Bayesian density regression
The paper considers Bayesian methods for density regression, allowing a random probability distribution to change flexibly with multiple predictors. The conditional response distribution is expressed as a non-parametric mixture of regression models, with the mixture distribution changing with predic...
Uloženo v:
| Vydáno v: | Journal of the Royal Statistical Society. Series B, Statistical methodology Ročník 69; číslo 2; s. 163 - 183 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford, UK
Blackwell Publishing Ltd
01.04.2007
Blackwell Publishers Blackwell Royal Statistical Society Oxford University Press |
| Edice: | Journal of the Royal Statistical Society Series B |
| Témata: | |
| ISSN: | 1369-7412, 1467-9868 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The paper considers Bayesian methods for density regression, allowing a random probability distribution to change flexibly with multiple predictors. The conditional response distribution is expressed as a non-parametric mixture of regression models, with the mixture distribution changing with predictors. A class of weighted mixture of Dirichlet process priors is proposed for the uncountable collection of mixture distributions. It is shown that this specification results in a generalized Pólya urn scheme, which incorporates weights that are dependent on the distance between subjects' predictor values. To allow local dependence in the mixture distributions, we propose a kernel-based weighting scheme. A Gibbs sampling algorithm is developed for posterior computation. The methods are illustrated by using simulated data examples and an epidemiologic application. |
|---|---|
| Bibliografie: | ArticleID:RSSB582 ark:/67375/WNG-DXRGW1V3-8 istex:C2C1437ED99BF758140106FD47F4B33C65C90234 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| ISSN: | 1369-7412 1467-9868 |
| DOI: | 10.1111/j.1467-9868.2007.00582.x |