A comparison of graph- and kernel-based –omics data integration algorithms for classifying complex traits

Background High-throughput sequencing data are widely collected and analyzed in the study of complex diseases in quest of improving human health. Well-studied algorithms mostly deal with single data source, and cannot fully utilize the potential of these multi-omics data sources. In order to provide...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC bioinformatics Ročník 18; číslo 1; s. 539 - 13
Hlavní autoři: Yan, Kang K., Zhao, Hongyu, Pang, Herbert
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 06.12.2017
BioMed Central Ltd
BMC
Témata:
ISSN:1471-2105, 1471-2105
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background High-throughput sequencing data are widely collected and analyzed in the study of complex diseases in quest of improving human health. Well-studied algorithms mostly deal with single data source, and cannot fully utilize the potential of these multi-omics data sources. In order to provide a holistic understanding of human health and diseases, it is necessary to integrate multiple data sources. Several algorithms have been proposed so far, however, a comprehensive comparison of data integration algorithms for classification of binary traits is currently lacking. Results In this paper, we focus on two common classes of integration algorithms, graph-based that depict relationships with subjects denoted by nodes and relationships denoted by edges, and kernel-based that can generate a classifier in feature space. Our paper provides a comprehensive comparison of their performance in terms of various measurements of classification accuracy and computation time. Seven different integration algorithms, including graph-based semi-supervised learning, graph sharpening integration, composite association network, Bayesian network, semi-definite programming-support vector machine (SDP-SVM), relevance vector machine (RVM) and Ada-boost relevance vector machine are compared and evaluated with hypertension and two cancer data sets in our study. In general, kernel-based algorithms create more complex models and require longer computation time, but they tend to perform better than graph-based algorithms. The performance of graph-based algorithms has the advantage of being faster computationally. Conclusions The empirical results demonstrate that composite association network, relevance vector machine, and Ada-boost RVM are the better performers. We provide recommendations on how to choose an appropriate algorithm for integrating data from multiple sources.
AbstractList Abstract Background High-throughput sequencing data are widely collected and analyzed in the study of complex diseases in quest of improving human health. Well-studied algorithms mostly deal with single data source, and cannot fully utilize the potential of these multi-omics data sources. In order to provide a holistic understanding of human health and diseases, it is necessary to integrate multiple data sources. Several algorithms have been proposed so far, however, a comprehensive comparison of data integration algorithms for classification of binary traits is currently lacking. Results In this paper, we focus on two common classes of integration algorithms, graph-based that depict relationships with subjects denoted by nodes and relationships denoted by edges, and kernel-based that can generate a classifier in feature space. Our paper provides a comprehensive comparison of their performance in terms of various measurements of classification accuracy and computation time. Seven different integration algorithms, including graph-based semi-supervised learning, graph sharpening integration, composite association network, Bayesian network, semi-definite programming-support vector machine (SDP-SVM), relevance vector machine (RVM) and Ada-boost relevance vector machine are compared and evaluated with hypertension and two cancer data sets in our study. In general, kernel-based algorithms create more complex models and require longer computation time, but they tend to perform better than graph-based algorithms. The performance of graph-based algorithms has the advantage of being faster computationally. Conclusions The empirical results demonstrate that composite association network, relevance vector machine, and Ada-boost RVM are the better performers. We provide recommendations on how to choose an appropriate algorithm for integrating data from multiple sources.
High-throughput sequencing data are widely collected and analyzed in the study of complex diseases in quest of improving human health. Well-studied algorithms mostly deal with single data source, and cannot fully utilize the potential of these multi-omics data sources. In order to provide a holistic understanding of human health and diseases, it is necessary to integrate multiple data sources. Several algorithms have been proposed so far, however, a comprehensive comparison of data integration algorithms for classification of binary traits is currently lacking. In this paper, we focus on two common classes of integration algorithms, graph-based that depict relationships with subjects denoted by nodes and relationships denoted by edges, and kernel-based that can generate a classifier in feature space. Our paper provides a comprehensive comparison of their performance in terms of various measurements of classification accuracy and computation time. Seven different integration algorithms, including graph-based semi-supervised learning, graph sharpening integration, composite association network, Bayesian network, semi-definite programming-support vector machine (SDP-SVM), relevance vector machine (RVM) and Ada-boost relevance vector machine are compared and evaluated with hypertension and two cancer data sets in our study. In general, kernel-based algorithms create more complex models and require longer computation time, but they tend to perform better than graph-based algorithms. The performance of graph-based algorithms has the advantage of being faster computationally. The empirical results demonstrate that composite association network, relevance vector machine, and Ada-boost RVM are the better performers. We provide recommendations on how to choose an appropriate algorithm for integrating data from multiple sources.
Background High-throughput sequencing data are widely collected and analyzed in the study of complex diseases in quest of improving human health. Well-studied algorithms mostly deal with single data source, and cannot fully utilize the potential of these multi-omics data sources. In order to provide a holistic understanding of human health and diseases, it is necessary to integrate multiple data sources. Several algorithms have been proposed so far, however, a comprehensive comparison of data integration algorithms for classification of binary traits is currently lacking. Results In this paper, we focus on two common classes of integration algorithms, graph-based that depict relationships with subjects denoted by nodes and relationships denoted by edges, and kernel-based that can generate a classifier in feature space. Our paper provides a comprehensive comparison of their performance in terms of various measurements of classification accuracy and computation time. Seven different integration algorithms, including graph-based semi-supervised learning, graph sharpening integration, composite association network, Bayesian network, semi-definite programming-support vector machine (SDP-SVM), relevance vector machine (RVM) and Ada-boost relevance vector machine are compared and evaluated with hypertension and two cancer data sets in our study. In general, kernel-based algorithms create more complex models and require longer computation time, but they tend to perform better than graph-based algorithms. The performance of graph-based algorithms has the advantage of being faster computationally. Conclusions The empirical results demonstrate that composite association network, relevance vector machine, and Ada-boost RVM are the better performers. We provide recommendations on how to choose an appropriate algorithm for integrating data from multiple sources.
High-throughput sequencing data are widely collected and analyzed in the study of complex diseases in quest of improving human health. Well-studied algorithms mostly deal with single data source, and cannot fully utilize the potential of these multi-omics data sources. In order to provide a holistic understanding of human health and diseases, it is necessary to integrate multiple data sources. Several algorithms have been proposed so far, however, a comprehensive comparison of data integration algorithms for classification of binary traits is currently lacking.BACKGROUNDHigh-throughput sequencing data are widely collected and analyzed in the study of complex diseases in quest of improving human health. Well-studied algorithms mostly deal with single data source, and cannot fully utilize the potential of these multi-omics data sources. In order to provide a holistic understanding of human health and diseases, it is necessary to integrate multiple data sources. Several algorithms have been proposed so far, however, a comprehensive comparison of data integration algorithms for classification of binary traits is currently lacking.In this paper, we focus on two common classes of integration algorithms, graph-based that depict relationships with subjects denoted by nodes and relationships denoted by edges, and kernel-based that can generate a classifier in feature space. Our paper provides a comprehensive comparison of their performance in terms of various measurements of classification accuracy and computation time. Seven different integration algorithms, including graph-based semi-supervised learning, graph sharpening integration, composite association network, Bayesian network, semi-definite programming-support vector machine (SDP-SVM), relevance vector machine (RVM) and Ada-boost relevance vector machine are compared and evaluated with hypertension and two cancer data sets in our study. In general, kernel-based algorithms create more complex models and require longer computation time, but they tend to perform better than graph-based algorithms. The performance of graph-based algorithms has the advantage of being faster computationally.RESULTSIn this paper, we focus on two common classes of integration algorithms, graph-based that depict relationships with subjects denoted by nodes and relationships denoted by edges, and kernel-based that can generate a classifier in feature space. Our paper provides a comprehensive comparison of their performance in terms of various measurements of classification accuracy and computation time. Seven different integration algorithms, including graph-based semi-supervised learning, graph sharpening integration, composite association network, Bayesian network, semi-definite programming-support vector machine (SDP-SVM), relevance vector machine (RVM) and Ada-boost relevance vector machine are compared and evaluated with hypertension and two cancer data sets in our study. In general, kernel-based algorithms create more complex models and require longer computation time, but they tend to perform better than graph-based algorithms. The performance of graph-based algorithms has the advantage of being faster computationally.The empirical results demonstrate that composite association network, relevance vector machine, and Ada-boost RVM are the better performers. We provide recommendations on how to choose an appropriate algorithm for integrating data from multiple sources.CONCLUSIONSThe empirical results demonstrate that composite association network, relevance vector machine, and Ada-boost RVM are the better performers. We provide recommendations on how to choose an appropriate algorithm for integrating data from multiple sources.
ArticleNumber 539
Audience Academic
Author Zhao, Hongyu
Yan, Kang K.
Pang, Herbert
Author_xml – sequence: 1
  givenname: Kang K.
  surname: Yan
  fullname: Yan, Kang K.
  organization: School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong
– sequence: 2
  givenname: Hongyu
  surname: Zhao
  fullname: Zhao, Hongyu
  organization: Department of Biostatistics, Yale University
– sequence: 3
  givenname: Herbert
  surname: Pang
  fullname: Pang, Herbert
  email: herbpang@hku.hk
  organization: School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29212468$$D View this record in MEDLINE/PubMed
BookMark eNp9kstq3DAUhk1JaS7tA3RTDN20C6eSLNvSpjCEXgYChV7W4lgXjya2NJU0Jdn1HfqGfZJqxknJlBK8sJG__-Mc9J8WR847XRTPMTrHmLVvIias4RXCXYU5IxV9VJxg2uGKYNQc3fs-Lk5jXKMMMtQ8KY4JJ5jQlp0UV4tS-mkDwUbvSm_KIcBmVZXgVHmlg9Nj1UPUqvz985efrIylggSldUlnMtkcgnHwwabVFEvjQylHiNGaG-uGvXrU12UKYFN8Wjw2MEb97PZ9Vnx7_-7rxcfq8tOH5cXispJt16SKKMQ1kz2XyiAltZTMIMM6LJueINpLTmXNOEGa0r6lBCmOKWmoQh3DhDT1WbGcvcrDWmyCnSDcCA9W7A98GASEZOWohQJgtCUt7zFQ1UpWQ91RYziqMTAC2fV2dm22_aTzNC7vMh5ID_84uxKD_yHa3Yg1yoJXt4Lgv291TGKyUepxBKf9NgrMO4pw3SCe0ZczOkAezTrjs1HucLFoaFu3HSF1ps7_Q-VH6Xw_uSDG5vODwOuDQGaSvk4DbGMUyy-fD9kX99f9u-ddYTLQzYAMPsagjZA27Xuwu-NRYCR21RRzNUVunNhVU9CcxP8k7-QPZciciZl1gw5i7bfB5fI8EPoDc6j1jA
CitedBy_id crossref_primary_10_1038_s41598_021_03034_z
crossref_primary_10_3390_cancers14122897
crossref_primary_10_1186_s12864_022_08469_w
crossref_primary_10_3390_genes10020087
crossref_primary_10_1016_j_biotechadv_2021_107739
crossref_primary_10_1038_s42256_023_00633_5
crossref_primary_10_1093_gigascience_giz045
crossref_primary_10_1016_j_biotechadv_2022_108008
crossref_primary_10_1016_j_compbiomed_2023_107425
crossref_primary_10_1016_j_inffus_2020_09_007
crossref_primary_10_3390_cells12010103
crossref_primary_10_1093_nargab_lqae141
crossref_primary_10_1016_j_arr_2022_101730
crossref_primary_10_1186_s13059_022_02647_5
crossref_primary_10_1371_journal_pcbi_1011814
crossref_primary_10_1007_s11831_021_09547_0
crossref_primary_10_3389_fgene_2022_854752
crossref_primary_10_1007_s00438_020_01664_y
Cites_doi 10.1093/bioinformatics/bth294
10.1126/science.1109557
10.1038/nature11412
10.1021/acs.jproteome.5b00847
10.1093/bioinformatics/btm511
10.1093/bioinformatics/btq044
10.1038/nature10166
10.1186/s12859-017-1490-6
10.1186/gb-2008-9-s1-s4
10.1016/S0828-282X(07)70795-X
10.1093/bioinformatics/bti1110
10.1038/nbt1103
10.1093/bib/bbv087
10.1186/1471-2105-16-S4-S5
10.1214/12-AOS1063
10.1038/nbt.2877
10.1093/bioinformatics/btq262
ContentType Journal Article
Copyright The Author(s). 2017
COPYRIGHT 2017 BioMed Central Ltd.
Copyright_xml – notice: The Author(s). 2017
– notice: COPYRIGHT 2017 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOA
DOI 10.1186/s12859-017-1982-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 13
ExternalDocumentID oai_doaj_org_article_daa846269b1a4d6c83a374ff9031a82a
PMC6389230
A546367223
29212468
10_1186_s12859_017_1982_4
Genre Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  grantid: GM059507; CA154295
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: NIDDK NIH HHS
  grantid: U01 DK085524
– fundername: NIDDK NIH HHS
  grantid: R01 DK073541
– fundername: NIDDK NIH HHS
  grantid: U01 DK085584
– fundername: NHLBI NIH HHS
  grantid: R01 HL102830
– fundername: NCI NIH HHS
  grantid: P01 CA154295
– fundername: NIGMS NIH HHS
  grantid: R01 GM059507
– fundername: NIDDK NIH HHS
  grantid: U01 DK085545
– fundername: NIDDK NIH HHS
  grantid: U01 DK085501
– fundername: National Institutes of Health
  grantid: CA154295
– fundername: NIDDK NIH HHS
  grantid: R01 DK047482
– fundername: ;
  grantid: GM059507; CA154295
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c675t-2d09e8cb9cdf0dcecc8f0f871c5b204bc94c38920e44b6420d914254d07812253
IEDL.DBID RSV
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000417558100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Tue Oct 14 18:57:45 EDT 2025
Tue Nov 04 02:00:01 EST 2025
Wed Oct 01 14:33:07 EDT 2025
Tue Nov 11 10:02:34 EST 2025
Tue Nov 04 18:03:31 EST 2025
Thu Nov 13 15:18:29 EST 2025
Thu Apr 03 07:08:49 EDT 2025
Sat Nov 29 05:40:01 EST 2025
Tue Nov 18 22:30:29 EST 2025
Sat Sep 06 07:27:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Graph-based semi-supervised learning
Semi-definite programming (SDP)-support vector machine
Multiple data sources
Bayesian network
Relevance vector machine
Classification
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c675t-2d09e8cb9cdf0dcecc8f0f871c5b204bc94c38920e44b6420d914254d07812253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s12859-017-1982-4
PMID 29212468
PQID 1974013509
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_daa846269b1a4d6c83a374ff9031a82a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6389230
proquest_miscellaneous_1974013509
gale_infotracmisc_A546367223
gale_infotracacademiconefile_A546367223
gale_incontextgauss_ISR_A546367223
pubmed_primary_29212468
crossref_citationtrail_10_1186_s12859_017_1982_4
crossref_primary_10_1186_s12859_017_1982_4
springer_journals_10_1186_s12859_017_1982_4
PublicationCentury 2000
PublicationDate 2017-12-06
PublicationDateYYYYMMDD 2017-12-06
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-06
  day: 06
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle BMC series – open, inclusive and trusted
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2017
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References K Tsuda (1982_CR5) 2005; 21
C Cortes (1982_CR19) 1995; 20
GR Lanckriet (1982_CR10) 2004; 20
ME Tipping (1982_CR13) 2003
S Mostafavi (1982_CR7) 2008; 9
A Chockalingam (1982_CR20) 2007; 23
D Zhou (1982_CR15) 2004; 16
W CC (1982_CR14) 2010; 26
E Taskesen (1982_CR2) 2015; 16
Cancer Genome Atlas N (1982_CR21) 2012; 490
GH Gonzalez (1982_CR1) 2016; 17
JC Costello (1982_CR4) 2014; 32
AJ Smola (1982_CR17) 1998
A Nemirovski (1982_CR18) 2004
H Shin (1982_CR6) 2007; 23
RJ Klein (1982_CR16) 2005; 308
GRG Lanckriet (1982_CR11) 2004; 5
ME Tipping (1982_CR12) 2001; 1
X GG (1982_CR23) 2012; 40
S Mostafavi (1982_CR8) 2010; 26
Cancer Genome Atlas Research N (1982_CR22) 2011; 474
DR Rhodes (1982_CR9) 2005; 23
X Ma (1982_CR3) 2017; 18
Q Liu (1982_CR24) 2016; 15
References_xml – volume: 20
  start-page: 2626
  issue: 16
  year: 2004
  ident: 1982_CR10
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth294
– volume: 16
  start-page: 321
  issue: 16
  year: 2004
  ident: 1982_CR15
  publication-title: Adv Neural Inf Proces Syst
– volume: 308
  start-page: 385
  issue: 5720
  year: 2005
  ident: 1982_CR16
  publication-title: Science
  doi: 10.1126/science.1109557
– volume-title: AISTATS
  year: 2003
  ident: 1982_CR13
– volume: 1
  start-page: 211
  issue: 3
  year: 2001
  ident: 1982_CR12
  publication-title: J Mach Learn Res
– volume: 490
  start-page: 61
  issue: 7418
  year: 2012
  ident: 1982_CR21
  publication-title: Nature
  doi: 10.1038/nature11412
– volume: 15
  start-page: 766
  issue: 3
  year: 2016
  ident: 1982_CR24
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.5b00847
– volume: 5
  start-page: 27
  year: 2004
  ident: 1982_CR11
  publication-title: J Mach Learn Res
– volume: 23
  start-page: 3217
  issue: 23
  year: 2007
  ident: 1982_CR6
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm511
– volume: 26
  start-page: 807
  issue: 6
  year: 2010
  ident: 1982_CR14
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq044
– volume: 474
  start-page: 609
  issue: 7353
  year: 2011
  ident: 1982_CR22
  publication-title: Nature
  doi: 10.1038/nature10166
– volume: 18
  start-page: 72
  issue: 1
  year: 2017
  ident: 1982_CR3
  publication-title: BMC Bioinf
  doi: 10.1186/s12859-017-1490-6
– volume: 9
  start-page: S4
  issue: Suppl 1
  year: 2008
  ident: 1982_CR7
  publication-title: Genome Biol
  doi: 10.1186/gb-2008-9-s1-s4
– volume: 23
  start-page: 517
  issue: 7
  year: 2007
  ident: 1982_CR20
  publication-title: Can J Cardiol
  doi: 10.1016/S0828-282X(07)70795-X
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 1982_CR19
  publication-title: Mach Learn
– volume: 21
  start-page: ii59
  issue: Suppl 2
  year: 2005
  ident: 1982_CR5
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti1110
– volume: 23
  start-page: 951
  issue: 8
  year: 2005
  ident: 1982_CR9
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1103
– volume-title: Learning with kernels: GMD-Forschungszentrum Informationstechnik
  year: 1998
  ident: 1982_CR17
– volume: 17
  start-page: 33
  issue: 1
  year: 2016
  ident: 1982_CR1
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbv087
– volume: 16
  start-page: S5
  issue: Suppl 4
  year: 2015
  ident: 1982_CR2
  publication-title: BMC Bioinf
  doi: 10.1186/1471-2105-16-S4-S5
– volume-title: Interior point polynomial time methods in convex programming. Lecture notes
  year: 2004
  ident: 1982_CR18
– volume: 40
  start-page: 3003
  issue: 6
  year: 2012
  ident: 1982_CR23
  publication-title: Ann Stat
  doi: 10.1214/12-AOS1063
– volume: 32
  start-page: 1202
  issue: 12
  year: 2014
  ident: 1982_CR4
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2877
– volume: 26
  start-page: 1759
  issue: 14
  year: 2010
  ident: 1982_CR8
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq262
SSID ssj0017805
Score 2.3722274
Snippet Background High-throughput sequencing data are widely collected and analyzed in the study of complex diseases in quest of improving human health. Well-studied...
High-throughput sequencing data are widely collected and analyzed in the study of complex diseases in quest of improving human health. Well-studied algorithms...
Abstract Background High-throughput sequencing data are widely collected and analyzed in the study of complex diseases in quest of improving human health....
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 539
SubjectTerms Algorithms
Bayes Theorem
Bayesian network
Bioinformatics
Biomedical and Life Sciences
Classification
Comparative analysis
Computational Biology
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Graph-based semi-supervised learning
Humans
Hypertension
Life Sciences
Medical research
Medicine, Experimental
Microarrays
Multiple data sources
Relevance vector machine
Research Article
Semi-definite programming (SDP)-support vector machine
Support Vector Machine
Transcriptome analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXVN6BggxCQgJZTbxeJz4uiAouFeIh9Wb5lXbVbYI22Qpu_Af-Ib-EGcdZNUXAhWs8iTIvz4w8_oaQZ24uhA8-Z1aFORPGWwZRMbb9hdKURSiti8MmysPD6uhIvb8w6gt7wgZ44EFw-94YCJFcKlsY4aWrZmZWirpWYI2m4jE1gqxnLKbS-QEi9aczzKKS-12BOG0Md2QosjkTkygUwfp_35IvxKTL_ZKXDk1jLDrYJTdSEkkXw8_fJFdCc4tcG8ZKfrtNThfUbccL0ramEZWaUdN4ehrWTVgxDF6e_vz-Ay8ldxT7ROmIHAGaomZ13K6X_clZRyGrpQ5z7GW8EhU_vQpfKQ6X6Ls75PPBm0-v37I0VIE5qA16xn2uQuWscr7OgSPnqjqvoWxyc8tzYZ0SDpIYngchLBQnuVcF-LXwiAoEzj-7S3aatgn3Ca1BMc5Ybr2qRcmN4RDuSokKs1Z6mZF8FLJ2CXEc_22lY-VRST3oRcNbGvWiRUZebF_5MsBt_I34FWpuS4hI2fEB2I9O9qP_ZT8ZeYp614iF0WCzzbHZdJ1-9_GDXuCoAFlCApWR54moboEDZ9LdBZADwmdNKPcmlOCsbrL8ZDQvjUvY4daEdtMBS3E2IuRvGbk3mNuWMa4gwRCyykg5McQJ59OVZnkSscIxIYUqMyMvR5PVaZPq_izYB_9DsA_JdR4djrNc7pGdfr0Jj8hVd94vu_Xj6K6_ADOkQ7c
  priority: 102
  providerName: Directory of Open Access Journals
Title A comparison of graph- and kernel-based –omics data integration algorithms for classifying complex traits
URI https://link.springer.com/article/10.1186/s12859-017-1982-4
https://www.ncbi.nlm.nih.gov/pubmed/29212468
https://www.proquest.com/docview/1974013509
https://pubmed.ncbi.nlm.nih.gov/PMC6389230
https://doaj.org/article/daa846269b1a4d6c83a374ff9031a82a
Volume 18
WOSCitedRecordID wos000417558100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbYBhIv3C-BURmEhASylqZu7Dx2aBMTooo6QIMXy7d01UqCmhbBG_-Bf8gv4Rw3qci4SPDih_g4iu1zjY-_Q8hjO-TceRczk_kh49oZBlYxpP15oUXfC2NDsQkxHsuTkyxv7nHXbbZ7eyQZNHUQa5nu1X3EWmOoVSFQThjfIjtg7SRK4-T47eboAEH6m-PL3w7rGKCA0_-rNv7JHJ1PlTx3XhrM0OHV_5rANXKl8TrpaM0m18kFX94gl9Z1KL_cJGcjajf1CGlV0ABjzaguHT3zi9LPGVo7R79__Ya3mGuKiaW0hZqAraV6Pq0Ws-Xph5qCG0wtOuWzcIcqvHruP1OsRrGsb5E3hwevn79gTRUGZiGYWLLExZmX1mTWFTGsg7WyiAuIs-zQJDE3NuMWvJ4k9pwbiGZil_VBEXCHMEKgLQa3yXZZlf4uoQU4O1abxLis4CLROgH7KFKtJTcmdWlE4nZrlG0gyvHb5iqEKjJV6zVUMErhGioekaebIR_X-Bx_I97H_d4QIrR2eFAtpqqRVOXwcyDMy0xfc5daOdADwYsiA_WnZaIj8gi5RSF4RonZOVO9qmt1dDxRI6wtkArwuCLypCEqKpiB1c1lB1gHxNvqUO52KEG6baf7YcuUCrswJa701aqGKYViiiACEbmzZtLNxJIMPBKeyoiIDvt2Zt7tKWenAVwcPVgISyPyrGVi1Wi1-s8Le--fqO-Ty0mQgoTF6S7ZXi5W_gG5aD8tZ_WiR7bEiQit7JGd_YNxPumFPyXQvhSsh9m5ObT58D3050ev8ne9oAF-AGJbUD4
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZbxMxEB5BAcEL97FQwCAkpCKLjePs8RgQVStKhNqC-mb52jRq2EXZDYI3_gP_kF_CjLMbseWQ4DUeRzvjOeXxNwBP7EhK513MTe5HXGpnOEbF0PbnU50OfGpsGDaRTibZ0VH-tn3HXXfd7t2VZPDUwayz5Hk9IKw1Tl4VC2XB5Vk4JzFgUR_f_sH79dUBgfS315e_3dYLQAGn_1dv_FM4Ot0qeeq-NISh7Sv_xcBVuNxmnWy8UpNrcMaX1-HCag7llxtwMmZ2PY-QVQULMNac6dKxE78o_ZxTtHPs-9dv9Iq5ZtRYyjqoCTxapufTajFrjj_UDNNgZikpn4U3VOGv5_4zo2kUTX0T3m2_Ony5w9spDNxiMdFw4eLcZ9bk1hUxysHarIgLrLPsyIhYGptLi1mPiL2UBquZ2OUDdATSEYwQeovhLdgoq9LfAVZgsmO1EcblhUyF1gLjY5ponUljEpdEEHdHo2wLUU7fNlehVMkStZKhwl2KZKhkBFvrLR9X-Bx_I35B570mJGjt8EO1mKrWUpWjz8EyLzcDLV1is6EeprIocnR_OhM6gsekLYrAM0rqzpnqZV2r3YN9NabZAkmKGVcET1uiokIOrG4fO6AcCG-rR7nZo0Trtr3lR51SKlqilrjSV8saWQrDFDHhi-D2SknXjIkcMxKZZBGkPfXtcd5fKWfHAVycMlgsSyN41imxar1a_WfB3v0n6odwcefwzZ7a2528vgeXRLAIweNkEzaaxdLfh_P2UzOrFw-CZf8AZiFKTQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9MwELZgOcQL9xFYwCAkJJC1qevmeCxHxQpUrVhA-2b5SrfakqziFMEb_4F_yC9hxkkqshwS4rUeV5nxnPL4G0IemYkQ1tmY6dxNmFBWM4iKoe3PpSoduVSbMGwinc-zg4N8r5tz6vtu9_5Ksn3TgChNZbNzbIvWxLNkx48Qd42hh4WimTNxmpwRODMIy_X9D5trBATs764yf7ttEIwCZv-vnvmn0HSybfLE3WkISbNL_83MZXKxy0bptFWfK-SUK6-Sc-18yi_XyNGUms2cQloVNMBbM6pKS49cXboVwyho6fev3_B1s6fYcEp7CAo4cqpWi6peNocfPYX0mBpM1pfhbVX465X7THFKReOvk_ezl--ev2LddAZmoMhoGLdx7jKjc2OLGGRiTFbEBdRfZqJ5LLTJhYFsiMdOCA1VTmzzETgIYRFeCLzI-AbZKqvS3SK0gCTIKM21zQuRcqU4xM00USoTWic2iUjcH5M0HXQ5fttKhhImS2QrQwm7JMpQiog82Ww5bnE7_kb8DM9-Q4iQ2-GHql7IzoKlxc-B8i_XIyVsYrKxGqeiKHJwiyrjKiIPUXMkgmqU2LWzUGvv5e7-WznFmQNJCplYRB53REUFHBjVPYIAOSAO14Bye0AJVm8Gyw96BZW4hK1ypavWHlgKQxYhEYzIzVZhN4zxHDIVkWQRSQeqPOB8uFIuDwPoOGa2UK5G5Gmv0LLzdv7Pgr39T9T3yfm9FzP5Znf--g65wINBcBYn22SrqdfuLjlrPjVLX98LRv4Deo1TMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+graph-+and+kernel-based+-omics+data+integration+algorithms+for+classifying+complex+traits&rft.jtitle=BMC+bioinformatics&rft.au=Yan%2C+Kang+K&rft.au=Zhao%2C+Hongyu&rft.au=Pang%2C+Herbert&rft.date=2017-12-06&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=18&rft.issue=Suppl+15&rft_id=info:doi/10.1186%2Fs12859-017-1982-4&rft.externalDBID=ISR&rft.externalDocID=A546367223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon