A sparse autoencoder-based deep neural network for protein solvent accessibility and contact number prediction

Background Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC bioinformatics Ročník 18; číslo Suppl 16; s. 569 - 220
Hlavní autoři: Deng, Lei, Fan, Chao, Zeng, Zhiwen
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 28.12.2017
BioMed Central Ltd
BMC
Témata:
ISSN:1471-2105, 1471-2105
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and protein 3D structure. Thus, accurately predicting these features is a critical step for 3D protein structure building. Results In this study, we present DeepSacon, a computational method that can effectively predict protein solvent accessibility and contact number by using a deep neural network, which is built based on stacked autoencoder and a dropout method. The results demonstrate that our proposed DeepSacon achieves a significant improvement in the prediction quality compared with the state-of-the-art methods. We obtain 0.70 three-state accuracy for solvent accessibility, 0.33 15-state accuracy and 0.74 Pearson Correlation Coefficient (PCC) for the contact number on the 5729 monomeric soluble globular protein dataset. We also evaluate the performance on the CASP11 benchmark dataset, DeepSacon achieves 0.68 three-state accuracy and 0.69 PCC for solvent accessibility and contact number, respectively. Conclusions We have shown that DeepSacon can reliably predict solvent accessibility and contact number with stacked sparse autoencoder and a dropout approach.
AbstractList Background Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and protein 3D structure. Thus, accurately predicting these features is a critical step for 3D protein structure building. Results In this study, we present DeepSacon, a computational method that can effectively predict protein solvent accessibility and contact number by using a deep neural network, which is built based on stacked autoencoder and a dropout method. The results demonstrate that our proposed DeepSacon achieves a significant improvement in the prediction quality compared with the state-of-the-art methods. We obtain 0.70 three-state accuracy for solvent accessibility, 0.33 15-state accuracy and 0.74 Pearson Correlation Coefficient (PCC) for the contact number on the 5729 monomeric soluble globular protein dataset. We also evaluate the performance on the CASP11 benchmark dataset, DeepSacon achieves 0.68 three-state accuracy and 0.69 PCC for solvent accessibility and contact number, respectively. Conclusions We have shown that DeepSacon can reliably predict solvent accessibility and contact number with stacked sparse autoencoder and a dropout approach. Keywords: Solvent accessibility, Contact number, Deep neural network, Sequence-derived features
Background Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and protein 3D structure. Thus, accurately predicting these features is a critical step for 3D protein structure building. Results In this study, we present DeepSacon, a computational method that can effectively predict protein solvent accessibility and contact number by using a deep neural network, which is built based on stacked autoencoder and a dropout method. The results demonstrate that our proposed DeepSacon achieves a significant improvement in the prediction quality compared with the state-of-the-art methods. We obtain 0.70 three-state accuracy for solvent accessibility, 0.33 15-state accuracy and 0.74 Pearson Correlation Coefficient (PCC) for the contact number on the 5729 monomeric soluble globular protein dataset. We also evaluate the performance on the CASP11 benchmark dataset, DeepSacon achieves 0.68 three-state accuracy and 0.69 PCC for solvent accessibility and contact number, respectively. Conclusions We have shown that DeepSacon can reliably predict solvent accessibility and contact number with stacked sparse autoencoder and a dropout approach.
Abstract Background Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and protein 3D structure. Thus, accurately predicting these features is a critical step for 3D protein structure building. Results In this study, we present DeepSacon, a computational method that can effectively predict protein solvent accessibility and contact number by using a deep neural network, which is built based on stacked autoencoder and a dropout method. The results demonstrate that our proposed DeepSacon achieves a significant improvement in the prediction quality compared with the state-of-the-art methods. We obtain 0.70 three-state accuracy for solvent accessibility, 0.33 15-state accuracy and 0.74 Pearson Correlation Coefficient (PCC) for the contact number on the 5729 monomeric soluble globular protein dataset. We also evaluate the performance on the CASP11 benchmark dataset, DeepSacon achieves 0.68 three-state accuracy and 0.69 PCC for solvent accessibility and contact number, respectively. Conclusions We have shown that DeepSacon can reliably predict solvent accessibility and contact number with stacked sparse autoencoder and a dropout approach.
Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and protein 3D structure. Thus, accurately predicting these features is a critical step for 3D protein structure building. In this study, we present DeepSacon, a computational method that can effectively predict protein solvent accessibility and contact number by using a deep neural network, which is built based on stacked autoencoder and a dropout method. The results demonstrate that our proposed DeepSacon achieves a significant improvement in the prediction quality compared with the state-of-the-art methods. We obtain 0.70 three-state accuracy for solvent accessibility, 0.33 15-state accuracy and 0.74 Pearson Correlation Coefficient (PCC) for the contact number on the 5729 monomeric soluble globular protein dataset. We also evaluate the performance on the CASP11 benchmark dataset, DeepSacon achieves 0.68 three-state accuracy and 0.69 PCC for solvent accessibility and contact number, respectively. We have shown that DeepSacon can reliably predict solvent accessibility and contact number with stacked sparse autoencoder and a dropout approach.
Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and protein 3D structure. Thus, accurately predicting these features is a critical step for 3D protein structure building. In this study, we present DeepSacon, a computational method that can effectively predict protein solvent accessibility and contact number by using a deep neural network, which is built based on stacked autoencoder and a dropout method. The results demonstrate that our proposed DeepSacon achieves a significant improvement in the prediction quality compared with the state-of-the-art methods. We obtain 0.70 three-state accuracy for solvent accessibility, 0.33 15-state accuracy and 0.74 Pearson Correlation Coefficient (PCC) for the contact number on the 5729 monomeric soluble globular protein dataset. We also evaluate the performance on the CASP11 benchmark dataset, DeepSacon achieves 0.68 three-state accuracy and 0.69 PCC for solvent accessibility and contact number, respectively. We have shown that DeepSacon can reliably predict solvent accessibility and contact number with stacked sparse autoencoder and a dropout approach.
Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and protein 3D structure. Thus, accurately predicting these features is a critical step for 3D protein structure building.BACKGROUNDDirect prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and protein 3D structure. Thus, accurately predicting these features is a critical step for 3D protein structure building.In this study, we present DeepSacon, a computational method that can effectively predict protein solvent accessibility and contact number by using a deep neural network, which is built based on stacked autoencoder and a dropout method. The results demonstrate that our proposed DeepSacon achieves a significant improvement in the prediction quality compared with the state-of-the-art methods. We obtain 0.70 three-state accuracy for solvent accessibility, 0.33 15-state accuracy and 0.74 Pearson Correlation Coefficient (PCC) for the contact number on the 5729 monomeric soluble globular protein dataset. We also evaluate the performance on the CASP11 benchmark dataset, DeepSacon achieves 0.68 three-state accuracy and 0.69 PCC for solvent accessibility and contact number, respectively.RESULTSIn this study, we present DeepSacon, a computational method that can effectively predict protein solvent accessibility and contact number by using a deep neural network, which is built based on stacked autoencoder and a dropout method. The results demonstrate that our proposed DeepSacon achieves a significant improvement in the prediction quality compared with the state-of-the-art methods. We obtain 0.70 three-state accuracy for solvent accessibility, 0.33 15-state accuracy and 0.74 Pearson Correlation Coefficient (PCC) for the contact number on the 5729 monomeric soluble globular protein dataset. We also evaluate the performance on the CASP11 benchmark dataset, DeepSacon achieves 0.68 three-state accuracy and 0.69 PCC for solvent accessibility and contact number, respectively.We have shown that DeepSacon can reliably predict solvent accessibility and contact number with stacked sparse autoencoder and a dropout approach.CONCLUSIONSWe have shown that DeepSacon can reliably predict solvent accessibility and contact number with stacked sparse autoencoder and a dropout approach.
ArticleNumber 569
Audience Academic
Author Fan, Chao
Zeng, Zhiwen
Deng, Lei
Author_xml – sequence: 1
  givenname: Lei
  surname: Deng
  fullname: Deng, Lei
  organization: School of Software, Central South University
– sequence: 2
  givenname: Chao
  surname: Fan
  fullname: Fan, Chao
  organization: School of Software, Central South University
– sequence: 3
  givenname: Zhiwen
  surname: Zeng
  fullname: Zeng, Zhiwen
  email: zengzhiwen@csu.edu.cn
  organization: School of Information Science and Engineering, Central South University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29297299$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wA9igSGzKIsVO4jjeII0qHiNVQuKxtm7s68FDxh5sp9B_j0Na1EGo8uJa9neOfK_PaXHkvMOieE7JBaV99zrSumeiIpRXVHBa8UfFCW3zpqaEHd3bHxenMW5JBnvCnhTHtagFr4U4KdyqjHsIEUuYkkenvMZQDRBRlxpxXzqcAoy5pJ8-fC-ND-U--ITWldGP1-hSCUphjHawo003JThdKu8SqFS6aTfgLEBtVbLePS0eGxgjPrutZ8XXd2-_XH6orj6-X1-urirVcZaqDjXQpm2xBuCkMTUBzoxuiDKMIzM91QCDMZzWyJQ2TSt6oZRQlA-iG1RzVqwXX-1hK_fB7iDcSA9W_jnwYSMhJKtGlF1NFNFUmI62LcUGzNAPDSctIulaaLLXm8VrPw071Cq3nCdyYHp44-w3ufHXknFGO0GywfmtQfA_JoxJ7mxUOI7g0E9RUtG3dSNETzP6ckE3kJ9mnfHZUc24XLG2a3rO-j5TF_-h8tK4s3n2aGw-PxC8OhDM_4O_0gamGOX686dD9sX9dv_2eZeZDPAFUMHHGNBIZRPMv5tfYUdJiZzTKZd0yhw6OadT8qyk_yjvzB_S1IsmZtZtMMitn4LL4XlA9BsZS_f6
CitedBy_id crossref_primary_10_3390_app9081526
crossref_primary_10_3390_molecules23102535
crossref_primary_10_3892_ol_2018_9761
crossref_primary_10_1016_j_saa_2022_121641
crossref_primary_10_1109_ACCESS_2019_2893620
crossref_primary_10_3389_fphar_2019_01592
crossref_primary_10_1093_bib_bbz156
crossref_primary_10_1186_s12859_021_04305_2
crossref_primary_10_1109_TCBB_2022_3191395
Cites_doi 10.1126/science.1853201
10.1186/1472-6807-6-19
10.3390/ijms150711204
10.1109/TNB.2014.2352454
10.1002/prot.10602
10.1186/1471-2105-6-248
10.1007/978-1-4939-6406-2_6
10.1002/bip.360221211
10.1126/science.1065659
10.1109/TCBB.2017.2701379
10.1002/prot.20404
10.1006/jmbi.1999.3091
10.1534/genetics.111.128025
10.1093/bioinformatics/btm475
10.1186/s12859-016-1331-z
10.1109/TNB.2017.2661756
10.3390/ijms17122118
10.1002/prot.10069
10.1002/jcc.10420
10.1073/pnas.1030237100
10.1110/ps.062405906
10.1016/j.jmb.2004.02.002
10.1186/s13040-014-0031-3
10.1093/bioinformatics/bti423
10.1371/journal.pcbi.0020100
10.1002/(SICI)1097-0134(199605)25:1<38::AID-PROT4>3.3.CO;2-H
10.2174/092986612798472875
10.1093/bioinformatics/btv256
10.1002/prot.20176
10.1110/ps.8.2.361
10.1016/0022-2836(71)90324-X
10.1214/aoms/1177729694
10.1002/prot.20441
10.1103/PhysRevE.65.041904
10.1186/s12859-016-0938-4
10.1093/bioinformatics/btu352
10.1002/prot.20883
10.7554/eLife.18715
10.1002/prot.22193
10.1002/prot.20300
10.1093/bioinformatics/btg224
10.1002/prot.24110
10.1002/prot.24074
10.1038/nature10317
10.1109/TCBB.2017.2704587
10.1002/jcc.10392
10.1186/1471-2105-9-S12-S12
10.1002/1097-0134(20010301)42:4<452::AID-PROT40>3.0.CO;2-Q
10.1038/srep11476
10.1126/science.1219021
10.1093/bioinformatics/18.6.819
10.1038/nmeth.1818
10.1016/j.neucom.2014.12.123
10.1002/prot.340200303
10.1038/nrm1589
10.1093/nar/gku340
10.1093/bib/6.1.44
10.1186/1471-2105-7-124
10.1002/jcc.23718
ContentType Journal Article
Copyright The Author(s) 2017
COPYRIGHT 2017 BioMed Central Ltd.
Copyright_xml – notice: The Author(s) 2017
– notice: COPYRIGHT 2017 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOA
DOI 10.1186/s12859-017-1971-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList




MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 220
ExternalDocumentID oai_doaj_org_article_620c0d19f61441e3afb8b3704ee064a3
PMC5751690
A546387588
29297299
10_1186_s12859_017_1971_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c675t-6eda1344e2aa703f20a75fd30cf57e5f81daabff712e5cdf34989cc9c17b96bc3
IEDL.DBID RSV
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418855300018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Fri Oct 03 12:33:29 EDT 2025
Tue Nov 04 01:47:24 EST 2025
Thu Sep 04 17:21:00 EDT 2025
Tue Nov 11 10:02:39 EST 2025
Tue Nov 04 17:44:20 EST 2025
Thu Nov 13 15:18:33 EST 2025
Thu Apr 03 06:59:37 EDT 2025
Tue Nov 18 22:15:21 EST 2025
Sat Nov 29 05:40:02 EST 2025
Sat Sep 06 07:27:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 16
Keywords Deep neural network
Sequence-derived features
Contact number
Solvent accessibility
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c675t-6eda1344e2aa703f20a75fd30cf57e5f81daabff712e5cdf34989cc9c17b96bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s12859-017-1971-7
PMID 29297299
PQID 1984239981
PQPubID 23479
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_620c0d19f61441e3afb8b3704ee064a3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5751690
proquest_miscellaneous_1984239981
gale_infotracmisc_A546387588
gale_infotracacademiconefile_A546387588
gale_incontextgauss_ISR_A546387588
pubmed_primary_29297299
crossref_citationtrail_10_1186_s12859_017_1971_7
crossref_primary_10_1186_s12859_017_1971_7
springer_journals_10_1186_s12859_017_1971_7
PublicationCentury 2000
PublicationDate 2017-12-28
PublicationDateYYYYMMDD 2017-12-28
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-28
  day: 28
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle BMC series – open, inclusive and trusted
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2017
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References W Kabsch (1971_CR40) 1983; 22
L Wei (1971_CR20) 2017; 16
H Kim (1971_CR26) 2004; 54
FU Hartl (1971_CR11) 2011; 475
AR Kinjo (1971_CR36) 2005; 58
S Ahmad (1971_CR23) 2002; 18
A Kabakcioglu (1971_CR34) 2001; 65
GE Hinton (1971_CR62) 2012; 3
J Sim (1971_CR30) 2005; 21
G Pugalenthi (1971_CR29) 2012; 19
CN Magnan (1971_CR65) 2014; 30
JI Garzón (1971_CR15) 2016; 5
H Liu (1971_CR14) 2015; 31
K Joo (1971_CR64) 2012; 80
MN Nguyen (1971_CR27) 2005; 59
R Khashan (1971_CR13) 2012; 80
HJ Dyson (1971_CR50) 2005; 6
J Zhang (1971_CR43) 2013; 15
1971_CR22
MR Betancourt (1971_CR58) 1999; 8
R Heffernan (1971_CR55) 2015; 5
P Fariselli (1971_CR35) 2000
JU Bowie (1971_CR8) 1991; 253
D Baker (1971_CR1) 2001; 294
J Zhang (1971_CR32) 2015; 8
M Totrov (1971_CR17) 2004; 25
L Wei (1971_CR7) 2015; 14
Z Yuan (1971_CR37) 2005; 6
E Faraggi (1971_CR63) 2009; 74
J Song (1971_CR44) 2006; 7
Y Bengio (1971_CR59) 2007; 19
DC Ramsey (1971_CR42) 2011; 188
M Remmert (1971_CR49) 2012; 9
Y Gan (1971_CR48) 2016; 17
R Adamczak (1971_CR6) 2005; 59
M Biasini (1971_CR41) 2014; 42
C Haynes (1971_CR51) 2006; 2
J Lyons (1971_CR57) 2014; 35
C Fan (1971_CR56) 2016; 17
G Pollastri (1971_CR5) 2002; 47
B Rost (1971_CR9) 1994; 20
Q Zou (1971_CR46) 2016; 10
B Huang (1971_CR18) 2006; 6
L Wei (1971_CR2) 2016; 17
JJ Ward (1971_CR54) 2004; 337
H Naderi-Manesh (1971_CR28) 2001; 42
K Chen (1971_CR45) 2007; 23
Q Zou (1971_CR47) 2016; 173
G Wang (1971_CR39) 2003; 19
DT Jones (1971_CR53) 1999; 292
S Kullback (1971_CR60) 1951; 22
KA Dill (1971_CR4) 2012; 338
R Adamczak (1971_CR24) 2004; 56
1971_CR3
S Mooney (1971_CR21) 2005; 6
DE Rumelhart (1971_CR61) 1988; 5
P Haste Andersen (1971_CR19) 2006; 15
DT-H Chang (1971_CR31) 2008; 9
Y Yang (1971_CR52) 2017; 1484
MN Nguyen (1971_CR33) 2006; 63
B Ma (1971_CR12) 2003; 100
E Eyal (1971_CR16) 2004; 25
B Lee (1971_CR10) 1971; 55
MJ Thompson (1971_CR25) 1996; 25
J Ma (1971_CR38) 2015; 2015
References_xml – volume: 253
  start-page: 164
  issue: 5016
  year: 1991
  ident: 1971_CR8
  publication-title: Science
  doi: 10.1126/science.1853201
– volume: 10
  start-page: 401
  issue: 4
  year: 2016
  ident: 1971_CR46
  publication-title: BMC Syst Biol
– volume: 6
  start-page: 19
  issue: 1
  year: 2006
  ident: 1971_CR18
  publication-title: BMC Struct Biol
  doi: 10.1186/1472-6807-6-19
– volume: 15
  start-page: 11204
  issue: 7
  year: 2013
  ident: 1971_CR43
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms150711204
– volume: 14
  start-page: 339
  issue: 4
  year: 2015
  ident: 1971_CR7
  publication-title: IEEE Trans Nanobioscience
  doi: 10.1109/TNB.2014.2352454
– volume: 54
  start-page: 557
  issue: 3
  year: 2004
  ident: 1971_CR26
  publication-title: Proteins Struct Funct Bioinforma
  doi: 10.1002/prot.10602
– volume: 6
  start-page: 248
  issue: 1
  year: 2005
  ident: 1971_CR37
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-248
– volume: 1484
  start-page: 55
  year: 2017
  ident: 1971_CR52
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-4939-6406-2_6
– volume: 22
  start-page: 2577
  issue: 12
  year: 1983
  ident: 1971_CR40
  publication-title: Biopolymers
  doi: 10.1002/bip.360221211
– volume: 294
  start-page: 93
  issue: 5540
  year: 2001
  ident: 1971_CR1
  publication-title: Science
  doi: 10.1126/science.1065659
– volume-title: Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology (ISMB 2000), vol 8
  year: 2000
  ident: 1971_CR35
– ident: 1971_CR22
  doi: 10.1109/TCBB.2017.2701379
– volume: 59
  start-page: 30
  issue: 1
  year: 2005
  ident: 1971_CR27
  publication-title: Proteins Struct Funct Bioinforma
  doi: 10.1002/prot.20404
– volume: 292
  start-page: 195
  issue: 2
  year: 1999
  ident: 1971_CR53
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1999.3091
– volume: 3
  start-page: 212
  issue: 4
  year: 2012
  ident: 1971_CR62
  publication-title: Comput Sci
– volume: 188
  start-page: 479
  issue: 2
  year: 2011
  ident: 1971_CR42
  publication-title: Genetics
  doi: 10.1534/genetics.111.128025
– volume: 23
  start-page: 2843
  issue: 21
  year: 2007
  ident: 1971_CR45
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm475
– volume: 17
  start-page: 537
  issue: 17
  year: 2016
  ident: 1971_CR48
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1331-z
– volume: 16
  start-page: 240
  issue: 4
  year: 2017
  ident: 1971_CR20
  publication-title: IEEE Trans NanoBioscience
  doi: 10.1109/TNB.2017.2661756
– volume: 17
  start-page: 2118
  issue: 12
  year: 2016
  ident: 1971_CR2
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms17122118
– volume: 5
  start-page: 1
  issue: 3
  year: 1988
  ident: 1971_CR61
  publication-title: Cogn Model
– volume: 47
  start-page: 142
  issue: 2
  year: 2002
  ident: 1971_CR5
  publication-title: Proteins Struct Funct Bioinforma
  doi: 10.1002/prot.10069
– volume: 25
  start-page: 712
  issue: 5
  year: 2004
  ident: 1971_CR16
  publication-title: J Comput Chem
  doi: 10.1002/jcc.10420
– volume: 100
  start-page: 5772
  issue: 10
  year: 2003
  ident: 1971_CR12
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1030237100
– volume: 15
  start-page: 2558
  issue: 11
  year: 2006
  ident: 1971_CR19
  publication-title: Protein Sci
  doi: 10.1110/ps.062405906
– volume: 337
  start-page: 635
  issue: 3
  year: 2004
  ident: 1971_CR54
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2004.02.002
– volume: 8
  start-page: 3
  issue: 1
  year: 2015
  ident: 1971_CR32
  publication-title: BioData Min
  doi: 10.1186/s13040-014-0031-3
– volume: 21
  start-page: 2844
  issue: 12
  year: 2005
  ident: 1971_CR30
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti423
– volume: 2
  start-page: 100
  issue: 8
  year: 2006
  ident: 1971_CR51
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0020100
– volume: 25
  start-page: 38
  issue: 1
  year: 1996
  ident: 1971_CR25
  publication-title: Proteins
  doi: 10.1002/(SICI)1097-0134(199605)25:1<38::AID-PROT4>3.3.CO;2-H
– volume: 19
  start-page: 50
  issue: 1
  year: 2012
  ident: 1971_CR29
  publication-title: Protein Pept Lett
  doi: 10.2174/092986612798472875
– volume: 31
  start-page: 221
  issue: 12
  year: 2015
  ident: 1971_CR14
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv256
– volume: 56
  start-page: 753
  issue: 4
  year: 2004
  ident: 1971_CR24
  publication-title: Proteins Struct Funct Bioinforma
  doi: 10.1002/prot.20176
– volume: 8
  start-page: 361
  issue: 02
  year: 1999
  ident: 1971_CR58
  publication-title: Protein Sci
  doi: 10.1110/ps.8.2.361
– volume: 55
  start-page: 379
  issue: 3
  year: 1971
  ident: 1971_CR10
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(71)90324-X
– volume: 22
  start-page: 79
  issue: 1
  year: 1951
  ident: 1971_CR60
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177729694
– volume: 59
  start-page: 467
  issue: 3
  year: 2005
  ident: 1971_CR6
  publication-title: Proteins Struct Funct Bioinforma
  doi: 10.1002/prot.20441
– volume: 65
  start-page: 041904
  issue: 4
  year: 2001
  ident: 1971_CR34
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.65.041904
– volume: 17
  start-page: 85
  issue: 1
  year: 2016
  ident: 1971_CR56
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-0938-4
– volume: 30
  start-page: 2592
  issue: 18
  year: 2014
  ident: 1971_CR65
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu352
– volume: 63
  start-page: 542
  issue: 3
  year: 2006
  ident: 1971_CR33
  publication-title: Proteins Struct Funct Bioinforma
  doi: 10.1002/prot.20883
– volume: 5
  start-page: 18715
  year: 2016
  ident: 1971_CR15
  publication-title: Elife
  doi: 10.7554/eLife.18715
– volume: 74
  start-page: 847
  issue: 4
  year: 2009
  ident: 1971_CR63
  publication-title: Proteins Struct Funct Bioinforma
  doi: 10.1002/prot.22193
– volume: 58
  start-page: 158
  issue: 1
  year: 2005
  ident: 1971_CR36
  publication-title: Proteins Struct Funct Bioinforma
  doi: 10.1002/prot.20300
– volume: 19
  start-page: 1589
  issue: 12
  year: 2003
  ident: 1971_CR39
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg224
– volume: 80
  start-page: 2207
  issue: 9
  year: 2012
  ident: 1971_CR13
  publication-title: Proteins Struct Funct Bioinforma
  doi: 10.1002/prot.24110
– volume: 2015
  start-page: 678764
  year: 2015
  ident: 1971_CR38
  publication-title: BioMed Res Int
– volume: 80
  start-page: 1791
  issue: 7
  year: 2012
  ident: 1971_CR64
  publication-title: Proteins Struct Funct Bioinforma
  doi: 10.1002/prot.24074
– volume: 475
  start-page: 324
  issue: 7356
  year: 2011
  ident: 1971_CR11
  publication-title: Nature
  doi: 10.1038/nature10317
– ident: 1971_CR3
  doi: 10.1109/TCBB.2017.2704587
– volume: 25
  start-page: 609
  issue: 4
  year: 2004
  ident: 1971_CR17
  publication-title: J Comput Chem
  doi: 10.1002/jcc.10392
– volume: 9
  start-page: 12
  issue: 12
  year: 2008
  ident: 1971_CR31
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-S12-S12
– volume: 42
  start-page: 452
  issue: 4
  year: 2001
  ident: 1971_CR28
  publication-title: Proteins Struct Funct Bioinforma
  doi: 10.1002/1097-0134(20010301)42:4<452::AID-PROT40>3.0.CO;2-Q
– volume: 5
  start-page: 11476
  year: 2015
  ident: 1971_CR55
  publication-title: Sci Rep.
  doi: 10.1038/srep11476
– volume: 338
  start-page: 1042
  issue: 6110
  year: 2012
  ident: 1971_CR4
  publication-title: Science
  doi: 10.1126/science.1219021
– volume: 19
  start-page: 153
  year: 2007
  ident: 1971_CR59
  publication-title: Adv Neural Inf Process Syst
– volume: 18
  start-page: 819
  issue: 6
  year: 2002
  ident: 1971_CR23
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.6.819
– volume: 9
  start-page: 173
  issue: 2
  year: 2012
  ident: 1971_CR49
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1818
– volume: 173
  start-page: 346
  year: 2016
  ident: 1971_CR47
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.12.123
– volume: 20
  start-page: 216
  issue: 3
  year: 1994
  ident: 1971_CR9
  publication-title: Proteins Struct Funct Bioinforma
  doi: 10.1002/prot.340200303
– volume: 6
  start-page: 197
  issue: 3
  year: 2005
  ident: 1971_CR50
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm1589
– volume: 42
  start-page: 252
  issue: Web Server issu
  year: 2014
  ident: 1971_CR41
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku340
– volume: 6
  start-page: 44
  issue: 1
  year: 2005
  ident: 1971_CR21
  publication-title: Brief Bioinforma
  doi: 10.1093/bib/6.1.44
– volume: 7
  start-page: 124
  issue: 1
  year: 2006
  ident: 1971_CR44
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-124
– volume: 35
  start-page: 2040
  issue: 28
  year: 2014
  ident: 1971_CR57
  publication-title: J Comput Chem
  doi: 10.1002/jcc.23718
SSID ssj0017805
Score 2.3434567
Snippet Background Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant...
Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural...
Background Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant...
Abstract Background Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem....
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 569
SubjectTerms Algorithms
Amino acids
Analysis
Artificial neural networks
Bioinformatics
Biomedical and Life Sciences
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Contact number
Deep neural network
Life Sciences
Machine Learning
Microarrays
Models, Molecular
Neural Networks, Computer
Proteins
Proteins - chemistry
Sequence-derived features
Solvent accessibility
Solvents - chemistry
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yKHgR37auEkUQlGY7nXQnOY7iopdFfMDeQjoPHVgyy_SMsP_eqqRn2F5RL147VdBJvVJU5StCXjKvAgOnVzshRC1UsLUVg6_xFSbnvfOdKsMm5MmJOj3Vny6N-sKesAIPXA7uqG8b13imI2YuLHAbBzVw2YgQIJrajPPZSL1Lpqb6ASL1TzVMpvqjkSFOW40emWn4MTmLQhms_3eXfCkmXe2XvFI0zbHo-Da5NV0i6aL8_B1yLaS75EYZK3lxj6QFBT-xHgO1280KkSp9WNcYrzz1IZxTBLEE_lRawCncW2nGa1gmCqqIHZDU5kGKpXX2gtrkKTa1W7ehZYYIMGCJB8V6n3w7fv_13Yd6mqtQO0gPNnUfvGVciNBaCwYf28bKLnreuNjJ0EW4wlo7xChZGzrnIxdaaee0Y3LQ_eD4A3KQVik8IlR51nvpWs51L7z2ulMaOFvvHQfLlhVpduds3AQ6jrMvzkxOPlRvimgMiMagaAywvN6znBfEjb8Rv0Xh7QkRLDt_ABUykwqZf6lQRV6g6A3CYSTst_lut-NoPn75bBY4LQBSOqUq8moiiivYgbPT8wU4B0TQmlEezijBXt1s-flOwwwuYZNbCqvtCFtSCMeoFavIw6Jx-421cI2FPEhXRM50cbbz-Upa_shw4VhZ63VTkTc7rTWTnxr_fLCP_8fBPiE322xziABwSA426214Sq67n5vluH6WLfYXEZNEdQ
  priority: 102
  providerName: Directory of Open Access Journals
Title A sparse autoencoder-based deep neural network for protein solvent accessibility and contact number prediction
URI https://link.springer.com/article/10.1186/s12859-017-1971-7
https://www.ncbi.nlm.nih.gov/pubmed/29297299
https://www.proquest.com/docview/1984239981
https://pubmed.ncbi.nlm.nih.gov/PMC5751690
https://doaj.org/article/620c0d19f61441e3afb8b3704ee064a3
Volume 18
WOSCitedRecordID wos000418855300018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central_OA刊
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (Proquest)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_enYIvfn9UzyWKICjFpmmb5HFP7vAQl3KnsvoS0iQ9F6Q9trvC_ffOpN3Fnh-gL3loZgqZTiYznclvCHnOnPQMjF5ssyyLM-lNbLLKxXgLk_PCulz2zSbEbCbnc1UO97i7TbX7JiUZLHXY1rJ43THEWovRqjIFLxc7ZC9HsBkM0U8_bVMHCNI_pC9_yzY6gAJO_6_W-Kfj6HKp5KV8aTiGjm7-1wJukRuD10mnvZrcJld8c4dc6_tQXtwlzZSCYVl2npr1qkVoS-eXMR5wjjrvzymiXgJ_09eMU3B0aQB4WDQUdBdLJqkJnRf7WtsLahpHsQre2BXtm44AA-aEUA_ukY9Hhx_evI2HRgyxhXhiFRfeGcazzKfGgIWo08SIvHY8sXUufF6Dz2tMVdeCpT63ruaZkspaZZmoVFFZfp_sNm3jHxIqHSucsCnnqsicciqXCjhT5ywHUyAikmy-jrYDSjk2y_imQ7QiC92LUYMYNYpRA8vLLct5D9HxN-ID_ORbQkTXDg_a5ZkeNqsu0sQmjqkao2XmuakrWXGRZN6DB2d4RJ6hwmjEz2iwQOfMrLtOH5-e6Cm2F4AYUMqIvBiI6hZWYM1w3wHkgJBbI8r9ESVscDuafrrRS41TWBXX-HbdwZIk4jcqySLyoNfT7cJS8HshcFIRESMNHq18PNMsvgZ8cUzFFSqJyKuNHuvBsHV_Fuyjf6J-TK6nYSMgNsA-2V0t1_4JuWq_rxbdckJ2xFyEUU7I3sHhrDyZhJ8lML4T8QQLdEsYy_wLzJfH78vPk2AEfgBPJlFy
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9QwDI9ggOCF74_CgICQkIYqmiZtk8cDMW1inBAbaG9RmqTjJNRObQ9p_z122p7o-JDg9WKfZNd2bNn5mZAXzEnPIOjFVggRC-lNbETpYnyFyXluXSaHZRPFcimPj9XH8R13N027Ty3JEKmDW8v8dccQay3GqMoU_HlxkVwSuGUHS_TDL5vWAYL0j-3L37LNLqCA0_9rNP7pOjo_KnmuXxquod0b_yXATXJ9zDrpYjCTW-SCr2-TK8MeyrM7pF5QCCxt56lZ9w1CWzrfxnjBOeq8P6WIegn89TAzTiHRpQHgYVVTsF0cmaQmbF4cZm3PqKkdxSl4Y3s6LB0BBuwJoR3cJZ933x293YvHRQyxhXqij3PvDONC-NQYiBBVmpgiqxxPbJUVPqsg5zWmrKqCpT6zruJCSWWtsqwoVV5afo9s1U3tHxAqHctdYVPOVS6cciqTCjhT5yyHUFBEJJm-jrYjSjkuy_imQ7Uicz2oUYMaNapRA8vOhuV0gOj4G_Eb_OQbQkTXDj807YkenVXnaWITx1SF1TLz3FSlLHmRCO8hgzM8Is_RYDTiZ9Q4oHNi1l2n9w8_6QWuF4AaUMqIvByJqgYksGZ87wB6QMitGeX2jBIc3M6On012qfEIp-Jq36w7EEkifqOSLCL3BzvdCJZC3guFk4pIMbPgmeTzk3r1NeCLYysuV0lEXk12rMfA1v1ZsQ__ifopubp39OFAH-wv3z8i19LgFIgTsE22-nbtH5PL9nu_6tonwbl_ACKKS4E
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ri9QwEA96PvCL70f11CiCcFKuafpIPq6PxUNZjjuV-xbSPM4FyS7brnD_vTNNd7HnA8SvzQxtpjOTGWbyG0JeMCscA6eXmqIo0kI4neqisSnewuS8MrYUcdhEPZuJkxN5OMw5bTfd7puSZLzTgChNodtfWh9NXFT7LUPctRQ9LJPwovoiuVRAIoM9XUfHX7ZlBATsH0qZv2UbHUY9Zv-vnvmno-l82-S52ml_JE1v_PdmbpLrQzRKJ1F9bpELLtwmV-J8yrM7JEwoOJxV66hedwuEvLRuleLBZ6l1bkkRDRP4Q-wlpxAA0x74YR4o6DS2UlLdT2SMPbhnVAdL8eu06WgcRgIMWCtC_bhLPk_ffXrzPh0GNKQG8owurZzVjBeFy7UGz-HzTNeltzwzvqxd6SEW1rrxvma5K431vJBCGiMNqxtZNYbfIzthEdwDQoVlla1NzrmsCiutLIUEztxaw8FF1AnJNn9KmQG9HIdofFN9FiMqFcWoQIwKxaiAZW_LsozQHX8jfo2_f0uIqNv9g8XqVA1GrKo8M5ll0mMWzRzXvhENr7PCOYjsNE_Ic1QehbgaARt3TvW6bdXB8ZGa4NgByA2FSMjLgcgvYAdGD_cgQA4IxTWi3B1RguGb0fKzjY4qXMJuueAW6xa2JBDXUQqWkPtRZ7cbyyEehoRKJqQeafNo5-OVMP_a445jia6SWUJebXRaDQ6v_bNgH_4T9VNy9fDtVH08mH14RK7lvU0gfMAu2elWa_eYXDbfu3m7etLb-Q8_AlRl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+sparse+autoencoder-based+deep+neural+network+for+protein+solvent+accessibility+and+contact+number+prediction&rft.jtitle=BMC+bioinformatics&rft.au=Deng%2C+Lei&rft.au=Fan%2C+Chao&rft.au=Zeng%2C+Zhiwen&rft.date=2017-12-28&rft.eissn=1471-2105&rft.volume=18&rft.issue=Suppl+16&rft.spage=569&rft_id=info:doi/10.1186%2Fs12859-017-1971-7&rft_id=info%3Apmid%2F29297299&rft.externalDocID=29297299
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon