Mitochondrial dysfunction: roles in skeletal muscle atrophy

Mitochondria play important roles in maintaining cellular homeostasis and skeletal muscle health, and damage to mitochondria can lead to a series of pathophysiological changes. Mitochondrial dysfunction can lead to skeletal muscle atrophy, and its molecular mechanism leading to skeletal muscle atrop...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of translational medicine Ročník 21; číslo 1; s. 503 - 24
Hlavní autori: Chen, Xin, Ji, Yanan, Liu, Ruiqi, Zhu, Xucheng, Wang, Kexin, Yang, Xiaoming, Liu, Boya, Gao, Zihui, Huang, Yan, Shen, Yuntian, Liu, Hua, Sun, Hualin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 26.07.2023
BioMed Central Ltd
Springer Nature B.V
BMC
Predmet:
ISSN:1479-5876, 1479-5876
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Mitochondria play important roles in maintaining cellular homeostasis and skeletal muscle health, and damage to mitochondria can lead to a series of pathophysiological changes. Mitochondrial dysfunction can lead to skeletal muscle atrophy, and its molecular mechanism leading to skeletal muscle atrophy is complex. Understanding the pathogenesis of mitochondrial dysfunction is useful for the prevention and treatment of skeletal muscle atrophy, and finding drugs and methods to target and modulate mitochondrial function are urgent tasks in the prevention and treatment of skeletal muscle atrophy. In this review, we first discussed the roles of normal mitochondria in skeletal muscle. Importantly, we described the effect of mitochondrial dysfunction on skeletal muscle atrophy and the molecular mechanisms involved. Furthermore, the regulatory roles of different signaling pathways (AMPK-SIRT1-PGC-1α, IGF-1-PI3K-Akt-mTOR, FoxOs, JAK-STAT3, TGF-β-Smad2/3 and NF-κB pathways, etc.) and the roles of mitochondrial factors were investigated in mitochondrial dysfunction. Next, we analyzed the manifestations of mitochondrial dysfunction in muscle atrophy caused by different diseases. Finally, we summarized the preventive and therapeutic effects of targeted regulation of mitochondrial function on skeletal muscle atrophy, including drug therapy, exercise and diet, gene therapy, stem cell therapy and physical therapy. This review is of great significance for the holistic understanding of the important role of mitochondria in skeletal muscle, which is helpful for researchers to further understanding the molecular regulatory mechanism of skeletal muscle atrophy, and has an important inspiring role for the development of therapeutic strategies for muscle atrophy targeting mitochondria in the future.
AbstractList Mitochondria play important roles in maintaining cellular homeostasis and skeletal muscle health, and damage to mitochondria can lead to a series of pathophysiological changes. Mitochondrial dysfunction can lead to skeletal muscle atrophy, and its molecular mechanism leading to skeletal muscle atrophy is complex. Understanding the pathogenesis of mitochondrial dysfunction is useful for the prevention and treatment of skeletal muscle atrophy, and finding drugs and methods to target and modulate mitochondrial function are urgent tasks in the prevention and treatment of skeletal muscle atrophy. In this review, we first discussed the roles of normal mitochondria in skeletal muscle. Importantly, we described the effect of mitochondrial dysfunction on skeletal muscle atrophy and the molecular mechanisms involved. Furthermore, the regulatory roles of different signaling pathways (AMPK-SIRT1-PGC-1α, IGF-1-PI3K-Akt-mTOR, FoxOs, JAK-STAT3, TGF-β-Smad2/3 and NF-κB pathways, etc.) and the roles of mitochondrial factors were investigated in mitochondrial dysfunction. Next, we analyzed the manifestations of mitochondrial dysfunction in muscle atrophy caused by different diseases. Finally, we summarized the preventive and therapeutic effects of targeted regulation of mitochondrial function on skeletal muscle atrophy, including drug therapy, exercise and diet, gene therapy, stem cell therapy and physical therapy. This review is of great significance for the holistic understanding of the important role of mitochondria in skeletal muscle, which is helpful for researchers to further understanding the molecular regulatory mechanism of skeletal muscle atrophy, and has an important inspiring role for the development of therapeutic strategies for muscle atrophy targeting mitochondria in the future.
Mitochondria play important roles in maintaining cellular homeostasis and skeletal muscle health, and damage to mitochondria can lead to a series of pathophysiological changes. Mitochondrial dysfunction can lead to skeletal muscle atrophy, and its molecular mechanism leading to skeletal muscle atrophy is complex. Understanding the pathogenesis of mitochondrial dysfunction is useful for the prevention and treatment of skeletal muscle atrophy, and finding drugs and methods to target and modulate mitochondrial function are urgent tasks in the prevention and treatment of skeletal muscle atrophy. In this review, we first discussed the roles of normal mitochondria in skeletal muscle. Importantly, we described the effect of mitochondrial dysfunction on skeletal muscle atrophy and the molecular mechanisms involved. Furthermore, the regulatory roles of different signaling pathways (AMPK-SIRT1-PGC-1[alpha], IGF-1-PI3K-Akt-mTOR, FoxOs, JAK-STAT3, TGF-[beta]-Smad2/3 and NF-?B pathways, etc.) and the roles of mitochondrial factors were investigated in mitochondrial dysfunction. Next, we analyzed the manifestations of mitochondrial dysfunction in muscle atrophy caused by different diseases. Finally, we summarized the preventive and therapeutic effects of targeted regulation of mitochondrial function on skeletal muscle atrophy, including drug therapy, exercise and diet, gene therapy, stem cell therapy and physical therapy. This review is of great significance for the holistic understanding of the important role of mitochondria in skeletal muscle, which is helpful for researchers to further understanding the molecular regulatory mechanism of skeletal muscle atrophy, and has an important inspiring role for the development of therapeutic strategies for muscle atrophy targeting mitochondria in the future. Keywords: Mitochondrial dysfunction, Muscle atrophy, Therapy, Antioxidants
Abstract Mitochondria play important roles in maintaining cellular homeostasis and skeletal muscle health, and damage to mitochondria can lead to a series of pathophysiological changes. Mitochondrial dysfunction can lead to skeletal muscle atrophy, and its molecular mechanism leading to skeletal muscle atrophy is complex. Understanding the pathogenesis of mitochondrial dysfunction is useful for the prevention and treatment of skeletal muscle atrophy, and finding drugs and methods to target and modulate mitochondrial function are urgent tasks in the prevention and treatment of skeletal muscle atrophy. In this review, we first discussed the roles of normal mitochondria in skeletal muscle. Importantly, we described the effect of mitochondrial dysfunction on skeletal muscle atrophy and the molecular mechanisms involved. Furthermore, the regulatory roles of different signaling pathways (AMPK-SIRT1-PGC-1α, IGF-1-PI3K-Akt-mTOR, FoxOs, JAK-STAT3, TGF-β-Smad2/3 and NF-κB pathways, etc.) and the roles of mitochondrial factors were investigated in mitochondrial dysfunction. Next, we analyzed the manifestations of mitochondrial dysfunction in muscle atrophy caused by different diseases. Finally, we summarized the preventive and therapeutic effects of targeted regulation of mitochondrial function on skeletal muscle atrophy, including drug therapy, exercise and diet, gene therapy, stem cell therapy and physical therapy. This review is of great significance for the holistic understanding of the important role of mitochondria in skeletal muscle, which is helpful for researchers to further understanding the molecular regulatory mechanism of skeletal muscle atrophy, and has an important inspiring role for the development of therapeutic strategies for muscle atrophy targeting mitochondria in the future.
Mitochondria play important roles in maintaining cellular homeostasis and skeletal muscle health, and damage to mitochondria can lead to a series of pathophysiological changes. Mitochondrial dysfunction can lead to skeletal muscle atrophy, and its molecular mechanism leading to skeletal muscle atrophy is complex. Understanding the pathogenesis of mitochondrial dysfunction is useful for the prevention and treatment of skeletal muscle atrophy, and finding drugs and methods to target and modulate mitochondrial function are urgent tasks in the prevention and treatment of skeletal muscle atrophy. In this review, we first discussed the roles of normal mitochondria in skeletal muscle. Importantly, we described the effect of mitochondrial dysfunction on skeletal muscle atrophy and the molecular mechanisms involved. Furthermore, the regulatory roles of different signaling pathways (AMPK-SIRT1-PGC-1[alpha], IGF-1-PI3K-Akt-mTOR, FoxOs, JAK-STAT3, TGF-[beta]-Smad2/3 and NF-?B pathways, etc.) and the roles of mitochondrial factors were investigated in mitochondrial dysfunction. Next, we analyzed the manifestations of mitochondrial dysfunction in muscle atrophy caused by different diseases. Finally, we summarized the preventive and therapeutic effects of targeted regulation of mitochondrial function on skeletal muscle atrophy, including drug therapy, exercise and diet, gene therapy, stem cell therapy and physical therapy. This review is of great significance for the holistic understanding of the important role of mitochondria in skeletal muscle, which is helpful for researchers to further understanding the molecular regulatory mechanism of skeletal muscle atrophy, and has an important inspiring role for the development of therapeutic strategies for muscle atrophy targeting mitochondria in the future.
Mitochondria play important roles in maintaining cellular homeostasis and skeletal muscle health, and damage to mitochondria can lead to a series of pathophysiological changes. Mitochondrial dysfunction can lead to skeletal muscle atrophy, and its molecular mechanism leading to skeletal muscle atrophy is complex. Understanding the pathogenesis of mitochondrial dysfunction is useful for the prevention and treatment of skeletal muscle atrophy, and finding drugs and methods to target and modulate mitochondrial function are urgent tasks in the prevention and treatment of skeletal muscle atrophy. In this review, we first discussed the roles of normal mitochondria in skeletal muscle. Importantly, we described the effect of mitochondrial dysfunction on skeletal muscle atrophy and the molecular mechanisms involved. Furthermore, the regulatory roles of different signaling pathways (AMPK-SIRT1-PGC-1α, IGF-1-PI3K-Akt-mTOR, FoxOs, JAK-STAT3, TGF-β-Smad2/3 and NF-κB pathways, etc.) and the roles of mitochondrial factors were investigated in mitochondrial dysfunction. Next, we analyzed the manifestations of mitochondrial dysfunction in muscle atrophy caused by different diseases. Finally, we summarized the preventive and therapeutic effects of targeted regulation of mitochondrial function on skeletal muscle atrophy, including drug therapy, exercise and diet, gene therapy, stem cell therapy and physical therapy. This review is of great significance for the holistic understanding of the important role of mitochondria in skeletal muscle, which is helpful for researchers to further understanding the molecular regulatory mechanism of skeletal muscle atrophy, and has an important inspiring role for the development of therapeutic strategies for muscle atrophy targeting mitochondria in the future.Mitochondria play important roles in maintaining cellular homeostasis and skeletal muscle health, and damage to mitochondria can lead to a series of pathophysiological changes. Mitochondrial dysfunction can lead to skeletal muscle atrophy, and its molecular mechanism leading to skeletal muscle atrophy is complex. Understanding the pathogenesis of mitochondrial dysfunction is useful for the prevention and treatment of skeletal muscle atrophy, and finding drugs and methods to target and modulate mitochondrial function are urgent tasks in the prevention and treatment of skeletal muscle atrophy. In this review, we first discussed the roles of normal mitochondria in skeletal muscle. Importantly, we described the effect of mitochondrial dysfunction on skeletal muscle atrophy and the molecular mechanisms involved. Furthermore, the regulatory roles of different signaling pathways (AMPK-SIRT1-PGC-1α, IGF-1-PI3K-Akt-mTOR, FoxOs, JAK-STAT3, TGF-β-Smad2/3 and NF-κB pathways, etc.) and the roles of mitochondrial factors were investigated in mitochondrial dysfunction. Next, we analyzed the manifestations of mitochondrial dysfunction in muscle atrophy caused by different diseases. Finally, we summarized the preventive and therapeutic effects of targeted regulation of mitochondrial function on skeletal muscle atrophy, including drug therapy, exercise and diet, gene therapy, stem cell therapy and physical therapy. This review is of great significance for the holistic understanding of the important role of mitochondria in skeletal muscle, which is helpful for researchers to further understanding the molecular regulatory mechanism of skeletal muscle atrophy, and has an important inspiring role for the development of therapeutic strategies for muscle atrophy targeting mitochondria in the future.
ArticleNumber 503
Audience Academic
Author Chen, Xin
Liu, Ruiqi
Liu, Hua
Ji, Yanan
Zhu, Xucheng
Gao, Zihui
Wang, Kexin
Yang, Xiaoming
Huang, Yan
Sun, Hualin
Liu, Boya
Shen, Yuntian
Author_xml – sequence: 1
  givenname: Xin
  surname: Chen
  fullname: Chen, Xin
  organization: Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University
– sequence: 2
  givenname: Yanan
  surname: Ji
  fullname: Ji, Yanan
  organization: Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University
– sequence: 3
  givenname: Ruiqi
  surname: Liu
  fullname: Liu, Ruiqi
  organization: Department of Clinical Medicine, Medical College, Nantong University
– sequence: 4
  givenname: Xucheng
  surname: Zhu
  fullname: Zhu, Xucheng
  organization: Department of Clinical Medicine, Medical College, Nantong University
– sequence: 5
  givenname: Kexin
  surname: Wang
  fullname: Wang, Kexin
  organization: Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University
– sequence: 6
  givenname: Xiaoming
  surname: Yang
  fullname: Yang, Xiaoming
  organization: Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University
– sequence: 7
  givenname: Boya
  surname: Liu
  fullname: Liu, Boya
  organization: Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University
– sequence: 8
  givenname: Zihui
  surname: Gao
  fullname: Gao, Zihui
  organization: Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University
– sequence: 9
  givenname: Yan
  surname: Huang
  fullname: Huang, Yan
  organization: Department of Clinical Medicine, Medical College, Nantong University
– sequence: 10
  givenname: Yuntian
  surname: Shen
  fullname: Shen, Yuntian
  email: syt517@ntu.edu.cn
  organization: Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University
– sequence: 11
  givenname: Hua
  surname: Liu
  fullname: Liu, Hua
  email: doctorliu876146@163.com
  organization: Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine
– sequence: 12
  givenname: Hualin
  orcidid: 0000-0003-1889-1561
  surname: Sun
  fullname: Sun, Hualin
  email: sunhl@ntu.edu.cn
  organization: Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37495991$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wB1igSGzYpPgZ27CoqopHpSI2sLb8nPGQsQc7QZr-ejxNaTsVqrywZX_nXF_7HDcHMUXXNK8hOIWQ9-8LRKJnHUC4AwT3ort-1hxBwkRHOesPHqwPm-NSVgAgQol40RxiRgQVAh41H7-FMZllijYHNbR2W_wUzRhS_NDmNLjShtiWX25wYz1eT8UMrlVjTpvl9mXz3KuhuFe380nz8_OnHxdfu6vvXy4vzq860zMydsQBDjh0CiBgrKEWG60UYYoooWDvOdBAcAG44ZZbximgnmkIGLOaKebxSXM5-9qkVnKTw1rlrUwqyJuNlBdS5THUm0lDaS3hudfKkF4w3utaUPdKaKe1F9XrbPbaTHrtrHFxzGrYM90_iWEpF-mPhAAzjDmoDu9uHXL6PbkyynUoxg2Dii5NRSJOMMBYIFLRt4_QVZpyrG9VKYqQQBiDe2qhagch-lQLm52pPGeUU0EA3VGn_6HqsG4dTA2GD3V_T_DmYad3Lf77-wqgGTA5lZKdv0MgkLuAyTlgsgZM3gRMXlcRfyQyYVS7vNTrhOFpKZ6lpdaJC5fvX-MJ1V97kOVI
CitedBy_id crossref_primary_10_1111_jcmm_70370
crossref_primary_10_3390_cells13151273
crossref_primary_10_3390_ijms26146740
crossref_primary_10_1016_j_bbrep_2025_101984
crossref_primary_10_1016_j_mito_2025_102074
crossref_primary_10_1186_s13765_025_01010_z
crossref_primary_10_1021_acsbiomaterials_5c00004
crossref_primary_10_1002_advs_202415303
crossref_primary_10_3390_nu17111912
crossref_primary_10_3390_foods14142430
crossref_primary_10_1210_endrev_bnaf012
crossref_primary_10_1038_s44321_025_00247_x
crossref_primary_10_14336_AD_2024_0306
crossref_primary_10_1186_s42269_023_01154_2
crossref_primary_10_1093_hmg_ddae039
crossref_primary_10_3389_fphar_2025_1541373
crossref_primary_10_3390_nu17122009
crossref_primary_10_1002_jcsm_13733
crossref_primary_10_1111_cpr_13579
crossref_primary_10_1016_j_jep_2025_119685
crossref_primary_10_1016_j_scitotenv_2025_179060
crossref_primary_10_3390_antiox14080900
crossref_primary_10_14814_phy2_70497
crossref_primary_10_1186_s12986_024_00836_6
crossref_primary_10_1002_advs_202417715
crossref_primary_10_1016_j_bcp_2025_116799
crossref_primary_10_3389_fvets_2025_1577408
crossref_primary_10_3390_nu16162687
crossref_primary_10_1177_03000605251355996
crossref_primary_10_3748_wjg_v30_i8_863
crossref_primary_10_3389_fmicb_2024_1492783
crossref_primary_10_3390_ijms25116056
crossref_primary_10_1007_s12035_024_04590_x
crossref_primary_10_3390_life14080962
crossref_primary_10_4254_wjh_v17_i8_109444
crossref_primary_10_1016_j_cytogfr_2025_09_001
crossref_primary_10_1016_j_jff_2024_106114
crossref_primary_10_1007_s00018_023_05096_w
crossref_primary_10_1016_j_jff_2023_105980
crossref_primary_10_3892_ijmm_2025_5569
crossref_primary_10_1016_j_jse_2025_01_031
crossref_primary_10_5662_wjm_v15_i4_102408
crossref_primary_10_14814_phy2_16103
crossref_primary_10_3390_life15071101
crossref_primary_10_5312_wjo_v16_i8_108407
crossref_primary_10_1016_j_intimp_2025_114088
crossref_primary_10_1016_j_jep_2024_119297
crossref_primary_10_1186_s13287_025_04175_y
crossref_primary_10_1016_j_mehy_2024_111418
crossref_primary_10_3168_jds_2025_26980
crossref_primary_10_1093_genetics_iyae208
crossref_primary_10_1007_s13105_024_01049_4
crossref_primary_10_1002_jcsm_13717
crossref_primary_10_1186_s12967_024_05013_0
crossref_primary_10_1002_mnfr_202300347
crossref_primary_10_3390_arm92020016
crossref_primary_10_1007_s11910_024_01394_3
crossref_primary_10_1016_j_jgr_2025_08_002
crossref_primary_10_1186_s13018_025_05839_4
crossref_primary_10_1186_s13018_024_05270_1
crossref_primary_10_1111_apha_14107
crossref_primary_10_1089_jmf_2025_k_0050
crossref_primary_10_1007_s13273_024_00446_6
crossref_primary_10_1016_j_jhazmat_2024_136215
crossref_primary_10_1016_j_bioactmat_2024_09_013
crossref_primary_10_3389_fragi_2025_1554340
crossref_primary_10_3390_ph17060713
crossref_primary_10_3389_fphys_2025_1520669
crossref_primary_10_1002_jcsm_13706
crossref_primary_10_1016_j_aquaculture_2025_742636
crossref_primary_10_3390_cimb46120872
crossref_primary_10_1016_j_ijbiomac_2024_137614
crossref_primary_10_4252_wjsc_v17_i2_98693
crossref_primary_10_1096_fj_202301312R
crossref_primary_10_1016_j_jfutfo_2025_04_020
crossref_primary_10_1016_j_bioactmat_2024_05_044
crossref_primary_10_1007_s00011_025_01994_w
crossref_primary_10_1177_00220345251344295
crossref_primary_10_3390_foods13060919
crossref_primary_10_1016_j_phrs_2024_107450
crossref_primary_10_1186_s12967_024_05574_0
crossref_primary_10_3390_ani15132000
crossref_primary_10_1016_j_jep_2024_119220
crossref_primary_10_1016_j_imr_2025_101178
crossref_primary_10_1248_bpb_b24_00829
crossref_primary_10_3389_fphys_2025_1533394
crossref_primary_10_3390_nu16223968
crossref_primary_10_3390_nu15234945
crossref_primary_10_1007_s11033_023_08952_x
crossref_primary_10_2106_JBJS_24_01322
crossref_primary_10_1111_nbu_12725
crossref_primary_10_3390_cells14030221
crossref_primary_10_3389_fcell_2024_1509519
crossref_primary_10_1007_s13668_024_00555_7
crossref_primary_10_1002_jcsm_13805
crossref_primary_10_51867_ajernet_5_2_52
crossref_primary_10_1016_j_biopha_2024_116981
crossref_primary_10_1016_j_arthro_2025_03_033
crossref_primary_10_3389_fimmu_2025_1533007
crossref_primary_10_3390_ijms25094860
crossref_primary_10_1038_s41598_025_94622_w
crossref_primary_10_3390_md23040158
crossref_primary_10_3390_ijms25168735
crossref_primary_10_3389_fonc_2025_1649179
crossref_primary_10_1016_j_aquaculture_2024_740876
crossref_primary_10_1113_JP288882
crossref_primary_10_3389_fnagi_2025_1519494
crossref_primary_10_3390_antiox14070795
crossref_primary_10_1038_s41598_024_67755_7
crossref_primary_10_1016_j_bbrc_2023_149413
crossref_primary_10_3389_fphar_2024_1344276
crossref_primary_10_3390_biomedicines13040963
crossref_primary_10_3390_nu16193271
crossref_primary_10_1139_bcb_2023_0224
crossref_primary_10_1038_s41598_025_11628_0
crossref_primary_10_1016_j_celrep_2025_115505
crossref_primary_10_1016_j_jprot_2024_105283
crossref_primary_10_1002_jcsm_13513
crossref_primary_10_3389_fendo_2025_1608612
crossref_primary_10_1002_jcsm_70051
crossref_primary_10_1055_a_2577_2577
crossref_primary_10_1515_bmc_2025_0055
crossref_primary_10_3390_diseases12110277
crossref_primary_10_3390_ijms25147952
crossref_primary_10_1186_s12889_024_18493_y
crossref_primary_10_21693_1933_088X_23_1_21
crossref_primary_10_3390_ani14111594
crossref_primary_10_1016_j_arr_2025_102804
crossref_primary_10_1016_j_nbd_2025_106893
crossref_primary_10_1177_03635465251323001
crossref_primary_10_1002_adtp_202400310
crossref_primary_10_3390_cancers16101921
crossref_primary_10_1007_s10068_024_01702_0
crossref_primary_10_1080_15287394_2024_2420083
crossref_primary_10_20463_pan_2025_0010
Cites_doi 10.3892/mmr.2022.12610
10.1002/jcsm.12809
10.1155/2017/3165396
10.1371/journal.pone.0177649
10.1242/dmm.041244
10.1089/ars.2018.7534
10.3390/ijms21217940
10.1016/j.cmet.2009.10.008
10.1152/ajprenal.00285.2020
10.1016/j.bcp.2022.114954
10.1007/s11357-020-00200-5
10.3390/nu10091137
10.1016/j.archger.2022.104717
10.3390/ijms21228844
10.1093/hmg/ddaa275
10.14814/phy2.14475
10.2217/nnm-2022-0173
10.1186/s13287-022-02895-z
10.3389/fncel.2021.663384
10.1111/bph.15693
10.1007/s11064-019-02814-4
10.1371/journal.pgen.1004490
10.1002/wsbm.1462
10.1152/ajpcell.00125.2016
10.1016/j.biopha.2022.113406
10.1002/jnr.24042
10.1016/j.bcp.2023.115664
10.1248/bpb.b22-00171
10.1038/s41586-021-03510-6
10.7150/thno.40857
10.1002/jcsm.12633
10.1111/acel.12220
10.1152/ajpcell.00148.2019
10.18632/aging.101782
10.21873/invivo.12998
10.1016/j.cmet.2007.11.004
10.3389/fendo.2022.917113
10.1038/s41586-020-2309-6
10.1093/gerona/gly256
10.21037/biotarget.2018.05.02
10.3389/fphar.2020.00128
10.1038/s41594-020-00537-7
10.2174/0929867328666210202113734
10.3390/cells8040287
10.1016/j.bbrc.2020.04.002
10.1002/jcsm.12202
10.1111/acel.13322
10.1016/j.bbrc.2020.04.062
10.1016/j.bcp.2022.115186
10.3390/ijerph17228650
10.14814/phy2.14789
10.1096/fba.2020-00043
10.1016/j.tem.2021.01.006
10.1111/j.1749-6632.2010.05634.x
10.3389/fphys.2019.01298
10.1042/BCJ20201009
10.1016/j.bcp.2022.115407
10.1016/j.exger.2021.111544
10.1016/j.bbcan.2018.07.008
10.3390/nu10030309
10.1007/978-981-13-1435-3_24
10.3390/nu12113362
10.1172/jci.insight.134063
10.3390/cells9061454
10.1186/s12576-020-00768-9
10.1113/jphysiol.2012.230185
10.26402/jpp.2021.2.01
10.1172/jci.insight.136539
10.3389/fphys.2016.00361
10.3892/mmr.2021.12572
10.3389/fphys.2020.00988
10.1186/s13395-017-0137-7
10.18632/aging.101910
10.1097/RHU.0000000000001721
10.1016/j.abb.2018.11.005
10.1002/jcp.22821
10.21037/biotarget.2018.04.01
10.3389/fcell.2022.861622
10.1016/j.jphs.2019.02.008
10.1097/MCO.0b013e3283368188
10.1152/ajpendo.00305.2020
10.1096/fj.201700772RRR
10.1111/jcmm.15194
10.1016/j.freeradbiomed.2010.06.025
10.1002/mus.22232
10.1002/jcsm.13141
10.1016/j.clnu.2021.03.009
10.3389/fphys.2021.638983
10.1016/j.cmet.2007.11.001
10.1097/SHK.0000000000001860
10.1113/JP278853
10.2337/db15-1723
10.1159/000493040
10.1016/j.freeradbiomed.2018.10.456
10.1038/s41598-021-98771-6
10.3390/antiox12010044
10.1016/j.cub.2009.10.074
10.1210/jc.2013-3983
10.1038/s41467-019-13694-1
10.1080/15548627.2015.1106668
10.3390/ijms222413221
10.1016/j.freeradbiomed.2016.05.010
10.18632/oncotarget.5783
10.1038/nature07813
10.3945/ajcn.111.020800
10.1093/ajcn/nqz347
10.1016/j.febslet.2010.01.056
10.1161/CIRCRESAHA.117.309633
10.1096/fj.02-0367com
10.1111/bph.15472
10.1152/ajprenal.00600.2016
10.3390/antiox11091686
10.1093/hmg/ddr427
10.1155/2021/4946711
10.3390/ijms22158179
10.1038/s42003-022-03728-8
10.2174/1874609811104020101
10.1021/acs.chemrev.7b00042
10.1126/scitranslmed.abb0319
10.1080/14756366.2021.1937144
10.1038/s41467-020-20123-1
10.1155/2020/4908162
10.1016/j.nano.2021.102439
10.3390/ijms21082811
10.1016/j.nbd.2022.105832
10.2174/1874467214666210806163851
10.1016/j.jbc.2021.101540
10.1016/j.cmet.2011.04.013
10.1172/JCI146415
10.3390/ijms222011040
10.1038/s41467-022-29752-0
10.1007/s10522-020-09879-7
10.21037/atm-20-7269
10.1016/j.biopha.2017.03.070
10.1093/jb/mvz106
10.1002/jcsm.12393
10.1016/j.bone.2015.03.015
10.21037/biotarget.2017.04.01
10.1016/j.omtn.2021.12.004
10.1111/obr.13164
10.1123/pes.2014-0112
10.3390/cells10102586
10.1016/j.mito.2019.06.002
10.1093/gerona/gly262
10.1038/s41467-019-10226-9
10.1007/s00018-021-03819-5
10.1016/j.exger.2019.04.008
10.14814/phy2.14575
10.1016/j.molmet.2021.101271
10.1007/s00415-023-11796-x
10.1016/j.jep.2020.112720
10.1007/s40520-022-02149-1
10.15252/embj.201796697
10.1111/febs.12338
10.14814/phy2.15016
10.1016/j.yjmcc.2022.11.003
10.1007/s00018-018-2849-1
10.3390/molecules20058823
10.1002/hep.27717
10.1515/hsz-2020-0121
10.1097/PRS.0000000000005370
10.3390/molecules24081583
10.1002/jcsm.12901
10.1016/j.bcp.2020.114282
10.3390/cells9061342
10.1042/bse0470069
10.1515/hsz-2017-0217
10.3390/antiox10071012
10.1016/j.imr.2016.07.003
10.1007/s00018-019-03148-8
10.1155/2019/1845321
10.1007/s00018-020-03662-0
10.1249/JES.0000000000000101
10.1111/acel.13140
10.1111/cas.13830
10.1007/s00535-019-01605-6
10.1093/nar/gkz007
10.1016/j.bbrc.2015.02.144
10.1113/JP282173
10.1093/gerona/glab029
10.1042/bse0420061
10.1007/s11906-010-0157-8
10.1002/jcsm.12297
10.21037/atm-20-5460
10.18632/aging.103987
10.21037/biotarget.2017.11.02
10.1126/science.1242993
10.3389/fphar.2022.947387
10.1046/j.1432-1033.2002.02867.x
10.3390/biology10010031
10.1038/ncb2837
10.1007/978-981-13-1435-3_10
10.1177/0148607110383040
10.1002/jcsm.12982
10.1126/science.1065874
10.1016/j.neulet.2017.06.052
10.1111/acel.13261
10.21037/biotarget-21-1
10.2337/db18-0416
10.1016/j.biocel.2013.04.023
10.1186/s13578-021-00719-w
10.1038/ng.2851
10.1113/jphysiol.2014.275545
10.1016/j.redox.2021.101932
10.1093/hmg/ddw262
10.1038/nature10758
10.1038/s41467-019-09746-1
10.3389/fphar.2019.00997
10.3390/ijms150611126
10.3389/fphar.2020.592234
10.1002/cphy.c160013
10.3390/biom10020347
10.1016/0014-4800(64)90050-4
10.1038/s41598-019-54822-7
10.1016/j.nutres.2019.11.004
10.3389/fcell.2021.765973
10.3389/fphys.2019.00665
10.1096/fj.201903051R
10.3390/nu13124385
10.1002/jat.3263
10.3390/cells8070680
10.1515/hsz-2012-0247
10.1016/j.jnutbio.2021.108619
10.3390/cells11081345
10.1038/s41430-018-0381-x
10.1016/j.abb.2018.12.015
10.1016/j.lfs.2022.121197
10.1002/jcsm.12536
10.1016/j.mito.2016.02.003
10.1038/srep33944
10.3390/antiox11020303
10.1152/ajpcell.00344.2021
10.1002/jcsm.12560
10.1111/joim.12055
10.1249/JES.0000000000000007
10.1186/s12890-019-0826-6
10.1016/j.bbadis.2020.166063
10.1016/j.freeradbiomed.2018.08.037
10.1152/ajprenal.00203.2019
10.14336/AD.2021.0427
10.1152/ajpregu.00767.2006
10.1111/acel.12520
10.1007/s00421-018-4039-0
10.1016/j.bone.2019.05.021
10.3390/ijms21134759
10.1016/j.celrep.2015.01.056
10.1097/MCO.0b013e328352b4c2
10.1016/j.bbamcr.2020.118742
10.1016/j.nmd.2016.10.007
10.1016/j.abb.2018.10.013
10.3390/ijms22105179
10.1038/srep43949
10.3389/fcell.2021.656604
10.3390/antiox11010066
10.18632/aging.102990
10.3390/ijms23147602
10.1016/j.redox.2018.09.018
10.1113/JP272487
10.1136/jnnp-2020-322949
10.3892/etm.2016.3856
10.1016/j.jmb.2019.05.032
10.3389/fphar.2022.859723
10.1364/BOE.8.002965
10.21037/biotarget.2018.12.01
10.1186/s12986-021-00565-0
10.1002/mnfr.201700941
10.1016/j.mehy.2019.04.015
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7T5
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.1186/s12967-023-04369-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (subscription)
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



CrossRef
Publicly Available Content Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1479-5876
EndPage 24
ExternalDocumentID oai_doaj_org_article_c55cdcf8fbac469786bc5db6a9bebbf9
PMC10373380
A758594050
37495991
10_1186_s12967_023_04369_z
Genre Journal Article
Review
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 82072160
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 82072160
– fundername: ;
  grantid: 82072160
GroupedDBID ---
0R~
29L
2WC
53G
5VS
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
AAYXX
AFFHD
CITATION
ALIPV
NPM
3V.
7T5
7XB
8FK
AZQEC
DWQXO
H94
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c674t-4e08081ea020cdc5d3cbaa47a4a9a16f80b098908c8d8d78505f7b1077db7a7f3
IEDL.DBID RSV
ISICitedReferencesCount 157
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001037748900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1479-5876
IngestDate Fri Oct 03 12:24:18 EDT 2025
Tue Nov 04 02:06:15 EST 2025
Thu Sep 04 19:02:06 EDT 2025
Sat Oct 18 23:48:03 EDT 2025
Tue Nov 11 11:11:55 EST 2025
Tue Nov 04 18:34:42 EST 2025
Thu Apr 03 07:04:55 EDT 2025
Tue Nov 18 21:32:20 EST 2025
Sat Nov 29 04:16:11 EST 2025
Sat Sep 06 07:28:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Antioxidants
Therapy
Muscle atrophy
Mitochondrial dysfunction
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c674t-4e08081ea020cdc5d3cbaa47a4a9a16f80b098908c8d8d78505f7b1077db7a7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1889-1561
OpenAccessLink https://link.springer.com/10.1186/s12967-023-04369-z
PMID 37495991
PQID 2852292330
PQPubID 43076
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_c55cdcf8fbac469786bc5db6a9bebbf9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10373380
proquest_miscellaneous_2843033924
proquest_journals_2852292330
gale_infotracmisc_A758594050
gale_infotracacademiconefile_A758594050
pubmed_primary_37495991
crossref_primary_10_1186_s12967_023_04369_z
crossref_citationtrail_10_1186_s12967_023_04369_z
springer_journals_10_1186_s12967_023_04369_z
PublicationCentury 2000
PublicationDate 2023-07-26
PublicationDateYYYYMMDD 2023-07-26
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-26
  day: 26
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Journal of translational medicine
PublicationTitleAbbrev J Transl Med
PublicationTitleAlternate J Transl Med
PublicationYear 2023
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References WY Fang (4369_CR34) 2021; 178
L Pan (4369_CR176) 2021; 154
AS Gorgey (4369_CR185) 2019; 119
LM Baehr (4369_CR64) 1985; 2017
J Joseph (4369_CR68) 2021; 18
X Yang (4369_CR96) 2021
AP Seabright (4369_CR145) 2020; 34
JP Leduc-Gaudet (4369_CR275) 2020; 9
GK Shang (4369_CR77) 2020; 11
K Wang (4369_CR4) 2022
HC Ou (4369_CR285) 2021; 11
M Lagouge (4369_CR141) 2013; 273
Y Huang (4369_CR240) 2018; 49
Y Ji (4369_CR1) 2022; 11
V Carmignac (4369_CR143) 2011; 20
X Ge (4369_CR131) 2021; 41
L Huang (4369_CR8) 2023; 12
L Galluzzi (4369_CR101) 2017; 36
C Matsumoto (4369_CR20) 2022; 45
T Kleele (4369_CR92) 2021; 593
D Wang (4369_CR197) 2018; 62
Y Liu (4369_CR255) 2016; 36
G Bhardwaj (4369_CR112) 2021; 131
HH Szeto (4369_CR226) 2018; 660
A Musaro (4369_CR31) 2010; 13
CW Li (4369_CR79) 2022; 13
T Yoshida (4369_CR48) 1970; 2020
N Pourshafie (4369_CR214) 2022; 172
L Tian (4369_CR104) 2019; 139
Y Kim (4369_CR100) 2017; 2017
X Kou (4369_CR108) 2017; 90
C Bose (4369_CR231) 2020; 19
K Min (4369_CR122) 2017; 7
K Mukund (4369_CR40) 2020; 12
M Fontecha-Barriuso (4369_CR192) 2020; 10
R Kim (4369_CR237) 2022; 25
H Hyatt (4369_CR23) 2019; 662
DJ Robichaux (4369_CR168) 2023; 174
M Fan (4369_CR160) 2020; 582
G Favaro (4369_CR135) 2019; 10
Q Li (4369_CR242) 2022; 13
M Falabella (4369_CR207) 2021; 32
A Yoo (4369_CR241) 2020; 21
SH Kim (4369_CR167) 2018; 10
M Budzinska (4369_CR218) 2021
JM Valentine (4369_CR133) 2020; 75
WQ Xie (4369_CR286) 2020; 12
K Engelke (4369_CR75) 2022; 34
DY Seo (4369_CR134) 2016; 5
LH Chen (4369_CR235) 2019; 11
R Fernando (4369_CR51) 2020; 2020
PA Li (4369_CR93) 2017; 95
E Masiero (4369_CR144) 2009; 10
GK Sakellariou (4369_CR17) 2016; 6
E Carafoli (4369_CR19) 1964; 3
KO Alfarouk (4369_CR87) 2021; 36
C Mammucari (4369_CR163) 2015; 10
F Bellanti (4369_CR179) 2021; 10
D Gatica (4369_CR62) 2017; 1
S Rong (4369_CR270) 2020; 11
BN Whitley (4369_CR89) 2019; 49
T Yokokawa (4369_CR183) 2020; 527
E Alessio (4369_CR279) 2019; 47
M Jiang (4369_CR193) 2020; 319
S Larsen (4369_CR155) 2012; 590
J Zhao (4369_CR118) 2007; 6
RA Khalilov (4369_CR251) 2023; 8
D Yeo (4369_CR156) 2019; 130
AL Reid (4369_CR219) 2021; 11
A Wong (4369_CR71) 2019; 143
B Tachtsis (4369_CR72) 2018; 10
C Wu (4369_CR39) 2019; 10
SA Fernandes (4369_CR147) 2020; 13
K Tokinoya (4369_CR65) 2020; 8
Z Qu (4369_CR83) 2021; 93
R Calvani (4369_CR182) 2013; 394
A Yadav (4369_CR25) 2021; 28
Z Chen (4369_CR32) 2021; 5
A Singh (4369_CR54) 2022; 15
AR Konopka (4369_CR263) 2014; 42
Y Zhao (4369_CR99) 2020; 11
ME Rosa-Caldwell (4369_CR181) 2021; 12
C Canto (4369_CR106) 2009; 458
S Ando (4369_CR247) 2019; 44
CC Yeh (4369_CR249) 2022; 25
JH Lo (4369_CR282) 2020; 23
C Romagnoli (4369_CR69) 2021; 22
A Herbst (4369_CR139) 2016; 15
J Cannavino (4369_CR273) 2014; 592
A Roy (4369_CR126) 2022; 13
SC Bodine (4369_CR46) 2001; 294
CL Mendias (4369_CR78) 2012; 45
L Lin (4369_CR127) 2019; 19
MV Irazabal (4369_CR191) 2020; 9
H Chaytow (4369_CR209) 2018; 75
M Guo (4369_CR3) 2023; 14
PS Hafen (4369_CR283) 1985; 2019
L Huang (4369_CR24) 2022; 12
MA Wallace (4369_CR268) 2021; 20
R Khalil (4369_CR44) 2018; 1088
RD Semba (4369_CR227) 2019; 127
G Menduti (4369_CR230) 2020; 11
B Sharma (4369_CR38) 2020; 254
CA Pileggi (4369_CR198) 2021; 22
JM Memme (4369_CR180) 2021; 22
Y Huang (4369_CR223) 2019; 11
N Miller (4369_CR211) 2016; 25
LL Xie (4369_CR91) 2018; 109
IBP Borges (4369_CR257) 2021; 27
JC Liu (4369_CR166) 2020
Q Wan (4369_CR246) 2020; 8
B Yang (4369_CR152) 2022; 2022
BT O'Neill (4369_CR148) 2019; 68
F Pin (4369_CR225) 2022; 10
N Horii (4369_CR81) 2018; 32
W Wang (4369_CR7) 2022; 198
H Sun (4369_CR41) 2014; 15
TI Peng (4369_CR162) 2010; 1201
P Patel (4369_CR171) 2021; 9
B Cai (4369_CR278) 2022; 27
Y Yan (4369_CR2) 2022; 13
G Tang (4369_CR115) 2022; 179
SE Alway (4369_CR169) 2017; 45
RB Nisr (4369_CR132) 2019; 76
Z Huang (4369_CR13) 2018; 2
Z Huang (4369_CR14) 2020; 8
S Spendiff (4369_CR172) 2016; 594
SK Skinner (4369_CR173) 2021; 10
C Mammucari (4369_CR117) 2007; 6
A Shally (4369_CR153) 2020; 21
N Pourshafie (4369_CR215) 2020; 5
Y Shen (4369_CR6) 2022; 13
KW Kim (4369_CR200) 2021; 40
W Wang (4369_CR50) 2021; 11
W Ma (4369_CR26) 2018; 2
DS Kim (4369_CR37) 2015; 459
D McKenzie (4369_CR140) 2002; 269
EP Bulthuis (4369_CR137) 2019; 30
C He (4369_CR103) 2012; 481
M Ebadi (4369_CR73) 2022; 11
R James (4369_CR244) 2021; 78
W Ma (4369_CR33) 2021; 15
Z Su (4369_CR194) 2017; 312
S Javadov (4369_CR224) 2015; 6
AJ Smuder (4369_CR57) 2010; 49
Y Shen (4369_CR11) 2019; 10
CV Logan (4369_CR164) 2014; 46
SS Rudrappa (4369_CR63) 2016; 7
L Piao (4369_CR281) 2022; 13
D Liu (4369_CR95) 2021; 12
J Zielonka (4369_CR221) 2017; 117
S Shen (4369_CR239) 2019; 10
EE Talbert (4369_CR56) 1985; 2013
Z Huang (4369_CR12) 2019; 10
P Munoz-Canoves (4369_CR120) 2013; 280
FL Muller (4369_CR151) 2007; 293
YY Zhang (4369_CR196) 2019; 73
X Yang (4369_CR184) 2020; 10
S Salucci (4369_CR266) 2020; 74
A Dolly (4369_CR187) 2020; 11
EM Mercken (4369_CR233) 2014; 13
T Tomimatsu (4369_CR84) 2017; 8
BA Guigni (4369_CR284) 2019; 317
DD Huang (4369_CR149) 2020; 12
NN Singh (4369_CR210) 2021; 1867
B Zablocka (4369_CR216) 2021; 22
A Chalkiadaki (4369_CR276) 2014; 10
C Tezze (4369_CR136) 2017; 25
X Zuo (4369_CR204) 2021; 28
AL Basse (4369_CR170) 2021; 53
D Gonzalez (4369_CR74) 2017; 12
EF Smith (4369_CR205) 2019; 710
C Sun (4369_CR232) 1985; 2015
TM Mirzoev (4369_CR61) 2020; 21
A Guo (4369_CR107) 2020; 526
F Penna (4369_CR190) 2019; 431
Y Enoki (4369_CR248) 2017; 8
CS Wu (4369_CR250) 2020; 75
Y Kitajima (4369_CR45) 2020; 70
W Aoi (4369_CR29) 2011; 4
Z Huang (4369_CR47) 2018; 2
K Uemichi (4369_CR114) 2021; 9
K Baar (4369_CR256) 2002; 16
FR Jornayvaz (4369_CR138) 2010; 47
YC Jang (4369_CR59) 2020; 42
D Sala (4369_CR121) 2019; 10
DC Hughes (4369_CR177) 2022; 23
SJ Annesley (4369_CR15) 2019; 8
NC Jiwan (4369_CR238) 2022; 36
JR Huot (4369_CR123) 2020; 13
M Wang (4369_CR195) 2019; 2019
L Chodari (4369_CR252) 2021; 2021
L Zhang (4369_CR5) 2022; 203
Y Tamura (4369_CR86) 2020; 401
W Zhang (4369_CR229) 2021; 11
Y Kitaoka (4369_CR157) 2021; 9
VJ Miller (4369_CR269) 2020; 319
H Sun (4369_CR203) 2022; 11
C Tsien (4369_CR272) 2015; 61
WS Dantas (4369_CR201) 2022; 13
T Rodrigues (4369_CR90) 2020; 182
M Ebadi (4369_CR258) 2019; 54
I Munteanu (4369_CR146) 2017; 27
K Baar (4369_CR55) 2006; 42
H Yadav (4369_CR128) 2011; 14
P Groening (4369_CR154) 2011; 35
C Bouchez (4369_CR97) 2019; 8
KL Timmerman (4369_CR260) 2012; 95
SK Wong (4369_CR228) 2020; 20
M Sandri (4369_CR119) 2013; 45
R Komatsu (4369_CR58) 2018; 9
M Sandri (4369_CR52) 2010; 584
NT Broskey (4369_CR259) 2014; 99
A Moschetti (4369_CR254) 2021; 37
D Yin (4369_CR116) 2022; 57
S Liu (4369_CR262) 2021; 76
L Feng (4369_CR66) 2022; 322
Q Xia (4369_CR98) 2021; 12
MJ Munson (4369_CR111) 2015; 11
TL van Westering (4369_CR220) 2015; 20
R Sartori (4369_CR9) 2021; 12
D Murata (4369_CR102) 2020; 167
J Yu (4369_CR280) 2022; 5
Y Ding (4369_CR113) 2017; 7
SK Powers (4369_CR30) 2012; 15
CT Chu (4369_CR175) 2013; 15
PA Andreux (4369_CR22) 2019; 9
MN Wosczyna (4369_CR70) 2019; 27
A Roy (4369_CR125) 2020; 2
L Shen (4369_CR265) 2018; 1088
G Bora (4369_CR208) 2021; 29
K Goljanek-Whysall (4369_CR277) 2020; 19
Z Aversa (4369_CR109) 2019; 127
J Abrigo (4369_CR124) 2018; 399
A Hashizume (4369_CR212) 2020; 91
R Qaisar (4369_CR234) 2019; 20
V Romanello (4369_CR18) 2021; 78
LD Popov (4369_CR94) 2020; 24
JJ Petrocelli (4369_CR271) 2020; 17
M Chivet (4369_CR213) 2020; 9
SP Lopez-Cervantes (4369_CR222) 2022; 102
SI Fukada (4369_CR67) 2020; 1867
P Luan (4369_CR243) 2021; 13
H Zhang (4369_CR27) 2023
A Andres-Hernando (4369_CR199) 2019; 317
X Yang (4369_CR202) 2021; 10
JM Memme (4369_CR21) 2022; 298
JP Leduc-Gaudet (4369_CR267) 2021; 22
Y Shen (4369_CR43) 2020; 11
A Singh (4369_CR206) 2019; 24
GG Rodney (4369_CR150) 2016; 98
CW Tsai (4369_CR165) 2022; 82
N Gebert (4369_CR174) 2009; 19
S Maglioni (4369_CR88) 2016; 30
IP Salt (4369_CR105) 2017; 120
K Vargas-Ortiz (4369_CR261) 2015; 27
Y Li (4369_CR186) 2021; 478
P Londhe (4369_CR28) 2015; 80
A Bohm (4369_CR129) 2016; 65
M Triolo (4369_CR53) 2022; 600
G Gherardi (4369_CR159) 2019; 2019
Y Zhang (4369_CR188) 2020; 111
H Wu (4369_CR76) 2020; 8
BE Christian (4369_CR16) 2017; 1
S Bhatnagar (4369_CR130) 2012; 227
MJ Jackson (4369_CR36) 1985; 2015
H Wang (4369_CR82) 2022; 311
JE Shin (4369_CR110) 2020; 12
M Yeon (4369_CR236) 2022; 153
J Pascual-Fernandez (4369_CR35) 2020; 21
SH Jeon (4369_CR245) 2021; 13
A Vainshtein (4369_CR10) 2020; 21
V Romanello (4369_CR85) 2010; 12
NT Theilen (4369_CR274) 2019; 666
JM Memme (4369_CR264) 2021; 599
PA Bilodeau (4369_CR142) 2016; 311
Y Sancak (4369_CR161) 2013; 342
R Bravo-Sagua (4369_CR158) 2017; 7
R Fernando (4369_CR49) 2019; 132
JP White (4369_CR60) 2021; 9
M Chang (4369_CR217) 2023
AK Lyu (4369_CR80) 2019; 122
Q He (4369_CR42) 2016; 12
M van der Ende (4369_CR189) 2018; 1870
E Migliavacca (4369_CR178) 2019; 10
YX Yang (4369_CR253) 2022; 17
References_xml – volume: 23
  start-page: 52
  issue: 38
  year: 2020
  ident: 4369_CR282
  publication-title: J Orthop Translat
– volume: 25
  start-page: 94
  year: 2022
  ident: 4369_CR237
  publication-title: Mol Med Rep
  doi: 10.3892/mmr.2022.12610
– volume: 12
  start-page: 2056
  year: 2021
  ident: 4369_CR181
  publication-title: J Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12809
– volume: 2017
  start-page: 3165396
  year: 2017
  ident: 4369_CR100
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2017/3165396
– volume: 12
  year: 2017
  ident: 4369_CR74
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0177649
– volume: 13
  start-page: 041244
  year: 2020
  ident: 4369_CR147
  publication-title: Dis Model Mech
  doi: 10.1242/dmm.041244
– volume: 30
  start-page: 2066
  year: 2019
  ident: 4369_CR137
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2018.7534
– volume: 21
  start-page: 7940
  year: 2020
  ident: 4369_CR61
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21217940
– volume: 25
  issue: 1374–1389
  year: 2017
  ident: 4369_CR136
  publication-title: Cell Metab
– volume: 10
  start-page: 507
  year: 2009
  ident: 4369_CR144
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2009.10.008
– volume: 319
  start-page: F1105
  year: 2020
  ident: 4369_CR193
  publication-title: Am J Physiol Renal Physiol
  doi: 10.1152/ajprenal.00285.2020
– volume: 198
  year: 2022
  ident: 4369_CR7
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2022.114954
– volume: 42
  start-page: 1579
  year: 2020
  ident: 4369_CR59
  publication-title: Geroscience
  doi: 10.1007/s11357-020-00200-5
– volume: 10
  start-page: 1137
  year: 2018
  ident: 4369_CR167
  publication-title: Nutrients
  doi: 10.3390/nu10091137
– volume: 102
  year: 2022
  ident: 4369_CR222
  publication-title: Arch Gerontol Geriatr
  doi: 10.1016/j.archger.2022.104717
– volume: 21
  start-page: 8844
  year: 2020
  ident: 4369_CR35
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21228844
– volume: 29
  start-page: 3935
  year: 2021
  ident: 4369_CR208
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddaa275
– volume: 8
  year: 2020
  ident: 4369_CR65
  publication-title: Physiol Rep
  doi: 10.14814/phy2.14475
– volume: 17
  start-page: 1547
  year: 2022
  ident: 4369_CR253
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2022-0173
– volume: 13
  start-page: 226
  year: 2022
  ident: 4369_CR281
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-022-02895-z
– volume: 15
  year: 2021
  ident: 4369_CR33
  publication-title: Front Cell Neurosci
  doi: 10.3389/fncel.2021.663384
– volume: 179
  start-page: 159
  year: 2022
  ident: 4369_CR115
  publication-title: Br J Pharmacol
  doi: 10.1111/bph.15693
– volume: 44
  start-page: 1773
  year: 2019
  ident: 4369_CR247
  publication-title: Neurochem Res
  doi: 10.1007/s11064-019-02814-4
– volume: 10
  year: 2014
  ident: 4369_CR276
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004490
– volume: 12
  year: 2020
  ident: 4369_CR40
  publication-title: Wiley Interdiscip Rev Syst Biol Med
  doi: 10.1002/wsbm.1462
– volume: 311
  start-page: C392
  year: 2016
  ident: 4369_CR142
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.00125.2016
– volume: 13
  start-page: 043166
  year: 2020
  ident: 4369_CR123
  publication-title: Dis Model Mech
– volume: 153
  year: 2022
  ident: 4369_CR236
  publication-title: Biomed Pharmacother
  doi: 10.1016/j.biopha.2022.113406
– volume: 95
  start-page: 2025
  year: 2017
  ident: 4369_CR93
  publication-title: J Neurosci Res
  doi: 10.1002/jnr.24042
– year: 2023
  ident: 4369_CR27
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2023.115664
– volume: 11
  start-page: 648
  year: 2021
  ident: 4369_CR219
  publication-title: Life (Basel)
– volume: 45
  start-page: 780
  year: 2022
  ident: 4369_CR20
  publication-title: Biol Pharm Bull
  doi: 10.1248/bpb.b22-00171
– volume: 593
  start-page: 435
  year: 2021
  ident: 4369_CR92
  publication-title: Nature
  doi: 10.1038/s41586-021-03510-6
– volume: 10
  start-page: 1415
  year: 2020
  ident: 4369_CR184
  publication-title: Theranostics
  doi: 10.7150/thno.40857
– volume: 11
  start-page: 1413
  year: 2020
  ident: 4369_CR187
  publication-title: J Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12633
– volume: 13
  start-page: 787
  year: 2014
  ident: 4369_CR233
  publication-title: Aging Cell
  doi: 10.1111/acel.12220
– volume: 317
  start-page: C1213
  year: 2019
  ident: 4369_CR284
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.00148.2019
– volume: 11
  start-page: 756
  year: 2019
  ident: 4369_CR235
  publication-title: Aging
  doi: 10.18632/aging.101782
– volume: 36
  start-page: 2638
  year: 2022
  ident: 4369_CR238
  publication-title: In Vivo
  doi: 10.21873/invivo.12998
– volume: 6
  start-page: 472
  year: 2007
  ident: 4369_CR118
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2007.11.004
– volume: 13
  year: 2022
  ident: 4369_CR6
  publication-title: Front Endocrinol
  doi: 10.3389/fendo.2022.917113
– volume: 582
  start-page: 129
  year: 2020
  ident: 4369_CR160
  publication-title: Nature
  doi: 10.1038/s41586-020-2309-6
– volume: 75
  start-page: 621
  year: 2020
  ident: 4369_CR250
  publication-title: J Gerontol A Biol Sci Med Sci
  doi: 10.1093/gerona/gly256
– volume: 2
  start-page: 8
  year: 2018
  ident: 4369_CR47
  publication-title: Biotarget
  doi: 10.21037/biotarget.2018.05.02
– volume: 11
  start-page: 128
  year: 2020
  ident: 4369_CR99
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2020.00128
– volume: 28
  start-page: 132
  year: 2021
  ident: 4369_CR204
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/s41594-020-00537-7
– volume: 28
  start-page: 5831
  year: 2021
  ident: 4369_CR25
  publication-title: Curr Med Chem
  doi: 10.2174/0929867328666210202113734
– volume: 8
  start-page: 287
  year: 2019
  ident: 4369_CR97
  publication-title: Cells
  doi: 10.3390/cells8040287
– volume: 526
  start-page: 1069
  year: 2020
  ident: 4369_CR107
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2020.04.002
– volume: 8
  start-page: 735
  year: 2017
  ident: 4369_CR248
  publication-title: J Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12202
– volume: 20
  year: 2021
  ident: 4369_CR268
  publication-title: Aging Cell
  doi: 10.1111/acel.13322
– volume: 527
  start-page: 146
  year: 2020
  ident: 4369_CR183
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2020.04.062
– volume: 203
  year: 2022
  ident: 4369_CR5
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2022.115186
– volume: 17
  start-page: 8650
  year: 2020
  ident: 4369_CR271
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph17228650
– volume: 9
  year: 2021
  ident: 4369_CR114
  publication-title: Physiol Rep
  doi: 10.14814/phy2.14789
– volume: 2
  start-page: 538
  year: 2020
  ident: 4369_CR125
  publication-title: FASEB Bioadv
  doi: 10.1096/fba.2020-00043
– volume: 32
  start-page: 224
  year: 2021
  ident: 4369_CR207
  publication-title: Trends Endocrinol Metab
  doi: 10.1016/j.tem.2021.01.006
– volume: 1201
  start-page: 183
  year: 2010
  ident: 4369_CR162
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.2010.05634.x
– volume: 10
  start-page: 1298
  year: 2019
  ident: 4369_CR11
  publication-title: Front Physiol
  doi: 10.3389/fphys.2019.01298
– volume: 478
  start-page: 1663
  year: 2021
  ident: 4369_CR186
  publication-title: Biochem J
  doi: 10.1042/BCJ20201009
– year: 2022
  ident: 4369_CR4
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2022.115407
– volume: 154
  year: 2021
  ident: 4369_CR176
  publication-title: Exp Gerontol
  doi: 10.1016/j.exger.2021.111544
– volume: 1870
  start-page: 137
  year: 2018
  ident: 4369_CR189
  publication-title: Biochim Biophys Acta Rev Cancer
  doi: 10.1016/j.bbcan.2018.07.008
– volume: 10
  start-page: 309
  year: 2018
  ident: 4369_CR72
  publication-title: Nutrients
  doi: 10.3390/nu10030309
– volume: 1088
  start-page: 529
  year: 2018
  ident: 4369_CR265
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-981-13-1435-3_24
– volume: 12
  start-page: 3362
  year: 2020
  ident: 4369_CR110
  publication-title: Nutrients
  doi: 10.3390/nu12113362
– year: 2020
  ident: 4369_CR166
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.134063
– volume: 9
  start-page: 1454
  year: 2020
  ident: 4369_CR275
  publication-title: Cells
  doi: 10.3390/cells9061454
– volume: 70
  start-page: 40
  year: 2020
  ident: 4369_CR45
  publication-title: J Physiol Sci
  doi: 10.1186/s12576-020-00768-9
– volume: 590
  start-page: 3349
  year: 2012
  ident: 4369_CR155
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2012.230185
– year: 2021
  ident: 4369_CR218
  publication-title: J Physiol Pharmacol
  doi: 10.26402/jpp.2021.2.01
– volume: 5
  year: 2020
  ident: 4369_CR215
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.136539
– volume: 7
  start-page: 361
  year: 2016
  ident: 4369_CR63
  publication-title: Front Physiol
  doi: 10.3389/fphys.2016.00361
– volume: 25
  start-page: 57
  year: 2022
  ident: 4369_CR249
  publication-title: Mol Med Rep
  doi: 10.3892/mmr.2021.12572
– volume: 11
  start-page: 988
  year: 2020
  ident: 4369_CR43
  publication-title: Front Physiol
  doi: 10.3389/fphys.2020.00988
– volume: 7
  start-page: 21
  year: 2017
  ident: 4369_CR122
  publication-title: Skelet Muscle
  doi: 10.1186/s13395-017-0137-7
– volume: 11
  start-page: 2217
  year: 2019
  ident: 4369_CR223
  publication-title: Aging
  doi: 10.18632/aging.101910
– volume: 27
  start-page: S224
  year: 2021
  ident: 4369_CR257
  publication-title: J Clin Rheumatol
  doi: 10.1097/RHU.0000000000001721
– volume: 662
  start-page: 49
  year: 2019
  ident: 4369_CR23
  publication-title: Arch Biochem Biophys
  doi: 10.1016/j.abb.2018.11.005
– volume: 227
  start-page: 1042
  year: 2012
  ident: 4369_CR130
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.22821
– volume: 2
  start-page: 7
  year: 2018
  ident: 4369_CR26
  publication-title: Biotarget
  doi: 10.21037/biotarget.2018.04.01
– volume: 10
  year: 2022
  ident: 4369_CR225
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2022.861622
– volume: 2015
  start-page: 224
  issue: 118
  year: 1985
  ident: 4369_CR232
  publication-title: J Appl Physiol
– volume: 139
  start-page: 352
  year: 2019
  ident: 4369_CR104
  publication-title: J Pharmacol Sci
  doi: 10.1016/j.jphs.2019.02.008
– volume: 13
  start-page: 236
  year: 2010
  ident: 4369_CR31
  publication-title: Curr Opin Clin Nutr Metab Care
  doi: 10.1097/MCO.0b013e3283368188
– volume: 319
  start-page: E995
  year: 2020
  ident: 4369_CR269
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00305.2020
– volume: 32
  start-page: 3547
  year: 2018
  ident: 4369_CR81
  publication-title: FASEB J
  doi: 10.1096/fj.201700772RRR
– volume: 24
  start-page: 4892
  year: 2020
  ident: 4369_CR94
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.15194
– volume: 49
  start-page: 1152
  year: 2010
  ident: 4369_CR57
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2010.06.025
– volume: 2022
  start-page: 9148246
  year: 2022
  ident: 4369_CR152
  publication-title: Oxid Med Cell Longev
– volume: 45
  start-page: 55
  year: 2012
  ident: 4369_CR78
  publication-title: Muscle Nerve
  doi: 10.1002/mus.22232
– volume: 14
  start-page: 391
  year: 2023
  ident: 4369_CR3
  publication-title: J Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.13141
– volume: 40
  start-page: 2697
  year: 2021
  ident: 4369_CR200
  publication-title: Clin Nutr
  doi: 10.1016/j.clnu.2021.03.009
– volume: 12
  year: 2021
  ident: 4369_CR98
  publication-title: Front Physiol
  doi: 10.3389/fphys.2021.638983
– volume: 6
  start-page: 458
  year: 2007
  ident: 4369_CR117
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2007.11.001
– volume: 57
  start-page: 397
  year: 2022
  ident: 4369_CR116
  publication-title: Shock
  doi: 10.1097/SHK.0000000000001860
– volume: 599
  start-page: 803
  year: 2021
  ident: 4369_CR264
  publication-title: J Physiol
  doi: 10.1113/JP278853
– volume: 65
  start-page: 2849
  year: 2016
  ident: 4369_CR129
  publication-title: Diabetes
  doi: 10.2337/db15-1723
– volume: 82
  issue: 3661–3676
  year: 2022
  ident: 4369_CR165
  publication-title: Mol Cell
– volume: 49
  start-page: 758
  year: 2018
  ident: 4369_CR240
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000493040
– volume: 130
  start-page: 361
  year: 2019
  ident: 4369_CR156
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2018.10.456
– volume: 11
  start-page: 19116
  year: 2021
  ident: 4369_CR229
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-98771-6
– volume: 12
  start-page: 44
  year: 2022
  ident: 4369_CR24
  publication-title: Antioxidants
  doi: 10.3390/antiox12010044
– volume: 19
  start-page: 2133
  year: 2009
  ident: 4369_CR174
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2009.10.074
– volume: 99
  start-page: 1852
  year: 2014
  ident: 4369_CR259
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2013-3983
– volume: 10
  start-page: 5808
  year: 2019
  ident: 4369_CR178
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13694-1
– volume: 11
  start-page: 2375
  year: 2015
  ident: 4369_CR111
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1106668
– volume: 22
  start-page: 13221
  year: 2021
  ident: 4369_CR69
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms222413221
– volume: 98
  start-page: 103
  year: 2016
  ident: 4369_CR150
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2016.05.010
– volume: 6
  start-page: 39469
  year: 2015
  ident: 4369_CR224
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.5783
– volume: 458
  start-page: 1056
  year: 2009
  ident: 4369_CR106
  publication-title: Nature
  doi: 10.1038/nature07813
– volume: 95
  start-page: 1403
  year: 2012
  ident: 4369_CR260
  publication-title: Am J Clin Nutr
  doi: 10.3945/ajcn.111.020800
– volume: 111
  start-page: 570
  year: 2020
  ident: 4369_CR188
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/nqz347
– volume: 584
  start-page: 1411
  year: 2010
  ident: 4369_CR52
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2010.01.056
– volume: 120
  start-page: 1825
  year: 2017
  ident: 4369_CR105
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.117.309633
– volume: 16
  start-page: 1879
  year: 2002
  ident: 4369_CR256
  publication-title: FASEB J
  doi: 10.1096/fj.02-0367com
– volume: 178
  start-page: 2998
  year: 2021
  ident: 4369_CR34
  publication-title: Br J Pharmacol
  doi: 10.1111/bph.15472
– volume: 20
  start-page: 2941
  year: 2020
  ident: 4369_CR228
  publication-title: Exp Ther Med
– volume: 312
  start-page: F1128
  year: 2017
  ident: 4369_CR194
  publication-title: Am J Physiol Renal Physiol
  doi: 10.1152/ajprenal.00600.2016
– volume: 11
  start-page: 1686
  year: 2022
  ident: 4369_CR1
  publication-title: Antioxidants
  doi: 10.3390/antiox11091686
– volume: 20
  start-page: 4891
  year: 2011
  ident: 4369_CR143
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddr427
– volume: 2021
  start-page: 4946711
  year: 2021
  ident: 4369_CR252
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2021/4946711
– volume: 22
  start-page: 8179
  year: 2021
  ident: 4369_CR267
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22158179
– volume: 5
  start-page: 774
  year: 2022
  ident: 4369_CR280
  publication-title: Commun Biol
  doi: 10.1038/s42003-022-03728-8
– volume: 4
  start-page: 101
  year: 2011
  ident: 4369_CR29
  publication-title: Curr Aging Sci
  doi: 10.2174/1874609811104020101
– volume: 117
  start-page: 10043
  year: 2017
  ident: 4369_CR221
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.7b00042
– volume: 13
  start-page: 0319
  year: 2021
  ident: 4369_CR243
  publication-title: Sci Transl Med.
  doi: 10.1126/scitranslmed.abb0319
– volume: 36
  start-page: 1258
  year: 2021
  ident: 4369_CR87
  publication-title: J Enzyme Inhib Med Chem
  doi: 10.1080/14756366.2021.1937144
– volume: 12
  start-page: 330
  year: 2021
  ident: 4369_CR9
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-20123-1
– volume: 2020
  start-page: 4908162
  year: 2020
  ident: 4369_CR51
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2020/4908162
– volume: 2019
  start-page: 47
  issue: 127
  year: 1985
  ident: 4369_CR283
  publication-title: J Appl Physiol
– volume: 37
  year: 2021
  ident: 4369_CR254
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2021.102439
– volume: 21
  start-page: 2811
  year: 2020
  ident: 4369_CR241
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21082811
– volume: 172
  year: 2022
  ident: 4369_CR214
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2022.105832
– volume: 15
  start-page: 475
  year: 2022
  ident: 4369_CR54
  publication-title: Curr Mol Pharmacol
  doi: 10.2174/1874467214666210806163851
– volume: 298
  year: 2022
  ident: 4369_CR21
  publication-title: J Biol Chem
  doi: 10.1016/j.jbc.2021.101540
– volume: 14
  start-page: 67
  year: 2011
  ident: 4369_CR128
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2011.04.013
– volume: 131
  year: 2021
  ident: 4369_CR112
  publication-title: J Clin Invest
  doi: 10.1172/JCI146415
– volume: 22
  start-page: 11040
  year: 2021
  ident: 4369_CR216
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms222011040
– volume: 13
  start-page: 2201
  year: 2022
  ident: 4369_CR126
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-29752-0
– volume: 21
  start-page: 461
  year: 2020
  ident: 4369_CR153
  publication-title: Biogerontology
  doi: 10.1007/s10522-020-09879-7
– volume: 8
  start-page: 1681
  year: 2020
  ident: 4369_CR14
  publication-title: Ann Transl Med
  doi: 10.21037/atm-20-7269
– volume: 90
  start-page: 311
  year: 2017
  ident: 4369_CR108
  publication-title: Biomed Pharmacother
  doi: 10.1016/j.biopha.2017.03.070
– volume: 167
  start-page: 233
  year: 2020
  ident: 4369_CR102
  publication-title: J Biochem
  doi: 10.1093/jb/mvz106
– volume: 10
  start-page: 429
  year: 2019
  ident: 4369_CR239
  publication-title: J Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12393
– volume: 80
  start-page: 131
  year: 2015
  ident: 4369_CR28
  publication-title: Bone
  doi: 10.1016/j.bone.2015.03.015
– volume: 1
  start-page: 2
  year: 2017
  ident: 4369_CR62
  publication-title: Biotarget
  doi: 10.21037/biotarget.2017.04.01
– volume: 12
  start-page: 44
  year: 2023
  ident: 4369_CR8
  publication-title: Antioxidants
  doi: 10.3390/antiox12010044
– volume: 27
  start-page: 319
  year: 2022
  ident: 4369_CR278
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2021.12.004
– volume: 22
  year: 2021
  ident: 4369_CR198
  publication-title: Obes Rev
  doi: 10.1111/obr.13164
– volume: 27
  start-page: 177
  year: 2015
  ident: 4369_CR261
  publication-title: Pediatr Exerc Sci
  doi: 10.1123/pes.2014-0112
– volume: 10
  start-page: 2586
  year: 2021
  ident: 4369_CR173
  publication-title: Cells
  doi: 10.3390/cells10102586
– volume: 49
  start-page: 269
  year: 2019
  ident: 4369_CR89
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2019.06.002
– volume: 75
  start-page: 647
  year: 2020
  ident: 4369_CR133
  publication-title: J Gerontol A Biol Sci Med Sci
  doi: 10.1093/gerona/gly262
– volume: 10
  start-page: 2576
  year: 2019
  ident: 4369_CR135
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-10226-9
– volume: 78
  start-page: 4785
  year: 2021
  ident: 4369_CR244
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-021-03819-5
– volume: 122
  start-page: 25
  year: 2019
  ident: 4369_CR80
  publication-title: Exp Gerontol
  doi: 10.1016/j.exger.2019.04.008
– volume: 8
  year: 2020
  ident: 4369_CR76
  publication-title: Physiol Rep
  doi: 10.14814/phy2.14575
– volume: 53
  year: 2021
  ident: 4369_CR170
  publication-title: Mol Metab
  doi: 10.1016/j.molmet.2021.101271
– year: 2023
  ident: 4369_CR217
  publication-title: J Neurol
  doi: 10.1007/s00415-023-11796-x
– volume: 254
  year: 2020
  ident: 4369_CR38
  publication-title: J Ethnopharmacol
  doi: 10.1016/j.jep.2020.112720
– volume: 34
  start-page: 2089
  year: 2022
  ident: 4369_CR75
  publication-title: Aging Clin Exp Res
  doi: 10.1007/s40520-022-02149-1
– volume: 36
  start-page: 1811
  year: 2017
  ident: 4369_CR101
  publication-title: EMBO J
  doi: 10.15252/embj.201796697
– volume: 280
  start-page: 4131
  year: 2013
  ident: 4369_CR120
  publication-title: FEBS J
  doi: 10.1111/febs.12338
– volume: 9
  year: 2021
  ident: 4369_CR157
  publication-title: Physiol Rep
  doi: 10.14814/phy2.15016
– volume: 174
  start-page: 47
  year: 2023
  ident: 4369_CR168
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/j.yjmcc.2022.11.003
– volume: 2020
  start-page: 9
  year: 1970
  ident: 4369_CR48
  publication-title: Cells
– volume: 75
  start-page: 3877
  year: 2018
  ident: 4369_CR209
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-018-2849-1
– volume: 20
  start-page: 8823
  year: 2015
  ident: 4369_CR220
  publication-title: Molecules
  doi: 10.3390/molecules20058823
– volume: 61
  start-page: 2018
  year: 2015
  ident: 4369_CR272
  publication-title: Hepatology
  doi: 10.1002/hep.27717
– volume: 401
  start-page: 821
  year: 2020
  ident: 4369_CR86
  publication-title: Biol Chem
  doi: 10.1515/hsz-2020-0121
– volume: 8
  start-page: 5
  year: 2023
  ident: 4369_CR251
  publication-title: Adv Biol Earth Sci
– volume: 143
  start-page: 779
  year: 2019
  ident: 4369_CR71
  publication-title: Plast Reconstr Surg
  doi: 10.1097/PRS.0000000000005370
– volume: 24
  start-page: 1583
  year: 2019
  ident: 4369_CR206
  publication-title: Molecules
  doi: 10.3390/molecules24081583
– volume: 13
  start-page: 781
  year: 2022
  ident: 4369_CR79
  publication-title: J Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12901
– volume: 182
  year: 2020
  ident: 4369_CR90
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2020.114282
– volume: 9
  start-page: 1342
  year: 2020
  ident: 4369_CR191
  publication-title: Cells
  doi: 10.3390/cells9061342
– volume: 47
  start-page: 69
  year: 2010
  ident: 4369_CR138
  publication-title: Essays Biochem
  doi: 10.1042/bse0470069
– volume: 399
  start-page: 253
  year: 2018
  ident: 4369_CR124
  publication-title: Biol Chem
  doi: 10.1515/hsz-2017-0217
– volume: 10
  start-page: 1012
  year: 2021
  ident: 4369_CR202
  publication-title: Antioxidants
  doi: 10.3390/antiox10071012
– volume: 5
  start-page: 182
  year: 2016
  ident: 4369_CR134
  publication-title: Integr Med Res
  doi: 10.1016/j.imr.2016.07.003
– volume: 76
  start-page: 4887
  year: 2019
  ident: 4369_CR132
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-019-03148-8
– volume: 2019
  start-page: 1845321
  year: 2019
  ident: 4369_CR159
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2019/1845321
– volume: 78
  start-page: 1305
  year: 2021
  ident: 4369_CR18
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-020-03662-0
– volume: 45
  start-page: 58
  year: 2017
  ident: 4369_CR169
  publication-title: Exerc Sport Sci Rev
  doi: 10.1249/JES.0000000000000101
– volume: 19
  year: 2020
  ident: 4369_CR277
  publication-title: Aging Cell
  doi: 10.1111/acel.13140
– volume: 109
  start-page: 3686
  year: 2018
  ident: 4369_CR91
  publication-title: Cancer Sci
  doi: 10.1111/cas.13830
– volume: 2019
  start-page: 1875471
  year: 2019
  ident: 4369_CR195
  publication-title: Oxid Med Cell Longev
– volume: 54
  start-page: 845
  year: 2019
  ident: 4369_CR258
  publication-title: J Gastroenterol
  doi: 10.1007/s00535-019-01605-6
– volume: 47
  start-page: 1653
  year: 2019
  ident: 4369_CR279
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/gkz007
– volume: 459
  start-page: 534
  year: 2015
  ident: 4369_CR37
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2015.02.144
– volume: 600
  start-page: 1683
  year: 2022
  ident: 4369_CR53
  publication-title: J Physiol
  doi: 10.1113/JP282173
– volume: 76
  start-page: 1161
  year: 2021
  ident: 4369_CR262
  publication-title: J Gerontol A Biol Sci Med Sci
  doi: 10.1093/gerona/glab029
– volume: 42
  start-page: 61
  year: 2006
  ident: 4369_CR55
  publication-title: Essays Biochem
  doi: 10.1042/bse0420061
– volume: 2017
  start-page: 1336
  issue: 122
  year: 1985
  ident: 4369_CR64
  publication-title: J Appl Physiol
– volume: 12
  start-page: 433
  year: 2010
  ident: 4369_CR85
  publication-title: Curr Hypertens Rep
  doi: 10.1007/s11906-010-0157-8
– volume: 9
  start-page: 643
  year: 2018
  ident: 4369_CR58
  publication-title: J Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12297
– volume: 8
  start-page: 1524
  year: 2020
  ident: 4369_CR246
  publication-title: Ann Transl Med
  doi: 10.21037/atm-20-5460
– volume: 12
  start-page: 24441
  year: 2020
  ident: 4369_CR286
  publication-title: Aging
  doi: 10.18632/aging.103987
– volume: 1
  start-page: 16
  year: 2017
  ident: 4369_CR16
  publication-title: Biotarget
  doi: 10.21037/biotarget.2017.11.02
– volume: 342
  start-page: 1379
  year: 2013
  ident: 4369_CR161
  publication-title: Science
  doi: 10.1126/science.1242993
– volume: 13
  year: 2022
  ident: 4369_CR2
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2022.947387
– volume: 269
  start-page: 2010
  year: 2002
  ident: 4369_CR140
  publication-title: Eur J Biochem
  doi: 10.1046/j.1432-1033.2002.02867.x
– volume: 10
  start-page: 31
  year: 2021
  ident: 4369_CR179
  publication-title: Biology
  doi: 10.3390/biology10010031
– volume: 15
  start-page: 1197
  year: 2013
  ident: 4369_CR175
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2837
– volume: 1088
  start-page: 235
  year: 2018
  ident: 4369_CR44
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-981-13-1435-3_10
– volume: 35
  start-page: 249
  year: 2011
  ident: 4369_CR154
  publication-title: JPEN J Parenter Enteral Nutr
  doi: 10.1177/0148607110383040
– volume: 13
  start-page: 1821
  year: 2022
  ident: 4369_CR201
  publication-title: J Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12982
– volume: 294
  start-page: 1704
  year: 2001
  ident: 4369_CR46
  publication-title: Science
  doi: 10.1126/science.1065874
– volume: 710
  year: 2019
  ident: 4369_CR205
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2017.06.052
– volume: 19
  year: 2020
  ident: 4369_CR231
  publication-title: Aging Cell
  doi: 10.1111/acel.13261
– volume: 5
  start-page: 1
  year: 2021
  ident: 4369_CR32
  publication-title: Biotarget
  doi: 10.21037/biotarget-21-1
– volume: 68
  start-page: 556
  year: 2019
  ident: 4369_CR148
  publication-title: Diabetes
  doi: 10.2337/db18-0416
– volume: 45
  start-page: 2121
  year: 2013
  ident: 4369_CR119
  publication-title: Int J Biochem Cell Biol
  doi: 10.1016/j.biocel.2013.04.023
– volume: 11
  start-page: 200
  year: 2021
  ident: 4369_CR285
  publication-title: Cell Biosci
  doi: 10.1186/s13578-021-00719-w
– volume: 27
  issue: 2029–2035
  year: 2019
  ident: 4369_CR70
  publication-title: Cell Rep
– volume: 46
  start-page: 188
  year: 2014
  ident: 4369_CR164
  publication-title: Nat Genet
  doi: 10.1038/ng.2851
– volume: 592
  start-page: 4575
  year: 2014
  ident: 4369_CR273
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2014.275545
– volume: 41
  year: 2021
  ident: 4369_CR131
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2021.101932
– volume: 25
  start-page: 3395
  year: 2016
  ident: 4369_CR211
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddw262
– volume: 481
  start-page: 511
  year: 2012
  ident: 4369_CR103
  publication-title: Nature
  doi: 10.1038/nature10758
– volume: 10
  start-page: 1796
  year: 2019
  ident: 4369_CR121
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-09746-1
– volume: 10
  start-page: 997
  year: 2019
  ident: 4369_CR12
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2019.00997
– volume: 15
  start-page: 11126
  year: 2014
  ident: 4369_CR41
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms150611126
– year: 2021
  ident: 4369_CR96
  publication-title: Antioxidants
  doi: 10.3390/antiox10071012
– volume: 11
  year: 2020
  ident: 4369_CR230
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2020.592234
– volume: 7
  start-page: 623
  year: 2017
  ident: 4369_CR158
  publication-title: Compr Physiol
  doi: 10.1002/cphy.c160013
– volume: 10
  start-page: 347
  year: 2020
  ident: 4369_CR192
  publication-title: Biomolecules
  doi: 10.3390/biom10020347
– volume: 3
  start-page: 171
  year: 1964
  ident: 4369_CR19
  publication-title: Exp Mol Pathol
  doi: 10.1016/0014-4800(64)90050-4
– volume: 9
  start-page: 17821
  year: 2019
  ident: 4369_CR22
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-54822-7
– volume: 74
  start-page: 10
  year: 2020
  ident: 4369_CR266
  publication-title: Nutr Res
  doi: 10.1016/j.nutres.2019.11.004
– volume: 9
  year: 2021
  ident: 4369_CR171
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2021.765973
– volume: 10
  start-page: 665
  year: 2019
  ident: 4369_CR39
  publication-title: Front Physiol
  doi: 10.3389/fphys.2019.00665
– volume: 34
  start-page: 6284
  year: 2020
  ident: 4369_CR145
  publication-title: FASEB J
  doi: 10.1096/fj.201903051R
– volume: 2015
  start-page: 163
  issue: 119
  year: 1985
  ident: 4369_CR36
  publication-title: J Appl Physiol
– volume: 13
  start-page: 4385
  year: 2021
  ident: 4369_CR245
  publication-title: Nutrients
  doi: 10.3390/nu13124385
– volume: 36
  start-page: 454
  year: 2016
  ident: 4369_CR255
  publication-title: J Appl Toxicol
  doi: 10.1002/jat.3263
– volume: 8
  start-page: 680
  year: 2019
  ident: 4369_CR15
  publication-title: Cells
  doi: 10.3390/cells8070680
– volume: 394
  start-page: 393
  year: 2013
  ident: 4369_CR182
  publication-title: Biol Chem
  doi: 10.1515/hsz-2012-0247
– volume: 93
  year: 2021
  ident: 4369_CR83
  publication-title: J Nutr Biochem
  doi: 10.1016/j.jnutbio.2021.108619
– volume: 11
  start-page: 1345
  year: 2022
  ident: 4369_CR73
  publication-title: Cells
  doi: 10.3390/cells11081345
– volume: 73
  start-page: 950
  year: 2019
  ident: 4369_CR196
  publication-title: Eur J Clin Nutr
  doi: 10.1038/s41430-018-0381-x
– volume: 666
  start-page: 138
  year: 2019
  ident: 4369_CR274
  publication-title: Arch Biochem Biophys
  doi: 10.1016/j.abb.2018.12.015
– volume: 311
  year: 2022
  ident: 4369_CR82
  publication-title: Life Sci
  doi: 10.1016/j.lfs.2022.121197
– volume: 11
  start-page: 348
  year: 2020
  ident: 4369_CR270
  publication-title: J Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12536
– volume: 30
  start-page: 117
  year: 2016
  ident: 4369_CR88
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2016.02.003
– volume: 6
  start-page: 33944
  year: 2016
  ident: 4369_CR17
  publication-title: Sci Rep
  doi: 10.1038/srep33944
– volume: 11
  start-page: 303
  year: 2022
  ident: 4369_CR203
  publication-title: Antioxidants
  doi: 10.3390/antiox11020303
– volume: 2013
  start-page: 1482
  issue: 114
  year: 1985
  ident: 4369_CR56
  publication-title: J Appl Physiol
– volume: 322
  start-page: C164
  year: 2022
  ident: 4369_CR66
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.00344.2021
– volume: 11
  start-page: 1104
  year: 2020
  ident: 4369_CR77
  publication-title: J Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12560
– volume: 273
  start-page: 529
  year: 2013
  ident: 4369_CR141
  publication-title: J Intern Med
  doi: 10.1111/joim.12055
– volume: 42
  start-page: 53
  year: 2014
  ident: 4369_CR263
  publication-title: Exerc Sport Sci Rev
  doi: 10.1249/JES.0000000000000007
– volume: 19
  start-page: 103
  year: 2019
  ident: 4369_CR127
  publication-title: BMC Pulm Med
  doi: 10.1186/s12890-019-0826-6
– volume: 1867
  year: 2021
  ident: 4369_CR210
  publication-title: Biochim Biophys Acta Mol Basis Dis
  doi: 10.1016/j.bbadis.2020.166063
– volume: 132
  start-page: 58
  year: 2019
  ident: 4369_CR49
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2018.08.037
– volume: 317
  start-page: F941
  year: 2019
  ident: 4369_CR199
  publication-title: Am J Physiol Renal Physiol
  doi: 10.1152/ajprenal.00203.2019
– volume: 12
  start-page: 2016
  year: 2021
  ident: 4369_CR95
  publication-title: Aging Dis
  doi: 10.14336/AD.2021.0427
– volume: 9
  start-page: 325
  year: 2020
  ident: 4369_CR213
  publication-title: Age Muscle Metabo Cells
– volume: 293
  start-page: R1159
  year: 2007
  ident: 4369_CR151
  publication-title: Am J Physiol Regul Integr Comp Physiol
  doi: 10.1152/ajpregu.00767.2006
– volume: 15
  start-page: 1132
  year: 2016
  ident: 4369_CR139
  publication-title: Aging Cell
  doi: 10.1111/acel.12520
– volume: 119
  start-page: 315
  year: 2019
  ident: 4369_CR185
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-018-4039-0
– volume: 127
  start-page: 26
  year: 2019
  ident: 4369_CR109
  publication-title: Bone
  doi: 10.1016/j.bone.2019.05.021
– volume: 21
  start-page: 4759
  year: 2020
  ident: 4369_CR10
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21134759
– volume: 10
  start-page: 1269
  year: 2015
  ident: 4369_CR163
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2015.01.056
– volume: 15
  start-page: 240
  year: 2012
  ident: 4369_CR30
  publication-title: Curr Opin Clin Nutr Metab Care
  doi: 10.1097/MCO.0b013e328352b4c2
– volume: 1867
  year: 2020
  ident: 4369_CR67
  publication-title: Biochim Biophys Acta Mol Cell Res
  doi: 10.1016/j.bbamcr.2020.118742
– volume: 27
  start-page: 185
  year: 2017
  ident: 4369_CR146
  publication-title: Neuromuscul Disord
  doi: 10.1016/j.nmd.2016.10.007
– volume: 660
  start-page: 137
  year: 2018
  ident: 4369_CR226
  publication-title: Arch Biochem Biophys
  doi: 10.1016/j.abb.2018.10.013
– volume: 22
  start-page: 5179
  year: 2021
  ident: 4369_CR180
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22105179
– volume: 7
  start-page: 43949
  year: 2017
  ident: 4369_CR113
  publication-title: Sci Rep
  doi: 10.1038/srep43949
– volume: 9
  year: 2021
  ident: 4369_CR60
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2021.656604
– volume: 11
  start-page: 66
  year: 2021
  ident: 4369_CR50
  publication-title: Antioxidants
  doi: 10.3390/antiox11010066
– volume: 12
  start-page: 5977
  year: 2020
  ident: 4369_CR149
  publication-title: Aging
  doi: 10.18632/aging.102990
– volume: 23
  start-page: 7602
  year: 2022
  ident: 4369_CR177
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms23147602
– volume: 20
  start-page: 68
  year: 2019
  ident: 4369_CR234
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2018.09.018
– volume: 594
  start-page: 7361
  year: 2016
  ident: 4369_CR172
  publication-title: J Physiol
  doi: 10.1113/JP272487
– volume: 91
  start-page: 1085
  year: 2020
  ident: 4369_CR212
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp-2020-322949
– volume: 12
  start-page: 4029
  year: 2016
  ident: 4369_CR42
  publication-title: Exp Ther Med
  doi: 10.3892/etm.2016.3856
– volume: 431
  start-page: 2674
  year: 2019
  ident: 4369_CR190
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2019.05.032
– volume: 13
  year: 2022
  ident: 4369_CR242
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2022.859723
– volume: 8
  start-page: 2965
  year: 2017
  ident: 4369_CR84
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.8.002965
– volume: 2
  start-page: 18
  year: 2018
  ident: 4369_CR13
  publication-title: Biotarget
  doi: 10.21037/biotarget.2018.12.01
– volume: 18
  start-page: 33
  year: 2021
  ident: 4369_CR68
  publication-title: Nutr Metab (Lond)
  doi: 10.1186/s12986-021-00565-0
– volume: 62
  year: 2018
  ident: 4369_CR197
  publication-title: Mol Nutr Food Res
  doi: 10.1002/mnfr.201700941
– volume: 127
  start-page: 142
  year: 2019
  ident: 4369_CR227
  publication-title: Med Hypotheses
  doi: 10.1016/j.mehy.2019.04.015
SSID ssj0024549
Score 2.6732388
SecondaryResourceType review_article
Snippet Mitochondria play important roles in maintaining cellular homeostasis and skeletal muscle health, and damage to mitochondria can lead to a series of...
Abstract Mitochondria play important roles in maintaining cellular homeostasis and skeletal muscle health, and damage to mitochondria can lead to a series of...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 503
SubjectTerms 1-Phosphatidylinositol 3-kinase
Aging
AKT protein
Analysis
Antioxidants
Atrophy
Atrophy, Muscular
Autophagy
Biomedical and Life Sciences
Biomedicine
Care and treatment
Cell therapy
Cellular Metabolism Therapy
Denervation
Diagnosis
Drug therapy
Enzymes
Gene therapy
Homeostasis
Inflammation
Insulin-like growth factor I
Insulin-like growth factors
Kinases
Medicine/Public Health
Metabolism
Methods
Mitochondria
Mitochondrial DNA
Mitochondrial dysfunction
Molecular modelling
Muscle atrophy
Musculoskeletal system
NF-κB protein
Oxidation
Oxidative stress
Physiology, Pathological
Protein synthesis
Proteins
Proteolysis
Review
SIRT1 protein
Skeletal muscle
Smad2 protein
Stat3 protein
Stem cells
Therapy
TOR protein
Transforming growth factor-b
Transplantation
Tumor necrosis factor-TNF
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiEuqLwDBQUJiQNY9SaOH3AqiIoDrTgA6s3yK2JVSFGzW4n-emacZGmKgAvXtZO1P894vontzwBPA8Wwhpb83cIz0XDOtEuCRYlMTnHnVf7g9vm9OjzUR0fmw4WrvmhP2CAPPAC3G5omxNDq1ruAqZzS0ocmeumMT963-egeV2ZKpiaVPUx7piMyWu72GNVwQsD4xEhy3bDzWRjKav2_z8kXgtLlDZOXVk1zMNrfhhsjiyz3htbfhCupuwXXDsZ18tvw6gAdFSe2LpJ9lfFHT_GLxuBlSfsJ-3LZlf0xhhzk3uW3dY9vKemrOIJ-Bz7tv_345h0br0lgQSqxYiJxuj4jOWR-CFUT6-CdE8oJZ9xCtpp7brThOuioo9LIeVrlMe1T0Sun2voubHUnXboPpZZcCxKEV7Tm64NpK8onKm984E1KBSwm1GwYNcTpKouvNucSWtoBaYtI24y0PS_g-eaZ74OCxl9rv6bB2NQk9ev8A9qEHW3C_ssmCnhGQ2nJR7F5wY1HDbCTpHZl96hTBqkqL2BnVhN9K8yLJ2Owo2_3tkJAKuTFNRY_2RTTk7RfrUsna6ojkBsg9xQF3BtsZ9OlWmFSirS8AD2zqlmf5yXd8ktW_qZDnXWt8Y9fTAb4q11_BvXB_wD1IVyvsgMpVskd2FqdrtMjuBrOVsv-9HF2v59OgDQU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB5BF6G98H4EFhQkJA5g1c3DduCAFsQKJLrqAdBysmzHgWohXZoWif31zCROSxaxJ66102Y645lv7PE3AI8dxbCcjvzNxLIs55wp4zNWCkRykhsr2w23T-_l4aE6Oipm4Xp0E8oqe5_YOuqO7ZnqttEJj8uFox3zcaIQNyA2SfnLkx-MekjRWWtoqHERdoh4i49gZ_ZuOvu85d7DZKi_OKPEuMFYh24CoxYjIvaCnQ6CU8vh_7en_iNUnS2jPHOW2oaog6v_V7hrcCVA1Xi_s63rcMHXN-DyNBzG34QXU_QG6D3rkow4Ln81FCRJ0c9jKlps4nkdN8cY1xDgx9_XDX5LTFvvqNlb8PHgzYfXb1noxcCckNmKZZ5Tjw5vEF660uVl6qwxmTSZKcxEVIpbXqiCK6dKVUqFwKqSFnNLWVppZJXehlG9qP1diJXgKiPWeUkHy9YVVUJJS2IL63jufQSTXgnaBaJy6pfxTbcJixK6U5xGxelWcfo0gqebZ046mo5zZ78i3W5mEsV2-8Fi-UWHFatdnqOglaqscZnAZFtYFNsKU1hvbVVE8IQsQ5MjwNdzJtxnQCGJUkvvk1AF4mEewd5gJi5gNxzujUIHB9LorQ1E8GgzTE9SUVztF2uakyEAQYCbRXCnM8WNSKnEzBexfwRqYKQDmYcj9fxrSy9ON0fTVOEPP-vtefte__5T750vxn3YTdqVJlki9mC0Wq79A7jkfq7mzfJhWKm_Acu9TCQ
  priority: 102
  providerName: ProQuest
Title Mitochondrial dysfunction: roles in skeletal muscle atrophy
URI https://link.springer.com/article/10.1186/s12967-023-04369-z
https://www.ncbi.nlm.nih.gov/pubmed/37495991
https://www.proquest.com/docview/2852292330
https://www.proquest.com/docview/2843033924
https://pubmed.ncbi.nlm.nih.gov/PMC10373380
https://doaj.org/article/c55cdcf8fbac469786bc5db6a9bebbf9
Volume 21
WOSCitedRecordID wos001037748900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: RBZ
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: DOA
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: M~E
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: RSV
  dateStart: 20030601
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xDaG98M0IjCpISDxARJo4_oCnDW0CiVYVH1N5smzHgQpIUdMisb-eOzfpyPiQ4KVS63OTO9_5fuezzwAPHPmwglL-ZmgTVqRpIo1nSckRyYnUWBEW3E5eifFYTqdq0h4Ka7rd7l1KMszUwawlf9KgZ0KjRh-TUNl0lZxuwU5B1WYoRn9zclZhD0Oe7njMb_v1XFCo1P_rfPyTQzq_WfJcxjQ4ouMr_8fCVbjcAs_4YK0p1-CCr6_DpVGbWr8Bz0Zo2zgX1iWpZFx-b8jl0bA9jWkLYhPP6rj5hF4K4Xr8ZdXgv8S0kI7jdBPeHR-9ff4iaW9WSBwXbJkwn9KNG94gWHSlK8rcWWOYMMwoM-SVTG2qpEqlk6UshUSYVAmLkaIorTCiym_Bdj2v_W2IJU8loxrygtLE1qkqoxAks8q6tPA-gmEnbO3asuN0-8VnHcIPyfVaKhqlooNU9GkEjzZ9vq6LbvyV-pDGcENJBbPDD_PFB93an3ZFgYxWsrLGMY6hM7fItuVGWW9tpSJ4SBqgyazx9ZxpTycgk1QgSx8QUwrRbRrBfo8SzdH1mzsd0u100OgMBZIhlM6x-f6mmXrSFrfaz1dEwxBOIFxlEeytVW7DUi4wjkUkH4HsKWOP535LPfsYioXTOdA8l_jgx51Onr3Xn4V659_I78JuFtRaJBnfh-3lYuXvwUX3bTlrFgPYElMRPuUAdg6PxpPXg7D4gd8mL0eT94NgwT8AJVg8ZQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAEX3g9DASOBOIDVjV-7C0KoPKpGTaIcCiqnZXe9hghwSpyA2h_Fb2TGsRNcRG89cM2unR37m_lmPLszAA8tcVhCKX_dNUGcMBYI7eIgS9GT40wbXn1we9_nw6HY35ejNfjVnIWhbZWNTawMdTax9I18MxToKaA3ErGXB98D6hpF2dWmhcYCFrvu8CeGbOWL3ht8v4_CcPvt3uudoO4qENiUx7Mgdoy6TTiNjpLNbJJF1mgdcx1rqbtpLphhUkgmrMhExgW6CDk3GCXxzHDN8wjvewbWYwQ768D6qDcYfVhV98NwqzmaI9LNEtkUDRHyYkCl3mVw1KK_qkvA31zwBxke36h5LFtbkeD2pf_t8V2Gi7W77W8t9OMKrLniKpwb1BsKrsHzAVo0ZIAiI0X0s8OSiJ7A-synjZelPy788gtyMwYp_rd5iXfxKX2A6LwO705l6TegU0wKdwt8kTIRU-V8TslxY2UeUuAVGmksS5zzoNu8ZmXrYuvU8-OrqoIukaoFNBRCQ1XQUEcePFlec7AoNXLi7FeEnuVMKhNe_TCZflK11VE2SVDQXORG2ziVXKQGxTaplsYZk0sPHhP2FBkzXJ7V9ZkMFJLKgqktEkqiT8882GjNRCNk28MN7FRtBEu1wpwHD5bDdCVt7CvcZE5zYnSi0EmPPbi5APtSpIhj9I7xiweipQYtmdsjxfhzVSKdTr9GkcA_ftpozGpd_36ot08W4z6c39kb9FW_N9y9AxfCSq95EKYb0JlN5-4unLU_ZuNyeq-2Cz58PG1d-g21jZ3f
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BQRUv3EegQJCQeICo3sSxHXgqxwpEu6o4qr5ZtuPQVSFbbXaR6K9nxkm2TTkkxOvazmbGM55vMocBHjuyYTmF_M3IJjxnLFHG86QUiOQkM1aGD25723IyUfv7xe6pKv6Q7d6HJNuaBurSVC82j8qqVXElNhu0UqjgaG8SaqFeJMfn4QJHT4aSuj583DvptofuT18q89t1A3MUuvb_ejafMk5nEyfPRE-DURpf-X9yrsLlDpDGW60EXYNzvr4O6ztdyP0GvNhBncczsi5JVOPyR0OmkLbzeUypiU08rePmEK0Xwvj427LBp8T0gR337yZ8Hr_59Opt0t24kDgh-SLhntFNHN4giHSly8vMWWO4NNwUZiQqxSwrVMGUU6UqpUL4VEmLfJellUZW2S1Yq2e1vwOxEkxx6i0vKXxsXVGl5JqktrCO5d5HMOoZr13Xjpxuxfiqg1uihG65opErOnBFH0fwdLXmqG3G8dfZL2k_VzOpkXb4YTb_oju91C7PkdBKVdY4LtClFhbJtsIU1ltbFRE8IWnQpO74es50VQtIJDXO0ltEVIGol0WwMZiJauqGw7086e6YaHSKDEkRYmc4_Gg1TCsp9a32syXN4QgzEMbyCG634rciKZPo3yLCj0ANBHNA83Cknh6EJuJUH5plCv_4WS-fJ-_1Z6be_bfpD2F99_VYb7-bvL8Hl9Ig4TJJxQasLeZLfx8uuu-LaTN_ENT2J4pjQh0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+dysfunction%3A+roles+in+skeletal+muscle+atrophy&rft.jtitle=Journal+of+translational+medicine&rft.au=Chen%2C+Xin&rft.au=Ji%2C+Yanan&rft.au=Liu%2C+Ruiqi&rft.au=Zhu%2C+Xucheng&rft.date=2023-07-26&rft.pub=BioMed+Central&rft.eissn=1479-5876&rft.volume=21&rft_id=info:doi/10.1186%2Fs12967-023-04369-z&rft_id=info%3Apmid%2F37495991&rft.externalDocID=PMC10373380
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1479-5876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1479-5876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1479-5876&client=summon