05398_y crossref_primary_10_7554_eLife_84698 crossref_primary_10_1016_j_gendis_2025_101610 crossref_primary_10_1016_j_devcel_2022_01_016 crossref_primary_10_1073_pnas_2318710120 crossref_primary_10_1042_BST20231471 crossref_primary_10_1038_s41416_025_03122_1 crossref_primary_10_1126_science_adi5199 crossref_primary_10_1016_j_molcel_2021_09_026 crossref_primary_10_1038_s41586_025_09493_y crossref_primary_10_1093_cvr_cvab347 crossref_primary_10_1038_s42003_025_07961_9 crossref_primary_10_1126_science_abn3263 crossref_primary_10_1016_j_celrep_2024_114345 crossref_primary_10_1038_s41467_025_60333_z crossref_primary_10_1038_s41556_024_01449_0 crossref_primary_10_1038_s41591_024_03011_9 crossref_primary_10_1016_j_immuni_2022_05_003 crossref_primary_10_1038_s41590_024_01962_2 crossref_primary_10_1038_s41586_023_06311_1 crossref_primary_10_1038_s41586_024_07504_y crossref_primary_10_1016_j_devcel_2024_10_005 crossref_primary_10_1038_s41467_023_44142_w crossref_primary_10_1038_s41587_022_01603_9 crossref_primary_10_1038_s41467_023_43991_9 crossref_primary_10_3389_fcell_2023_1091047 crossref_primary_10_1016_j_devcel_2025_06_029 crossref_primary_10_7554_eLife_94833_4 |
| Cites_doi | 10.1093/nar/gky950 10.1038/ng.3963 10.1137/04060593X 10.1038/nature11232 10.1126/science.aav1898 10.1038/nbt.2859 10.1016/j.cell.2019.05.031 10.7554/eLife.27041 10.1038/s41592-019-0367-1 10.1038/nmeth.4402 10.1038/nmeth.4396 10.1186/s13059-017-1382-0 10.1038/nbt.4042 10.1186/s12864-018-4772-0 10.1186/s13059-019-1854-5 10.1186/s12859-018-2255-6 10.1016/j.molcel.2018.06.044 10.1016/j.cels.2019.03.003 10.1038/nature25981 10.1038/nmeth.4401 10.1016/j.cels.2018.11.005 10.1038/s41587-019-0147-6 10.1093/bioinformatics/btx315 10.1038/s41587-019-0332-7 10.1073/pnas.0500334102 10.1038/s41591-018-0008-8 10.1016/j.cell.2018.03.074 10.1016/j.cell.2018.06.052 10.1038/s41587-019-0206-z 10.1038/nature14590 10.1038/ng.3646 10.1146/annurev.ento.48.091801.112749 10.1038/s41588-019-0505-9 10.1016/j.cell.2019.01.031 10.1038/s41576-019-0173-8 10.1038/s41586-019-0969-x 10.1038/s41467-018-04629-3 10.1126/science.aab1601 10.1093/bioinformatics/btv715 10.1093/nar/gkx1081 10.1101/615179 10.1101/2020.01.06.896159 10.21105/joss.00861 10.1101/2020.11.02.364265 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. corrected publication 2021 COPYRIGHT 2021 Nature Publishing Group Copyright Nature Publishing Group Mar 2021 The Author(s), under exclusive licence to Springer Nature America, Inc. 2021, corrected publication 2021 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. corrected publication 2021 – notice: COPYRIGHT 2021 Nature Publishing Group – notice: Copyright Nature Publishing Group Mar 2021 – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021, corrected publication 2021 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QL 7QP 7QR 7SS 7T7 7TK 7TM 7U9 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
| DOI | 10.1038/s41588-021-00790-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep (ProQuest) AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Proquest Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Research Library Prep |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture Biology |
| EISSN | 1546-1718 |
| EndPage | 411 |
| ExternalDocumentID | PMC8012210 A655717911 33633365 10_1038_s41588_021_00790_6 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: K99-AG059918 and the American Society of Hematology Scholar Award – fundername: International Collaborative Award – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH) grantid: RM1-HG007735 funderid: https://doi.org/10.13039/100000002 – fundername: NIH = RM1-HG007735, UM1-HG009442, R35-CA209919 International Collaborative Award – fundername: NIH = RM1-HG007735, UM1-HG009442, UM1-HG009436, 1UM1HG009442, and U19-AI057266 Stanford Cancer Institute-Goldman Sachs Foundation Cancer Research award Chan-Zuckerberg Initiative – fundername: NHGRI NIH HHS grantid: UM1 HG009436 – fundername: NIAID NIH HHS grantid: U19 AI057266 – fundername: NCI NIH HHS grantid: U2C CA233311 – fundername: Howard Hughes Medical Institute – fundername: NHGRI NIH HHS grantid: RM1 HG007735 – fundername: NIA NIH HHS grantid: K99 AG059918 – fundername: NCI NIH HHS grantid: R35 CA209919 – fundername: NHGRI NIH HHS grantid: UM1 HG009442 – fundername: ; – fundername: ; grantid: RM1-HG007735 |
| GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29M 2FS 36B 39C 3O- 3V. 4.4 53G 5BI 5M7 5RE 5S5 70F 7X7 85S 88A 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAEEF AAHBH AARCD AAYOK AAYZH AAZLF ABAWZ ABCQX ABDBF ABDPE ABEFU ABJNI ABLJU ABOCM ABTAH ABUWG ACBWK ACGFO ACGFS ACIWK ACMJI ACNCT ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGCDD AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI C6C CCPQU CS3 DB5 DU5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAO IH2 IHR INH INR IOV ISR ITC L7B LGEZI LK8 LOTEE M0L M1P M2O M7P MVM N9A NADUK NNMJJ NXXTH ODYON P2P PKN PQQKQ PROAC PSQYO Q2X RIG RNS RNT RNTTT RVV SHXYY SIXXV SJN SNYQT SOJ SV3 TAOOD TBHMF TDRGL TN5 TSG TUS UKHRP VQA X7M XJT XOL Y6R YHZ ZGI ZXP ZY4 ~8M ~KM AAYXX ABFSG ACSTC AETEA AEZWR AFANA AFFHD AFHIU AGSTI AHWEU AIEIU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NFIDA NPM 7QL 7QP 7QR 7SS 7T7 7TK 7TM 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c675t-cc15569a299d46a45f3160395df313e2940a1d6fc56c509ae6f685cc9f098c1a3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 698 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000621739700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1061-4036 1546-1718 |
| IngestDate | Tue Nov 04 01:52:04 EST 2025 Thu Oct 02 06:15:33 EDT 2025 Fri Oct 03 09:52:38 EDT 2025 Sat Nov 29 13:33:16 EST 2025 Sat Nov 29 10:16:00 EST 2025 Wed Nov 26 09:43:35 EST 2025 Wed Nov 26 10:02:08 EST 2025 Mon Jul 21 04:15:31 EDT 2025 Sat Nov 29 03:07:11 EST 2025 Tue Nov 18 22:33:30 EST 2025 Fri Feb 21 02:39:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c675t-cc15569a299d46a45f3160395df313e2940a1d6fc56c509ae6f685cc9f098c1a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1409-3095 0000-0001-8402-3442 0000-0002-9459-4393 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8012210 |
| PMID | 33633365 |
| PQID | 2501867664 |
| PQPubID | 33429 |
| PageCount | 9 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8012210 proquest_miscellaneous_2494279927 proquest_journals_2501867664 gale_infotracmisc_A655717911 gale_infotracacademiconefile_A655717911 gale_incontextgauss_ISR_A655717911 gale_incontextgauss_IOV_A655717911 pubmed_primary_33633365 crossref_citationtrail_10_1038_s41588_021_00790_6 crossref_primary_10_1038_s41588_021_00790_6 springer_journals_10_1038_s41588_021_00790_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-01 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Nature genetics |
| PublicationTitleAbbrev | Nat Genet |
| PublicationTitleAlternate | Nat Genet |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group US Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
| References | Street (CR40) 2018; 19 Regev (CR45) 2017; 6 Kang (CR23) 2018; 36 Satpathy (CR6) 2019; 37 Corces (CR34) 2018; 362 Wolock, Lopez, Klein (CR22) 2019; 8 Trapnell (CR41) 2014; 32 Coifman (CR31) 2005; 102 CR36 Cusanovich (CR5) 2018; 174 CR11 CR33 Satpathy (CR38) 2018; 24 Bravo González-Blas (CR17) 2019; 16 Calderon (CR35) 2019; 51 Thurman (CR24) 2012; 489 Pliner (CR18) 2018; 71 Corces (CR39) 2017; 14 Wolf, Angerer, Theis (CR44) 2018; 19 Lareau (CR8) 2019; 37 Chen (CR10) 2019; 20 Cao (CR43) 2019; 566 Corces (CR32) 2016; 48 Cusanovich (CR2) 2015; 348 Granja (CR7) 2019; 37 Ji, Zhou, Ji (CR15) 2017; 33 Stuart (CR12) 2019; 177 CR29 CR9 Zamanighomi (CR19) 2018; 9 Schep, Wu, Buenrostro, Greenleaf (CR16) 2017; 14 Arnosti (CR26) 2003; 48 van Galen (CR27) 2019; 176 Baglama, Reichel (CR28) 2005; 27 de Boer, Regev (CR13) 2018; 19 CR20 Cusanovich (CR3) 2018; 555 Baker, Rogerson, Hayes, Sharrocks, Rattray (CR14) 2019; 47 Qiu (CR42) 2017; 14 McGinnis, Murrow, Gartner (CR21) 2019; 8 Mumbach (CR37) 2017; 49 Buenrostro (CR4) 2018; 173 Andersson, Sandelin (CR25) 2020; 21 Angerer (CR30) 2016; 32 Buenrostro (CR1) 2015; 523 790_CR36 790_CR11 790_CR33 MR Mumbach (790_CR37) 2017; 49 JD Buenrostro (790_CR4) 2018; 173 AN Schep (790_CR16) 2017; 14 C Bravo González-Blas (790_CR17) 2019; 16 R Andersson (790_CR25) 2020; 21 P Angerer (790_CR30) 2016; 32 MR Corces (790_CR39) 2017; 14 JM Granja (790_CR7) 2019; 37 FA Wolf (790_CR44) 2018; 19 SM Baker (790_CR14) 2019; 47 K Street (790_CR40) 2018; 19 AT Satpathy (790_CR6) 2019; 37 J Cao (790_CR43) 2019; 566 DA Cusanovich (790_CR3) 2018; 555 790_CR20 HA Pliner (790_CR18) 2018; 71 X Qiu (790_CR42) 2017; 14 H Chen (790_CR10) 2019; 20 HM Kang (790_CR23) 2018; 36 C Trapnell (790_CR41) 2014; 32 J Baglama (790_CR28) 2005; 27 790_CR29 RR Coifman (790_CR31) 2005; 102 RE Thurman (790_CR24) 2012; 489 CS McGinnis (790_CR21) 2019; 8 DA Cusanovich (790_CR2) 2015; 348 CG de Boer (790_CR13) 2018; 19 JD Buenrostro (790_CR1) 2015; 523 P van Galen (790_CR27) 2019; 176 DN Arnosti (790_CR26) 2003; 48 A Regev (790_CR45) 2017; 6 CA Lareau (790_CR8) 2019; 37 AT Satpathy (790_CR38) 2018; 24 SL Wolock (790_CR22) 2019; 8 MR Corces (790_CR34) 2018; 362 790_CR9 Z Ji (790_CR15) 2017; 33 T Stuart (790_CR12) 2019; 177 M Zamanighomi (790_CR19) 2018; 9 DA Cusanovich (790_CR5) 2018; 174 D Calderon (790_CR35) 2019; 51 MR Corces (790_CR32) 2016; 48 33790476 - Nat Genet. 2021 Jun;53(6):935 |
| References_xml | – volume: 47 start-page: e10 year: 2019 ident: CR14 article-title: Classifying cells with Scasat, a single-cell ATAC-seq analysis tool publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky950 – volume: 49 start-page: 1602 year: 2017 end-page: 1612 ident: CR37 article-title: Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements publication-title: Nat. Genet. doi: 10.1038/ng.3963 – volume: 27 start-page: 19 year: 2005 end-page: 42 ident: CR28 article-title: Augmented implicitly restarted Lanczos bidiagonalization methods publication-title: SIAM J. Sci. Comput. doi: 10.1137/04060593X – ident: CR33 – volume: 489 start-page: 75 year: 2012 end-page: 82 ident: CR24 article-title: The accessible chromatin landscape of the human genome publication-title: Nature doi: 10.1038/nature11232 – ident: CR29 – volume: 362 start-page: eaav1898 year: 2018 ident: CR34 article-title: The chromatin accessibility landscape of primary human cancers publication-title: Science doi: 10.1126/science.aav1898 – volume: 32 start-page: 381 year: 2014 end-page: 386 ident: CR41 article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2859 – volume: 177 start-page: 1888 year: 2019 end-page: 1902 ident: CR12 article-title: Comprehensive integration of single-cell data publication-title: Cell doi: 10.1016/j.cell.2019.05.031 – volume: 6 start-page: e27041 year: 2017 ident: CR45 article-title: The Human Cell Atlas publication-title: eLife doi: 10.7554/eLife.27041 – volume: 16 start-page: 397 year: 2019 end-page: 400 ident: CR17 article-title: cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data publication-title: Nat. Methods doi: 10.1038/s41592-019-0367-1 – volume: 14 start-page: 979 year: 2017 end-page: 982 ident: CR42 article-title: Reversed graph embedding resolves complex single-cell trajectories publication-title: Nat. Methods doi: 10.1038/nmeth.4402 – volume: 14 start-page: 959 year: 2017 end-page: 962 ident: CR39 article-title: An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues publication-title: Nat. Methods doi: 10.1038/nmeth.4396 – volume: 19 year: 2018 ident: CR44 article-title: SCANPY: large-scale single-cell gene expression data analysis publication-title: Genome Biol. doi: 10.1186/s13059-017-1382-0 – volume: 36 start-page: 89 year: 2018 end-page: 94 ident: CR23 article-title: Multiplexed droplet single-cell RNA-sequencing using natural genetic variation publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4042 – volume: 19 year: 2018 ident: CR40 article-title: Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics publication-title: BMC Genomics doi: 10.1186/s12864-018-4772-0 – volume: 20 year: 2019 ident: CR10 article-title: Assessment of computational methods for the analysis of single-cell ATAC-seq data publication-title: Genome Biol. doi: 10.1186/s13059-019-1854-5 – volume: 19 start-page: 253 year: 2018 ident: CR13 article-title: BROCKMAN: deciphering variance in epigenomic regulators by -mer factorization publication-title: BMC Bioinformatics doi: 10.1186/s12859-018-2255-6 – volume: 71 start-page: 858 year: 2018 end-page: 871 ident: CR18 article-title: Cicero predicts cis-regulatory DNA interactions from single-cell chromatin accessibility data publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.06.044 – volume: 8 start-page: 329 year: 2019 end-page: 337 ident: CR21 article-title: DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors publication-title: Cell Syst. doi: 10.1016/j.cels.2019.03.003 – volume: 555 start-page: 538 year: 2018 end-page: 542 ident: CR3 article-title: The cis-regulatory dynamics of embryonic development at single-cell resolution publication-title: Nature doi: 10.1038/nature25981 – volume: 14 start-page: 975 year: 2017 end-page: 978 ident: CR16 article-title: chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data publication-title: Nat. Methods doi: 10.1038/nmeth.4401 – volume: 8 start-page: 281 year: 2019 end-page: 291 ident: CR22 article-title: Scrublet: computational identification of cell doublets in single-cell transcriptomic data publication-title: Cell Syst. doi: 10.1016/j.cels.2018.11.005 – volume: 37 start-page: 916 year: 2019 end-page: 924 ident: CR8 article-title: Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0147-6 – volume: 33 start-page: 2930 year: 2017 end-page: 2932 ident: CR15 article-title: Single-cell regulome data analysis by SCRAT publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx315 – volume: 37 start-page: 1458 year: 2019 end-page: 1465 ident: CR7 article-title: Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0332-7 – volume: 102 start-page: 7426 year: 2005 end-page: 7431 ident: CR31 article-title: Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0500334102 – volume: 24 start-page: 580 year: 2018 end-page: 590 ident: CR38 article-title: Transcript-indexed ATAC-seq for precision immune profiling publication-title: Nat. Med. doi: 10.1038/s41591-018-0008-8 – volume: 173 start-page: 1535 year: 2018 end-page: 1548 ident: CR4 article-title: Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation publication-title: Cell doi: 10.1016/j.cell.2018.03.074 – ident: CR11 – volume: 174 start-page: 1309 year: 2018 end-page: 1324 ident: CR5 article-title: A single-cell atlas of in vivo mammalian chromatin accessibility publication-title: Cell doi: 10.1016/j.cell.2018.06.052 – ident: CR9 – volume: 37 start-page: 925 year: 2019 end-page: 936 ident: CR6 article-title: Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0206-z – ident: CR36 – volume: 523 start-page: 486 year: 2015 end-page: 490 ident: CR1 article-title: Single-cell chromatin accessibility reveals principles of regulatory variation publication-title: Nature doi: 10.1038/nature14590 – volume: 48 start-page: 1193 year: 2016 end-page: 1203 ident: CR32 article-title: Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution publication-title: Nat. Genet. doi: 10.1038/ng.3646 – volume: 48 start-page: 579 year: 2003 end-page: 602 ident: CR26 article-title: Analysis and function of transcriptional regulatory elements: insights from publication-title: Annu. Rev. Entomol. doi: 10.1146/annurev.ento.48.091801.112749 – volume: 51 start-page: 1494 year: 2019 end-page: 1505 ident: CR35 article-title: Landscape of stimulation-responsive chromatin across diverse human immune cells publication-title: Nat. Genet. doi: 10.1038/s41588-019-0505-9 – volume: 176 start-page: 1265 year: 2019 end-page: 1281 ident: CR27 article-title: Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity publication-title: Cell doi: 10.1016/j.cell.2019.01.031 – volume: 21 start-page: 71 year: 2020 end-page: 87 ident: CR25 article-title: Determinants of enhancer and promoter activities of regulatory elements publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0173-8 – volume: 566 start-page: 496 year: 2019 end-page: 502 ident: CR43 article-title: The single-cell transcriptional landscape of mammalian organogenesis publication-title: Nature doi: 10.1038/s41586-019-0969-x – volume: 9 year: 2018 ident: CR19 article-title: Unsupervised clustering and epigenetic classification of single cells publication-title: Nat. Commun. doi: 10.1038/s41467-018-04629-3 – volume: 348 start-page: 910 year: 2015 end-page: 914 ident: CR2 article-title: Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing publication-title: Science doi: 10.1126/science.aab1601 – volume: 32 start-page: 1241 year: 2016 end-page: 1243 ident: CR30 article-title: destiny: diffusion maps for large-scale single-cell data in R publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv715 – ident: CR20 – volume: 489 start-page: 75 year: 2012 ident: 790_CR24 publication-title: Nature doi: 10.1038/nature11232 – volume: 566 start-page: 496 year: 2019 ident: 790_CR43 publication-title: Nature doi: 10.1038/s41586-019-0969-x – volume: 555 start-page: 538 year: 2018 ident: 790_CR3 publication-title: Nature doi: 10.1038/nature25981 – volume: 523 start-page: 486 year: 2015 ident: 790_CR1 publication-title: Nature doi: 10.1038/nature14590 – volume: 14 start-page: 959 year: 2017 ident: 790_CR39 publication-title: Nat. Methods doi: 10.1038/nmeth.4396 – volume: 37 start-page: 1458 year: 2019 ident: 790_CR7 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0332-7 – volume: 27 start-page: 19 year: 2005 ident: 790_CR28 publication-title: SIAM J. Sci. Comput. doi: 10.1137/04060593X – volume: 348 start-page: 910 year: 2015 ident: 790_CR2 publication-title: Science doi: 10.1126/science.aab1601 – volume: 14 start-page: 975 year: 2017 ident: 790_CR16 publication-title: Nat. Methods doi: 10.1038/nmeth.4401 – volume: 20 year: 2019 ident: 790_CR10 publication-title: Genome Biol. doi: 10.1186/s13059-019-1854-5 – ident: 790_CR20 doi: 10.1093/nar/gkx1081 – volume: 19 year: 2018 ident: 790_CR44 publication-title: Genome Biol. doi: 10.1186/s13059-017-1382-0 – volume: 33 start-page: 2930 year: 2017 ident: 790_CR15 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx315 – volume: 48 start-page: 579 year: 2003 ident: 790_CR26 publication-title: Annu. Rev. Entomol. doi: 10.1146/annurev.ento.48.091801.112749 – volume: 173 start-page: 1535 year: 2018 ident: 790_CR4 publication-title: Cell doi: 10.1016/j.cell.2018.03.074 – volume: 36 start-page: 89 year: 2018 ident: 790_CR23 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4042 – volume: 6 start-page: e27041 year: 2017 ident: 790_CR45 publication-title: eLife doi: 10.7554/eLife.27041 – volume: 37 start-page: 916 year: 2019 ident: 790_CR8 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0147-6 – volume: 37 start-page: 925 year: 2019 ident: 790_CR6 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0206-z – ident: 790_CR11 doi: 10.1101/615179 – volume: 362 start-page: eaav1898 year: 2018 ident: 790_CR34 publication-title: Science doi: 10.1126/science.aav1898 – volume: 24 start-page: 580 year: 2018 ident: 790_CR38 publication-title: Nat. Med. doi: 10.1038/s41591-018-0008-8 – volume: 32 start-page: 381 year: 2014 ident: 790_CR41 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2859 – volume: 51 start-page: 1494 year: 2019 ident: 790_CR35 publication-title: Nat. Genet. doi: 10.1038/s41588-019-0505-9 – volume: 174 start-page: 1309 year: 2018 ident: 790_CR5 publication-title: Cell doi: 10.1016/j.cell.2018.06.052 – ident: 790_CR36 doi: 10.1101/2020.01.06.896159 – volume: 71 start-page: 858 year: 2018 ident: 790_CR18 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.06.044 – volume: 16 start-page: 397 year: 2019 ident: 790_CR17 publication-title: Nat. Methods doi: 10.1038/s41592-019-0367-1 – volume: 21 start-page: 71 year: 2020 ident: 790_CR25 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0173-8 – volume: 177 start-page: 1888 year: 2019 ident: 790_CR12 publication-title: Cell doi: 10.1016/j.cell.2019.05.031 – volume: 8 start-page: 329 year: 2019 ident: 790_CR21 publication-title: Cell Syst. doi: 10.1016/j.cels.2019.03.003 – volume: 48 start-page: 1193 year: 2016 ident: 790_CR32 publication-title: Nat. Genet. doi: 10.1038/ng.3646 – volume: 19 start-page: 253 year: 2018 ident: 790_CR13 publication-title: BMC Bioinformatics doi: 10.1186/s12859-018-2255-6 – volume: 47 start-page: e10 year: 2019 ident: 790_CR14 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky950 – ident: 790_CR29 – volume: 32 start-page: 1241 year: 2016 ident: 790_CR30 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv715 – volume: 14 start-page: 979 year: 2017 ident: 790_CR42 publication-title: Nat. Methods doi: 10.1038/nmeth.4402 – ident: 790_CR33 doi: 10.21105/joss.00861 – volume: 49 start-page: 1602 year: 2017 ident: 790_CR37 publication-title: Nat. Genet. doi: 10.1038/ng.3963 – ident: 790_CR9 doi: 10.1101/2020.11.02.364265 – volume: 176 start-page: 1265 year: 2019 ident: 790_CR27 publication-title: Cell doi: 10.1016/j.cell.2019.01.031 – volume: 9 year: 2018 ident: 790_CR19 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04629-3 – volume: 8 start-page: 281 year: 2019 ident: 790_CR22 publication-title: Cell Syst. doi: 10.1016/j.cels.2018.11.005 – volume: 19 year: 2018 ident: 790_CR40 publication-title: BMC Genomics doi: 10.1186/s12864-018-4772-0 – volume: 102 start-page: 7426 year: 2005 ident: 790_CR31 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0500334102 – reference: 33790476 - Nat Genet. 2021 Jun;53(6):935 |
| SSID | ssj0014408 |
| Score | 2.736516 |
| Snippet | The advent of single-cell chromatin accessibility profiling has accelerated the ability to map gene regulatory landscapes but has outpaced the development of... |
| SourceID | pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 403 |
| SubjectTerms | 38/22 38/23 38/39 45 631/208/176 631/208/177 631/208/200 Accessibility Agriculture Animal Genetics and Genomics Animals Biomedical and Life Sciences Biomedicine Cancer Research Chromatin Chromatin - genetics Chromatin - metabolism Cluster Analysis Clustering Computer programs Datasets Deoxyribonucleic acid DNA Electronic data processing Footprinting Gene expression Gene Expression Regulation Gene Function Gene regulation Gene sequencing Genetic regulation Genetic research Genome Genomics Human Genetics Humans Identification Mice Science Sequence Analysis, RNA - methods Single-Cell Analysis - methods Software Software packages technical-report Technology application Transcription factors Transcription Factors - genetics Transcription Factors - metabolism UNIX User-Computer Interface Web Browser |
| Title | ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis |
| URI | https://link.springer.com/article/10.1038/s41588-021-00790-6 https://www.ncbi.nlm.nih.gov/pubmed/33633365 https://www.proquest.com/docview/2501867664 https://www.proquest.com/docview/2494279927 https://pubmed.ncbi.nlm.nih.gov/PMC8012210 |
| Volume | 53 |
| WOSCitedRecordID | wos000621739700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1546-1718 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0014408 issn: 1061-4036 databaseCode: M7P dateStart: 20000101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1546-1718 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0014408 issn: 1061-4036 databaseCode: 7X7 dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1546-1718 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0014408 issn: 1061-4036 databaseCode: BENPR dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1546-1718 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0014408 issn: 1061-4036 databaseCode: 8C1 dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1546-1718 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0014408 issn: 1061-4036 databaseCode: M2O dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSRe-B7LGJVBSDxAtCROHPsJjWkTSNBVBaa-Wa7jsIop3ZoWtP-eOyftSKXthYdGjXyR4tz5Pnzn3wG8iTJbotzIcFwoDFAUL0LlUhnyxCXoMVue-ET76Ze835ejkRq0G251W1a51IleURdTS3vk-wkhz4lciPTDxWVIXaMou9q20NiALUJJ4L50b7DKIlA3ZZ_tFBQnUZpytzlmLvdrNFwoI1SggFZSYQjVMUzr6vkf-7ReO7mWQPV26fjh_87oETxoPVJ20IjQY7jjqidwr-lRefUUDGHTDtmkZobVyFA6asVqVN5_zMwxjLh_oUZi6PqyJfIE6k9GOxDnLqS0ALNnsyn5xRUzvjtjU497xUyLh_IMfhwffT_8FLZ9GUKL4cU8tBadEKEMWrIiFSbNSk7NqlVW4B_ukLuRiQtR2kxY9EeME6WQmbWqjJS0seHbsFlNK7cDTJoiLXjmeFRmqc2lsmMbY6AsVJmPeVoGEC-Zom0LWk69M861T55zqRtGamSk9ozUIoB3q2cuGsiOW6lfE681YWFUVGzz0yzqWn8-OdUHIstygm-NbyL6NuwQvW2Jyim-ozXtAQecKWFsdSj3OpS4om13eCkwutUotb6WlgBerYbpSaqSq9x0gTSpSpNcqSQP4HkjpqsvwLng-MsCyDsCvCIgnPHuSDU583jj5MQkcRTA-6WoX7_WzR929_ZZvID7iV99VM63B5vz2cK9hLv293xSz3qwkY9yf5V4lYdxD7Y-HvUHQ7z7mpz0_Dr_C6PdUKw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAoIL74dLgQWBOIDVeNdeew8IVUDVqCFUpa16WzbrNY2onBAnVPlT_EZm_EhxpPbWA4dIkXYc7W6-eaxn9huAV53IZoibxB-kCg8oSqS-cmHiC-44RsxW8DLRftiL-_3k6EjtrsCf5i4MlVU2NrE01OnI0jvyDU7MczKWMvww_uVT1yjKrjYtNCpY7Lj5KR7ZivfdT_j_vuZ86_P-x22_7irgWwyOp7616EKlMmiH01CaMMoEtVpWUYpfhMO5dUyQysxG0qI3NU5mMomsVVlHJTYwAn_3ClzFMIInZang7iJrQd2by-yqpHMZpUXXqmvtyUaBjhIxSQUR6JUVHtlajnDZHfzjD5drNZcStqUf3Lr9v-3gHbhVR9xss1KRu7Di8ntwverBOb8Phrh399iwYIYVCFi6SsYKdE6nZuLY2NifaHEZhvasYdZA_8DoDcuJ8yntwezxZERxf85M2X2yqjeeM1PzvTyAg0tZ30NYzUe5ewwsMWmYisiJThaFNk6UHdiAx6FUWTwQYeZB0IBA25qUnXqDnOiyOEAkugKORuDoEjhaevB28cy4oiS5UPolYUsT10dOxUQ_zKwodPfrod6UURQTPW1wntC3vZbQm1ooG-EcrakvcOBKiUOsJbnekkSLZdvDDUB1bTELfYZOD14shulJqgLM3WiGMqEKeawUjz14VKnFYgeEkAI_kQdxS2EWAsSj3h7Jh8clnzoFaTzoePCuUa2zaZ2_sWsXr-I53Nje_9LTvW5_5wnc5KXmU-niOqxOJzP3FK7Z39NhMXlW2hAG3y9b5f4CV4WnRg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6V8hAX3g-XAgsCcQAr8a699h4QqloiolahKlD1tmzWaxpROSFOqPLX-HXM-JHiSO2tBw6RLO048q6_mdn1zHwD8Kob2Qxxk_jDVOEBRYnUVy5MfMEdxx2zFbwMtB_uxYNBcnSk9tfgT1MLQ2mVjU0sDXU6tvSNvMOJeU7GUoadrE6L2N_pfZj88qmDFEVam3YaFUR23eIUj2_F-_4OvuvXnPc-ft3-5NcdBnyLG-WZby26U6kM2uQ0lCaMMkFtl1WU4oVw-JxdE6Qys5G06FmNk5lMImtV1lWJDYzA_70CV2OBKKYq9e1legnFTKsyPElnNAqRblQl7kmnQKeJ-KTkCPTQCo9vLae46hr-8Y2reZsrwdvSJ_Zu_8-reQdu1TtxtlWpzl1Yc_k9uF715lzcB0OcvAdsVDDDCgQylZixAp3WqZk6NjH2J1pihlt-1jBuoN9g9OXlxPkUDmH2eDqm80DOTNmVsspDXjBT88A8gG-XMr-HsJ6Pc_cYWGLSMBWRE90sCm2cKDu0AY9DqbJ4KMLMg6ABhLY1WTv1DDnRZdKASHQFIo0g0iWItPTg7fKeSUVVcqH0S8KZJg6QnN7_DzMvCt3_fKi3ZBTFRFsbnCf05aAl9KYWysb4jNbUhR04U-IWa0lutiTRktn2cANWXVvSQp8h1YMXy2G6k7IDczeeo0yoQh4rxWMPHlUqslwBgbqJv8iDuKU8SwHiV2-P5KPjkmedNm886HrwrlGzs8c6f2E3Lp7Fc7iBmqb3-oPdJ3CTl0aAMho3YX02nbuncM3-no2K6bPSnDD4ftka9xfUra-8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ArchR+is+a+scalable+software+package+for+integrative+single-cell+chromatin+accessibility+analysis&rft.jtitle=Nature+genetics&rft.au=Granja%2C+Jeffrey+M&rft.au=Corces%2C+M.+Ryan&rft.au=Pierce%2C+Sarah+E&rft.au=Bagdatli%2C+S.+Tansu&rft.date=2021-03-01&rft.pub=Nature+Publishing+Group&rft.issn=1061-4036&rft.volume=53&rft.issue=3&rft.spage=403&rft_id=info:doi/10.1038%2Fs41588-021-00790-6&rft.externalDBID=IOV&rft.externalDocID=A655717911 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-4036&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-4036&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-4036&client=summon |