A sparse autoencoder-based deep neural network for protein solvent accessibility and contact number prediction
Background Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and...
Uloženo v:
| Vydáno v: | BMC bioinformatics Ročník 18; číslo Suppl 16; s. 569 - 220 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
BioMed Central
28.12.2017
BioMed Central Ltd BMC |
| Témata: | |
| ISSN: | 1471-2105, 1471-2105 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Background
Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and protein 3D structure. Thus, accurately predicting these features is a critical step for 3D protein structure building.
Results
In this study, we present DeepSacon, a computational method that can effectively predict protein solvent accessibility and contact number by using a deep neural network, which is built based on stacked autoencoder and a dropout method. The results demonstrate that our proposed DeepSacon achieves a significant improvement in the prediction quality compared with the state-of-the-art methods. We obtain 0.70 three-state accuracy for solvent accessibility, 0.33 15-state accuracy and 0.74 Pearson Correlation Coefficient (PCC) for the contact number on the 5729 monomeric soluble globular protein dataset. We also evaluate the performance on the CASP11 benchmark dataset, DeepSacon achieves 0.68 three-state accuracy and 0.69 PCC for solvent accessibility and contact number, respectively.
Conclusions
We have shown that DeepSacon can reliably predict solvent accessibility and contact number with stacked sparse autoencoder and a dropout approach. |
|---|---|
| AbstractList | Background Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and protein 3D structure. Thus, accurately predicting these features is a critical step for 3D protein structure building. Results In this study, we present DeepSacon, a computational method that can effectively predict protein solvent accessibility and contact number by using a deep neural network, which is built based on stacked autoencoder and a dropout method. The results demonstrate that our proposed DeepSacon achieves a significant improvement in the prediction quality compared with the state-of-the-art methods. We obtain 0.70 three-state accuracy for solvent accessibility, 0.33 15-state accuracy and 0.74 Pearson Correlation Coefficient (PCC) for the contact number on the 5729 monomeric soluble globular protein dataset. We also evaluate the performance on the CASP11 benchmark dataset, DeepSacon achieves 0.68 three-state accuracy and 0.69 PCC for solvent accessibility and contact number, respectively. Conclusions We have shown that DeepSacon can reliably predict solvent accessibility and contact number with stacked sparse autoencoder and a dropout approach. Keywords: Solvent accessibility, Contact number, Deep neural network, Sequence-derived features Background Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and protein 3D structure. Thus, accurately predicting these features is a critical step for 3D protein structure building. Results In this study, we present DeepSacon, a computational method that can effectively predict protein solvent accessibility and contact number by using a deep neural network, which is built based on stacked autoencoder and a dropout method. The results demonstrate that our proposed DeepSacon achieves a significant improvement in the prediction quality compared with the state-of-the-art methods. We obtain 0.70 three-state accuracy for solvent accessibility, 0.33 15-state accuracy and 0.74 Pearson Correlation Coefficient (PCC) for the contact number on the 5729 monomeric soluble globular protein dataset. We also evaluate the performance on the CASP11 benchmark dataset, DeepSacon achieves 0.68 three-state accuracy and 0.69 PCC for solvent accessibility and contact number, respectively. Conclusions We have shown that DeepSacon can reliably predict solvent accessibility and contact number with stacked sparse autoencoder and a dropout approach. Abstract Background Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and protein 3D structure. Thus, accurately predicting these features is a critical step for 3D protein structure building. Results In this study, we present DeepSacon, a computational method that can effectively predict protein solvent accessibility and contact number by using a deep neural network, which is built based on stacked autoencoder and a dropout method. The results demonstrate that our proposed DeepSacon achieves a significant improvement in the prediction quality compared with the state-of-the-art methods. We obtain 0.70 three-state accuracy for solvent accessibility, 0.33 15-state accuracy and 0.74 Pearson Correlation Coefficient (PCC) for the contact number on the 5729 monomeric soluble globular protein dataset. We also evaluate the performance on the CASP11 benchmark dataset, DeepSacon achieves 0.68 three-state accuracy and 0.69 PCC for solvent accessibility and contact number, respectively. Conclusions We have shown that DeepSacon can reliably predict solvent accessibility and contact number with stacked sparse autoencoder and a dropout approach. Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and protein 3D structure. Thus, accurately predicting these features is a critical step for 3D protein structure building. In this study, we present DeepSacon, a computational method that can effectively predict protein solvent accessibility and contact number by using a deep neural network, which is built based on stacked autoencoder and a dropout method. The results demonstrate that our proposed DeepSacon achieves a significant improvement in the prediction quality compared with the state-of-the-art methods. We obtain 0.70 three-state accuracy for solvent accessibility, 0.33 15-state accuracy and 0.74 Pearson Correlation Coefficient (PCC) for the contact number on the 5729 monomeric soluble globular protein dataset. We also evaluate the performance on the CASP11 benchmark dataset, DeepSacon achieves 0.68 three-state accuracy and 0.69 PCC for solvent accessibility and contact number, respectively. We have shown that DeepSacon can reliably predict solvent accessibility and contact number with stacked sparse autoencoder and a dropout approach. Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and protein 3D structure. Thus, accurately predicting these features is a critical step for 3D protein structure building. In this study, we present DeepSacon, a computational method that can effectively predict protein solvent accessibility and contact number by using a deep neural network, which is built based on stacked autoencoder and a dropout method. The results demonstrate that our proposed DeepSacon achieves a significant improvement in the prediction quality compared with the state-of-the-art methods. We obtain 0.70 three-state accuracy for solvent accessibility, 0.33 15-state accuracy and 0.74 Pearson Correlation Coefficient (PCC) for the contact number on the 5729 monomeric soluble globular protein dataset. We also evaluate the performance on the CASP11 benchmark dataset, DeepSacon achieves 0.68 three-state accuracy and 0.69 PCC for solvent accessibility and contact number, respectively. We have shown that DeepSacon can reliably predict solvent accessibility and contact number with stacked sparse autoencoder and a dropout approach. Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and protein 3D structure. Thus, accurately predicting these features is a critical step for 3D protein structure building.BACKGROUNDDirect prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and protein 3D structure. Thus, accurately predicting these features is a critical step for 3D protein structure building.In this study, we present DeepSacon, a computational method that can effectively predict protein solvent accessibility and contact number by using a deep neural network, which is built based on stacked autoencoder and a dropout method. The results demonstrate that our proposed DeepSacon achieves a significant improvement in the prediction quality compared with the state-of-the-art methods. We obtain 0.70 three-state accuracy for solvent accessibility, 0.33 15-state accuracy and 0.74 Pearson Correlation Coefficient (PCC) for the contact number on the 5729 monomeric soluble globular protein dataset. We also evaluate the performance on the CASP11 benchmark dataset, DeepSacon achieves 0.68 three-state accuracy and 0.69 PCC for solvent accessibility and contact number, respectively.RESULTSIn this study, we present DeepSacon, a computational method that can effectively predict protein solvent accessibility and contact number by using a deep neural network, which is built based on stacked autoencoder and a dropout method. The results demonstrate that our proposed DeepSacon achieves a significant improvement in the prediction quality compared with the state-of-the-art methods. We obtain 0.70 three-state accuracy for solvent accessibility, 0.33 15-state accuracy and 0.74 Pearson Correlation Coefficient (PCC) for the contact number on the 5729 monomeric soluble globular protein dataset. We also evaluate the performance on the CASP11 benchmark dataset, DeepSacon achieves 0.68 three-state accuracy and 0.69 PCC for solvent accessibility and contact number, respectively.We have shown that DeepSacon can reliably predict solvent accessibility and contact number with stacked sparse autoencoder and a dropout approach.CONCLUSIONSWe have shown that DeepSacon can reliably predict solvent accessibility and contact number with stacked sparse autoencoder and a dropout approach. |
| ArticleNumber | 569 |
| Audience | Academic |
| Author | Fan, Chao Zeng, Zhiwen Deng, Lei |
| Author_xml | – sequence: 1 givenname: Lei surname: Deng fullname: Deng, Lei organization: School of Software, Central South University – sequence: 2 givenname: Chao surname: Fan fullname: Fan, Chao organization: School of Software, Central South University – sequence: 3 givenname: Zhiwen surname: Zeng fullname: Zeng, Zhiwen email: zengzhiwen@csu.edu.cn organization: School of Information Science and Engineering, Central South University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29297299$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1DAUhSNURB_wA9igSGzKIsVO4jjeII0qHiNVQuKxtm7s68FDxh5sp9B_j0Na1EGo8uJa9neOfK_PaXHkvMOieE7JBaV99zrSumeiIpRXVHBa8UfFCW3zpqaEHd3bHxenMW5JBnvCnhTHtagFr4U4KdyqjHsIEUuYkkenvMZQDRBRlxpxXzqcAoy5pJ8-fC-ND-U--ITWldGP1-hSCUphjHawo003JThdKu8SqFS6aTfgLEBtVbLePS0eGxgjPrutZ8XXd2-_XH6orj6-X1-urirVcZaqDjXQpm2xBuCkMTUBzoxuiDKMIzM91QCDMZzWyJQ2TSt6oZRQlA-iG1RzVqwXX-1hK_fB7iDcSA9W_jnwYSMhJKtGlF1NFNFUmI62LcUGzNAPDSctIulaaLLXm8VrPw071Cq3nCdyYHp44-w3ufHXknFGO0GywfmtQfA_JoxJ7mxUOI7g0E9RUtG3dSNETzP6ckE3kJ9mnfHZUc24XLG2a3rO-j5TF_-h8tK4s3n2aGw-PxC8OhDM_4O_0gamGOX686dD9sX9dv_2eZeZDPAFUMHHGNBIZRPMv5tfYUdJiZzTKZd0yhw6OadT8qyk_yjvzB_S1IsmZtZtMMitn4LL4XlA9BsZS_f6 |
| CitedBy_id | crossref_primary_10_3390_app9081526 crossref_primary_10_3390_molecules23102535 crossref_primary_10_3892_ol_2018_9761 crossref_primary_10_1016_j_saa_2022_121641 crossref_primary_10_1109_ACCESS_2019_2893620 crossref_primary_10_3389_fphar_2019_01592 crossref_primary_10_1093_bib_bbz156 crossref_primary_10_1186_s12859_021_04305_2 crossref_primary_10_1109_TCBB_2022_3191395 |
| Cites_doi | 10.1126/science.1853201 10.1186/1472-6807-6-19 10.3390/ijms150711204 10.1109/TNB.2014.2352454 10.1002/prot.10602 10.1186/1471-2105-6-248 10.1007/978-1-4939-6406-2_6 10.1002/bip.360221211 10.1126/science.1065659 10.1109/TCBB.2017.2701379 10.1002/prot.20404 10.1006/jmbi.1999.3091 10.1534/genetics.111.128025 10.1093/bioinformatics/btm475 10.1186/s12859-016-1331-z 10.1109/TNB.2017.2661756 10.3390/ijms17122118 10.1002/prot.10069 10.1002/jcc.10420 10.1073/pnas.1030237100 10.1110/ps.062405906 10.1016/j.jmb.2004.02.002 10.1186/s13040-014-0031-3 10.1093/bioinformatics/bti423 10.1371/journal.pcbi.0020100 10.1002/(SICI)1097-0134(199605)25:1<38::AID-PROT4>3.3.CO;2-H 10.2174/092986612798472875 10.1093/bioinformatics/btv256 10.1002/prot.20176 10.1110/ps.8.2.361 10.1016/0022-2836(71)90324-X 10.1214/aoms/1177729694 10.1002/prot.20441 10.1103/PhysRevE.65.041904 10.1186/s12859-016-0938-4 10.1093/bioinformatics/btu352 10.1002/prot.20883 10.7554/eLife.18715 10.1002/prot.22193 10.1002/prot.20300 10.1093/bioinformatics/btg224 10.1002/prot.24110 10.1002/prot.24074 10.1038/nature10317 10.1109/TCBB.2017.2704587 10.1002/jcc.10392 10.1186/1471-2105-9-S12-S12 10.1002/1097-0134(20010301)42:4<452::AID-PROT40>3.0.CO;2-Q 10.1038/srep11476 10.1126/science.1219021 10.1093/bioinformatics/18.6.819 10.1038/nmeth.1818 10.1016/j.neucom.2014.12.123 10.1002/prot.340200303 10.1038/nrm1589 10.1093/nar/gku340 10.1093/bib/6.1.44 10.1186/1471-2105-7-124 10.1002/jcc.23718 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2017 COPYRIGHT 2017 BioMed Central Ltd. |
| Copyright_xml | – notice: The Author(s) 2017 – notice: COPYRIGHT 2017 BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM DOA |
| DOI | 10.1186/s12859-017-1971-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 220 |
| ExternalDocumentID | oai_doaj_org_article_620c0d19f61441e3afb8b3704ee064a3 PMC5751690 A546387588 29297299 10_1186_s12859_017_1971_7 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c675t-6eda1344e2aa703f20a75fd30cf57e5f81daabff712e5cdf34989cc9c17b96bc3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418855300018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:33:29 EDT 2025 Tue Nov 04 01:47:24 EST 2025 Thu Sep 04 17:21:00 EDT 2025 Tue Nov 11 10:02:39 EST 2025 Tue Nov 04 17:44:20 EST 2025 Thu Nov 13 15:18:33 EST 2025 Thu Apr 03 06:59:37 EDT 2025 Tue Nov 18 22:15:21 EST 2025 Sat Nov 29 05:40:02 EST 2025 Sat Sep 06 07:27:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Suppl 16 |
| Keywords | Deep neural network Sequence-derived features Contact number Solvent accessibility |
| Language | English |
| License | Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c675t-6eda1344e2aa703f20a75fd30cf57e5f81daabff712e5cdf34989cc9c17b96bc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1186/s12859-017-1971-7 |
| PMID | 29297299 |
| PQID | 1984239981 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_620c0d19f61441e3afb8b3704ee064a3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5751690 proquest_miscellaneous_1984239981 gale_infotracmisc_A546387588 gale_infotracacademiconefile_A546387588 gale_incontextgauss_ISR_A546387588 pubmed_primary_29297299 crossref_citationtrail_10_1186_s12859_017_1971_7 crossref_primary_10_1186_s12859_017_1971_7 springer_journals_10_1186_s12859_017_1971_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-12-28 |
| PublicationDateYYYYMMDD | 2017-12-28 |
| PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-28 day: 28 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | BMC series – open, inclusive and trusted |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2017 |
| Publisher | BioMed Central BioMed Central Ltd BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
| References | W Kabsch (1971_CR40) 1983; 22 L Wei (1971_CR20) 2017; 16 H Kim (1971_CR26) 2004; 54 FU Hartl (1971_CR11) 2011; 475 AR Kinjo (1971_CR36) 2005; 58 S Ahmad (1971_CR23) 2002; 18 A Kabakcioglu (1971_CR34) 2001; 65 GE Hinton (1971_CR62) 2012; 3 J Sim (1971_CR30) 2005; 21 G Pugalenthi (1971_CR29) 2012; 19 CN Magnan (1971_CR65) 2014; 30 JI Garzón (1971_CR15) 2016; 5 H Liu (1971_CR14) 2015; 31 K Joo (1971_CR64) 2012; 80 MN Nguyen (1971_CR27) 2005; 59 R Khashan (1971_CR13) 2012; 80 HJ Dyson (1971_CR50) 2005; 6 J Zhang (1971_CR43) 2013; 15 1971_CR22 MR Betancourt (1971_CR58) 1999; 8 R Heffernan (1971_CR55) 2015; 5 P Fariselli (1971_CR35) 2000 JU Bowie (1971_CR8) 1991; 253 D Baker (1971_CR1) 2001; 294 J Zhang (1971_CR32) 2015; 8 M Totrov (1971_CR17) 2004; 25 L Wei (1971_CR7) 2015; 14 Z Yuan (1971_CR37) 2005; 6 E Faraggi (1971_CR63) 2009; 74 J Song (1971_CR44) 2006; 7 Y Bengio (1971_CR59) 2007; 19 DC Ramsey (1971_CR42) 2011; 188 M Remmert (1971_CR49) 2012; 9 Y Gan (1971_CR48) 2016; 17 R Adamczak (1971_CR6) 2005; 59 M Biasini (1971_CR41) 2014; 42 C Haynes (1971_CR51) 2006; 2 J Lyons (1971_CR57) 2014; 35 C Fan (1971_CR56) 2016; 17 G Pollastri (1971_CR5) 2002; 47 B Rost (1971_CR9) 1994; 20 Q Zou (1971_CR46) 2016; 10 B Huang (1971_CR18) 2006; 6 L Wei (1971_CR2) 2016; 17 JJ Ward (1971_CR54) 2004; 337 H Naderi-Manesh (1971_CR28) 2001; 42 K Chen (1971_CR45) 2007; 23 Q Zou (1971_CR47) 2016; 173 G Wang (1971_CR39) 2003; 19 DT Jones (1971_CR53) 1999; 292 S Kullback (1971_CR60) 1951; 22 KA Dill (1971_CR4) 2012; 338 R Adamczak (1971_CR24) 2004; 56 1971_CR3 S Mooney (1971_CR21) 2005; 6 DE Rumelhart (1971_CR61) 1988; 5 P Haste Andersen (1971_CR19) 2006; 15 DT-H Chang (1971_CR31) 2008; 9 Y Yang (1971_CR52) 2017; 1484 MN Nguyen (1971_CR33) 2006; 63 B Ma (1971_CR12) 2003; 100 E Eyal (1971_CR16) 2004; 25 B Lee (1971_CR10) 1971; 55 MJ Thompson (1971_CR25) 1996; 25 J Ma (1971_CR38) 2015; 2015 |
| References_xml | – volume: 253 start-page: 164 issue: 5016 year: 1991 ident: 1971_CR8 publication-title: Science doi: 10.1126/science.1853201 – volume: 10 start-page: 401 issue: 4 year: 2016 ident: 1971_CR46 publication-title: BMC Syst Biol – volume: 6 start-page: 19 issue: 1 year: 2006 ident: 1971_CR18 publication-title: BMC Struct Biol doi: 10.1186/1472-6807-6-19 – volume: 15 start-page: 11204 issue: 7 year: 2013 ident: 1971_CR43 publication-title: Int J Mol Sci doi: 10.3390/ijms150711204 – volume: 14 start-page: 339 issue: 4 year: 2015 ident: 1971_CR7 publication-title: IEEE Trans Nanobioscience doi: 10.1109/TNB.2014.2352454 – volume: 54 start-page: 557 issue: 3 year: 2004 ident: 1971_CR26 publication-title: Proteins Struct Funct Bioinforma doi: 10.1002/prot.10602 – volume: 6 start-page: 248 issue: 1 year: 2005 ident: 1971_CR37 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-248 – volume: 1484 start-page: 55 year: 2017 ident: 1971_CR52 publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-6406-2_6 – volume: 22 start-page: 2577 issue: 12 year: 1983 ident: 1971_CR40 publication-title: Biopolymers doi: 10.1002/bip.360221211 – volume: 294 start-page: 93 issue: 5540 year: 2001 ident: 1971_CR1 publication-title: Science doi: 10.1126/science.1065659 – volume-title: Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology (ISMB 2000), vol 8 year: 2000 ident: 1971_CR35 – ident: 1971_CR22 doi: 10.1109/TCBB.2017.2701379 – volume: 59 start-page: 30 issue: 1 year: 2005 ident: 1971_CR27 publication-title: Proteins Struct Funct Bioinforma doi: 10.1002/prot.20404 – volume: 292 start-page: 195 issue: 2 year: 1999 ident: 1971_CR53 publication-title: J Mol Biol doi: 10.1006/jmbi.1999.3091 – volume: 3 start-page: 212 issue: 4 year: 2012 ident: 1971_CR62 publication-title: Comput Sci – volume: 188 start-page: 479 issue: 2 year: 2011 ident: 1971_CR42 publication-title: Genetics doi: 10.1534/genetics.111.128025 – volume: 23 start-page: 2843 issue: 21 year: 2007 ident: 1971_CR45 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm475 – volume: 17 start-page: 537 issue: 17 year: 2016 ident: 1971_CR48 publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1331-z – volume: 16 start-page: 240 issue: 4 year: 2017 ident: 1971_CR20 publication-title: IEEE Trans NanoBioscience doi: 10.1109/TNB.2017.2661756 – volume: 17 start-page: 2118 issue: 12 year: 2016 ident: 1971_CR2 publication-title: Int J Mol Sci doi: 10.3390/ijms17122118 – volume: 5 start-page: 1 issue: 3 year: 1988 ident: 1971_CR61 publication-title: Cogn Model – volume: 47 start-page: 142 issue: 2 year: 2002 ident: 1971_CR5 publication-title: Proteins Struct Funct Bioinforma doi: 10.1002/prot.10069 – volume: 25 start-page: 712 issue: 5 year: 2004 ident: 1971_CR16 publication-title: J Comput Chem doi: 10.1002/jcc.10420 – volume: 100 start-page: 5772 issue: 10 year: 2003 ident: 1971_CR12 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1030237100 – volume: 15 start-page: 2558 issue: 11 year: 2006 ident: 1971_CR19 publication-title: Protein Sci doi: 10.1110/ps.062405906 – volume: 337 start-page: 635 issue: 3 year: 2004 ident: 1971_CR54 publication-title: J Mol Biol doi: 10.1016/j.jmb.2004.02.002 – volume: 8 start-page: 3 issue: 1 year: 2015 ident: 1971_CR32 publication-title: BioData Min doi: 10.1186/s13040-014-0031-3 – volume: 21 start-page: 2844 issue: 12 year: 2005 ident: 1971_CR30 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti423 – volume: 2 start-page: 100 issue: 8 year: 2006 ident: 1971_CR51 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0020100 – volume: 25 start-page: 38 issue: 1 year: 1996 ident: 1971_CR25 publication-title: Proteins doi: 10.1002/(SICI)1097-0134(199605)25:1<38::AID-PROT4>3.3.CO;2-H – volume: 19 start-page: 50 issue: 1 year: 2012 ident: 1971_CR29 publication-title: Protein Pept Lett doi: 10.2174/092986612798472875 – volume: 31 start-page: 221 issue: 12 year: 2015 ident: 1971_CR14 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv256 – volume: 56 start-page: 753 issue: 4 year: 2004 ident: 1971_CR24 publication-title: Proteins Struct Funct Bioinforma doi: 10.1002/prot.20176 – volume: 8 start-page: 361 issue: 02 year: 1999 ident: 1971_CR58 publication-title: Protein Sci doi: 10.1110/ps.8.2.361 – volume: 55 start-page: 379 issue: 3 year: 1971 ident: 1971_CR10 publication-title: J Mol Biol doi: 10.1016/0022-2836(71)90324-X – volume: 22 start-page: 79 issue: 1 year: 1951 ident: 1971_CR60 publication-title: Ann Math Stat doi: 10.1214/aoms/1177729694 – volume: 59 start-page: 467 issue: 3 year: 2005 ident: 1971_CR6 publication-title: Proteins Struct Funct Bioinforma doi: 10.1002/prot.20441 – volume: 65 start-page: 041904 issue: 4 year: 2001 ident: 1971_CR34 publication-title: Phys Rev E doi: 10.1103/PhysRevE.65.041904 – volume: 17 start-page: 85 issue: 1 year: 2016 ident: 1971_CR56 publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-0938-4 – volume: 30 start-page: 2592 issue: 18 year: 2014 ident: 1971_CR65 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu352 – volume: 63 start-page: 542 issue: 3 year: 2006 ident: 1971_CR33 publication-title: Proteins Struct Funct Bioinforma doi: 10.1002/prot.20883 – volume: 5 start-page: 18715 year: 2016 ident: 1971_CR15 publication-title: Elife doi: 10.7554/eLife.18715 – volume: 74 start-page: 847 issue: 4 year: 2009 ident: 1971_CR63 publication-title: Proteins Struct Funct Bioinforma doi: 10.1002/prot.22193 – volume: 58 start-page: 158 issue: 1 year: 2005 ident: 1971_CR36 publication-title: Proteins Struct Funct Bioinforma doi: 10.1002/prot.20300 – volume: 19 start-page: 1589 issue: 12 year: 2003 ident: 1971_CR39 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg224 – volume: 80 start-page: 2207 issue: 9 year: 2012 ident: 1971_CR13 publication-title: Proteins Struct Funct Bioinforma doi: 10.1002/prot.24110 – volume: 2015 start-page: 678764 year: 2015 ident: 1971_CR38 publication-title: BioMed Res Int – volume: 80 start-page: 1791 issue: 7 year: 2012 ident: 1971_CR64 publication-title: Proteins Struct Funct Bioinforma doi: 10.1002/prot.24074 – volume: 475 start-page: 324 issue: 7356 year: 2011 ident: 1971_CR11 publication-title: Nature doi: 10.1038/nature10317 – ident: 1971_CR3 doi: 10.1109/TCBB.2017.2704587 – volume: 25 start-page: 609 issue: 4 year: 2004 ident: 1971_CR17 publication-title: J Comput Chem doi: 10.1002/jcc.10392 – volume: 9 start-page: 12 issue: 12 year: 2008 ident: 1971_CR31 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-S12-S12 – volume: 42 start-page: 452 issue: 4 year: 2001 ident: 1971_CR28 publication-title: Proteins Struct Funct Bioinforma doi: 10.1002/1097-0134(20010301)42:4<452::AID-PROT40>3.0.CO;2-Q – volume: 5 start-page: 11476 year: 2015 ident: 1971_CR55 publication-title: Sci Rep. doi: 10.1038/srep11476 – volume: 338 start-page: 1042 issue: 6110 year: 2012 ident: 1971_CR4 publication-title: Science doi: 10.1126/science.1219021 – volume: 19 start-page: 153 year: 2007 ident: 1971_CR59 publication-title: Adv Neural Inf Process Syst – volume: 18 start-page: 819 issue: 6 year: 2002 ident: 1971_CR23 publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.6.819 – volume: 9 start-page: 173 issue: 2 year: 2012 ident: 1971_CR49 publication-title: Nat Methods doi: 10.1038/nmeth.1818 – volume: 173 start-page: 346 year: 2016 ident: 1971_CR47 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.12.123 – volume: 20 start-page: 216 issue: 3 year: 1994 ident: 1971_CR9 publication-title: Proteins Struct Funct Bioinforma doi: 10.1002/prot.340200303 – volume: 6 start-page: 197 issue: 3 year: 2005 ident: 1971_CR50 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm1589 – volume: 42 start-page: 252 issue: Web Server issu year: 2014 ident: 1971_CR41 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku340 – volume: 6 start-page: 44 issue: 1 year: 2005 ident: 1971_CR21 publication-title: Brief Bioinforma doi: 10.1093/bib/6.1.44 – volume: 7 start-page: 124 issue: 1 year: 2006 ident: 1971_CR44 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-124 – volume: 35 start-page: 2040 issue: 28 year: 2014 ident: 1971_CR57 publication-title: J Comput Chem doi: 10.1002/jcc.23718 |
| SSID | ssj0017805 |
| Score | 2.3434567 |
| Snippet | Background
Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant... Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural... Background Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant... Abstract Background Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem.... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 569 |
| SubjectTerms | Algorithms Amino acids Analysis Artificial neural networks Bioinformatics Biomedical and Life Sciences Computational Biology/Bioinformatics Computer Appl. in Life Sciences Contact number Deep neural network Life Sciences Machine Learning Microarrays Models, Molecular Neural Networks, Computer Proteins Proteins - chemistry Sequence-derived features Solvent accessibility Solvents - chemistry |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yKHgR37auEkUQlGY7nXQnOY7iopdFfMDeQjoPHVgyy_SMsP_eqqRn2F5RL147VdBJvVJU5StCXjKvAgOnVzshRC1UsLUVg6_xFSbnvfOdKsMm5MmJOj3Vny6N-sKesAIPXA7uqG8b13imI2YuLHAbBzVw2YgQIJrajPPZSL1Lpqb6ASL1TzVMpvqjkSFOW40emWn4MTmLQhms_3eXfCkmXe2XvFI0zbHo-Da5NV0i6aL8_B1yLaS75EYZK3lxj6QFBT-xHgO1280KkSp9WNcYrzz1IZxTBLEE_lRawCncW2nGa1gmCqqIHZDU5kGKpXX2gtrkKTa1W7ehZYYIMGCJB8V6n3w7fv_13Yd6mqtQO0gPNnUfvGVciNBaCwYf28bKLnreuNjJ0EW4wlo7xChZGzrnIxdaaee0Y3LQ_eD4A3KQVik8IlR51nvpWs51L7z2ulMaOFvvHQfLlhVpduds3AQ6jrMvzkxOPlRvimgMiMagaAywvN6znBfEjb8Rv0Xh7QkRLDt_ABUykwqZf6lQRV6g6A3CYSTst_lut-NoPn75bBY4LQBSOqUq8moiiivYgbPT8wU4B0TQmlEezijBXt1s-flOwwwuYZNbCqvtCFtSCMeoFavIw6Jx-421cI2FPEhXRM50cbbz-Upa_shw4VhZ63VTkTc7rTWTnxr_fLCP_8fBPiE322xziABwSA426214Sq67n5vluH6WLfYXEZNEdQ priority: 102 providerName: Directory of Open Access Journals |
| Title | A sparse autoencoder-based deep neural network for protein solvent accessibility and contact number prediction |
| URI | https://link.springer.com/article/10.1186/s12859-017-1971-7 https://www.ncbi.nlm.nih.gov/pubmed/29297299 https://www.proquest.com/docview/1984239981 https://pubmed.ncbi.nlm.nih.gov/PMC5751690 https://doaj.org/article/620c0d19f61441e3afb8b3704ee064a3 |
| Volume | 18 |
| WOSCitedRecordID | wos000418855300018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central_OA刊 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database (Proquest) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_enYIvfn9UzyWKICjFpmmb5HFP7vAQl3KnsvoS0iQ9F6Q9trvC_ffOpN3Fnh-gL3loZgqZTiYznclvCHnOnPQMjF5ssyyLM-lNbLLKxXgLk_PCulz2zSbEbCbnc1UO97i7TbX7JiUZLHXY1rJ43THEWovRqjIFLxc7ZC9HsBkM0U8_bVMHCNI_pC9_yzY6gAJO_6_W-Kfj6HKp5KV8aTiGjm7-1wJukRuD10mnvZrcJld8c4dc6_tQXtwlzZSCYVl2npr1qkVoS-eXMR5wjjrvzymiXgJ_09eMU3B0aQB4WDQUdBdLJqkJnRf7WtsLahpHsQre2BXtm44AA-aEUA_ukY9Hhx_evI2HRgyxhXhiFRfeGcazzKfGgIWo08SIvHY8sXUufF6Dz2tMVdeCpT63ruaZkspaZZmoVFFZfp_sNm3jHxIqHSucsCnnqsicciqXCjhT5ywHUyAikmy-jrYDSjk2y_imQ7QiC92LUYMYNYpRA8vLLct5D9HxN-ID_ORbQkTXDg_a5ZkeNqsu0sQmjqkao2XmuakrWXGRZN6DB2d4RJ6hwmjEz2iwQOfMrLtOH5-e6Cm2F4AYUMqIvBiI6hZWYM1w3wHkgJBbI8r9ESVscDuafrrRS41TWBXX-HbdwZIk4jcqySLyoNfT7cJS8HshcFIRESMNHq18PNMsvgZ8cUzFFSqJyKuNHuvBsHV_Fuyjf6J-TK6nYSMgNsA-2V0t1_4JuWq_rxbdckJ2xFyEUU7I3sHhrDyZhJ8lML4T8QQLdEsYy_wLzJfH78vPk2AEfgBPJlFy |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9QwDI9ggOCF74_CgICQkIYqmiZtk8cDMW1inBAbaG9RmqTjJNRObQ9p_z122p7o-JDg9WKfZNd2bNn5mZAXzEnPIOjFVggRC-lNbETpYnyFyXluXSaHZRPFcimPj9XH8R13N027Ty3JEKmDW8v8dccQay3GqMoU_HlxkVwSuGUHS_TDL5vWAYL0j-3L37LNLqCA0_9rNP7pOjo_KnmuXxquod0b_yXATXJ9zDrpYjCTW-SCr2-TK8MeyrM7pF5QCCxt56lZ9w1CWzrfxnjBOeq8P6WIegn89TAzTiHRpQHgYVVTsF0cmaQmbF4cZm3PqKkdxSl4Y3s6LB0BBuwJoR3cJZ933x293YvHRQyxhXqij3PvDONC-NQYiBBVmpgiqxxPbJUVPqsg5zWmrKqCpT6zruJCSWWtsqwoVV5afo9s1U3tHxAqHctdYVPOVS6cciqTCjhT5yyHUFBEJJm-jrYjSjkuy_imQ7Uicz2oUYMaNapRA8vOhuV0gOj4G_Eb_OQbQkTXDj807YkenVXnaWITx1SF1TLz3FSlLHmRCO8hgzM8Is_RYDTiZ9Q4oHNi1l2n9w8_6QWuF4AaUMqIvByJqgYksGZ87wB6QMitGeX2jBIc3M6On012qfEIp-Jq36w7EEkifqOSLCL3BzvdCJZC3guFk4pIMbPgmeTzk3r1NeCLYysuV0lEXk12rMfA1v1ZsQ__ifopubp39OFAH-wv3z8i19LgFIgTsE22-nbtH5PL9nu_6tonwbl_ACKKS4E |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ri9QwEA96PvCL70f11CiCcFKuafpIPq6PxUNZjjuV-xbSPM4FyS7brnD_vTNNd7HnA8SvzQxtpjOTGWbyG0JeMCscA6eXmqIo0kI4neqisSnewuS8MrYUcdhEPZuJkxN5OMw5bTfd7puSZLzTgChNodtfWh9NXFT7LUPctRQ9LJPwovoiuVRAIoM9XUfHX7ZlBATsH0qZv2UbHUY9Zv-vnvmno-l82-S52ml_JE1v_PdmbpLrQzRKJ1F9bpELLtwmV-J8yrM7JEwoOJxV66hedwuEvLRuleLBZ6l1bkkRDRP4Q-wlpxAA0x74YR4o6DS2UlLdT2SMPbhnVAdL8eu06WgcRgIMWCtC_bhLPk_ffXrzPh0GNKQG8owurZzVjBeFy7UGz-HzTNeltzwzvqxd6SEW1rrxvma5K431vJBCGiMNqxtZNYbfIzthEdwDQoVlla1NzrmsCiutLIUEztxaw8FF1AnJNn9KmQG9HIdofFN9FiMqFcWoQIwKxaiAZW_LsozQHX8jfo2_f0uIqNv9g8XqVA1GrKo8M5ll0mMWzRzXvhENr7PCOYjsNE_Ic1QehbgaARt3TvW6bdXB8ZGa4NgByA2FSMjLgcgvYAdGD_cgQA4IxTWi3B1RguGb0fKzjY4qXMJuueAW6xa2JBDXUQqWkPtRZ7cbyyEehoRKJqQeafNo5-OVMP_a445jia6SWUJebXRaDQ6v_bNgH_4T9VNy9fDtVH08mH14RK7lvU0gfMAu2elWa_eYXDbfu3m7etLb-Q8_AlRl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+sparse+autoencoder-based+deep+neural+network+for+protein+solvent+accessibility+and+contact+number+prediction&rft.jtitle=BMC+bioinformatics&rft.au=Deng%2C+Lei&rft.au=Fan%2C+Chao&rft.au=Zeng%2C+Zhiwen&rft.date=2017-12-28&rft.eissn=1471-2105&rft.volume=18&rft.issue=Suppl+16&rft.spage=569&rft_id=info:doi/10.1186%2Fs12859-017-1971-7&rft_id=info%3Apmid%2F29297299&rft.externalDocID=29297299 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |