ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis

The advent of single-cell chromatin accessibility profiling has accelerated the ability to map gene regulatory landscapes but has outpaced the development of scalable software to rapidly extract biological meaning from these data. Here we present a software suite for single-cell analysis of regulato...

Full description

Saved in:
Bibliographic Details
Published in:Nature genetics Vol. 53; no. 3; pp. 403 - 411
Main Authors: Granja, Jeffrey M., Corces, M. Ryan, Pierce, Sarah E., Bagdatli, S. Tansu, Choudhry, Hani, Chang, Howard Y., Greenleaf, William J.
Format: Journal Article
Language:English
Published: New York Nature Publishing Group US 01.03.2021
Nature Publishing Group
Subjects:
ISSN:1061-4036, 1546-1718, 1546-1718
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The advent of single-cell chromatin accessibility profiling has accelerated the ability to map gene regulatory landscapes but has outpaced the development of scalable software to rapidly extract biological meaning from these data. Here we present a software suite for single-cell analysis of regulatory chromatin in R (ArchR; https://www.archrproject.com/ ) that enables fast and comprehensive analysis of single-cell chromatin accessibility data. ArchR provides an intuitive, user-focused interface for complex single-cell analyses, including doublet removal, single-cell clustering and cell type identification, unified peak set generation, cellular trajectory identification, DNA element-to-gene linkage, transcription factor footprinting, mRNA expression level prediction from chromatin accessibility and multi-omic integration with single-cell RNA sequencing (scRNA-seq). Enabling the analysis of over 1.2 million single cells within 8 h on a standard Unix laptop, ArchR is a comprehensive software suite for end-to-end analysis of single-cell chromatin accessibility that will accelerate the understanding of gene regulation at the resolution of individual cells. ArchR is a software suite that enables efficient and end-to-end analysis of single-cell chromatin accessibility data (scATAC-seq).
AbstractList The advent of single-cell chromatin accessibility profiling has accelerated the ability to map gene regulatory landscapes but has outpaced the development of scalable software to rapidly extract biological meaning from these data. Here we present a software suite for single-cell analysis of regulatory chromatin in R (ArchR; https://www.archrproject.com/ ) that enables fast and comprehensive analysis of single-cell chromatin accessibility data. ArchR provides an intuitive, user-focused interface for complex single-cell analyses, including doublet removal, single-cell clustering and cell type identification, unified peak set generation, cellular trajectory identification, DNA element-to-gene linkage, transcription factor footprinting, mRNA expression level prediction from chromatin accessibility and multi-omic integration with single-cell RNA sequencing (scRNA-seq). Enabling the analysis of over 1.2 million single cells within 8 h on a standard Unix laptop, ArchR is a comprehensive software suite for end-to-end analysis of single-cell chromatin accessibility that will accelerate the understanding of gene regulation at the resolution of individual cells.The advent of single-cell chromatin accessibility profiling has accelerated the ability to map gene regulatory landscapes but has outpaced the development of scalable software to rapidly extract biological meaning from these data. Here we present a software suite for single-cell analysis of regulatory chromatin in R (ArchR; https://www.archrproject.com/ ) that enables fast and comprehensive analysis of single-cell chromatin accessibility data. ArchR provides an intuitive, user-focused interface for complex single-cell analyses, including doublet removal, single-cell clustering and cell type identification, unified peak set generation, cellular trajectory identification, DNA element-to-gene linkage, transcription factor footprinting, mRNA expression level prediction from chromatin accessibility and multi-omic integration with single-cell RNA sequencing (scRNA-seq). Enabling the analysis of over 1.2 million single cells within 8 h on a standard Unix laptop, ArchR is a comprehensive software suite for end-to-end analysis of single-cell chromatin accessibility that will accelerate the understanding of gene regulation at the resolution of individual cells.
The advent of single-cell chromatin accessibility profiling has accelerated the ability to map gene regulatory landscapes but has outpaced the development of scalable software to rapidly extract biological meaning from these data. Here we present a software suite for single-cell analysis of regulatory chromatin in R (ArchR; https://www.archrproject.com/) that enables fast and comprehensive analysis of single-cell chromatin accessibility data. ArchR provides an intuitive, user-focused interface for complex single-cell analyses, including doublet removal, single-cell clustering and cell type identification, unified peak set generation, cellular trajectory identification, DNA element-to-gene linkage, transcription factor footprinting, mRNA expression level prediction from chromatin accessibility and multi-omic integration with single-cell RNA sequencing (scRNA-seq). Enabling the analysis of over 1.2 million single cells within 8 h on a standard Unix laptop, ArchR is a comprehensive software suite for end-to-end analysis of single-cell chromatin accessibility that will accelerate the understanding of gene regulation at the resolution of individual cells.
The advent of single-cell chromatin accessibility profiling has accelerated the ability to map gene regulatory landscapes but has outpaced the development of scalable software to rapidly extract biological meaning from these data. Here we present a software suite for single-cell analysis of regulatory chromatin in R (ArchR; ArchR is a software suite that enables efficient and end-to-end analysis of single-cell chromatin accessibility data (scATAC-seq).
The advent of single-cell chromatin accessibility profiling has accelerated the ability to map gene regulatory landscapes but has outpaced the development of scalable software to rapidly extract biological meaning from these data. Here we present a software suite for single-cell analysis of regulatory chromatin in R (ArchR; https://www.archrproject.com/ ) that enables fast and comprehensive analysis of single-cell chromatin accessibility data. ArchR provides an intuitive, user-focused interface for complex single-cell analyses, including doublet removal, single-cell clustering and cell type identification, unified peak set generation, cellular trajectory identification, DNA element-to-gene linkage, transcription factor footprinting, mRNA expression level prediction from chromatin accessibility and multi-omic integration with single-cell RNA sequencing (scRNA-seq). Enabling the analysis of over 1.2 million single cells within 8 h on a standard Unix laptop, ArchR is a comprehensive software suite for end-to-end analysis of single-cell chromatin accessibility that will accelerate the understanding of gene regulation at the resolution of individual cells.
The advent of single-cell chromatin accessibility profiling has accelerated the ability to map gene regulatory landscapes but has outpaced the development of scalable software to rapidly extract biological meaning from these data. Here we present a software suite for single-cell analysis of regulatory chromatin in R (ArchR; https://vww.archrproject.com/) that enables fast and comprehensive analysis of single-cell chromatin accessibility data. ArchR provides an intuitive, user-focused interface for complex single-cell analyses, including doublet removal, single-cell clustering and cell type identification, unified peak set generation, cellular trajectory identification, DNA element-to-gene linkage, transcription factor footprinting, mRNA expression level prediction from chromatin accessibility and multi-omic integration with single-cell RNA sequencing (scRNA-seq). Enabling the analysis of over 1.2 million single cells within 8h on a standard Unix laptop, ArchR is a comprehensive software suite for end-to-end analysis of single-cell chromatin accessibility that will accelerate the understanding of gene regulation at the resolution of individual cells.
The advent of single-cell chromatin accessibility profiling has accelerated the ability to map gene regulatory landscapes but has outpaced the development of scalable software to rapidly extract biological meaning from these data. Here we present a software suite for single-cell analysis of regulatory chromatin in R (ArchR; https://www.archrproject.com/) that enables fast and comprehensive analysis of single-cell chromatin accessibility data. ArchR provides an intuitive, user-focused interface for complex single-cell analyses, including doublet removal, single-cell clustering and cell type identification, unified peak set generation, cellular trajectory identification, DNA element-to-gene linkage, transcription factor footprinting, mRNA expression level prediction from chromatin accessibility and multi-omic integration with single-cell RNA sequencing (scRNA-seq). Enabling the analysis of over 1.2 million single cells within 8 h on a standard Unix laptop, ArchR is a comprehensive software suite for end-to-end analysis of single-cell chromatin accessibility that will accelerate the understanding of gene regulation at the resolution of individual cells. ArchR is a software suite that enables efficient and end-to-end analysis of single-cell chromatin accessibility data (scATAC-seq).
The advent of single-cell chromatin accessibility profiling has accelerated the ability to map gene regulatory landscapes but has outpaced the development of scalable software to rapidly extract biological meaning from these data. Here we present a software suite for single-cell analysis of regulatory chromatin in R (ArchR; https://www.archrproject.com/ ) that enables fast and comprehensive analysis of single-cell chromatin accessibility data. ArchR provides an intuitive, user-focused interface for complex single-cell analyses, including doublet removal, single-cell clustering and cell type identification, unified peak set generation, cellular trajectory identification, DNA element-to-gene linkage, transcription factor footprinting, mRNA expression level prediction from chromatin accessibility and multi-omic integration with single-cell RNA sequencing (scRNA-seq). Enabling the analysis of over 1.2 million single cells within 8 h on a standard Unix laptop, ArchR is a comprehensive software suite for end-to-end analysis of single-cell chromatin accessibility that will accelerate the understanding of gene regulation at the resolution of individual cells. ArchR is a software suite that enables efficient and end-to-end analysis of single-cell chromatin accessibility data (scATAC-seq).
Audience Academic
Author Bagdatli, S. Tansu
Greenleaf, William J.
Granja, Jeffrey M.
Chang, Howard Y.
Corces, M. Ryan
Choudhry, Hani
Pierce, Sarah E.
Author_xml – sequence: 1
  givenname: Jeffrey M.
  orcidid: 0000-0001-8402-3442
  surname: Granja
  fullname: Granja, Jeffrey M.
  email: jgranja.stanford@gmail.com
  organization: Department of Genetics, Stanford University School of Medicine, Program in Biophysics, Stanford University, Center for Personal Dynamic Regulomes, Stanford University
– sequence: 2
  givenname: M. Ryan
  surname: Corces
  fullname: Corces, M. Ryan
  organization: Center for Personal Dynamic Regulomes, Stanford University, Department of Pathology, Stanford University School of Medicine, Gladstone Institute of Neurological Disease, Gladstone Institute of Data Science and Biotechnology, Department of Neurology, University of California San Francisco
– sequence: 3
  givenname: Sarah E.
  surname: Pierce
  fullname: Pierce, Sarah E.
  organization: Department of Genetics, Stanford University School of Medicine, Program in Cancer Biology, Stanford University School of Medicine
– sequence: 4
  givenname: S. Tansu
  surname: Bagdatli
  fullname: Bagdatli, S. Tansu
  organization: Department of Genetics, Stanford University School of Medicine
– sequence: 5
  givenname: Hani
  surname: Choudhry
  fullname: Choudhry, Hani
  organization: Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University
– sequence: 6
  givenname: Howard Y.
  orcidid: 0000-0002-9459-4393
  surname: Chang
  fullname: Chang, Howard Y.
  email: howchang@stanford.edu
  organization: Department of Genetics, Stanford University School of Medicine, Center for Personal Dynamic Regulomes, Stanford University, Howard Hughes Medical Institute, Stanford University
– sequence: 7
  givenname: William J.
  orcidid: 0000-0003-1409-3095
  surname: Greenleaf
  fullname: Greenleaf, William J.
  email: wjg@stanford.edu
  organization: Department of Genetics, Stanford University School of Medicine, Center for Personal Dynamic Regulomes, Stanford University, Department of Applied Physics, Stanford University, Chan Zuckerberg Biohub
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33633365$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rHCEUhqWkNMm2f6AXRehNezGpjh8z3hSW0I9AIJB-3MpZx5k1dXWrM2n339ftJk03lFBEPOjzHvH1PUYHIQaL0HNKTihh7ZvMqWjbitS0IqRRpJKP0BEVXFa0oe1BqYmkFSdMHqLjnK8IoZyT9gk6ZEyyMsURgnkyy0vsMgacDXhYeItz7McfkCxeg_kGg8V9TNiF0Q4JRnddABcGbytjvcdmmeKqbAcMxtic3cJ5N24wBPCb7PJT9LgHn-2zm3WGvrx_9_n0Y3V-8eHsdH5eGdmIsTKGCiEV1Ep1XAIXPaOSMCW6UjBbK06AdrI3QhpBFFjZy1YYo3qiWkOBzdDbXd_1tFjZztgwJvB6ndwK0kZHcHr_JLilHuK1bgmt62LoDL26aZDi98nmUa9c3j4Rgo1T1jVXvG6UqpuCvryHXsUplQcXShDaykZKfkcN4K12oY_lXrNtqudSiIY2itJCnfyDKqOzK2fKj_eu7O8JXu8JCjPan-MAU8767NPl_7MXX_fZF38b-Me527AUoN0BJsWck-21cWP5-bj103lNid7mUu9yqUsu9e9calmk9T3pbfcHRWwnygUOg013Lj-g-gXecfJk
CitedBy_id crossref_primary_10_1016_j_molcel_2021_10_013
crossref_primary_10_1016_j_tig_2021_08_012
crossref_primary_10_1038_s41421_023_00559_7
crossref_primary_10_1016_j_molcel_2022_12_029
crossref_primary_10_1126_science_abg7216
crossref_primary_10_1016_j_tibtech_2024_07_006
crossref_primary_10_1016_j_devcel_2022_11_013
crossref_primary_10_1084_jem_20242078
crossref_primary_10_1016_j_cell_2022_01_012
crossref_primary_10_1084_jem_20210582
crossref_primary_10_1242_bio_060323
crossref_primary_10_1038_s41586_025_09083_y
crossref_primary_10_1093_nargab_lqab101
crossref_primary_10_1080_21541264_2023_2295044
crossref_primary_10_1038_s41467_024_53717_0
crossref_primary_10_1038_s41588_024_01855_y
crossref_primary_10_3390_ijms26157199
crossref_primary_10_1016_j_xgen_2025_100848
crossref_primary_10_1016_j_celrep_2025_115523
crossref_primary_10_1093_nar_gkae1100
crossref_primary_10_1016_j_celrep_2025_115645
crossref_primary_10_3390_cimb46060316
crossref_primary_10_1016_j_stem_2024_05_008
crossref_primary_10_1002_glia_24621
crossref_primary_10_1038_s41467_023_44305_9
crossref_primary_10_1038_s41587_023_01935_0
crossref_primary_10_1016_j_tig_2025_01_001
crossref_primary_10_1210_endocr_bqac156
crossref_primary_10_3389_fimmu_2024_1405748
crossref_primary_10_1016_j_gpb_2022_05_007
crossref_primary_10_1038_s41467_022_31770_x
crossref_primary_10_1083_jcb_202211073
crossref_primary_10_1038_s41592_023_02144_y
crossref_primary_10_1016_j_cub_2024_11_027
crossref_primary_10_1038_s41467_023_40611_4
crossref_primary_10_1038_s42003_025_08730_4
crossref_primary_10_1016_j_cotox_2024_100477
crossref_primary_10_1186_s12864_023_09792_6
crossref_primary_10_1016_j_cell_2025_06_020
crossref_primary_10_1007_s10157_025_02679_8
crossref_primary_10_1038_s41467_022_28067_4
crossref_primary_10_1038_s41467_023_39043_x
crossref_primary_10_1016_j_stem_2022_01_014
crossref_primary_10_1016_j_celrep_2024_115118
crossref_primary_10_1016_j_celrep_2025_115673
crossref_primary_10_1038_s41467_024_48990_y
crossref_primary_10_1038_s41388_025_03309_z
crossref_primary_10_1016_j_immuni_2024_01_006
crossref_primary_10_1158_2159_8290_CD_21_0865
crossref_primary_10_1038_s41588_025_02148_8
crossref_primary_10_1093_nar_gkad901
crossref_primary_10_1016_j_bbrc_2022_03_132
crossref_primary_10_1016_j_medj_2025_100704
crossref_primary_10_1021_acssynbio_4c00864
crossref_primary_10_1146_annurev_cancerbio_070620_094453
crossref_primary_10_1126_science_abm7993
crossref_primary_10_1186_s13059_024_03374_9
crossref_primary_10_1093_nar_gkac819
crossref_primary_10_1016_j_cell_2025_06_031
crossref_primary_10_1016_j_ygeno_2024_110944
crossref_primary_10_1038_s41556_024_01583_9
crossref_primary_10_3389_fcell_2022_981859
crossref_primary_10_1093_ecco_jcc_jjae055
crossref_primary_10_1038_s41587_023_01716_9
crossref_primary_10_1002_1873_3468_14884
crossref_primary_10_1038_s41467_025_56212_2
crossref_primary_10_1016_j_devcel_2022_04_016
crossref_primary_10_1126_science_adk9217
crossref_primary_10_1186_s13059_024_03265_z
crossref_primary_10_1038_s44161_023_00412_w
crossref_primary_10_3390_ijms241713053
crossref_primary_10_1186_s12915_022_01473_2
crossref_primary_10_3389_fimmu_2024_1506305
crossref_primary_10_1016_j_molcel_2022_11_017
crossref_primary_10_1016_j_cell_2024_05_004
crossref_primary_10_1038_s41591_023_02397_2
crossref_primary_10_1038_s41590_025_02203_w
crossref_primary_10_1038_s41586_025_09424_x
crossref_primary_10_1002_pro_4458
crossref_primary_10_1093_bib_bbac540
crossref_primary_10_1038_s41467_023_44184_0
crossref_primary_10_1038_s41467_022_33184_1
crossref_primary_10_1126_science_adp4319
crossref_primary_10_3389_fimmu_2023_1232511
crossref_primary_10_1038_s41392_022_00990_4
crossref_primary_10_1038_s41467_023_36559_0
crossref_primary_10_1016_j_neuron_2025_07_001
crossref_primary_10_1371_journal_pcbi_1012356
crossref_primary_10_1182_blood_2021014670
crossref_primary_10_1038_s41592_024_02302_w
crossref_primary_10_1242_dev_201229
crossref_primary_10_1093_molbev_msac090
crossref_primary_10_1038_s41540_022_00245_6
crossref_primary_10_1038_s41597_022_01447_7
crossref_primary_10_1016_j_immuni_2023_05_008
crossref_primary_10_1016_j_compbiomed_2024_108230
crossref_primary_10_1038_s41467_023_41795_5
crossref_primary_10_1016_j_celrep_2023_112979
crossref_primary_10_12688_f1000research_73600_2
crossref_primary_10_12688_f1000research_73600_1
crossref_primary_10_1038_s41467_022_29414_1
crossref_primary_10_1038_s41467_021_26865_w
crossref_primary_10_1016_j_isci_2023_106920
crossref_primary_10_1073_pnas_2419818122
crossref_primary_10_1038_s41587_024_02347_4
crossref_primary_10_1016_j_stem_2023_02_008
crossref_primary_10_1016_j_xgen_2025_100806
crossref_primary_10_1126_science_adp7710
crossref_primary_10_1038_s41590_022_01369_x
crossref_primary_10_3389_fcvm_2022_948492
crossref_primary_10_1016_j_stem_2024_04_015
crossref_primary_10_1016_j_stem_2024_04_010
crossref_primary_10_1093_nar_gkac847
crossref_primary_10_1126_science_adh3253
crossref_primary_10_1096_fj_202300131RRR
crossref_primary_10_1093_bib_bbab473
crossref_primary_10_1016_j_immuni_2024_07_021
crossref_primary_10_1136_gutjnl_2024_332095
crossref_primary_10_1073_pnas_2423270121
crossref_primary_10_1016_j_ccell_2022_09_015
crossref_primary_10_1038_s41467_024_55447_9
crossref_primary_10_1038_s41586_024_07388_y
crossref_primary_10_1038_s41592_024_02579_x
crossref_primary_10_1093_schbul_sbae083
crossref_primary_10_1016_j_devcel_2025_08_001
crossref_primary_10_1038_s41467_023_37432_w
crossref_primary_10_1038_s41586_022_05487_2
crossref_primary_10_1038_s41467_024_52306_5
crossref_primary_10_1093_nar_gkae913
crossref_primary_10_1016_j_isci_2024_110104
crossref_primary_10_1073_pnas_2102698118
crossref_primary_10_1186_s12864_025_11423_1
crossref_primary_10_1186_s13059_024_03250_6
crossref_primary_10_1038_s41467_024_49811_y
crossref_primary_10_1038_s41598_022_25729_7
crossref_primary_10_1038_s44319_024_00097_7
crossref_primary_10_1038_s41588_025_02249_4
crossref_primary_10_1002_advs_202409642
crossref_primary_10_1016_j_ccell_2025_05_002
crossref_primary_10_1186_s12864_024_10376_1
crossref_primary_10_1038_s41467_023_36173_0
crossref_primary_10_1038_s41467_024_52394_3
crossref_primary_10_1038_s41598_022_15668_8
crossref_primary_10_1038_s41588_025_02139_9
crossref_primary_10_1093_pcmedi_pbac002
crossref_primary_10_1016_j_celrep_2025_116312
crossref_primary_10_4049_jimmunol_2300283
crossref_primary_10_1038_s41576_023_00598_6
crossref_primary_10_1038_s41467_023_41492_3
crossref_primary_10_1158_0008_5472_CAN_25_0999
crossref_primary_10_1038_s41588_024_01689_8
crossref_primary_10_1038_s41588_023_01433_8
crossref_primary_10_1016_j_devcel_2023_11_008
crossref_primary_10_1038_s41586_024_07348_6
crossref_primary_10_1038_s41586_022_04625_0
crossref_primary_10_3389_fgene_2023_1267368
crossref_primary_10_1038_s44321_025_00230_6
crossref_primary_10_1093_lifemedi_lnae012
crossref_primary_10_1093_lifemedi_lnae015
crossref_primary_10_1016_j_cels_2023_12_005
crossref_primary_10_1016_j_immuni_2024_06_001
crossref_primary_10_1038_s41467_024_48620_7
crossref_primary_10_1126_science_adp4753
crossref_primary_10_1242_dev_202516
crossref_primary_10_1038_s41588_023_01577_7
crossref_primary_10_1038_s41591_024_03073_9
crossref_primary_10_1016_j_immuni_2023_01_028
crossref_primary_10_1016_j_jgg_2025_07_008
crossref_primary_10_1038_s41586_023_05915_x
crossref_primary_10_1038_s41588_023_01445_4
crossref_primary_10_1186_s13059_021_02577_8
crossref_primary_10_1016_j_eswa_2025_128999
crossref_primary_10_1126_science_abg4696
crossref_primary_10_1038_s41592_022_01562_8
crossref_primary_10_1038_s41592_023_02112_6
crossref_primary_10_1038_s41421_024_00656_1
crossref_primary_10_1038_s41590_021_01086_x
crossref_primary_10_1038_s43018_022_00391_0
crossref_primary_10_1016_j_cell_2025_04_017
crossref_primary_10_1016_j_immuni_2024_06_015
crossref_primary_10_1016_j_immuni_2024_06_014
crossref_primary_10_1016_j_xpro_2024_103501
crossref_primary_10_1186_s13059_022_02679_x
crossref_primary_10_1002_alz_70593
crossref_primary_10_1186_s13072_023_00486_7
crossref_primary_10_1016_j_devcel_2024_01_015
crossref_primary_10_1093_nargab_lqae007
crossref_primary_10_1007_s11427_023_2561_0
crossref_primary_10_1016_j_devcel_2024_01_011
crossref_primary_10_1038_s42003_022_03430_9
crossref_primary_10_1038_s41586_024_07861_8
crossref_primary_10_1038_s42003_024_06833_y
crossref_primary_10_1002_advs_202415681
crossref_primary_10_1073_pnas_2311566120
crossref_primary_10_1016_j_immuni_2025_05_026
crossref_primary_10_1186_s12967_025_06659_0
crossref_primary_10_1038_s41467_023_40584_4
crossref_primary_10_7554_eLife_69571
crossref_primary_10_1038_s44318_025_00376_6
crossref_primary_10_1371_journal_pgen_1010261
crossref_primary_10_1038_s41597_023_02533_0
crossref_primary_10_1038_s41467_024_50612_6
crossref_primary_10_1016_j_mocell_2025_100263
crossref_primary_10_1038_s41597_025_04928_7
crossref_primary_10_1016_j_tig_2024_04_008
crossref_primary_10_1038_s41467_023_42762_w
crossref_primary_10_1016_j_crmeth_2025_101167
crossref_primary_10_1016_j_jtos_2024_09_003
crossref_primary_10_1038_s41592_024_02576_0
crossref_primary_10_1161_CIRCRESAHA_123_323184
crossref_primary_10_1016_j_celrep_2025_115384
crossref_primary_10_1111_acel_13789
crossref_primary_10_3390_sym13081467
crossref_primary_10_1038_s41596_022_00795_3
crossref_primary_10_1093_nargab_lqab094
crossref_primary_10_1093_lifemedi_lnae028
crossref_primary_10_1186_s13059_021_02469_x
crossref_primary_10_1038_s44161_023_00260_8
crossref_primary_10_1016_j_celrep_2025_116236
crossref_primary_10_1371_journal_pgen_1010251
crossref_primary_10_1042_BST20230917
crossref_primary_10_1007_s00018_025_05721_w
crossref_primary_10_1016_j_cell_2025_05_002
crossref_primary_10_1038_s41467_025_61125_1
crossref_primary_10_1158_2159_8290_CD_24_0234
crossref_primary_10_1073_pnas_2425992122
crossref_primary_10_1038_s41467_023_40505_5
crossref_primary_10_1016_j_molmet_2023_101735
crossref_primary_10_1038_s41586_024_08189_z
crossref_primary_10_1126_science_add6371
crossref_primary_10_1038_s41593_025_01999_y
crossref_primary_10_3390_genes13040621
crossref_primary_10_1038_s41467_025_57480_8
crossref_primary_10_1016_j_cell_2025_06_040
crossref_primary_10_1038_s44320_024_00045_6
crossref_primary_10_1126_sciimmunol_adf8776
crossref_primary_10_1016_j_xgen_2025_100879
crossref_primary_10_3389_fcell_2022_833392
crossref_primary_10_1080_0886022X_2025_2526722
crossref_primary_10_1186_s13059_022_02642_w
crossref_primary_10_1038_s41467_022_34413_3
crossref_primary_10_1126_sciimmunol_abh3768
crossref_primary_10_1002_advs_202413161
crossref_primary_10_1038_s41596_023_00905_9
crossref_primary_10_1038_s41590_023_01641_8
crossref_primary_10_1080_15384047_2023_2269637
crossref_primary_10_7554_eLife_105565_3
crossref_primary_10_1016_j_xpro_2025_103960
crossref_primary_10_1038_s41467_024_47758_8
crossref_primary_10_1038_s41586_025_08973_5
crossref_primary_10_1038_s41588_022_01088_x
crossref_primary_10_1002_advs_202406751
crossref_primary_10_1038_s41592_024_02257_y
crossref_primary_10_1038_s41467_024_52463_7
crossref_primary_10_1038_s43018_024_00892_0
crossref_primary_10_1038_s41590_022_01337_5
crossref_primary_10_1186_s13059_024_03338_z
crossref_primary_10_1016_j_csbj_2023_10_032
crossref_primary_10_1038_s41467_024_55580_5
crossref_primary_10_1038_s41467_025_60899_8
crossref_primary_10_1126_scitranslmed_adi6148
crossref_primary_10_1186_s13059_023_03150_1
crossref_primary_10_1093_gigascience_giad095
crossref_primary_10_1038_s42003_025_08710_8
crossref_primary_10_1038_s41467_025_57931_2
crossref_primary_10_1038_s41592_024_02586_y
crossref_primary_10_1016_j_xgen_2025_100765
crossref_primary_10_1016_j_xgen_2025_100886
crossref_primary_10_1038_s41592_024_02453_w
crossref_primary_10_1038_s41586_022_04593_5
crossref_primary_10_1016_j_xgen_2025_100881
crossref_primary_10_1158_0008_5472_CAN_23_3995
crossref_primary_10_1038_s41586_023_05795_1
crossref_primary_10_1126_science_abn3943
crossref_primary_10_1016_j_cels_2024_09_003
crossref_primary_10_1038_s41586_022_05060_x
crossref_primary_10_1093_nar_gkab598
crossref_primary_10_1016_j_crmeth_2023_100625
crossref_primary_10_1038_s41467_025_62252_5
crossref_primary_10_1038_s41592_023_02103_7
crossref_primary_10_1073_pnas_2411301121
crossref_primary_10_1186_s12967_025_06154_6
crossref_primary_10_3389_fimmu_2025_1538384
crossref_primary_10_26508_lsa_202402736
crossref_primary_10_1101_gr_276655_122
crossref_primary_10_1038_s41588_021_00894_z
crossref_primary_10_1038_s41556_021_00728_4
crossref_primary_10_1038_s42003_023_05420_x
crossref_primary_10_1007_s11427_024_2578_6
crossref_primary_10_1038_s41586_022_05094_1
crossref_primary_10_1038_s41467_022_28197_9
crossref_primary_10_1136_gutjnl_2024_332121
crossref_primary_10_1186_s13059_025_03652_0
crossref_primary_10_1016_j_pld_2024_03_008
crossref_primary_10_1038_s41590_024_01901_1
crossref_primary_10_1038_s44400_025_00012_4
crossref_primary_10_1016_j_stem_2023_04_012
crossref_primary_10_1038_s41587_023_01718_7
crossref_primary_10_1038_s41588_024_01904_6
crossref_primary_10_1111_acel_13982
crossref_primary_10_1016_j_cell_2022_09_039
crossref_primary_10_1016_j_xpro_2024_103209
crossref_primary_10_1186_s13073_023_01175_6
crossref_primary_10_1016_j_ccell_2023_10_008
crossref_primary_10_1016_j_omtn_2025_102696
crossref_primary_10_1016_j_xcrm_2025_102159
crossref_primary_10_1038_s41467_024_49448_x
crossref_primary_10_1016_j_intimp_2023_110624
crossref_primary_10_1016_j_jgg_2023_09_011
crossref_primary_10_1016_j_cell_2024_08_019
crossref_primary_10_1038_s41588_024_01662_5
crossref_primary_10_1038_s41597_024_03382_1
crossref_primary_10_3389_fnins_2023_1170355
crossref_primary_10_1038_s41556_024_01435_6
crossref_primary_10_1126_sciadv_adt2771
crossref_primary_10_1186_s13059_021_02339_6
crossref_primary_10_1126_science_adj4857
crossref_primary_10_1038_s41467_022_35020_y
crossref_primary_10_1038_s41592_023_01971_3
crossref_primary_10_1016_j_matbio_2023_06_008
crossref_primary_10_1038_s41587_022_01341_y
crossref_primary_10_1038_s41375_023_01808_0
crossref_primary_10_4254_wjh_v17_i6_107329
crossref_primary_10_1038_s41588_022_01179_9
crossref_primary_10_1038_s41592_023_02139_9
crossref_primary_10_1038_s41586_022_04739_5
crossref_primary_10_1093_nargab_lqae073
crossref_primary_10_1371_journal_pone_0322538
crossref_primary_10_1093_gpbjnl_qzae014
crossref_primary_10_1016_j_neuron_2024_01_013
crossref_primary_10_3389_freae_2023_1245879
crossref_primary_10_1038_s41588_022_01069_0
crossref_primary_10_1038_s41586_022_05309_5
crossref_primary_10_1146_annurev_biodatasci_020722_120642
crossref_primary_10_1186_s13059_024_03446_w
crossref_primary_10_1038_s41467_025_56535_0
crossref_primary_10_1093_nargab_lqae178
crossref_primary_10_1016_j_devcel_2022_07_014
crossref_primary_10_1038_s42003_025_08257_8
crossref_primary_10_1093_procel_pwaf003
crossref_primary_10_1073_pnas_2426714122
crossref_primary_10_3389_fnetp_2023_1256104
crossref_primary_10_7554_eLife_94833
crossref_primary_10_1002_advs_202308438
crossref_primary_10_15252_embj_2022112590
crossref_primary_10_1038_s41422_022_00730_x
crossref_primary_10_1038_s41586_024_08129_x
crossref_primary_10_1007_s12035_025_05184_x
crossref_primary_10_1016_j_crmeth_2023_100547
crossref_primary_10_3390_genes15121551
crossref_primary_10_1038_s41467_022_32097_3
crossref_primary_10_1038_s41467_024_52846_w
crossref_primary_10_1093_bioinformatics_btae457
crossref_primary_10_1093_cvr_cvaf101
crossref_primary_10_1073_pnas_2110025118
crossref_primary_10_1016_j_scib_2024_09_004
crossref_primary_10_1038_s41590_023_01490_5
crossref_primary_10_1186_s13059_023_03067_9
crossref_primary_10_1089_cmb_2021_0596
crossref_primary_10_1007_s42994_022_00082_5
crossref_primary_10_1038_s42003_022_03531_5
crossref_primary_10_1016_j_canlet_2023_216319
crossref_primary_10_1038_s41576_023_00580_2
crossref_primary_10_1093_bib_bbaf069
crossref_primary_10_1167_iovs_66_3_9
crossref_primary_10_1038_s41467_025_60482_1
crossref_primary_10_1016_j_atherosclerosis_2023_01_019
crossref_primary_10_1016_j_devcel_2023_08_010
crossref_primary_10_1016_j_isci_2023_107755
crossref_primary_10_1038_s41523_022_00438_6
crossref_primary_10_1016_j_celrep_2025_116082
crossref_primary_10_1080_15592294_2023_2293411
crossref_primary_10_1158_2159_8290_CD_22_0952
crossref_primary_10_1038_s41467_024_47837_w
crossref_primary_10_1038_s44161_025_00660_y
crossref_primary_10_1167_iovs_65_13_8
crossref_primary_10_3389_fimmu_2022_878226
crossref_primary_10_1093_nar_gkae685
crossref_primary_10_1681_ASN_2021091213
crossref_primary_10_1073_pnas_2305046120
crossref_primary_10_1186_s13040_024_00421_w
crossref_primary_10_1038_s41592_023_01884_1
crossref_primary_10_1038_s41596_025_01145_9
crossref_primary_10_1093_bib_bbaf253
crossref_primary_10_1016_j_compbiomed_2025_110662
crossref_primary_10_1038_s41592_023_01909_9
crossref_primary_10_1016_j_cels_2022_05_007
crossref_primary_10_1038_s41467_024_49883_w
crossref_primary_10_1038_s41586_021_04116_8
crossref_primary_10_1186_s12943_025_02331_9
crossref_primary_10_1038_s41467_022_31919_8
crossref_primary_10_1038_s41587_021_00927_2
crossref_primary_10_1210_endocr_bqaf081
crossref_primary_10_1158_2159_8290_CD_23_1445
crossref_primary_10_1016_j_cell_2023_07_019
crossref_primary_10_1161_CIRCRESAHA_122_321692
crossref_primary_10_1093_bioadv_vbae055
crossref_primary_10_1182_blood_2023019758
crossref_primary_10_1038_s41586_023_06837_4
crossref_primary_10_1016_j_crmeth_2023_100498
crossref_primary_10_1136_jitc_2022_004874
crossref_primary_10_1038_s41590_022_01371_3
crossref_primary_10_1016_j_cell_2023_08_040
crossref_primary_10_1093_nargab_lqae135
crossref_primary_10_1016_j_scib_2023_09_021
crossref_primary_10_1016_j_bbagen_2023_130360
crossref_primary_10_1016_j_cell_2023_08_044
crossref_primary_10_1038_s41598_025_87351_7
crossref_primary_10_1038_s41592_023_01899_8
crossref_primary_10_1126_sciimmunol_abq3109
crossref_primary_10_1007_s00018_024_05118_1
crossref_primary_10_1038_s41467_024_54764_3
crossref_primary_10_1016_j_celrep_2023_113380
crossref_primary_10_3390_genes16070817
crossref_primary_10_1016_j_exphem_2024_104286
crossref_primary_10_1093_nar_gkab1032
crossref_primary_10_1038_s41588_024_01682_1
crossref_primary_10_1002_alz_13075
crossref_primary_10_1038_s41586_024_08391_z
crossref_primary_10_1016_j_cell_2023_08_037
crossref_primary_10_1126_sciimmunol_adg1094
crossref_primary_10_1016_j_celrep_2023_113018
crossref_primary_10_1038_s41467_024_50853_5
crossref_primary_10_1016_j_jpha_2023_04_013
crossref_primary_10_1016_j_crmeth_2022_100182
crossref_primary_10_1158_2159_8290_CD_21_0276
crossref_primary_10_1016_j_celrep_2025_115913
crossref_primary_10_1093_nargab_lqae047
crossref_primary_10_1007_s11704_025_41390_5
crossref_primary_10_1073_pnas_2206450119
crossref_primary_10_1038_s41586_024_08085_6
crossref_primary_10_1038_s44161_022_00124_7
crossref_primary_10_1038_s41467_023_37439_3
crossref_primary_10_1038_s41592_021_01336_8
crossref_primary_10_1038_s41592_025_02700_8
crossref_primary_10_1038_s41597_025_04367_4
crossref_primary_10_1093_nargab_lqae051
crossref_primary_10_1093_nar_gkad026
crossref_primary_10_1038_s43588_024_00622_7
crossref_primary_10_7554_eLife_105565
crossref_primary_10_1186_s12915_025_02181_3
crossref_primary_10_1016_j_devcel_2025_04_022
crossref_primary_10_1016_j_devcel_2024_02_010
crossref_primary_10_1038_s42003_025_08115_7
crossref_primary_10_1186_s13059_024_03235_5
crossref_primary_10_1126_sciadv_adq2290
crossref_primary_10_1002_advs_202309554
crossref_primary_10_1016_j_scib_2021_11_013
crossref_primary_10_1172_JCI170848
crossref_primary_10_1016_j_cmet_2024_02_015
crossref_primary_10_1038_s41467_025_61448_z
crossref_primary_10_1093_jimmun_vkaf026
crossref_primary_10_1182_blood_2024025618
crossref_primary_10_1007_s11427_022_2345_2
crossref_primary_10_1016_j_isci_2025_112387
crossref_primary_10_1038_s41467_025_59306_z
crossref_primary_10_1038_s41588_025_02188_0
crossref_primary_10_1126_science_add5327
crossref_primary_10_1038_s41467_023_40893_8
crossref_primary_10_1038_s41586_025_08603_0
crossref_primary_10_1182_bloodadvances_2024012600
crossref_primary_10_1038_s41586_024_07510_0
crossref_primary_10_1371_journal_pcbi_1010863
crossref_primary_10_1038_s41556_023_01169_x
crossref_primary_10_1038_s41588_023_01647_w
crossref_primary_10_1038_s42003_024_06582_y
crossref_primary_10_1093_bioinformatics_btaf364
crossref_primary_10_1038_s41593_021_01002_4
crossref_primary_10_1093_bioinformatics_btaf483
crossref_primary_10_1038_s41467_024_53089_5
crossref_primary_10_1038_s41556_021_00690_1
crossref_primary_10_1016_j_neuron_2025_04_030
crossref_primary_10_1038_s41467_024_52356_9
crossref_primary_10_1038_s41380_025_02929_x
crossref_primary_10_1016_j_devcel_2024_05_013
crossref_primary_10_1038_s44161_025_00628_y
crossref_primary_10_1016_j_celrep_2024_114569
crossref_primary_10_3389_fgene_2023_1089936
crossref_primary_10_1126_sciimmunol_ado5986
crossref_primary_10_1093_bib_bbae369
crossref_primary_10_1038_s41586_021_04262_z
crossref_primary_10_1038_s41586_022_04686_1
crossref_primary_10_1038_s41421_023_00642_z
crossref_primary_10_1038_s41467_023_44121_1
crossref_primary_10_1038_s41467_023_41033_y
crossref_primary_10_1038_s42003_023_05120_6
crossref_primary_10_1038_s41593_024_01677_5
crossref_primary_10_1038_s41590_023_01527_9
crossref_primary_10_3390_biom15070938
crossref_primary_10_1038_s41467_023_40108_0
crossref_primary_10_1016_j_stem_2022_07_006
crossref_primary_10_1038_s41592_024_02274_x
crossref_primary_10_1016_j_ajog_2024_08_041
crossref_primary_10_1038_s41467_021_26530_2
crossref_primary_10_1002_advs_202417163
crossref_primary_10_1038_s41587_024_02241_z
crossref_primary_10_1016_j_cell_2022_03_043
crossref_primary_10_1093_bib_bbad268
crossref_primary_10_1038_s41586_021_04081_2
crossref_primary_10_1111_nph_70160
crossref_primary_10_1038_s43587_025_00909_y
crossref_primary_10_1016_j_tcb_2025_05_001
crossref_primary_10_1038_s41422_022_00635_9
crossref_primary_10_1093_nar_gkaf031
crossref_primary_10_1038_s41467_022_30624_w
crossref_primary_10_1038_s41590_023_01517_x
crossref_primary_10_1038_s41592_023_01938_4
crossref_primary_10_1038_s42003_024_07171_9
crossref_primary_10_1016_j_cell_2022_11_028
crossref_primary_10_1016_j_jgg_2024_02_003
crossref_primary_10_1038_s41596_024_01013_y
crossref_primary_10_1038_s41587_023_01931_4
crossref_primary_10_26508_lsa_202201823
crossref_primary_10_1016_j_cell_2024_06_028
crossref_primary_10_1038_s41422_022_00668_0
crossref_primary_10_1186_s13059_023_03111_8
crossref_primary_10_1093_bioinformatics_btaf268
crossref_primary_10_1167_iovs_64_3_30
crossref_primary_10_1038_s41576_023_00618_5
crossref_primary_10_1093_bib_bbae382
crossref_primary_10_1016_j_devcel_2022_02_018
crossref_primary_10_7554_eLife_93019
crossref_primary_10_1038_s41467_022_33194_z
crossref_primary_10_1038_s41586_022_04587_3
crossref_primary_10_1161_CIRCULATIONAHA_123_063760
crossref_primary_10_1038_s41467_024_53628_0
crossref_primary_10_1038_s41576_023_00586_w
crossref_primary_10_1186_s13059_024_03356_x
crossref_primary_10_1016_j_celrep_2024_114558
crossref_primary_10_1038_s41467_023_44484_5
crossref_primary_10_1038_s41588_025_02220_3
crossref_primary_10_1038_s41596_023_00932_6
crossref_primary_10_1093_bib_bbaf465
crossref_primary_10_1038_s44161_023_00367_y
crossref_primary_10_1126_sciimmunol_adq8970
crossref_primary_10_1016_j_cels_2024_10_006
crossref_primary_10_1093_bib_bbad166
crossref_primary_10_1186_s13059_025_03735_y
crossref_primary_10_3390_ijms25031479
crossref_primary_10_1038_s41587_021_00865_z
crossref_primary_10_1084_jem_20210759
crossref_primary_10_3389_fnmol_2021_651355
crossref_primary_10_1158_0008_5472_CAN_22_2872
crossref_primary_10_26508_lsa_202301988
crossref_primary_10_1016_j_cell_2022_11_005
crossref_primary_10_1186_s13073_022_01081_3
crossref_primary_10_1146_annurev_biodatasci_020422_050645
crossref_primary_10_1038_s41590_025_02240_5
crossref_primary_10_1038_s41588_023_01518_4
crossref_primary_10_1186_s12864_023_09832_1
crossref_primary_10_3390_cells11050870
crossref_primary_10_1111_cpr_13786
crossref_primary_10_1089_crispr_2023_0033
crossref_primary_10_1007_s12551_023_01091_4
crossref_primary_10_1038_s41586_024_08443_4
crossref_primary_10_1016_j_cell_2023_12_037
crossref_primary_10_1038_s41467_025_60269_4
crossref_primary_10_1038_s41593_024_01806_0
crossref_primary_10_1038_s43588_023_00476_5
crossref_primary_10_1038_s42256_022_00443_1
crossref_primary_10_1038_s41467_025_63957_3
crossref_primary_10_1093_bioadv_vbad003
crossref_primary_10_1007_s11357_025_01556_2
crossref_primary_10_1038_s41576_022_00509_1
crossref_primary_10_1038_s43018_023_00625_9
crossref_primary_10_1016_j_celrep_2025_115730
crossref_primary_10_1016_j_cels_2025_101266
crossref_primary_10_1038_s41592_021_01282_5
crossref_primary_10_1038_s41556_023_01174_0
crossref_primary_10_1038_s41556_021_00766_y
crossref_primary_10_1186_s12915_025_02244_5
crossref_primary_10_1016_j_molcel_2021_08_004
crossref_primary_10_1126_scitranslmed_adl3381
crossref_primary_10_3390_biom12070874
crossref_primary_10_1038_s41467_024_45706_0
crossref_primary_10_1038_s41467_024_47981_3
crossref_primary_10_3390_ijms23126796
crossref_primary_10_1016_j_devcel_2025_06_001
crossref_primary_10_1038_s41597_024_03558_9
crossref_primary_10_1093_bib_bbad458
crossref_primary_10_1161_ATVBAHA_124_320259
crossref_primary_10_1073_pnas_2212696120
crossref_primary_10_1371_journal_pone_0261783
crossref_primary_10_1038_s41467_024_47280_x
crossref_primary_10_1186_s13024_022_00517_z
crossref_primary_10_1016_j_celrep_2024_114257
crossref_primary_10_1038_s41586_024_08356_2
crossref_primary_10_1038_s41596_022_00692_9
crossref_primary_10_1038_s41588_021_00941_9
crossref_primary_10_1186_s12967_024_05398_y
crossref_primary_10_7554_eLife_84698
crossref_primary_10_1016_j_gendis_2025_101610
crossref_primary_10_1016_j_devcel_2022_01_016
crossref_primary_10_1073_pnas_2318710120
crossref_primary_10_1042_BST20231471
crossref_primary_10_1038_s41416_025_03122_1
crossref_primary_10_1126_science_adi5199
crossref_primary_10_1016_j_molcel_2021_09_026
crossref_primary_10_1038_s41586_025_09493_y
crossref_primary_10_1093_cvr_cvab347
crossref_primary_10_1038_s42003_025_07961_9
crossref_primary_10_1126_science_abn3263
crossref_primary_10_1016_j_celrep_2024_114345
crossref_primary_10_1038_s41467_025_60333_z
crossref_primary_10_1038_s41556_024_01449_0
crossref_primary_10_1038_s41591_024_03011_9
crossref_primary_10_1016_j_immuni_2022_05_003
crossref_primary_10_1038_s41590_024_01962_2
crossref_primary_10_1038_s41586_023_06311_1
crossref_primary_10_1038_s41586_024_07504_y
crossref_primary_10_1016_j_devcel_2024_10_005
crossref_primary_10_1038_s41467_023_44142_w
crossref_primary_10_1038_s41587_022_01603_9
crossref_primary_10_1038_s41467_023_43991_9
crossref_primary_10_3389_fcell_2023_1091047
crossref_primary_10_1016_j_devcel_2025_06_029
crossref_primary_10_7554_eLife_94833_4
Cites_doi 10.1093/nar/gky950
10.1038/ng.3963
10.1137/04060593X
10.1038/nature11232
10.1126/science.aav1898
10.1038/nbt.2859
10.1016/j.cell.2019.05.031
10.7554/eLife.27041
10.1038/s41592-019-0367-1
10.1038/nmeth.4402
10.1038/nmeth.4396
10.1186/s13059-017-1382-0
10.1038/nbt.4042
10.1186/s12864-018-4772-0
10.1186/s13059-019-1854-5
10.1186/s12859-018-2255-6
10.1016/j.molcel.2018.06.044
10.1016/j.cels.2019.03.003
10.1038/nature25981
10.1038/nmeth.4401
10.1016/j.cels.2018.11.005
10.1038/s41587-019-0147-6
10.1093/bioinformatics/btx315
10.1038/s41587-019-0332-7
10.1073/pnas.0500334102
10.1038/s41591-018-0008-8
10.1016/j.cell.2018.03.074
10.1016/j.cell.2018.06.052
10.1038/s41587-019-0206-z
10.1038/nature14590
10.1038/ng.3646
10.1146/annurev.ento.48.091801.112749
10.1038/s41588-019-0505-9
10.1016/j.cell.2019.01.031
10.1038/s41576-019-0173-8
10.1038/s41586-019-0969-x
10.1038/s41467-018-04629-3
10.1126/science.aab1601
10.1093/bioinformatics/btv715
10.1093/nar/gkx1081
10.1101/615179
10.1101/2020.01.06.896159
10.21105/joss.00861
10.1101/2020.11.02.364265
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. corrected publication 2021
COPYRIGHT 2021 Nature Publishing Group
Copyright Nature Publishing Group Mar 2021
The Author(s), under exclusive licence to Springer Nature America, Inc. 2021, corrected publication 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. corrected publication 2021
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: Copyright Nature Publishing Group Mar 2021
– notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021, corrected publication 2021
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QL
7QP
7QR
7SS
7T7
7TK
7TM
7U9
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOI 10.1038/s41588-021-00790-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep (ProQuest)
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Proquest Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE

CrossRef

Research Library Prep


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1546-1718
EndPage 411
ExternalDocumentID PMC8012210
A655717911
33633365
10_1038_s41588_021_00790_6
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: K99-AG059918 and the American Society of Hematology Scholar Award
– fundername: International Collaborative Award
– fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH)
  grantid: RM1-HG007735
  funderid: https://doi.org/10.13039/100000002
– fundername: NIH = RM1-HG007735, UM1-HG009442, R35-CA209919 International Collaborative Award
– fundername: NIH = RM1-HG007735, UM1-HG009442, UM1-HG009436, 1UM1HG009442, and U19-AI057266 Stanford Cancer Institute-Goldman Sachs Foundation Cancer Research award Chan-Zuckerberg Initiative
– fundername: NHGRI NIH HHS
  grantid: UM1 HG009436
– fundername: NIAID NIH HHS
  grantid: U19 AI057266
– fundername: NCI NIH HHS
  grantid: U2C CA233311
– fundername: Howard Hughes Medical Institute
– fundername: NHGRI NIH HHS
  grantid: RM1 HG007735
– fundername: NIA NIH HHS
  grantid: K99 AG059918
– fundername: NCI NIH HHS
  grantid: R35 CA209919
– fundername: NHGRI NIH HHS
  grantid: UM1 HG009442
– fundername: ;
– fundername: ;
  grantid: RM1-HG007735
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29M
2FS
36B
39C
3O-
3V.
4.4
53G
5BI
5M7
5RE
5S5
70F
7X7
85S
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AAHBH
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABCQX
ABDBF
ABDPE
ABEFU
ABJNI
ABLJU
ABOCM
ABTAH
ABUWG
ACBWK
ACGFO
ACGFS
ACIWK
ACMJI
ACNCT
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGCDD
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
C6C
CCPQU
CS3
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IH2
IHR
INH
INR
IOV
ISR
ITC
L7B
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M7P
MVM
N9A
NADUK
NNMJJ
NXXTH
ODYON
P2P
PKN
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNS
RNT
RNTTT
RVV
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TN5
TSG
TUS
UKHRP
VQA
X7M
XJT
XOL
Y6R
YHZ
ZGI
ZXP
ZY4
~8M
~KM
AAYXX
ABFSG
ACSTC
AETEA
AEZWR
AFANA
AFFHD
AFHIU
AGSTI
AHWEU
AIEIU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
7QL
7QP
7QR
7SS
7T7
7TK
7TM
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c675t-cc15569a299d46a45f3160395df313e2940a1d6fc56c509ae6f685cc9f098c1a3
IEDL.DBID M7P
ISICitedReferencesCount 698
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000621739700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1061-4036
1546-1718
IngestDate Tue Nov 04 01:52:04 EST 2025
Thu Oct 02 06:15:33 EDT 2025
Fri Oct 03 09:52:38 EDT 2025
Sat Nov 29 13:33:16 EST 2025
Sat Nov 29 10:16:00 EST 2025
Wed Nov 26 09:43:35 EST 2025
Wed Nov 26 10:02:08 EST 2025
Mon Jul 21 04:15:31 EDT 2025
Sat Nov 29 03:07:11 EST 2025
Tue Nov 18 22:33:30 EST 2025
Fri Feb 21 02:39:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c675t-cc15569a299d46a45f3160395df313e2940a1d6fc56c509ae6f685cc9f098c1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1409-3095
0000-0001-8402-3442
0000-0002-9459-4393
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8012210
PMID 33633365
PQID 2501867664
PQPubID 33429
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8012210
proquest_miscellaneous_2494279927
proquest_journals_2501867664
gale_infotracmisc_A655717911
gale_infotracacademiconefile_A655717911
gale_incontextgauss_ISR_A655717911
gale_incontextgauss_IOV_A655717911
pubmed_primary_33633365
crossref_citationtrail_10_1038_s41588_021_00790_6
crossref_primary_10_1038_s41588_021_00790_6
springer_journals_10_1038_s41588_021_00790_6
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature genetics
PublicationTitleAbbrev Nat Genet
PublicationTitleAlternate Nat Genet
PublicationYear 2021
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Street (CR40) 2018; 19
Regev (CR45) 2017; 6
Kang (CR23) 2018; 36
Satpathy (CR6) 2019; 37
Corces (CR34) 2018; 362
Wolock, Lopez, Klein (CR22) 2019; 8
Trapnell (CR41) 2014; 32
Coifman (CR31) 2005; 102
CR36
Cusanovich (CR5) 2018; 174
CR11
CR33
Satpathy (CR38) 2018; 24
Bravo González-Blas (CR17) 2019; 16
Calderon (CR35) 2019; 51
Thurman (CR24) 2012; 489
Pliner (CR18) 2018; 71
Corces (CR39) 2017; 14
Wolf, Angerer, Theis (CR44) 2018; 19
Lareau (CR8) 2019; 37
Chen (CR10) 2019; 20
Cao (CR43) 2019; 566
Corces (CR32) 2016; 48
Cusanovich (CR2) 2015; 348
Granja (CR7) 2019; 37
Ji, Zhou, Ji (CR15) 2017; 33
Stuart (CR12) 2019; 177
CR29
CR9
Zamanighomi (CR19) 2018; 9
Schep, Wu, Buenrostro, Greenleaf (CR16) 2017; 14
Arnosti (CR26) 2003; 48
van Galen (CR27) 2019; 176
Baglama, Reichel (CR28) 2005; 27
de Boer, Regev (CR13) 2018; 19
CR20
Cusanovich (CR3) 2018; 555
Baker, Rogerson, Hayes, Sharrocks, Rattray (CR14) 2019; 47
Qiu (CR42) 2017; 14
McGinnis, Murrow, Gartner (CR21) 2019; 8
Mumbach (CR37) 2017; 49
Buenrostro (CR4) 2018; 173
Andersson, Sandelin (CR25) 2020; 21
Angerer (CR30) 2016; 32
Buenrostro (CR1) 2015; 523
790_CR36
790_CR11
790_CR33
MR Mumbach (790_CR37) 2017; 49
JD Buenrostro (790_CR4) 2018; 173
AN Schep (790_CR16) 2017; 14
C Bravo González-Blas (790_CR17) 2019; 16
R Andersson (790_CR25) 2020; 21
P Angerer (790_CR30) 2016; 32
MR Corces (790_CR39) 2017; 14
JM Granja (790_CR7) 2019; 37
FA Wolf (790_CR44) 2018; 19
SM Baker (790_CR14) 2019; 47
K Street (790_CR40) 2018; 19
AT Satpathy (790_CR6) 2019; 37
J Cao (790_CR43) 2019; 566
DA Cusanovich (790_CR3) 2018; 555
790_CR20
HA Pliner (790_CR18) 2018; 71
X Qiu (790_CR42) 2017; 14
H Chen (790_CR10) 2019; 20
HM Kang (790_CR23) 2018; 36
C Trapnell (790_CR41) 2014; 32
J Baglama (790_CR28) 2005; 27
790_CR29
RR Coifman (790_CR31) 2005; 102
RE Thurman (790_CR24) 2012; 489
CS McGinnis (790_CR21) 2019; 8
DA Cusanovich (790_CR2) 2015; 348
CG de Boer (790_CR13) 2018; 19
JD Buenrostro (790_CR1) 2015; 523
P van Galen (790_CR27) 2019; 176
DN Arnosti (790_CR26) 2003; 48
A Regev (790_CR45) 2017; 6
CA Lareau (790_CR8) 2019; 37
AT Satpathy (790_CR38) 2018; 24
SL Wolock (790_CR22) 2019; 8
MR Corces (790_CR34) 2018; 362
790_CR9
Z Ji (790_CR15) 2017; 33
T Stuart (790_CR12) 2019; 177
M Zamanighomi (790_CR19) 2018; 9
DA Cusanovich (790_CR5) 2018; 174
D Calderon (790_CR35) 2019; 51
MR Corces (790_CR32) 2016; 48
33790476 - Nat Genet. 2021 Jun;53(6):935
References_xml – volume: 47
  start-page: e10
  year: 2019
  ident: CR14
  article-title: Classifying cells with Scasat, a single-cell ATAC-seq analysis tool
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky950
– volume: 49
  start-page: 1602
  year: 2017
  end-page: 1612
  ident: CR37
  article-title: Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3963
– volume: 27
  start-page: 19
  year: 2005
  end-page: 42
  ident: CR28
  article-title: Augmented implicitly restarted Lanczos bidiagonalization methods
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/04060593X
– ident: CR33
– volume: 489
  start-page: 75
  year: 2012
  end-page: 82
  ident: CR24
  article-title: The accessible chromatin landscape of the human genome
  publication-title: Nature
  doi: 10.1038/nature11232
– ident: CR29
– volume: 362
  start-page: eaav1898
  year: 2018
  ident: CR34
  article-title: The chromatin accessibility landscape of primary human cancers
  publication-title: Science
  doi: 10.1126/science.aav1898
– volume: 32
  start-page: 381
  year: 2014
  end-page: 386
  ident: CR41
  article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2859
– volume: 177
  start-page: 1888
  year: 2019
  end-page: 1902
  ident: CR12
  article-title: Comprehensive integration of single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
– volume: 6
  start-page: e27041
  year: 2017
  ident: CR45
  article-title: The Human Cell Atlas
  publication-title: eLife
  doi: 10.7554/eLife.27041
– volume: 16
  start-page: 397
  year: 2019
  end-page: 400
  ident: CR17
  article-title: cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0367-1
– volume: 14
  start-page: 979
  year: 2017
  end-page: 982
  ident: CR42
  article-title: Reversed graph embedding resolves complex single-cell trajectories
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4402
– volume: 14
  start-page: 959
  year: 2017
  end-page: 962
  ident: CR39
  article-title: An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4396
– volume: 19
  year: 2018
  ident: CR44
  article-title: SCANPY: large-scale single-cell gene expression data analysis
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1382-0
– volume: 36
  start-page: 89
  year: 2018
  end-page: 94
  ident: CR23
  article-title: Multiplexed droplet single-cell RNA-sequencing using natural genetic variation
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4042
– volume: 19
  year: 2018
  ident: CR40
  article-title: Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-4772-0
– volume: 20
  year: 2019
  ident: CR10
  article-title: Assessment of computational methods for the analysis of single-cell ATAC-seq data
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1854-5
– volume: 19
  start-page: 253
  year: 2018
  ident: CR13
  article-title: BROCKMAN: deciphering variance in epigenomic regulators by -mer factorization
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-018-2255-6
– volume: 71
  start-page: 858
  year: 2018
  end-page: 871
  ident: CR18
  article-title: Cicero predicts cis-regulatory DNA interactions from single-cell chromatin accessibility data
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.06.044
– volume: 8
  start-page: 329
  year: 2019
  end-page: 337
  ident: CR21
  article-title: DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2019.03.003
– volume: 555
  start-page: 538
  year: 2018
  end-page: 542
  ident: CR3
  article-title: The cis-regulatory dynamics of embryonic development at single-cell resolution
  publication-title: Nature
  doi: 10.1038/nature25981
– volume: 14
  start-page: 975
  year: 2017
  end-page: 978
  ident: CR16
  article-title: chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4401
– volume: 8
  start-page: 281
  year: 2019
  end-page: 291
  ident: CR22
  article-title: Scrublet: computational identification of cell doublets in single-cell transcriptomic data
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2018.11.005
– volume: 37
  start-page: 916
  year: 2019
  end-page: 924
  ident: CR8
  article-title: Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0147-6
– volume: 33
  start-page: 2930
  year: 2017
  end-page: 2932
  ident: CR15
  article-title: Single-cell regulome data analysis by SCRAT
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx315
– volume: 37
  start-page: 1458
  year: 2019
  end-page: 1465
  ident: CR7
  article-title: Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0332-7
– volume: 102
  start-page: 7426
  year: 2005
  end-page: 7431
  ident: CR31
  article-title: Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0500334102
– volume: 24
  start-page: 580
  year: 2018
  end-page: 590
  ident: CR38
  article-title: Transcript-indexed ATAC-seq for precision immune profiling
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0008-8
– volume: 173
  start-page: 1535
  year: 2018
  end-page: 1548
  ident: CR4
  article-title: Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.074
– ident: CR11
– volume: 174
  start-page: 1309
  year: 2018
  end-page: 1324
  ident: CR5
  article-title: A single-cell atlas of in vivo mammalian chromatin accessibility
  publication-title: Cell
  doi: 10.1016/j.cell.2018.06.052
– ident: CR9
– volume: 37
  start-page: 925
  year: 2019
  end-page: 936
  ident: CR6
  article-title: Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0206-z
– ident: CR36
– volume: 523
  start-page: 486
  year: 2015
  end-page: 490
  ident: CR1
  article-title: Single-cell chromatin accessibility reveals principles of regulatory variation
  publication-title: Nature
  doi: 10.1038/nature14590
– volume: 48
  start-page: 1193
  year: 2016
  end-page: 1203
  ident: CR32
  article-title: Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3646
– volume: 48
  start-page: 579
  year: 2003
  end-page: 602
  ident: CR26
  article-title: Analysis and function of transcriptional regulatory elements: insights from
  publication-title: Annu. Rev. Entomol.
  doi: 10.1146/annurev.ento.48.091801.112749
– volume: 51
  start-page: 1494
  year: 2019
  end-page: 1505
  ident: CR35
  article-title: Landscape of stimulation-responsive chromatin across diverse human immune cells
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0505-9
– volume: 176
  start-page: 1265
  year: 2019
  end-page: 1281
  ident: CR27
  article-title: Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.031
– volume: 21
  start-page: 71
  year: 2020
  end-page: 87
  ident: CR25
  article-title: Determinants of enhancer and promoter activities of regulatory elements
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0173-8
– volume: 566
  start-page: 496
  year: 2019
  end-page: 502
  ident: CR43
  article-title: The single-cell transcriptional landscape of mammalian organogenesis
  publication-title: Nature
  doi: 10.1038/s41586-019-0969-x
– volume: 9
  year: 2018
  ident: CR19
  article-title: Unsupervised clustering and epigenetic classification of single cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04629-3
– volume: 348
  start-page: 910
  year: 2015
  end-page: 914
  ident: CR2
  article-title: Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing
  publication-title: Science
  doi: 10.1126/science.aab1601
– volume: 32
  start-page: 1241
  year: 2016
  end-page: 1243
  ident: CR30
  article-title: destiny: diffusion maps for large-scale single-cell data in R
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv715
– ident: CR20
– volume: 489
  start-page: 75
  year: 2012
  ident: 790_CR24
  publication-title: Nature
  doi: 10.1038/nature11232
– volume: 566
  start-page: 496
  year: 2019
  ident: 790_CR43
  publication-title: Nature
  doi: 10.1038/s41586-019-0969-x
– volume: 555
  start-page: 538
  year: 2018
  ident: 790_CR3
  publication-title: Nature
  doi: 10.1038/nature25981
– volume: 523
  start-page: 486
  year: 2015
  ident: 790_CR1
  publication-title: Nature
  doi: 10.1038/nature14590
– volume: 14
  start-page: 959
  year: 2017
  ident: 790_CR39
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4396
– volume: 37
  start-page: 1458
  year: 2019
  ident: 790_CR7
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0332-7
– volume: 27
  start-page: 19
  year: 2005
  ident: 790_CR28
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/04060593X
– volume: 348
  start-page: 910
  year: 2015
  ident: 790_CR2
  publication-title: Science
  doi: 10.1126/science.aab1601
– volume: 14
  start-page: 975
  year: 2017
  ident: 790_CR16
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4401
– volume: 20
  year: 2019
  ident: 790_CR10
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1854-5
– ident: 790_CR20
  doi: 10.1093/nar/gkx1081
– volume: 19
  year: 2018
  ident: 790_CR44
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1382-0
– volume: 33
  start-page: 2930
  year: 2017
  ident: 790_CR15
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx315
– volume: 48
  start-page: 579
  year: 2003
  ident: 790_CR26
  publication-title: Annu. Rev. Entomol.
  doi: 10.1146/annurev.ento.48.091801.112749
– volume: 173
  start-page: 1535
  year: 2018
  ident: 790_CR4
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.074
– volume: 36
  start-page: 89
  year: 2018
  ident: 790_CR23
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4042
– volume: 6
  start-page: e27041
  year: 2017
  ident: 790_CR45
  publication-title: eLife
  doi: 10.7554/eLife.27041
– volume: 37
  start-page: 916
  year: 2019
  ident: 790_CR8
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0147-6
– volume: 37
  start-page: 925
  year: 2019
  ident: 790_CR6
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0206-z
– ident: 790_CR11
  doi: 10.1101/615179
– volume: 362
  start-page: eaav1898
  year: 2018
  ident: 790_CR34
  publication-title: Science
  doi: 10.1126/science.aav1898
– volume: 24
  start-page: 580
  year: 2018
  ident: 790_CR38
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0008-8
– volume: 32
  start-page: 381
  year: 2014
  ident: 790_CR41
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2859
– volume: 51
  start-page: 1494
  year: 2019
  ident: 790_CR35
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0505-9
– volume: 174
  start-page: 1309
  year: 2018
  ident: 790_CR5
  publication-title: Cell
  doi: 10.1016/j.cell.2018.06.052
– ident: 790_CR36
  doi: 10.1101/2020.01.06.896159
– volume: 71
  start-page: 858
  year: 2018
  ident: 790_CR18
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.06.044
– volume: 16
  start-page: 397
  year: 2019
  ident: 790_CR17
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0367-1
– volume: 21
  start-page: 71
  year: 2020
  ident: 790_CR25
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0173-8
– volume: 177
  start-page: 1888
  year: 2019
  ident: 790_CR12
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
– volume: 8
  start-page: 329
  year: 2019
  ident: 790_CR21
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2019.03.003
– volume: 48
  start-page: 1193
  year: 2016
  ident: 790_CR32
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3646
– volume: 19
  start-page: 253
  year: 2018
  ident: 790_CR13
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-018-2255-6
– volume: 47
  start-page: e10
  year: 2019
  ident: 790_CR14
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky950
– ident: 790_CR29
– volume: 32
  start-page: 1241
  year: 2016
  ident: 790_CR30
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv715
– volume: 14
  start-page: 979
  year: 2017
  ident: 790_CR42
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4402
– ident: 790_CR33
  doi: 10.21105/joss.00861
– volume: 49
  start-page: 1602
  year: 2017
  ident: 790_CR37
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3963
– ident: 790_CR9
  doi: 10.1101/2020.11.02.364265
– volume: 176
  start-page: 1265
  year: 2019
  ident: 790_CR27
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.031
– volume: 9
  year: 2018
  ident: 790_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04629-3
– volume: 8
  start-page: 281
  year: 2019
  ident: 790_CR22
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2018.11.005
– volume: 19
  year: 2018
  ident: 790_CR40
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-4772-0
– volume: 102
  start-page: 7426
  year: 2005
  ident: 790_CR31
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0500334102
– reference: 33790476 - Nat Genet. 2021 Jun;53(6):935
SSID ssj0014408
Score 2.736516
Snippet The advent of single-cell chromatin accessibility profiling has accelerated the ability to map gene regulatory landscapes but has outpaced the development of...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 403
SubjectTerms 38/22
38/23
38/39
45
631/208/176
631/208/177
631/208/200
Accessibility
Agriculture
Animal Genetics and Genomics
Animals
Biomedical and Life Sciences
Biomedicine
Cancer Research
Chromatin
Chromatin - genetics
Chromatin - metabolism
Cluster Analysis
Clustering
Computer programs
Datasets
Deoxyribonucleic acid
DNA
Electronic data processing
Footprinting
Gene expression
Gene Expression Regulation
Gene Function
Gene regulation
Gene sequencing
Genetic regulation
Genetic research
Genome
Genomics
Human Genetics
Humans
Identification
Mice
Science
Sequence Analysis, RNA - methods
Single-Cell Analysis - methods
Software
Software packages
technical-report
Technology application
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
UNIX
User-Computer Interface
Web Browser
Title ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis
URI https://link.springer.com/article/10.1038/s41588-021-00790-6
https://www.ncbi.nlm.nih.gov/pubmed/33633365
https://www.proquest.com/docview/2501867664
https://www.proquest.com/docview/2494279927
https://pubmed.ncbi.nlm.nih.gov/PMC8012210
Volume 53
WOSCitedRecordID wos000621739700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1061-4036
  databaseCode: M7P
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1061-4036
  databaseCode: 7X7
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1061-4036
  databaseCode: BENPR
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1061-4036
  databaseCode: 8C1
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1061-4036
  databaseCode: M2O
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSRe-B7LGJVBSDxAtCROHPsJjWkTSNBVBaa-Wa7jsIop3ZoWtP-eOyftSKXthYdGjXyR4tz5Pnzn3wG8iTJbotzIcFwoDFAUL0LlUhnyxCXoMVue-ET76Ze835ejkRq0G251W1a51IleURdTS3vk-wkhz4lciPTDxWVIXaMou9q20NiALUJJ4L50b7DKIlA3ZZ_tFBQnUZpytzlmLvdrNFwoI1SggFZSYQjVMUzr6vkf-7ReO7mWQPV26fjh_87oETxoPVJ20IjQY7jjqidwr-lRefUUDGHTDtmkZobVyFA6asVqVN5_zMwxjLh_oUZi6PqyJfIE6k9GOxDnLqS0ALNnsyn5xRUzvjtjU497xUyLh_IMfhwffT_8FLZ9GUKL4cU8tBadEKEMWrIiFSbNSk7NqlVW4B_ukLuRiQtR2kxY9EeME6WQmbWqjJS0seHbsFlNK7cDTJoiLXjmeFRmqc2lsmMbY6AsVJmPeVoGEC-Zom0LWk69M861T55zqRtGamSk9ozUIoB3q2cuGsiOW6lfE681YWFUVGzz0yzqWn8-OdUHIstygm-NbyL6NuwQvW2Jyim-ozXtAQecKWFsdSj3OpS4om13eCkwutUotb6WlgBerYbpSaqSq9x0gTSpSpNcqSQP4HkjpqsvwLng-MsCyDsCvCIgnPHuSDU583jj5MQkcRTA-6WoX7_WzR929_ZZvID7iV99VM63B5vz2cK9hLv293xSz3qwkY9yf5V4lYdxD7Y-HvUHQ7z7mpz0_Dr_C6PdUKw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAoIL74dLgQWBOIDVeNdeew8IVUDVqCFUpa16WzbrNY2onBAnVPlT_EZm_EhxpPbWA4dIkXYc7W6-eaxn9huAV53IZoibxB-kCg8oSqS-cmHiC-44RsxW8DLRftiL-_3k6EjtrsCf5i4MlVU2NrE01OnI0jvyDU7MczKWMvww_uVT1yjKrjYtNCpY7Lj5KR7ZivfdT_j_vuZ86_P-x22_7irgWwyOp7616EKlMmiH01CaMMoEtVpWUYpfhMO5dUyQysxG0qI3NU5mMomsVVlHJTYwAn_3ClzFMIInZang7iJrQd2by-yqpHMZpUXXqmvtyUaBjhIxSQUR6JUVHtlajnDZHfzjD5drNZcStqUf3Lr9v-3gHbhVR9xss1KRu7Di8ntwverBOb8Phrh399iwYIYVCFi6SsYKdE6nZuLY2NifaHEZhvasYdZA_8DoDcuJ8yntwezxZERxf85M2X2yqjeeM1PzvTyAg0tZ30NYzUe5ewwsMWmYisiJThaFNk6UHdiAx6FUWTwQYeZB0IBA25qUnXqDnOiyOEAkugKORuDoEjhaevB28cy4oiS5UPolYUsT10dOxUQ_zKwodPfrod6UURQTPW1wntC3vZbQm1ooG-EcrakvcOBKiUOsJbnekkSLZdvDDUB1bTELfYZOD14shulJqgLM3WiGMqEKeawUjz14VKnFYgeEkAI_kQdxS2EWAsSj3h7Jh8clnzoFaTzoePCuUa2zaZ2_sWsXr-I53Nje_9LTvW5_5wnc5KXmU-niOqxOJzP3FK7Z39NhMXlW2hAG3y9b5f4CV4WnRg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6V8hAX3g-XAgsCcQAr8a699h4QqloiolahKlD1tmzWaxpROSFOqPLX-HXM-JHiSO2tBw6RLO048q6_mdn1zHwD8Kob2Qxxk_jDVOEBRYnUVy5MfMEdxx2zFbwMtB_uxYNBcnSk9tfgT1MLQ2mVjU0sDXU6tvSNvMOJeU7GUoadrE6L2N_pfZj88qmDFEVam3YaFUR23eIUj2_F-_4OvuvXnPc-ft3-5NcdBnyLG-WZby26U6kM2uQ0lCaMMkFtl1WU4oVw-JxdE6Qys5G06FmNk5lMImtV1lWJDYzA_70CV2OBKKYq9e1legnFTKsyPElnNAqRblQl7kmnQKeJ-KTkCPTQCo9vLae46hr-8Y2reZsrwdvSJ_Zu_8-reQdu1TtxtlWpzl1Yc_k9uF715lzcB0OcvAdsVDDDCgQylZixAp3WqZk6NjH2J1pihlt-1jBuoN9g9OXlxPkUDmH2eDqm80DOTNmVsspDXjBT88A8gG-XMr-HsJ6Pc_cYWGLSMBWRE90sCm2cKDu0AY9DqbJ4KMLMg6ABhLY1WTv1DDnRZdKASHQFIo0g0iWItPTg7fKeSUVVcqH0S8KZJg6QnN7_DzMvCt3_fKi3ZBTFRFsbnCf05aAl9KYWysb4jNbUhR04U-IWa0lutiTRktn2cANWXVvSQp8h1YMXy2G6k7IDczeeo0yoQh4rxWMPHlUqslwBgbqJv8iDuKU8SwHiV2-P5KPjkmedNm886HrwrlGzs8c6f2E3Lp7Fc7iBmqb3-oPdJ3CTl0aAMho3YX02nbuncM3-no2K6bPSnDD4ftka9xfUra-8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ArchR+is+a+scalable+software+package+for+integrative+single-cell+chromatin+accessibility+analysis&rft.jtitle=Nature+genetics&rft.au=Granja%2C+Jeffrey+M&rft.au=Corces%2C+M.+Ryan&rft.au=Pierce%2C+Sarah+E&rft.au=Bagdatli%2C+S.+Tansu&rft.date=2021-03-01&rft.pub=Nature+Publishing+Group&rft.issn=1061-4036&rft.volume=53&rft.issue=3&rft.spage=403&rft_id=info:doi/10.1038%2Fs41588-021-00790-6&rft.externalDBID=IOV&rft.externalDocID=A655717911
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-4036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-4036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-4036&client=summon