Many-core algorithms for statistical phylogenetics

Motivation: Statistical phylogenetics is computationally intensive, resulting in considerable attention meted on techniques for parallelization. Codon-based models allow for independent rates of synonymous and replacement substitutions and have the potential to more adequately model the process of p...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics Vol. 25; no. 11; pp. 1370 - 1376
Main Authors: Suchard, Marc A., Rambaut, Andrew
Format: Journal Article
Language:English
Published: Oxford Oxford University Press 01.06.2009
Oxford Publishing Limited (England)
Subjects:
ISSN:1367-4803, 1367-4811, 1460-2059, 1367-4811
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Motivation: Statistical phylogenetics is computationally intensive, resulting in considerable attention meted on techniques for parallelization. Codon-based models allow for independent rates of synonymous and replacement substitutions and have the potential to more adequately model the process of protein-coding sequence evolution with a resulting increase in phylogenetic accuracy. Unfortunately, due to the high number of codon states, computational burden has largely thwarted phylogenetic reconstruction under codon models, particularly at the genomic-scale. Here, we describe novel algorithms and methods for evaluating phylogenies under arbitrary molecular evolutionary models on graphics processing units (GPUs), making use of the large number of processing cores to efficiently parallelize calculations even for large state-size models. Results: We implement the approach in an existing Bayesian framework and apply the algorithms to estimating the phylogeny of 62 complete mitochondrial genomes of carnivores under a 60-state codon model. We see a near 90-fold speed increase over an optimized CPU-based computation and a >140-fold increase over the currently available implementation, making this the first practical use of codon models for phylogenetic inference over whole mitochondrial or microorganism genomes. Availability and implementation: Source code provided in BEAGLE: Broad-platform Evolutionary Analysis General Likelihood Evaluator, a cross-platform/processor library for phylogenetic likelihood computation (http://beagle-lib.googlecode.com/). We employ a BEAGLE-implementation using the Bayesian phylogenetics framework BEAST (http://beast.bio.ed.ac.uk/). Contact: msuchard@ucla.edu; a.rambaut@ed.ac.uk
AbstractList Statistical phylogenetics is computationally intensive, resulting in considerable attention meted on techniques for parallelization. Codon-based models allow for independent rates of synonymous and replacement substitutions and have the potential to more adequately model the process of protein-coding sequence evolution with a resulting increase in phylogenetic accuracy. Unfortunately, due to the high number of codon states, computational burden has largely thwarted phylogenetic reconstruction under codon models, particularly at the genomic-scale. Here, we describe novel algorithms and methods for evaluating phylogenies under arbitrary molecular evolutionary models on graphics processing units (GPUs), making use of the large number of processing cores to efficiently parallelize calculations even for large state-size models.MOTIVATIONStatistical phylogenetics is computationally intensive, resulting in considerable attention meted on techniques for parallelization. Codon-based models allow for independent rates of synonymous and replacement substitutions and have the potential to more adequately model the process of protein-coding sequence evolution with a resulting increase in phylogenetic accuracy. Unfortunately, due to the high number of codon states, computational burden has largely thwarted phylogenetic reconstruction under codon models, particularly at the genomic-scale. Here, we describe novel algorithms and methods for evaluating phylogenies under arbitrary molecular evolutionary models on graphics processing units (GPUs), making use of the large number of processing cores to efficiently parallelize calculations even for large state-size models.We implement the approach in an existing Bayesian framework and apply the algorithms to estimating the phylogeny of 62 complete mitochondrial genomes of carnivores under a 60-state codon model. We see a near 90-fold speed increase over an optimized CPU-based computation and a >140-fold increase over the currently available implementation, making this the first practical use of codon models for phylogenetic inference over whole mitochondrial or microorganism genomes.RESULTSWe implement the approach in an existing Bayesian framework and apply the algorithms to estimating the phylogeny of 62 complete mitochondrial genomes of carnivores under a 60-state codon model. We see a near 90-fold speed increase over an optimized CPU-based computation and a >140-fold increase over the currently available implementation, making this the first practical use of codon models for phylogenetic inference over whole mitochondrial or microorganism genomes.Source code provided in BEAGLE: Broad-platform Evolutionary Analysis General Likelihood Evaluator, a cross-platform/processor library for phylogenetic likelihood computation (http://beagle-lib.googlecode.com/). We employ a BEAGLE-implementation using the Bayesian phylogenetics framework BEAST (http://beast.bio.ed.ac.uk/).AVAILABILITY AND IMPLEMENTATIONSource code provided in BEAGLE: Broad-platform Evolutionary Analysis General Likelihood Evaluator, a cross-platform/processor library for phylogenetic likelihood computation (http://beagle-lib.googlecode.com/). We employ a BEAGLE-implementation using the Bayesian phylogenetics framework BEAST (http://beast.bio.ed.ac.uk/).
Motivation: Statistical phylogenetics is computationally intensive, resulting in considerable attention meted on techniques for parallelization. Codon-based models allow for independent rates of synonymous and replacement substitutions and have the potential to more adequately model the process of protein-coding sequence evolution with a resulting increase in phylogenetic accuracy. Unfortunately, due to the high number of codon states, computational burden has largely thwarted phylogenetic reconstruction under codon models, particularly at the genomic-scale. Here, we describe novel algorithms and methods for evaluating phylogenies under arbitrary molecular evolutionary models on graphics processing units (GPUs), making use of the large number of processing cores to efficiently parallelize calculations even for large state-size models.Results: We implement the approach in an existing Bayesian framework and apply the algorithms to estimating the phylogeny of 62 complete mitochondrial genomes of carnivores under a 60-state codon model. We see a near 90-fold speed increase over an optimized CPU-based computation and a > 140-fold increase over the currently available implementation, making this the first practical use of codon models for phylogenetic inference over whole mitochondrial or microorganism genomes.Availability and implementation: Source code provided in BEAGLE: Broad-platform Evolutionary Analysis General Likelihood Evaluator, a cross-platform/processor library for phylogenetic likelihood computation (http://beagle-lib.googlecode.com/). We employ a BEAGLE-implementation using the Bayesian phylogenetics framework BEAST (http://beast.bio.ed.ac.uk/).Contact: msuchardatucla.edu; a.rambautated.ac.uk
Motivation: Statistical phylogenetics is computationally intensive, resulting in considerable attention meted on techniques for parallelization. Codon-based models allow for independent rates of synonymous and replacement substitutions and have the potential to more adequately model the process of protein-coding sequence evolution with a resulting increase in phylogenetic accuracy. Unfortunately, due to the high number of codon states, computational burden has largely thwarted phylogenetic reconstruction under codon models, particularly at the genomic-scale. Here, we describe novel algorithms and methods for evaluating phylogenies under arbitrary molecular evolutionary models on graphics processing units (GPUs), making use of the large number of processing cores to efficiently parallelize calculations even for large state-size models. Results: We implement the approach in an existing Bayesian framework and apply the algorithms to estimating the phylogeny of 62 complete mitochondrial genomes of carnivores under a 60-state codon model. We see a near 90-fold speed increase over an optimized CPU-based computation and a >140-fold increase over the currently available implementation, making this the first practical use of codon models for phylogenetic inference over whole mitochondrial or microorganism genomes. Availability and implementation: Source code provided in BEAGLE: Broad-platform Evolutionary Analysis General Likelihood Evaluator, a cross-platform/processor library for phylogenetic likelihood computation (http://beagle-lib.googlecode.com/). We employ a BEAGLE-implementation using the Bayesian phylogenetics framework BEAST (http://beast.bio.ed.ac.uk/). Contact: msuchard@ucla.edu; a.rambaut@ed.ac.uk
Motivation: Statistical phylogenetics is computationally intensive, resulting in considerable attention meted on techniques for parallelization. Codon-based models allow for independent rates of synonymous and replacement substitutions and have the potential to more adequately model the process of protein-coding sequence evolution with a resulting increase in phylogenetic accuracy. Unfortunately, due to the high number of codon states, computational burden has largely thwarted phylogenetic reconstruction under codon models, particularly at the genomic-scale. Here, we describe novel algorithms and methods for evaluating phylogenies under arbitrary molecular evolutionary models on graphics processing units (GPUs), making use of the large number of processing cores to efficiently parallelize calculations even for large state-size models. Results: We implement the approach in an existing Bayesian framework and apply the algorithms to estimating the phylogeny of 62 complete mitochondrial genomes of carnivores under a 60-state codon model. We see a near 90-fold speed increase over an optimized CPU-based computation and a >140-fold increase over the currently available implementation, making this the first practical use of codon models for phylogenetic inference over whole mitochondrial or microorganism genomes. Availability and implementation: Source code provided in BEAGLE: Broad-platform Evolutionary Analysis General Likelihood Evaluator, a cross-platform/processor library for phylogenetic likelihood computation (http://beagle-lib.googlecode.com/). We employ a BEAGLE-implementation using the Bayesian phylogenetics framework BEAST (http://beast.bio.ed.ac.uk/). Contact:  msuchard@ucla.edu; a.rambaut@ed.ac.uk
Statistical phylogenetics is computationally intensive, resulting in considerable attention meted on techniques for parallelization. Codon-based models allow for independent rates of synonymous and replacement substitutions and have the potential to more adequately model the process of protein-coding sequence evolution with a resulting increase in phylogenetic accuracy. Unfortunately, due to the high number of codon states, computational burden has largely thwarted phylogenetic reconstruction under codon models, particularly at the genomic-scale. Here, we describe novel algorithms and methods for evaluating phylogenies under arbitrary molecular evolutionary models on graphics processing units (GPUs), making use of the large number of processing cores to efficiently parallelize calculations even for large state-size models. We implement the approach in an existing Bayesian framework and apply the algorithms to estimating the phylogeny of 62 complete mitochondrial genomes of carnivores under a 60-state codon model. We see a near 90-fold speed increase over an optimized CPU-based computation and a >140-fold increase over the currently available implementation, making this the first practical use of codon models for phylogenetic inference over whole mitochondrial or microorganism genomes. Source code provided in BEAGLE: Broad-platform Evolutionary Analysis General Likelihood Evaluator, a cross-platform/processor library for phylogenetic likelihood computation (http://beagle-lib.googlecode.com/). We employ a BEAGLE-implementation using the Bayesian phylogenetics framework BEAST (http://beast.bio.ed.ac.uk/).
Motivation: Statistical phylogenetics is computationally intensive, resulting in considerable attention meted on techniques for parallelization. Codon-based models allow for independent rates of synonymous and replacement substitutions and have the potential to more adequately model the process of protein-coding sequence evolution with a resulting increase in phylogenetic accuracy. Unfortunately, due to the high number of codon states, computational burden has largely thwarted phylogenetic reconstruction under codon models, particularly at the genomic-scale. Here, we describe novel algorithms and methods for evaluating phylogenies under arbitrary molecular evolutionary models on graphics processing units (GPUs), making use of the large number of processing cores to efficiently parallelize calculations even for large state-size models. Results: We implement the approach in an existing Bayesian framework and apply the algorithms to estimating the phylogeny of 62 complete mitochondrial genomes of carnivores under a 60-state codon model. We see a near 90-fold speed increase over an optimized CPU-based computation and a >140-fold increase over the currently available implementation, making this the first practical use of codon models for phylogenetic inference over whole mitochondrial or microorganism genomes. Availability and implementation: Source code provided in BEAGLE: Broad-platform Evolutionary Analysis General Likelihood Evaluator, a cross-platform/processor library for phylogenetic likelihood computation (http://beagle-lib.googlecode.com/). We employ a BEAGLE-implementation using the Bayesian phylogenetics framework BEAST (http://beast.bio.ed.ac.uk/). Contact: msuchard@ucla.edu; a.rambaut@ed.ac.uk
Author Suchard, Marc A.
Rambaut, Andrew
AuthorAffiliation 1 Department of Biomathematics, 2 Department of Biostatistics, 3 Department of Human Genetics, University of California, Los Angeles, CA 90095, USA and 4 Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JT, UK
AuthorAffiliation_xml – name: 1 Department of Biomathematics, 2 Department of Biostatistics, 3 Department of Human Genetics, University of California, Los Angeles, CA 90095, USA and 4 Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JT, UK
Author_xml – sequence: 1
  givenname: Marc A.
  surname: Suchard
  fullname: Suchard, Marc A.
  organization: Department of Biomathematics, Department of Biostatistics, Department of Human Genetics, University of California, Los Angeles, CA 90095, USA and Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JT, UK
– sequence: 2
  givenname: Andrew
  surname: Rambaut
  fullname: Rambaut, Andrew
  organization: Department of Biomathematics, Department of Biostatistics, Department of Human Genetics, University of California, Los Angeles, CA 90095, USA and Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JT, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21473689$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19369496$$D View this record in MEDLINE/PubMed
BookMark eNqNkl9rFDEUxYNUbLv6EZRFsG9jM0kmfxAKUtQKbfWhqPgSMplkN3UmGZOZ4n57M8y62r6sDyGBnPO73HvuMTjwwRsAnpfwdQkFPq1dcN6G2KnB6XRaDz0i5BE4KgmFBYKVOMhvTFlBOMSH4DilWwirkhDyBByWAlNBBD0C6Er5TaFDNEvVrkJ0w7pLy8xdpiGTU4ardtmvN21YGW-mWk_BY6vaZJ5t7wW4ef_u5vyiuPz04eP528tCU4aHwgrNkBKC1NxSAytuG1UZDA1TBnFqoeIUE9UwhEitm0YJaIlguK4MUVbhBTibsf1Yd6bRxg9RtbKPrlNxI4Ny8v6Pd2u5CncSUY4qVGXAyRYQw8_RpEF2LmnTtsqbMCZJGaIEif1CTPLcMCv3ChGkFIt8FuDlA-FtGKPP05Kl4JSSXDeLXvzb4K6zP-FkwautQKWcgo3Ka5d2OlQShimfQNWs0zGkFI39i4JyWhZ5f1nkvCzZ9-aBT7sp9DDN07V73XB2h7H_74LFbMl7ZX7tTCr-yGFgVsmLb9_ll2v-mV7xr_Ia_wZtn-5J
CODEN BOINFP
CitedBy_id crossref_primary_10_1099_jgv_0_000924
crossref_primary_10_1371_journal_pone_0106045
crossref_primary_10_3389_fmicb_2020_589937
crossref_primary_10_1038_nrg3186
crossref_primary_10_1214_10_STS336
crossref_primary_10_1371_journal_pone_0178578
crossref_primary_10_1371_journal_ppat_1007976
crossref_primary_10_1002_ajb2_1364
crossref_primary_10_1093_ve_vex032
crossref_primary_10_1080_10618600_2012_723569
crossref_primary_10_3390_pathogens5040061
crossref_primary_10_1111_syen_12197
crossref_primary_10_1371_journal_pone_0239809
crossref_primary_10_1371_journal_pone_0298599
crossref_primary_10_1093_g3journal_jkab136
crossref_primary_10_1097_QAI_0000000000001156
crossref_primary_10_3201_eid2108_141891
crossref_primary_10_1016_j_ympev_2019_106555
crossref_primary_10_1016_j_meegid_2016_05_040
crossref_primary_10_1111_gcb_70354
crossref_primary_10_1016_j_meegid_2014_01_026
crossref_primary_10_1371_journal_ppat_1013168
crossref_primary_10_1088_1755_1315_430_1_012019
crossref_primary_10_1038_ncomms7696
crossref_primary_10_1080_14772019_2021_1910583
crossref_primary_10_1038_s41591_021_01378_7
crossref_primary_10_1093_sysbio_syr065
crossref_primary_10_1093_biolinnean_blx026
crossref_primary_10_1007_s10750_020_04273_3
crossref_primary_10_1002_tax_12498
crossref_primary_10_1093_molbev_msr170
crossref_primary_10_1002_jmv_26333
crossref_primary_10_12705_666_6
crossref_primary_10_1016_j_compbiolchem_2012_06_004
crossref_primary_10_4137_EBO_S2765
crossref_primary_10_1016_j_parco_2011_08_002
crossref_primary_10_1111_tbed_14117
crossref_primary_10_1198_jcgs_2010_10039
crossref_primary_10_1016_j_ympev_2019_05_007
crossref_primary_10_1016_j_ibmb_2015_09_003
crossref_primary_10_7554_eLife_16777
crossref_primary_10_1111_syen_12537
crossref_primary_10_3201_eid2503_180779
crossref_primary_10_1093_zoolinnean_zlaf108
crossref_primary_10_1086_677948
crossref_primary_10_1016_j_meegid_2016_08_024
crossref_primary_10_1109_TCBB_2011_68
crossref_primary_10_1093_sysbio_syae005
crossref_primary_10_1038_s41598_020_59880_w
crossref_primary_10_1007_s10531_018_1604_0
crossref_primary_10_1080_10618600_2020_1754226
crossref_primary_10_1016_j_ympev_2021_107127
crossref_primary_10_1534_genetics_114_164269
crossref_primary_10_1016_j_renene_2023_119790
crossref_primary_10_1038_s41598_025_03022_7
crossref_primary_10_1016_j_tree_2010_06_007
crossref_primary_10_1093_molbev_msr266
crossref_primary_10_1093_molbev_msv185
crossref_primary_10_1101_gr_168997_113
crossref_primary_10_1371_journal_pcbi_1000505
crossref_primary_10_1093_jmammal_gyae129
crossref_primary_10_1016_j_jocs_2010_03_006
crossref_primary_10_1007_s00606_019_01588_0
crossref_primary_10_1016_j_meegid_2019_104129
crossref_primary_10_1016_j_jpdc_2018_12_006
crossref_primary_10_1371_journal_ppat_1001166
crossref_primary_10_3390_v14071477
crossref_primary_10_1111_mec_12728
crossref_primary_10_1128_JVI_02341_12
crossref_primary_10_3390_v14091901
crossref_primary_10_1080_10618600_2015_1037883
crossref_primary_10_1128_JVI_00565_12
crossref_primary_10_1016_j_ympev_2023_107710
crossref_primary_10_1038_s41598_023_48112_6
crossref_primary_10_1186_1741_7007_11_76
crossref_primary_10_1198_jcgs_2010_10016
crossref_primary_10_1007_s00894_014_2067_1
crossref_primary_10_1038_s41467_023_39950_z
crossref_primary_10_1016_j_meegid_2011_04_028
crossref_primary_10_1080_14772000_2014_968236
crossref_primary_10_1002_jmv_25701
crossref_primary_10_1038_s41598_021_00795_5
crossref_primary_10_1093_sysbio_syr131
crossref_primary_10_1097_QAD_0000000000002817
crossref_primary_10_1016_j_ins_2013_11_028
crossref_primary_10_1093_sysbio_syp076
crossref_primary_10_1371_journal_pntd_0002769
crossref_primary_10_1093_ve_veae027
crossref_primary_10_1093_sysbio_syae020
crossref_primary_10_1086_709372
crossref_primary_10_1128_spectrum_01193_24
crossref_primary_10_1093_ve_vew023
crossref_primary_10_1093_sysbio_syae019
crossref_primary_10_1371_journal_pone_0238995
crossref_primary_10_1111_1755_0998_13453
crossref_primary_10_7717_peerj_9473
crossref_primary_10_1097_QAD_0000000000000770
crossref_primary_10_1002_sam_11280
crossref_primary_10_1128_JVI_01080_14
crossref_primary_10_1186_s12985_021_01573_5
crossref_primary_10_1186_1471_2105_11_184
crossref_primary_10_3201_eid2504_180779
crossref_primary_10_1371_journal_pntd_0005694
crossref_primary_10_3767_persoonia_2024_52_03
crossref_primary_10_1002_ece3_4451
crossref_primary_10_1128_spectrum_03709_23
crossref_primary_10_1128_jvi_01575_24
crossref_primary_10_1016_j_epidem_2014_09_001
crossref_primary_10_1371_journal_pone_0098908
crossref_primary_10_1038_s41467_023_44085_2
crossref_primary_10_1002_jmv_25731
crossref_primary_10_1016_j_toxicon_2018_03_013
crossref_primary_10_1186_s12862_017_0913_3
crossref_primary_10_1016_j_lanwpc_2021_100259
crossref_primary_10_1093_molbev_msp285
crossref_primary_10_1038_s41598_017_07873_7
crossref_primary_10_1016_j_meegid_2013_03_051
crossref_primary_10_7717_peerj_6511
crossref_primary_10_3389_fmicb_2022_992640
crossref_primary_10_1093_sysbio_syw054
crossref_primary_10_1002_cpe_4046
crossref_primary_10_1016_j_pld_2023_08_004
crossref_primary_10_1038_srep33971
crossref_primary_10_1186_s12898_020_00298_3
crossref_primary_10_1093_infdis_jiv399
crossref_primary_10_1371_journal_pone_0028199
crossref_primary_10_1371_journal_pone_0218348
crossref_primary_10_1073_pnas_1206598109
crossref_primary_10_1371_journal_pcbi_1003537
crossref_primary_10_3389_fmicb_2022_835443
crossref_primary_10_1145_2460216_2460226
crossref_primary_10_1016_j_ympev_2017_01_008
crossref_primary_10_1038_nrg3226
crossref_primary_10_1093_molbev_msu185
crossref_primary_10_1016_j_jfma_2018_01_019
crossref_primary_10_7717_peerj_16690
crossref_primary_10_1097_QAD_0000000000000552
crossref_primary_10_1111_j_1365_294X_2010_04690_x
crossref_primary_10_5812_ircmj_34609
crossref_primary_10_1038_nature19827
crossref_primary_10_1186_s12862_016_0824_8
crossref_primary_10_3103_S0095452712030048
crossref_primary_10_1007_s12539_010_0002_4
crossref_primary_10_1016_j_virol_2016_08_035
crossref_primary_10_1371_journal_pone_0110268
crossref_primary_10_1126_science_aau0236
crossref_primary_10_1128_JVI_00459_15
crossref_primary_10_1099_vir_0_038638_0
crossref_primary_10_1099_mgen_0_000057
crossref_primary_10_3390_v11111000
crossref_primary_10_3389_fmicb_2019_00097
crossref_primary_10_1080_14772000_2021_1943559
crossref_primary_10_1080_21564574_2024_2375496
crossref_primary_10_3390_d16070381
crossref_primary_10_1080_01621459_2014_914439
crossref_primary_10_1371_journal_pone_0127384
crossref_primary_10_1093_ve_vev016
crossref_primary_10_1111_tbed_14503
crossref_primary_10_1080_10618600_2015_1035724
crossref_primary_10_1371_journal_pone_0221678
crossref_primary_10_1016_j_tree_2009_09_007
crossref_primary_10_1038_s41467_019_13287_y
crossref_primary_10_3389_fmicb_2022_811318
crossref_primary_10_1093_molbev_msaa136
crossref_primary_10_1145_2414416_2414791
crossref_primary_10_1038_s41467_023_39216_8
crossref_primary_10_1093_ve_veab072
crossref_primary_10_1093_sysbio_syr100
crossref_primary_10_1186_1471_2105_12_63
crossref_primary_10_3897_zookeys_1121_85693
crossref_primary_10_1007_s13127_020_00468_7
crossref_primary_10_1371_journal_pone_0188430
crossref_primary_10_1093_jhered_esae001
crossref_primary_10_1038_s41426_018_0107_0
crossref_primary_10_1038_s41598_020_66287_0
crossref_primary_10_1126_science_1256739
crossref_primary_10_1111_j_1755_0998_2011_03026_x
crossref_primary_10_1146_annurev_statistics_033021_112532
crossref_primary_10_3389_fmicb_2021_673855
crossref_primary_10_1038_srep35822
crossref_primary_10_1111_nph_15784
crossref_primary_10_1007_s10914_024_09732_5
crossref_primary_10_1371_journal_pone_0088901
crossref_primary_10_1002_ajpa_23450
crossref_primary_10_1093_ve_veae009
crossref_primary_10_1099_mgen_0_001172
crossref_primary_10_1016_j_meegid_2016_06_012
crossref_primary_10_1016_j_meegid_2014_07_014
crossref_primary_10_1016_j_ympev_2015_08_026
crossref_primary_10_1111_j_1365_294X_2010_04737_x
crossref_primary_10_1186_1471_2105_11_379
crossref_primary_10_1002_tax_12648
crossref_primary_10_1186_s12862_015_0410_5
crossref_primary_10_1371_journal_pone_0220342
crossref_primary_10_1093_molbev_mss075
crossref_primary_10_1080_03079457_2023_2236568
crossref_primary_10_1093_sysbio_syaa037
crossref_primary_10_1111_1365_2435_13956
crossref_primary_10_1371_journal_pone_0162112
crossref_primary_10_1371_journal_pone_0156499
crossref_primary_10_3389_fmicb_2018_01738
crossref_primary_10_3390_ani14070993
crossref_primary_10_1186_s12866_016_0717_4
crossref_primary_10_1111_zph_12370
crossref_primary_10_1038_nrg2583
crossref_primary_10_1089_aid_2015_0183
crossref_primary_10_1098_rspb_2017_0919
crossref_primary_10_1038_ncomms11448
crossref_primary_10_1080_10618600_2012_760460
crossref_primary_10_1186_1471_2105_14_25
crossref_primary_10_1007_s11557_025_02081_4
crossref_primary_10_1097_QAD_0000000000001325
crossref_primary_10_1016_j_ijbiomac_2018_12_186
crossref_primary_10_1128_JVI_01457_16
crossref_primary_10_1007_s11557_016_1204_x
crossref_primary_10_1111_njb_03238
crossref_primary_10_1139_gen_2015_0163
crossref_primary_10_1128_spectrum_01427_22
crossref_primary_10_1016_j_virusres_2020_198098
crossref_primary_10_1371_journal_pone_0050358
crossref_primary_10_3389_fevo_2023_1169911
crossref_primary_10_3390_microorganisms9010040
crossref_primary_10_1093_zoolinnean_zlae151
crossref_primary_10_1007_s11557_015_1148_6
crossref_primary_10_1002_ece3_70422
crossref_primary_10_1016_j_ympev_2017_08_006
crossref_primary_10_1016_j_ympev_2016_01_018
crossref_primary_10_1080_14772000_2023_2228326
crossref_primary_10_1016_j_virol_2014_05_025
crossref_primary_10_1093_sysbio_sys076
crossref_primary_10_1038_s41598_018_35622_x
crossref_primary_10_1093_molbev_msq326
crossref_primary_10_1007_s11227_013_0911_1
crossref_primary_10_1534_g3_117_300103
crossref_primary_10_3897_asp_83_e138238
crossref_primary_10_1099_mgen_0_000141
crossref_primary_10_1093_sysbio_syu015
crossref_primary_10_1007_s00606_020_01727_y
crossref_primary_10_1002_cpe_2925
crossref_primary_10_1016_j_meegid_2017_06_021
crossref_primary_10_1093_ve_vez023
crossref_primary_10_1007_s11262_022_01903_x
crossref_primary_10_1099_jgv_0_001033
crossref_primary_10_3389_fphys_2022_861620
crossref_primary_10_1080_10618600_2012_657144
crossref_primary_10_1093_sysbio_syz020
crossref_primary_10_1371_journal_pone_0036865
crossref_primary_10_1371_journal_ppat_1002077
crossref_primary_10_3109_19401736_2010_494727
crossref_primary_10_1186_1756_0500_5_116
crossref_primary_10_1111_jse_12233
crossref_primary_10_1371_journal_pone_0203916
crossref_primary_10_1016_j_ympev_2016_07_025
crossref_primary_10_1016_j_meegid_2016_05_017
crossref_primary_10_7717_peerj_17276
crossref_primary_10_1089_aid_2015_0155
crossref_primary_10_1007_s11222_020_09980_4
crossref_primary_10_3389_fcimb_2025_1575538
crossref_primary_10_1016_j_meegid_2016_09_025
crossref_primary_10_1002_jmv_25693
crossref_primary_10_3390_v12020182
crossref_primary_10_1128_spectrum_02366_21
crossref_primary_10_1128_spectrum_02641_21
crossref_primary_10_1371_journal_pntd_0007910
crossref_primary_10_1007_s11222_010_9178_z
crossref_primary_10_1007_s00239_020_09982_w
crossref_primary_10_3390_v11080690
crossref_primary_10_1071_SB24027
crossref_primary_10_1093_ve_veaa081
crossref_primary_10_1128_JVI_03118_12
crossref_primary_10_1016_j_cub_2011_05_058
crossref_primary_10_3390_v11100909
crossref_primary_10_1186_1471_2105_11_329
crossref_primary_10_1111_jfb_15777
crossref_primary_10_1093_mollus_eyw011
crossref_primary_10_1099_mgen_0_000292
crossref_primary_10_1186_1471_2105_11_446
crossref_primary_10_1098_rsos_170021
crossref_primary_10_1080_00288330_2020_1713180
Cites_doi 10.1145/263580.263591
10.1016/j.ympev.2005.04.025
10.1016/S0743-7315(03)00079-0
10.1080/10635150500354688
10.1093/molbev/msj021
10.1017/S0006323199005307
10.1007/BF02101990
10.1093/bioinformatics/bti191
10.1371/journal.pbio.0040088
10.1093/bioinformatics/bti100
10.1007/BF00178256
10.1101/gr.8.3.222
10.1093/bioinformatics/bti594
10.1006/mpev.2000.0819
10.1109/IPDPS.2007.370214
10.1002/cpe.4330060702
10.1023/A:1014362705613
10.1093/bioinformatics/btg427
10.1007/BF01734359
10.1007/s002390010105
10.1145/1375527.1375572
10.1093/genetics/155.1.431
10.1093/bioinformatics/18.3.502
10.1007/BF02101694
10.1186/1471-2105-9-S2-S10
10.1109/JPROC.1998.658762
10.1007/978-1-4757-2739-5
10.1016/j.ympev.2004.08.001
ContentType Journal Article
Copyright The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2009
2009 INIST-CNRS
The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org
Copyright_xml – notice: The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2009
– notice: 2009 INIST-CNRS
– notice: The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7T7
C1K
7X8
5PM
DOI 10.1093/bioinformatics/btp244
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environmental Sciences and Pollution Management
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Computer and Information Systems Abstracts

CrossRef
MEDLINE


Engineering Research Database
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 1376
ExternalDocumentID PMC2682525
1721191341
19369496
21473689
10_1093_bioinformatics_btp244
10.1093/bioinformatics/btp244
ark_67375_HXZ_VN8P6M8W_N
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM086887
GroupedDBID -~X
.2P
.I3
482
48X
5GY
AAMVS
ABJNI
ABPTD
ACGFS
ACUFI
ADZXQ
ALMA_UNASSIGNED_HOLDINGS
BSCLL
CZ4
EE~
F5P
F9B
H5~
HAR
HW0
IOX
KSI
KSN
NGC
Q5Y
RD5
ROZ
RXO
TLC
TN5
TOX
WH7
~91
ADRIX
BCRHZ
KOP
ROX
---
-E4
.DC
0R~
1TH
23N
2WC
4.4
53G
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABIXL
ABNGD
ABNKS
ABPQP
ABQLI
ABWST
ABXVV
ABZBJ
ACIWK
ACPRK
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQPQ
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
CITATION
COF
CS3
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EJD
EMOBN
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
HVGLF
HZ~
J21
JXSIZ
KAQDR
KQ8
M-Z
MK~
ML0
N9A
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
R44
RNS
ROL
RPM
RUSNO
RW1
SV3
TEORI
TJP
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~KM
.-4
.GJ
ABEFU
ABGNP
AI.
AQDSO
ATTQO
ELUNK
IQODW
NTWIH
O~Y
RIG
RNI
RZF
RZO
VH1
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7T7
C1K
7X8
5PM
ID FETCH-LOGICAL-c673t-f9c72a994b8f6e058fda5e30e7ae286f0a8634ad7224bcdda90f4973b5e4afa3
IEDL.DBID TOX
ISICitedReferencesCount 332
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000266109500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4803
1367-4811
IngestDate Tue Sep 30 16:55:59 EDT 2025
Tue Oct 21 13:49:01 EDT 2025
Sun Nov 09 12:02:12 EST 2025
Tue Oct 07 09:45:16 EDT 2025
Mon Oct 06 17:40:11 EDT 2025
Mon Jul 21 05:14:41 EDT 2025
Mon Jul 21 09:14:22 EDT 2025
Tue Nov 18 22:15:42 EST 2025
Sat Nov 29 05:33:41 EST 2025
Wed Aug 28 03:24:17 EDT 2024
Sat Sep 20 11:02:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Cores
Algorithm
Phylogeny
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c673t-f9c72a994b8f6e058fda5e30e7ae286f0a8634ad7224bcdda90f4973b5e4afa3
Notes To whom correspondence should be addressed.
istex:FF81F7E0B612238FA72BCB805998948AB1D5CB45
Associate Editor: Martin Bishop
ArticleID:btp244
ark:/67375/HXZ-VN8P6M8W-N
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/bioinformatics/article-pdf/25/11/1370/48988217/bioinformatics_25_11_1370.pdf
PMID 19369496
PQID 198664429
PQPubID 36124
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2682525
proquest_miscellaneous_67264295
proquest_miscellaneous_34514371
proquest_miscellaneous_20663966
proquest_journals_198664429
pubmed_primary_19369496
pascalfrancis_primary_21473689
crossref_primary_10_1093_bioinformatics_btp244
crossref_citationtrail_10_1093_bioinformatics_btp244
oup_primary_10_1093_bioinformatics_btp244
istex_primary_ark_67375_HXZ_VN8P6M8W_N
PublicationCentury 2000
PublicationDate 2009-06-01
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2009
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Keane (2023013111551721900_B13) 2005; 21
Minh (2023013111551721900_B18) 2005; 21
Feng (2023013111551721900_B8) 2003; 63
Feng (2023013111551721900_B9) 2007
Charalambous (2023013111551721900_B3) 2005
Muse (2023013111551721900_B21) 1994; 11
Moore (2023013111551721900_B19) 1998; 86
Ren (2023013111551721900_B23) 2005; 54
Hasegawa (2023013111551721900_B12) 1985; 22
Silberstein (2023013111551721900_B27) 2008
Schadt (2023013111551721900_B24) 1998; 8
Flynn (2023013111551721900_B10) 2000; 17
Lanave (2023013111551721900_B14) 1984; 20
Bininda-Emonds (2023013111551721900_B2) 1999; 74
Schmidt (2023013111551721900_B25) 2002; 18
Stamatakis (2023013111551721900_B28) 2005; 21
Delisle (2023013111551721900_B5) 2005; 37
Lange (2023013111551721900_B15) 1997
Yang (2023013111551721900_B31) 2000; 155
Choi (2023013111551721900_B4) 1994; 6
Lee (2023013111551721900_B16) 1997
Yang (2023013111551721900_B30) 2000; 51
Altekar (2023013111551721900_B1) 2004; 20
Manavski (2023013111551721900_B17) 2008; 9
Yu (2023013111551721900_B32) 2004; 33
Felsenstein (2023013111551721900_B7) 1981; 17
Yang (2023013111551721900_B29) 1994; 39
Moret (2023013111551721900_B20) 2002; 22
NVIDIA (2023013111551721900_B22) 2008
Drummond (2023013111551721900_B6) 2006; 4
Goldman (2023013111551721900_B11) 1994; 11
Shapiro (2023013111551721900_B26) 2006; 23
7968485 - Mol Biol Evol. 1994 Sep;11(5):715-24
10790415 - Genetics. 2000 May;155(1):431-49
15522797 - Mol Phylogenet Evol. 2004 Dec;33(3):694-705
16177232 - Mol Biol Evol. 2006 Jan;23(1):7-9
15513992 - Bioinformatics. 2005 Apr 1;21(7):969-74
16683862 - PLoS Biol. 2006 May;4(5):e88
11934758 - Bioinformatics. 2002 Mar;18(3):502-4
6429346 - J Mol Evol. 1984;20(1):86-93
8064867 - J Mol Evol. 1994 Jul;39(1):105-11
15964215 - Mol Phylogenet Evol. 2005 Oct;37(1):192-201
9521926 - Genome Res. 1998 Mar;8(3):222-33
11083933 - Mol Phylogenet Evol. 2000 Nov;17(2):190-9
10396181 - Biol Rev Camb Philos Soc. 1999 May;74(2):143-75
15608047 - Bioinformatics. 2005 Feb 15;21(4):456-63
16243764 - Syst Biol. 2005 Oct;54(5):808-18
7968486 - Mol Biol Evol. 1994 Sep;11(5):725-36
11080365 - J Mol Evol. 2000 Nov;51(5):423-32
14960467 - Bioinformatics. 2004 Feb 12;20(3):407-15
18387198 - BMC Bioinformatics. 2008;9 Suppl 2:S10
3934395 - J Mol Evol. 1985;22(2):160-74
16046495 - Bioinformatics. 2005 Oct 1;21(19):3794-6
7288891 - J Mol Evol. 1981;17(6):368-76
References_xml – start-page: 44
  volume-title: ICS '97: Proceedings of the 11th International Conference on Supercomputing.
  year: 1997
  ident: 2023013111551721900_B16
  article-title: Generalized cannon's algorithm for parallel matrix multiplication
  doi: 10.1145/263580.263591
– volume: 37
  start-page: 192
  year: 2005
  ident: 2023013111551721900_B5
  article-title: A phylogeny of the Caniformia (order Carnivora) based on 12 complete protein-coding mitochondrial genes
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2005.04.025
– volume: 63
  start-page: 707
  year: 2003
  ident: 2023013111551721900_B8
  article-title: Parallel algorithms for Bayesian phylogenetic inference
  publication-title: J. Parallel Distr. Comput.
  doi: 10.1016/S0743-7315(03)00079-0
– volume: 54
  start-page: 808
  year: 2005
  ident: 2023013111551721900_B23
  article-title: An empirical examination of the utility of codon-substitution models in phylogeny reconstruction
  publication-title: Syst. Biol.
  doi: 10.1080/10635150500354688
– volume: 23
  start-page: 7
  year: 2006
  ident: 2023013111551721900_B26
  article-title: Choosing appropriate substitution models for the phylogenetic anaylsis of protein-coding sequences
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msj021
– volume: 74
  start-page: 143
  year: 1999
  ident: 2023013111551721900_B2
  article-title: Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia)
  publication-title: Biol. Rev.
  doi: 10.1017/S0006323199005307
– volume: 20
  start-page: 86
  year: 1984
  ident: 2023013111551721900_B14
  article-title: A new method for calculating evolutionary substitution rates
  publication-title: J. Mol. Evol.
  doi: 10.1007/BF02101990
– volume-title: NVIDIA CUDA Compute Unified Device Architecture: Programming Guide Version 2.0.
  year: 2008
  ident: 2023013111551721900_B22
– volume: 21
  start-page: 456
  year: 2005
  ident: 2023013111551721900_B28
  article-title: RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti191
– volume: 4
  start-page: e88
  year: 2006
  ident: 2023013111551721900_B6
  article-title: Relaxed phylogenetics and dating with confidence
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0040088
– volume: 21
  start-page: 969
  year: 2005
  ident: 2023013111551721900_B13
  article-title: DPRml: distributed phylogeney reconstruction by maximum likelihood
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti100
– volume: 39
  start-page: 105
  year: 1994
  ident: 2023013111551721900_B29
  article-title: Estimating the pattern of nucleotide substitution
  publication-title: J. Mol. Evol.
  doi: 10.1007/BF00178256
– volume: 8
  start-page: 222
  year: 1998
  ident: 2023013111551721900_B24
  article-title: Computational advances in maximum likelihood methods for molecular phylogeny
  publication-title: Genome Res.
  doi: 10.1101/gr.8.3.222
– volume: 21
  start-page: 3794
  year: 2005
  ident: 2023013111551721900_B18
  article-title: pIQPNNI: parallel reconstruction of large maximum likelihood phylogenies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti594
– volume: 11
  start-page: 715
  year: 1994
  ident: 2023013111551721900_B21
  article-title: A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with applications to the chloroplast genome
  publication-title: Mol. Biol. Evol.
– volume: 17
  start-page: 190
  year: 2000
  ident: 2023013111551721900_B10
  article-title: Whence the red panda?
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1006/mpev.2000.0819
– volume: 11
  start-page: 725
  year: 1994
  ident: 2023013111551721900_B11
  article-title: A codon-based model of nucleotide substitution for protein-coding DNA sequences
  publication-title: Mol. Biol. Evol.
– volume-title: Parallel and Distributed Processing Symposium (IPDPS 2007).
  year: 2007
  ident: 2023013111551721900_B9
  article-title: Building the Tree of Life on terascale systems
  doi: 10.1109/IPDPS.2007.370214
– start-page: 415
  volume-title: Proceedings of 10th Panhellenic Conference on Informatics (PCI2005).
  year: 2005
  ident: 2023013111551721900_B3
  article-title: Initial experiences porting a bioinformatics application to a graphics processor
– volume: 6
  start-page: 543
  year: 1994
  ident: 2023013111551721900_B4
  article-title: PUMMA: parallel universal matrix multiplication algorithms on distributed memory concurrent computers
  publication-title: Concurrency Pract. Exp.
  doi: 10.1002/cpe.4330060702
– volume: 22
  start-page: 99
  year: 2002
  ident: 2023013111551721900_B20
  article-title: High-performance algorithm engineering for computational phylogenetics
  publication-title: J. Supercomput.
  doi: 10.1023/A:1014362705613
– volume: 20
  start-page: 407
  year: 2004
  ident: 2023013111551721900_B1
  article-title: Parallel metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg427
– volume: 17
  start-page: 368
  year: 1981
  ident: 2023013111551721900_B7
  article-title: Evolutionary trees from DNA sequences: a maximum likelihood approach
  publication-title: J. Mol. Evol.
  doi: 10.1007/BF01734359
– volume: 51
  start-page: 423
  year: 2000
  ident: 2023013111551721900_B30
  article-title: Maximum likelihood estimation on large phylogeneis and analysis of adaptive evolution in human influenza virus A
  publication-title: J. Mol. Evol.
  doi: 10.1007/s002390010105
– start-page: 309
  volume-title: Proceedings of the 22nd Annual International Conference on Supercomputing.
  year: 2008
  ident: 2023013111551721900_B27
  article-title: Efficient computation of sum-products on GPUs through software-managed cache
  doi: 10.1145/1375527.1375572
– volume: 155
  start-page: 431
  year: 2000
  ident: 2023013111551721900_B31
  article-title: Codon-substitution models for heterogeneous selection pressure at amino acid sites
  publication-title: Genetics
  doi: 10.1093/genetics/155.1.431
– volume: 18
  start-page: 502
  year: 2002
  ident: 2023013111551721900_B25
  article-title: TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.3.502
– volume: 22
  start-page: 160
  year: 1985
  ident: 2023013111551721900_B12
  article-title: Dating the humanape splitting by a molecular clock of mitochondrial DNA
  publication-title: J. Mol. Evol.
  doi: 10.1007/BF02101694
– volume: 9
  start-page: S10
  year: 2008
  ident: 2023013111551721900_B17
  article-title: CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-S2-S10
– volume: 86
  start-page: 82
  year: 1998
  ident: 2023013111551721900_B19
  article-title: Cramming more components onto integrated circuits
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.1998.658762
– volume-title: Mathematical and Statistical Methods for Genetic Analysis.
  year: 1997
  ident: 2023013111551721900_B15
  doi: 10.1007/978-1-4757-2739-5
– volume: 33
  start-page: 694
  year: 2004
  ident: 2023013111551721900_B32
  article-title: Phylogenetic relationships within mammalian order Carnivore indicated by sequences of two nuclear DNA genes
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2004.08.001
– reference: 15513992 - Bioinformatics. 2005 Apr 1;21(7):969-74
– reference: 7968485 - Mol Biol Evol. 1994 Sep;11(5):715-24
– reference: 16177232 - Mol Biol Evol. 2006 Jan;23(1):7-9
– reference: 3934395 - J Mol Evol. 1985;22(2):160-74
– reference: 15608047 - Bioinformatics. 2005 Feb 15;21(4):456-63
– reference: 8064867 - J Mol Evol. 1994 Jul;39(1):105-11
– reference: 11934758 - Bioinformatics. 2002 Mar;18(3):502-4
– reference: 16683862 - PLoS Biol. 2006 May;4(5):e88
– reference: 16046495 - Bioinformatics. 2005 Oct 1;21(19):3794-6
– reference: 11080365 - J Mol Evol. 2000 Nov;51(5):423-32
– reference: 7968486 - Mol Biol Evol. 1994 Sep;11(5):725-36
– reference: 7288891 - J Mol Evol. 1981;17(6):368-76
– reference: 15522797 - Mol Phylogenet Evol. 2004 Dec;33(3):694-705
– reference: 11083933 - Mol Phylogenet Evol. 2000 Nov;17(2):190-9
– reference: 10790415 - Genetics. 2000 May;155(1):431-49
– reference: 18387198 - BMC Bioinformatics. 2008;9 Suppl 2:S10
– reference: 14960467 - Bioinformatics. 2004 Feb 12;20(3):407-15
– reference: 15964215 - Mol Phylogenet Evol. 2005 Oct;37(1):192-201
– reference: 6429346 - J Mol Evol. 1984;20(1):86-93
– reference: 10396181 - Biol Rev Camb Philos Soc. 1999 May;74(2):143-75
– reference: 9521926 - Genome Res. 1998 Mar;8(3):222-33
– reference: 16243764 - Syst Biol. 2005 Oct;54(5):808-18
SSID ssj0051444
ssj0005056
Score 2.478401
Snippet Motivation: Statistical phylogenetics is computationally intensive, resulting in considerable attention meted on techniques for parallelization. Codon-based...
Statistical phylogenetics is computationally intensive, resulting in considerable attention meted on techniques for parallelization. Codon-based models allow...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
oup
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1370
SubjectTerms Algorithms
Bayes Theorem
Biological and medical sciences
Carnivores
Codon - genetics
Computational Biology - methods
Evolution, Molecular
Fundamental and applied biological sciences. Psychology
General aspects
Genome, Mitochondrial - genetics
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Original Papers
Phylogeny
Title Many-core algorithms for statistical phylogenetics
URI https://api.istex.fr/ark:/67375/HXZ-VN8P6M8W-N/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/19369496
https://www.proquest.com/docview/198664429
https://www.proquest.com/docview/20663966
https://www.proquest.com/docview/34514371
https://www.proquest.com/docview/67264295
https://pubmed.ncbi.nlm.nih.gov/PMC2682525
Volume 25
WOSCitedRecordID wos000266109500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Open Journals
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Open Journals
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20220930
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKAQkJ8X6EwpIDQuIQmtiOH0eEqHqgSw-rEnGxnMSmK0p2tbtF8O-ZiZOUVKygx8jjkTwzHo9j-_sIecVpqVIns8RaL3GD4hINlX3Cla3qqtKatsxzJx_ldKqKQh_vkLR_C3P5CF-z_XK-6EBEEbh4v9wsYUmCpJvlCikLZp-KizsdKSLDhA-oBHigtEVkb5Wy_v3ONpWjlek6Gvln_-rt9tKuwWQ-cF38rRi9fKfyj0Xq4O7Vh3eP3OkK0vhdiKD7ZMc1D8jNQFH56yGhR5AtEsS6jO3Z18Vqvjn9vo5BUYxPkVqUZ-gNvgJxSJuo_BGZHXyYvT9MOp6FpBKSbRKvK0mt1rxUXrg0V762uWPgQuuoEj61SjBuawnLfVnVtdWp51qyMnfcessek91m0binJPZOaAsbkLqSJbeiLhGfiuVMOOEz7XxEeG9iU3UY5EiFcWbCWTgzY2uYYI2IvB26LQMIx786vG79N0jb1Te8wSZzc1h8MSdTdSyO1GczjcgbcPD_Kp2MwmDohVRPTCgdkb0-LkyXCdYm00pAzUmh9eXQClMYz2Vs4xbna4OI-gy2ndslGMe6VmbbJYSEypbqPCJPQhxejAkpG7kG7XIUoYMAAoyPW5r5aQs0ToWiOc2fXcFIe-RWOG_D_1TPye5mde5ekBvVD4jI1YRck4WatHP2NziaSQ4
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Many-core+algorithms+for+statistical+phylogenetics&rft.jtitle=Bioinformatics&rft.au=Suchard%2C+Marc+A.&rft.au=Rambaut%2C+Andrew&rft.date=2009-06-01&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=25&rft.issue=11&rft.spage=1370&rft.epage=1376&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtp244&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_HXZ_VN8P6M8W_N
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon