A sparse autoencoder-based deep neural network for protein solvent accessibility and contact number prediction
Background Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and...
Gespeichert in:
| Veröffentlicht in: | BMC bioinformatics Jg. 18; H. Suppl 16; S. 569 - 220 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
BioMed Central
28.12.2017
BioMed Central Ltd BMC |
| Schlagworte: | |
| ISSN: | 1471-2105, 1471-2105 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!