Many-core algorithms for statistical phylogenetics
Motivation: Statistical phylogenetics is computationally intensive, resulting in considerable attention meted on techniques for parallelization. Codon-based models allow for independent rates of synonymous and replacement substitutions and have the potential to more adequately model the process of p...
Uložené v:
| Vydané v: | Bioinformatics Ročník 25; číslo 11; s. 1370 - 1376 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Oxford University Press
01.06.2009
Oxford Publishing Limited (England) |
| Predmet: | |
| ISSN: | 1367-4803, 1367-4811, 1460-2059, 1367-4811 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Motivation: Statistical phylogenetics is computationally intensive, resulting in considerable attention meted on techniques for parallelization. Codon-based models allow for independent rates of synonymous and replacement substitutions and have the potential to more adequately model the process of protein-coding sequence evolution with a resulting increase in phylogenetic accuracy. Unfortunately, due to the high number of codon states, computational burden has largely thwarted phylogenetic reconstruction under codon models, particularly at the genomic-scale. Here, we describe novel algorithms and methods for evaluating phylogenies under arbitrary molecular evolutionary models on graphics processing units (GPUs), making use of the large number of processing cores to efficiently parallelize calculations even for large state-size models. Results: We implement the approach in an existing Bayesian framework and apply the algorithms to estimating the phylogeny of 62 complete mitochondrial genomes of carnivores under a 60-state codon model. We see a near 90-fold speed increase over an optimized CPU-based computation and a >140-fold increase over the currently available implementation, making this the first practical use of codon models for phylogenetic inference over whole mitochondrial or microorganism genomes. Availability and implementation: Source code provided in BEAGLE: Broad-platform Evolutionary Analysis General Likelihood Evaluator, a cross-platform/processor library for phylogenetic likelihood computation (http://beagle-lib.googlecode.com/). We employ a BEAGLE-implementation using the Bayesian phylogenetics framework BEAST (http://beast.bio.ed.ac.uk/). Contact: msuchard@ucla.edu; a.rambaut@ed.ac.uk |
|---|---|
| AbstractList | Statistical phylogenetics is computationally intensive, resulting in considerable attention meted on techniques for parallelization. Codon-based models allow for independent rates of synonymous and replacement substitutions and have the potential to more adequately model the process of protein-coding sequence evolution with a resulting increase in phylogenetic accuracy. Unfortunately, due to the high number of codon states, computational burden has largely thwarted phylogenetic reconstruction under codon models, particularly at the genomic-scale. Here, we describe novel algorithms and methods for evaluating phylogenies under arbitrary molecular evolutionary models on graphics processing units (GPUs), making use of the large number of processing cores to efficiently parallelize calculations even for large state-size models.MOTIVATIONStatistical phylogenetics is computationally intensive, resulting in considerable attention meted on techniques for parallelization. Codon-based models allow for independent rates of synonymous and replacement substitutions and have the potential to more adequately model the process of protein-coding sequence evolution with a resulting increase in phylogenetic accuracy. Unfortunately, due to the high number of codon states, computational burden has largely thwarted phylogenetic reconstruction under codon models, particularly at the genomic-scale. Here, we describe novel algorithms and methods for evaluating phylogenies under arbitrary molecular evolutionary models on graphics processing units (GPUs), making use of the large number of processing cores to efficiently parallelize calculations even for large state-size models.We implement the approach in an existing Bayesian framework and apply the algorithms to estimating the phylogeny of 62 complete mitochondrial genomes of carnivores under a 60-state codon model. We see a near 90-fold speed increase over an optimized CPU-based computation and a >140-fold increase over the currently available implementation, making this the first practical use of codon models for phylogenetic inference over whole mitochondrial or microorganism genomes.RESULTSWe implement the approach in an existing Bayesian framework and apply the algorithms to estimating the phylogeny of 62 complete mitochondrial genomes of carnivores under a 60-state codon model. We see a near 90-fold speed increase over an optimized CPU-based computation and a >140-fold increase over the currently available implementation, making this the first practical use of codon models for phylogenetic inference over whole mitochondrial or microorganism genomes.Source code provided in BEAGLE: Broad-platform Evolutionary Analysis General Likelihood Evaluator, a cross-platform/processor library for phylogenetic likelihood computation (http://beagle-lib.googlecode.com/). We employ a BEAGLE-implementation using the Bayesian phylogenetics framework BEAST (http://beast.bio.ed.ac.uk/).AVAILABILITY AND IMPLEMENTATIONSource code provided in BEAGLE: Broad-platform Evolutionary Analysis General Likelihood Evaluator, a cross-platform/processor library for phylogenetic likelihood computation (http://beagle-lib.googlecode.com/). We employ a BEAGLE-implementation using the Bayesian phylogenetics framework BEAST (http://beast.bio.ed.ac.uk/). Motivation: Statistical phylogenetics is computationally intensive, resulting in considerable attention meted on techniques for parallelization. Codon-based models allow for independent rates of synonymous and replacement substitutions and have the potential to more adequately model the process of protein-coding sequence evolution with a resulting increase in phylogenetic accuracy. Unfortunately, due to the high number of codon states, computational burden has largely thwarted phylogenetic reconstruction under codon models, particularly at the genomic-scale. Here, we describe novel algorithms and methods for evaluating phylogenies under arbitrary molecular evolutionary models on graphics processing units (GPUs), making use of the large number of processing cores to efficiently parallelize calculations even for large state-size models.Results: We implement the approach in an existing Bayesian framework and apply the algorithms to estimating the phylogeny of 62 complete mitochondrial genomes of carnivores under a 60-state codon model. We see a near 90-fold speed increase over an optimized CPU-based computation and a > 140-fold increase over the currently available implementation, making this the first practical use of codon models for phylogenetic inference over whole mitochondrial or microorganism genomes.Availability and implementation: Source code provided in BEAGLE: Broad-platform Evolutionary Analysis General Likelihood Evaluator, a cross-platform/processor library for phylogenetic likelihood computation (http://beagle-lib.googlecode.com/). We employ a BEAGLE-implementation using the Bayesian phylogenetics framework BEAST (http://beast.bio.ed.ac.uk/).Contact: msuchardatucla.edu; a.rambautated.ac.uk Motivation: Statistical phylogenetics is computationally intensive, resulting in considerable attention meted on techniques for parallelization. Codon-based models allow for independent rates of synonymous and replacement substitutions and have the potential to more adequately model the process of protein-coding sequence evolution with a resulting increase in phylogenetic accuracy. Unfortunately, due to the high number of codon states, computational burden has largely thwarted phylogenetic reconstruction under codon models, particularly at the genomic-scale. Here, we describe novel algorithms and methods for evaluating phylogenies under arbitrary molecular evolutionary models on graphics processing units (GPUs), making use of the large number of processing cores to efficiently parallelize calculations even for large state-size models. Results: We implement the approach in an existing Bayesian framework and apply the algorithms to estimating the phylogeny of 62 complete mitochondrial genomes of carnivores under a 60-state codon model. We see a near 90-fold speed increase over an optimized CPU-based computation and a >140-fold increase over the currently available implementation, making this the first practical use of codon models for phylogenetic inference over whole mitochondrial or microorganism genomes. Availability and implementation: Source code provided in BEAGLE: Broad-platform Evolutionary Analysis General Likelihood Evaluator, a cross-platform/processor library for phylogenetic likelihood computation (http://beagle-lib.googlecode.com/). We employ a BEAGLE-implementation using the Bayesian phylogenetics framework BEAST (http://beast.bio.ed.ac.uk/). Contact: msuchard@ucla.edu; a.rambaut@ed.ac.uk Motivation: Statistical phylogenetics is computationally intensive, resulting in considerable attention meted on techniques for parallelization. Codon-based models allow for independent rates of synonymous and replacement substitutions and have the potential to more adequately model the process of protein-coding sequence evolution with a resulting increase in phylogenetic accuracy. Unfortunately, due to the high number of codon states, computational burden has largely thwarted phylogenetic reconstruction under codon models, particularly at the genomic-scale. Here, we describe novel algorithms and methods for evaluating phylogenies under arbitrary molecular evolutionary models on graphics processing units (GPUs), making use of the large number of processing cores to efficiently parallelize calculations even for large state-size models. Results: We implement the approach in an existing Bayesian framework and apply the algorithms to estimating the phylogeny of 62 complete mitochondrial genomes of carnivores under a 60-state codon model. We see a near 90-fold speed increase over an optimized CPU-based computation and a >140-fold increase over the currently available implementation, making this the first practical use of codon models for phylogenetic inference over whole mitochondrial or microorganism genomes. Availability and implementation: Source code provided in BEAGLE: Broad-platform Evolutionary Analysis General Likelihood Evaluator, a cross-platform/processor library for phylogenetic likelihood computation (http://beagle-lib.googlecode.com/). We employ a BEAGLE-implementation using the Bayesian phylogenetics framework BEAST (http://beast.bio.ed.ac.uk/). Contact: msuchard@ucla.edu; a.rambaut@ed.ac.uk Statistical phylogenetics is computationally intensive, resulting in considerable attention meted on techniques for parallelization. Codon-based models allow for independent rates of synonymous and replacement substitutions and have the potential to more adequately model the process of protein-coding sequence evolution with a resulting increase in phylogenetic accuracy. Unfortunately, due to the high number of codon states, computational burden has largely thwarted phylogenetic reconstruction under codon models, particularly at the genomic-scale. Here, we describe novel algorithms and methods for evaluating phylogenies under arbitrary molecular evolutionary models on graphics processing units (GPUs), making use of the large number of processing cores to efficiently parallelize calculations even for large state-size models. We implement the approach in an existing Bayesian framework and apply the algorithms to estimating the phylogeny of 62 complete mitochondrial genomes of carnivores under a 60-state codon model. We see a near 90-fold speed increase over an optimized CPU-based computation and a >140-fold increase over the currently available implementation, making this the first practical use of codon models for phylogenetic inference over whole mitochondrial or microorganism genomes. Source code provided in BEAGLE: Broad-platform Evolutionary Analysis General Likelihood Evaluator, a cross-platform/processor library for phylogenetic likelihood computation (http://beagle-lib.googlecode.com/). We employ a BEAGLE-implementation using the Bayesian phylogenetics framework BEAST (http://beast.bio.ed.ac.uk/). Motivation: Statistical phylogenetics is computationally intensive, resulting in considerable attention meted on techniques for parallelization. Codon-based models allow for independent rates of synonymous and replacement substitutions and have the potential to more adequately model the process of protein-coding sequence evolution with a resulting increase in phylogenetic accuracy. Unfortunately, due to the high number of codon states, computational burden has largely thwarted phylogenetic reconstruction under codon models, particularly at the genomic-scale. Here, we describe novel algorithms and methods for evaluating phylogenies under arbitrary molecular evolutionary models on graphics processing units (GPUs), making use of the large number of processing cores to efficiently parallelize calculations even for large state-size models. Results: We implement the approach in an existing Bayesian framework and apply the algorithms to estimating the phylogeny of 62 complete mitochondrial genomes of carnivores under a 60-state codon model. We see a near 90-fold speed increase over an optimized CPU-based computation and a >140-fold increase over the currently available implementation, making this the first practical use of codon models for phylogenetic inference over whole mitochondrial or microorganism genomes. Availability and implementation: Source code provided in BEAGLE: Broad-platform Evolutionary Analysis General Likelihood Evaluator, a cross-platform/processor library for phylogenetic likelihood computation (http://beagle-lib.googlecode.com/). We employ a BEAGLE-implementation using the Bayesian phylogenetics framework BEAST (http://beast.bio.ed.ac.uk/). Contact: msuchard@ucla.edu; a.rambaut@ed.ac.uk |
| Author | Suchard, Marc A. Rambaut, Andrew |
| AuthorAffiliation | 1 Department of Biomathematics, 2 Department of Biostatistics, 3 Department of Human Genetics, University of California, Los Angeles, CA 90095, USA and 4 Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JT, UK |
| AuthorAffiliation_xml | – name: 1 Department of Biomathematics, 2 Department of Biostatistics, 3 Department of Human Genetics, University of California, Los Angeles, CA 90095, USA and 4 Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JT, UK |
| Author_xml | – sequence: 1 givenname: Marc A. surname: Suchard fullname: Suchard, Marc A. organization: Department of Biomathematics, Department of Biostatistics, Department of Human Genetics, University of California, Los Angeles, CA 90095, USA and Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JT, UK – sequence: 2 givenname: Andrew surname: Rambaut fullname: Rambaut, Andrew organization: Department of Biomathematics, Department of Biostatistics, Department of Human Genetics, University of California, Los Angeles, CA 90095, USA and Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JT, UK |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21473689$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19369496$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl9rFDEUxYNUbLv6EZRFsG9jM0kmfxAKUtQKbfWhqPgSMplkN3UmGZOZ4n57M8y62r6sDyGBnPO73HvuMTjwwRsAnpfwdQkFPq1dcN6G2KnB6XRaDz0i5BE4KgmFBYKVOMhvTFlBOMSH4DilWwirkhDyBByWAlNBBD0C6Er5TaFDNEvVrkJ0w7pLy8xdpiGTU4ardtmvN21YGW-mWk_BY6vaZJ5t7wW4ef_u5vyiuPz04eP528tCU4aHwgrNkBKC1NxSAytuG1UZDA1TBnFqoeIUE9UwhEitm0YJaIlguK4MUVbhBTibsf1Yd6bRxg9RtbKPrlNxI4Ny8v6Pd2u5CncSUY4qVGXAyRYQw8_RpEF2LmnTtsqbMCZJGaIEif1CTPLcMCv3ChGkFIt8FuDlA-FtGKPP05Kl4JSSXDeLXvzb4K6zP-FkwautQKWcgo3Ka5d2OlQShimfQNWs0zGkFI39i4JyWhZ5f1nkvCzZ9-aBT7sp9DDN07V73XB2h7H_74LFbMl7ZX7tTCr-yGFgVsmLb9_ll2v-mV7xr_Ia_wZtn-5J |
| CODEN | BOINFP |
| CitedBy_id | crossref_primary_10_1099_jgv_0_000924 crossref_primary_10_1371_journal_pone_0106045 crossref_primary_10_3389_fmicb_2020_589937 crossref_primary_10_1038_nrg3186 crossref_primary_10_1214_10_STS336 crossref_primary_10_1371_journal_pone_0178578 crossref_primary_10_1371_journal_ppat_1007976 crossref_primary_10_1002_ajb2_1364 crossref_primary_10_1093_ve_vex032 crossref_primary_10_1080_10618600_2012_723569 crossref_primary_10_3390_pathogens5040061 crossref_primary_10_1111_syen_12197 crossref_primary_10_1371_journal_pone_0239809 crossref_primary_10_1371_journal_pone_0298599 crossref_primary_10_1093_g3journal_jkab136 crossref_primary_10_1097_QAI_0000000000001156 crossref_primary_10_3201_eid2108_141891 crossref_primary_10_1016_j_ympev_2019_106555 crossref_primary_10_1016_j_meegid_2016_05_040 crossref_primary_10_1111_gcb_70354 crossref_primary_10_1016_j_meegid_2014_01_026 crossref_primary_10_1371_journal_ppat_1013168 crossref_primary_10_1088_1755_1315_430_1_012019 crossref_primary_10_1038_ncomms7696 crossref_primary_10_1080_14772019_2021_1910583 crossref_primary_10_1038_s41591_021_01378_7 crossref_primary_10_1093_sysbio_syr065 crossref_primary_10_1093_biolinnean_blx026 crossref_primary_10_1007_s10750_020_04273_3 crossref_primary_10_1002_tax_12498 crossref_primary_10_1093_molbev_msr170 crossref_primary_10_1002_jmv_26333 crossref_primary_10_12705_666_6 crossref_primary_10_1016_j_compbiolchem_2012_06_004 crossref_primary_10_4137_EBO_S2765 crossref_primary_10_1016_j_parco_2011_08_002 crossref_primary_10_1111_tbed_14117 crossref_primary_10_1198_jcgs_2010_10039 crossref_primary_10_1016_j_ympev_2019_05_007 crossref_primary_10_1016_j_ibmb_2015_09_003 crossref_primary_10_7554_eLife_16777 crossref_primary_10_1111_syen_12537 crossref_primary_10_3201_eid2503_180779 crossref_primary_10_1093_zoolinnean_zlaf108 crossref_primary_10_1086_677948 crossref_primary_10_1016_j_meegid_2016_08_024 crossref_primary_10_1109_TCBB_2011_68 crossref_primary_10_1093_sysbio_syae005 crossref_primary_10_1038_s41598_020_59880_w crossref_primary_10_1007_s10531_018_1604_0 crossref_primary_10_1080_10618600_2020_1754226 crossref_primary_10_1016_j_ympev_2021_107127 crossref_primary_10_1534_genetics_114_164269 crossref_primary_10_1016_j_renene_2023_119790 crossref_primary_10_1038_s41598_025_03022_7 crossref_primary_10_1016_j_tree_2010_06_007 crossref_primary_10_1093_molbev_msr266 crossref_primary_10_1093_molbev_msv185 crossref_primary_10_1101_gr_168997_113 crossref_primary_10_1371_journal_pcbi_1000505 crossref_primary_10_1093_jmammal_gyae129 crossref_primary_10_1016_j_jocs_2010_03_006 crossref_primary_10_1007_s00606_019_01588_0 crossref_primary_10_1016_j_meegid_2019_104129 crossref_primary_10_1016_j_jpdc_2018_12_006 crossref_primary_10_1371_journal_ppat_1001166 crossref_primary_10_3390_v14071477 crossref_primary_10_1111_mec_12728 crossref_primary_10_1128_JVI_02341_12 crossref_primary_10_3390_v14091901 crossref_primary_10_1080_10618600_2015_1037883 crossref_primary_10_1128_JVI_00565_12 crossref_primary_10_1016_j_ympev_2023_107710 crossref_primary_10_1038_s41598_023_48112_6 crossref_primary_10_1186_1741_7007_11_76 crossref_primary_10_1198_jcgs_2010_10016 crossref_primary_10_1007_s00894_014_2067_1 crossref_primary_10_1038_s41467_023_39950_z crossref_primary_10_1016_j_meegid_2011_04_028 crossref_primary_10_1080_14772000_2014_968236 crossref_primary_10_1002_jmv_25701 crossref_primary_10_1038_s41598_021_00795_5 crossref_primary_10_1093_sysbio_syr131 crossref_primary_10_1097_QAD_0000000000002817 crossref_primary_10_1016_j_ins_2013_11_028 crossref_primary_10_1093_sysbio_syp076 crossref_primary_10_1371_journal_pntd_0002769 crossref_primary_10_1093_ve_veae027 crossref_primary_10_1093_sysbio_syae020 crossref_primary_10_1086_709372 crossref_primary_10_1128_spectrum_01193_24 crossref_primary_10_1093_ve_vew023 crossref_primary_10_1093_sysbio_syae019 crossref_primary_10_1371_journal_pone_0238995 crossref_primary_10_1111_1755_0998_13453 crossref_primary_10_7717_peerj_9473 crossref_primary_10_1097_QAD_0000000000000770 crossref_primary_10_1002_sam_11280 crossref_primary_10_1128_JVI_01080_14 crossref_primary_10_1186_s12985_021_01573_5 crossref_primary_10_1186_1471_2105_11_184 crossref_primary_10_3201_eid2504_180779 crossref_primary_10_1371_journal_pntd_0005694 crossref_primary_10_3767_persoonia_2024_52_03 crossref_primary_10_1002_ece3_4451 crossref_primary_10_1128_spectrum_03709_23 crossref_primary_10_1128_jvi_01575_24 crossref_primary_10_1016_j_epidem_2014_09_001 crossref_primary_10_1371_journal_pone_0098908 crossref_primary_10_1038_s41467_023_44085_2 crossref_primary_10_1002_jmv_25731 crossref_primary_10_1016_j_toxicon_2018_03_013 crossref_primary_10_1186_s12862_017_0913_3 crossref_primary_10_1016_j_lanwpc_2021_100259 crossref_primary_10_1093_molbev_msp285 crossref_primary_10_1038_s41598_017_07873_7 crossref_primary_10_1016_j_meegid_2013_03_051 crossref_primary_10_7717_peerj_6511 crossref_primary_10_3389_fmicb_2022_992640 crossref_primary_10_1093_sysbio_syw054 crossref_primary_10_1002_cpe_4046 crossref_primary_10_1016_j_pld_2023_08_004 crossref_primary_10_1038_srep33971 crossref_primary_10_1186_s12898_020_00298_3 crossref_primary_10_1093_infdis_jiv399 crossref_primary_10_1371_journal_pone_0028199 crossref_primary_10_1371_journal_pone_0218348 crossref_primary_10_1073_pnas_1206598109 crossref_primary_10_1371_journal_pcbi_1003537 crossref_primary_10_3389_fmicb_2022_835443 crossref_primary_10_1145_2460216_2460226 crossref_primary_10_1016_j_ympev_2017_01_008 crossref_primary_10_1038_nrg3226 crossref_primary_10_1093_molbev_msu185 crossref_primary_10_1016_j_jfma_2018_01_019 crossref_primary_10_7717_peerj_16690 crossref_primary_10_1097_QAD_0000000000000552 crossref_primary_10_1111_j_1365_294X_2010_04690_x crossref_primary_10_5812_ircmj_34609 crossref_primary_10_1038_nature19827 crossref_primary_10_1186_s12862_016_0824_8 crossref_primary_10_3103_S0095452712030048 crossref_primary_10_1007_s12539_010_0002_4 crossref_primary_10_1016_j_virol_2016_08_035 crossref_primary_10_1371_journal_pone_0110268 crossref_primary_10_1126_science_aau0236 crossref_primary_10_1128_JVI_00459_15 crossref_primary_10_1099_vir_0_038638_0 crossref_primary_10_1099_mgen_0_000057 crossref_primary_10_3390_v11111000 crossref_primary_10_3389_fmicb_2019_00097 crossref_primary_10_1080_14772000_2021_1943559 crossref_primary_10_1080_21564574_2024_2375496 crossref_primary_10_3390_d16070381 crossref_primary_10_1080_01621459_2014_914439 crossref_primary_10_1371_journal_pone_0127384 crossref_primary_10_1093_ve_vev016 crossref_primary_10_1111_tbed_14503 crossref_primary_10_1080_10618600_2015_1035724 crossref_primary_10_1371_journal_pone_0221678 crossref_primary_10_1016_j_tree_2009_09_007 crossref_primary_10_1038_s41467_019_13287_y crossref_primary_10_3389_fmicb_2022_811318 crossref_primary_10_1093_molbev_msaa136 crossref_primary_10_1145_2414416_2414791 crossref_primary_10_1038_s41467_023_39216_8 crossref_primary_10_1093_ve_veab072 crossref_primary_10_1093_sysbio_syr100 crossref_primary_10_1186_1471_2105_12_63 crossref_primary_10_3897_zookeys_1121_85693 crossref_primary_10_1007_s13127_020_00468_7 crossref_primary_10_1371_journal_pone_0188430 crossref_primary_10_1093_jhered_esae001 crossref_primary_10_1038_s41426_018_0107_0 crossref_primary_10_1038_s41598_020_66287_0 crossref_primary_10_1126_science_1256739 crossref_primary_10_1111_j_1755_0998_2011_03026_x crossref_primary_10_1146_annurev_statistics_033021_112532 crossref_primary_10_3389_fmicb_2021_673855 crossref_primary_10_1038_srep35822 crossref_primary_10_1111_nph_15784 crossref_primary_10_1007_s10914_024_09732_5 crossref_primary_10_1371_journal_pone_0088901 crossref_primary_10_1002_ajpa_23450 crossref_primary_10_1093_ve_veae009 crossref_primary_10_1099_mgen_0_001172 crossref_primary_10_1016_j_meegid_2016_06_012 crossref_primary_10_1016_j_meegid_2014_07_014 crossref_primary_10_1016_j_ympev_2015_08_026 crossref_primary_10_1111_j_1365_294X_2010_04737_x crossref_primary_10_1186_1471_2105_11_379 crossref_primary_10_1002_tax_12648 crossref_primary_10_1186_s12862_015_0410_5 crossref_primary_10_1371_journal_pone_0220342 crossref_primary_10_1093_molbev_mss075 crossref_primary_10_1080_03079457_2023_2236568 crossref_primary_10_1093_sysbio_syaa037 crossref_primary_10_1111_1365_2435_13956 crossref_primary_10_1371_journal_pone_0162112 crossref_primary_10_1371_journal_pone_0156499 crossref_primary_10_3389_fmicb_2018_01738 crossref_primary_10_3390_ani14070993 crossref_primary_10_1186_s12866_016_0717_4 crossref_primary_10_1111_zph_12370 crossref_primary_10_1038_nrg2583 crossref_primary_10_1089_aid_2015_0183 crossref_primary_10_1098_rspb_2017_0919 crossref_primary_10_1038_ncomms11448 crossref_primary_10_1080_10618600_2012_760460 crossref_primary_10_1186_1471_2105_14_25 crossref_primary_10_1007_s11557_025_02081_4 crossref_primary_10_1097_QAD_0000000000001325 crossref_primary_10_1016_j_ijbiomac_2018_12_186 crossref_primary_10_1128_JVI_01457_16 crossref_primary_10_1007_s11557_016_1204_x crossref_primary_10_1111_njb_03238 crossref_primary_10_1139_gen_2015_0163 crossref_primary_10_1128_spectrum_01427_22 crossref_primary_10_1016_j_virusres_2020_198098 crossref_primary_10_1371_journal_pone_0050358 crossref_primary_10_3389_fevo_2023_1169911 crossref_primary_10_3390_microorganisms9010040 crossref_primary_10_1093_zoolinnean_zlae151 crossref_primary_10_1007_s11557_015_1148_6 crossref_primary_10_1002_ece3_70422 crossref_primary_10_1016_j_ympev_2017_08_006 crossref_primary_10_1016_j_ympev_2016_01_018 crossref_primary_10_1080_14772000_2023_2228326 crossref_primary_10_1016_j_virol_2014_05_025 crossref_primary_10_1093_sysbio_sys076 crossref_primary_10_1038_s41598_018_35622_x crossref_primary_10_1093_molbev_msq326 crossref_primary_10_1007_s11227_013_0911_1 crossref_primary_10_1534_g3_117_300103 crossref_primary_10_3897_asp_83_e138238 crossref_primary_10_1099_mgen_0_000141 crossref_primary_10_1093_sysbio_syu015 crossref_primary_10_1007_s00606_020_01727_y crossref_primary_10_1002_cpe_2925 crossref_primary_10_1016_j_meegid_2017_06_021 crossref_primary_10_1093_ve_vez023 crossref_primary_10_1007_s11262_022_01903_x crossref_primary_10_1099_jgv_0_001033 crossref_primary_10_3389_fphys_2022_861620 crossref_primary_10_1080_10618600_2012_657144 crossref_primary_10_1093_sysbio_syz020 crossref_primary_10_1371_journal_pone_0036865 crossref_primary_10_1371_journal_ppat_1002077 crossref_primary_10_3109_19401736_2010_494727 crossref_primary_10_1186_1756_0500_5_116 crossref_primary_10_1111_jse_12233 crossref_primary_10_1371_journal_pone_0203916 crossref_primary_10_1016_j_ympev_2016_07_025 crossref_primary_10_1016_j_meegid_2016_05_017 crossref_primary_10_7717_peerj_17276 crossref_primary_10_1089_aid_2015_0155 crossref_primary_10_1007_s11222_020_09980_4 crossref_primary_10_3389_fcimb_2025_1575538 crossref_primary_10_1016_j_meegid_2016_09_025 crossref_primary_10_1002_jmv_25693 crossref_primary_10_3390_v12020182 crossref_primary_10_1128_spectrum_02366_21 crossref_primary_10_1128_spectrum_02641_21 crossref_primary_10_1371_journal_pntd_0007910 crossref_primary_10_1007_s11222_010_9178_z crossref_primary_10_1007_s00239_020_09982_w crossref_primary_10_3390_v11080690 crossref_primary_10_1071_SB24027 crossref_primary_10_1093_ve_veaa081 crossref_primary_10_1128_JVI_03118_12 crossref_primary_10_1016_j_cub_2011_05_058 crossref_primary_10_3390_v11100909 crossref_primary_10_1186_1471_2105_11_329 crossref_primary_10_1111_jfb_15777 crossref_primary_10_1093_mollus_eyw011 crossref_primary_10_1099_mgen_0_000292 crossref_primary_10_1186_1471_2105_11_446 crossref_primary_10_1098_rsos_170021 crossref_primary_10_1080_00288330_2020_1713180 |
| Cites_doi | 10.1145/263580.263591 10.1016/j.ympev.2005.04.025 10.1016/S0743-7315(03)00079-0 10.1080/10635150500354688 10.1093/molbev/msj021 10.1017/S0006323199005307 10.1007/BF02101990 10.1093/bioinformatics/bti191 10.1371/journal.pbio.0040088 10.1093/bioinformatics/bti100 10.1007/BF00178256 10.1101/gr.8.3.222 10.1093/bioinformatics/bti594 10.1006/mpev.2000.0819 10.1109/IPDPS.2007.370214 10.1002/cpe.4330060702 10.1023/A:1014362705613 10.1093/bioinformatics/btg427 10.1007/BF01734359 10.1007/s002390010105 10.1145/1375527.1375572 10.1093/genetics/155.1.431 10.1093/bioinformatics/18.3.502 10.1007/BF02101694 10.1186/1471-2105-9-S2-S10 10.1109/JPROC.1998.658762 10.1007/978-1-4757-2739-5 10.1016/j.ympev.2004.08.001 |
| ContentType | Journal Article |
| Copyright | The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2009 2009 INIST-CNRS The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org |
| Copyright_xml | – notice: The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2009 – notice: 2009 INIST-CNRS – notice: The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org |
| DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D P64 7T7 C1K 7X8 5PM |
| DOI | 10.1093/bioinformatics/btp244 |
| DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Environmental Sciences and Pollution Management MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Oncogenes and Growth Factors Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Computer and Information Systems Abstracts CrossRef MEDLINE Engineering Research Database Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1460-2059 1367-4811 |
| EndPage | 1376 |
| ExternalDocumentID | PMC2682525 1721191341 19369496 21473689 10_1093_bioinformatics_btp244 10.1093/bioinformatics/btp244 ark_67375_HXZ_VN8P6M8W_N |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM086887 |
| GroupedDBID | -~X .2P .I3 482 48X 5GY AAMVS ABJNI ABPTD ACGFS ACUFI ADZXQ ALMA_UNASSIGNED_HOLDINGS BSCLL CZ4 EE~ F5P F9B H5~ HAR HW0 IOX KSI KSN NGC Q5Y RD5 ROZ RXO TLC TN5 TOX WH7 ~91 ADRIX BCRHZ KOP ROX --- -E4 .DC 0R~ 1TH 23N 2WC 4.4 53G 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABIXL ABNGD ABNKS ABPQP ABQLI ABWST ABXVV ABZBJ ACIWK ACPRK ACUKT ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQPQ AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZFZN AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE CITATION COF CS3 DAKXR DIK DILTD DU5 D~K EBD EBS EJD EMOBN FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 HVGLF HZ~ J21 JXSIZ KAQDR KQ8 M-Z MK~ ML0 N9A NLBLG NMDNZ NOMLY NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PB- PEELM PQQKQ Q1. R44 RNS ROL RPM RUSNO RW1 SV3 TEORI TJP TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~KM .-4 .GJ ABEFU ABGNP AI. AQDSO ATTQO ELUNK IQODW NTWIH O~Y RIG RNI RZF RZO VH1 ZGI CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D P64 7T7 C1K 7X8 5PM |
| ID | FETCH-LOGICAL-c673t-f9c72a994b8f6e058fda5e30e7ae286f0a8634ad7224bcdda90f4973b5e4afa3 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 332 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000266109500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1367-4803 1367-4811 |
| IngestDate | Tue Sep 30 16:55:59 EDT 2025 Tue Oct 21 13:49:01 EDT 2025 Sun Nov 09 12:02:12 EST 2025 Tue Oct 07 09:45:16 EDT 2025 Mon Oct 06 17:40:11 EDT 2025 Mon Jul 21 05:14:41 EDT 2025 Mon Jul 21 09:14:22 EDT 2025 Tue Nov 18 22:15:42 EST 2025 Sat Nov 29 05:33:41 EST 2025 Wed Aug 28 03:24:17 EDT 2024 Sat Sep 20 11:02:19 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Cores Algorithm Phylogeny |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c673t-f9c72a994b8f6e058fda5e30e7ae286f0a8634ad7224bcdda90f4973b5e4afa3 |
| Notes | To whom correspondence should be addressed. istex:FF81F7E0B612238FA72BCB805998948AB1D5CB45 Associate Editor: Martin Bishop ArticleID:btp244 ark:/67375/HXZ-VN8P6M8W-N ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://academic.oup.com/bioinformatics/article-pdf/25/11/1370/48988217/bioinformatics_25_11_1370.pdf |
| PMID | 19369496 |
| PQID | 198664429 |
| PQPubID | 36124 |
| PageCount | 7 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2682525 proquest_miscellaneous_67264295 proquest_miscellaneous_34514371 proquest_miscellaneous_20663966 proquest_journals_198664429 pubmed_primary_19369496 pascalfrancis_primary_21473689 crossref_primary_10_1093_bioinformatics_btp244 crossref_citationtrail_10_1093_bioinformatics_btp244 oup_primary_10_1093_bioinformatics_btp244 istex_primary_ark_67375_HXZ_VN8P6M8W_N |
| PublicationCentury | 2000 |
| PublicationDate | 2009-06-01 |
| PublicationDateYYYYMMDD | 2009-06-01 |
| PublicationDate_xml | – month: 06 year: 2009 text: 2009-06-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford – name: England |
| PublicationTitle | Bioinformatics |
| PublicationTitleAlternate | Bioinformatics |
| PublicationYear | 2009 |
| Publisher | Oxford University Press Oxford Publishing Limited (England) |
| Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
| References | Keane (2023013111551721900_B13) 2005; 21 Minh (2023013111551721900_B18) 2005; 21 Feng (2023013111551721900_B8) 2003; 63 Feng (2023013111551721900_B9) 2007 Charalambous (2023013111551721900_B3) 2005 Muse (2023013111551721900_B21) 1994; 11 Moore (2023013111551721900_B19) 1998; 86 Ren (2023013111551721900_B23) 2005; 54 Hasegawa (2023013111551721900_B12) 1985; 22 Silberstein (2023013111551721900_B27) 2008 Schadt (2023013111551721900_B24) 1998; 8 Flynn (2023013111551721900_B10) 2000; 17 Lanave (2023013111551721900_B14) 1984; 20 Bininda-Emonds (2023013111551721900_B2) 1999; 74 Schmidt (2023013111551721900_B25) 2002; 18 Stamatakis (2023013111551721900_B28) 2005; 21 Delisle (2023013111551721900_B5) 2005; 37 Lange (2023013111551721900_B15) 1997 Yang (2023013111551721900_B31) 2000; 155 Choi (2023013111551721900_B4) 1994; 6 Lee (2023013111551721900_B16) 1997 Yang (2023013111551721900_B30) 2000; 51 Altekar (2023013111551721900_B1) 2004; 20 Manavski (2023013111551721900_B17) 2008; 9 Yu (2023013111551721900_B32) 2004; 33 Felsenstein (2023013111551721900_B7) 1981; 17 Yang (2023013111551721900_B29) 1994; 39 Moret (2023013111551721900_B20) 2002; 22 NVIDIA (2023013111551721900_B22) 2008 Drummond (2023013111551721900_B6) 2006; 4 Goldman (2023013111551721900_B11) 1994; 11 Shapiro (2023013111551721900_B26) 2006; 23 7968485 - Mol Biol Evol. 1994 Sep;11(5):715-24 10790415 - Genetics. 2000 May;155(1):431-49 15522797 - Mol Phylogenet Evol. 2004 Dec;33(3):694-705 16177232 - Mol Biol Evol. 2006 Jan;23(1):7-9 15513992 - Bioinformatics. 2005 Apr 1;21(7):969-74 16683862 - PLoS Biol. 2006 May;4(5):e88 11934758 - Bioinformatics. 2002 Mar;18(3):502-4 6429346 - J Mol Evol. 1984;20(1):86-93 8064867 - J Mol Evol. 1994 Jul;39(1):105-11 15964215 - Mol Phylogenet Evol. 2005 Oct;37(1):192-201 9521926 - Genome Res. 1998 Mar;8(3):222-33 11083933 - Mol Phylogenet Evol. 2000 Nov;17(2):190-9 10396181 - Biol Rev Camb Philos Soc. 1999 May;74(2):143-75 15608047 - Bioinformatics. 2005 Feb 15;21(4):456-63 16243764 - Syst Biol. 2005 Oct;54(5):808-18 7968486 - Mol Biol Evol. 1994 Sep;11(5):725-36 11080365 - J Mol Evol. 2000 Nov;51(5):423-32 14960467 - Bioinformatics. 2004 Feb 12;20(3):407-15 18387198 - BMC Bioinformatics. 2008;9 Suppl 2:S10 3934395 - J Mol Evol. 1985;22(2):160-74 16046495 - Bioinformatics. 2005 Oct 1;21(19):3794-6 7288891 - J Mol Evol. 1981;17(6):368-76 |
| References_xml | – start-page: 44 volume-title: ICS '97: Proceedings of the 11th International Conference on Supercomputing. year: 1997 ident: 2023013111551721900_B16 article-title: Generalized cannon's algorithm for parallel matrix multiplication doi: 10.1145/263580.263591 – volume: 37 start-page: 192 year: 2005 ident: 2023013111551721900_B5 article-title: A phylogeny of the Caniformia (order Carnivora) based on 12 complete protein-coding mitochondrial genes publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2005.04.025 – volume: 63 start-page: 707 year: 2003 ident: 2023013111551721900_B8 article-title: Parallel algorithms for Bayesian phylogenetic inference publication-title: J. Parallel Distr. Comput. doi: 10.1016/S0743-7315(03)00079-0 – volume: 54 start-page: 808 year: 2005 ident: 2023013111551721900_B23 article-title: An empirical examination of the utility of codon-substitution models in phylogeny reconstruction publication-title: Syst. Biol. doi: 10.1080/10635150500354688 – volume: 23 start-page: 7 year: 2006 ident: 2023013111551721900_B26 article-title: Choosing appropriate substitution models for the phylogenetic anaylsis of protein-coding sequences publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msj021 – volume: 74 start-page: 143 year: 1999 ident: 2023013111551721900_B2 article-title: Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia) publication-title: Biol. Rev. doi: 10.1017/S0006323199005307 – volume: 20 start-page: 86 year: 1984 ident: 2023013111551721900_B14 article-title: A new method for calculating evolutionary substitution rates publication-title: J. Mol. Evol. doi: 10.1007/BF02101990 – volume-title: NVIDIA CUDA Compute Unified Device Architecture: Programming Guide Version 2.0. year: 2008 ident: 2023013111551721900_B22 – volume: 21 start-page: 456 year: 2005 ident: 2023013111551721900_B28 article-title: RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti191 – volume: 4 start-page: e88 year: 2006 ident: 2023013111551721900_B6 article-title: Relaxed phylogenetics and dating with confidence publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0040088 – volume: 21 start-page: 969 year: 2005 ident: 2023013111551721900_B13 article-title: DPRml: distributed phylogeney reconstruction by maximum likelihood publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti100 – volume: 39 start-page: 105 year: 1994 ident: 2023013111551721900_B29 article-title: Estimating the pattern of nucleotide substitution publication-title: J. Mol. Evol. doi: 10.1007/BF00178256 – volume: 8 start-page: 222 year: 1998 ident: 2023013111551721900_B24 article-title: Computational advances in maximum likelihood methods for molecular phylogeny publication-title: Genome Res. doi: 10.1101/gr.8.3.222 – volume: 21 start-page: 3794 year: 2005 ident: 2023013111551721900_B18 article-title: pIQPNNI: parallel reconstruction of large maximum likelihood phylogenies publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti594 – volume: 11 start-page: 715 year: 1994 ident: 2023013111551721900_B21 article-title: A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with applications to the chloroplast genome publication-title: Mol. Biol. Evol. – volume: 17 start-page: 190 year: 2000 ident: 2023013111551721900_B10 article-title: Whence the red panda? publication-title: Mol. Phylogenet. Evol. doi: 10.1006/mpev.2000.0819 – volume: 11 start-page: 725 year: 1994 ident: 2023013111551721900_B11 article-title: A codon-based model of nucleotide substitution for protein-coding DNA sequences publication-title: Mol. Biol. Evol. – volume-title: Parallel and Distributed Processing Symposium (IPDPS 2007). year: 2007 ident: 2023013111551721900_B9 article-title: Building the Tree of Life on terascale systems doi: 10.1109/IPDPS.2007.370214 – start-page: 415 volume-title: Proceedings of 10th Panhellenic Conference on Informatics (PCI2005). year: 2005 ident: 2023013111551721900_B3 article-title: Initial experiences porting a bioinformatics application to a graphics processor – volume: 6 start-page: 543 year: 1994 ident: 2023013111551721900_B4 article-title: PUMMA: parallel universal matrix multiplication algorithms on distributed memory concurrent computers publication-title: Concurrency Pract. Exp. doi: 10.1002/cpe.4330060702 – volume: 22 start-page: 99 year: 2002 ident: 2023013111551721900_B20 article-title: High-performance algorithm engineering for computational phylogenetics publication-title: J. Supercomput. doi: 10.1023/A:1014362705613 – volume: 20 start-page: 407 year: 2004 ident: 2023013111551721900_B1 article-title: Parallel metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg427 – volume: 17 start-page: 368 year: 1981 ident: 2023013111551721900_B7 article-title: Evolutionary trees from DNA sequences: a maximum likelihood approach publication-title: J. Mol. Evol. doi: 10.1007/BF01734359 – volume: 51 start-page: 423 year: 2000 ident: 2023013111551721900_B30 article-title: Maximum likelihood estimation on large phylogeneis and analysis of adaptive evolution in human influenza virus A publication-title: J. Mol. Evol. doi: 10.1007/s002390010105 – start-page: 309 volume-title: Proceedings of the 22nd Annual International Conference on Supercomputing. year: 2008 ident: 2023013111551721900_B27 article-title: Efficient computation of sum-products on GPUs through software-managed cache doi: 10.1145/1375527.1375572 – volume: 155 start-page: 431 year: 2000 ident: 2023013111551721900_B31 article-title: Codon-substitution models for heterogeneous selection pressure at amino acid sites publication-title: Genetics doi: 10.1093/genetics/155.1.431 – volume: 18 start-page: 502 year: 2002 ident: 2023013111551721900_B25 article-title: TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.3.502 – volume: 22 start-page: 160 year: 1985 ident: 2023013111551721900_B12 article-title: Dating the humanape splitting by a molecular clock of mitochondrial DNA publication-title: J. Mol. Evol. doi: 10.1007/BF02101694 – volume: 9 start-page: S10 year: 2008 ident: 2023013111551721900_B17 article-title: CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-S2-S10 – volume: 86 start-page: 82 year: 1998 ident: 2023013111551721900_B19 article-title: Cramming more components onto integrated circuits publication-title: Proc. IEEE doi: 10.1109/JPROC.1998.658762 – volume-title: Mathematical and Statistical Methods for Genetic Analysis. year: 1997 ident: 2023013111551721900_B15 doi: 10.1007/978-1-4757-2739-5 – volume: 33 start-page: 694 year: 2004 ident: 2023013111551721900_B32 article-title: Phylogenetic relationships within mammalian order Carnivore indicated by sequences of two nuclear DNA genes publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2004.08.001 – reference: 15513992 - Bioinformatics. 2005 Apr 1;21(7):969-74 – reference: 7968485 - Mol Biol Evol. 1994 Sep;11(5):715-24 – reference: 16177232 - Mol Biol Evol. 2006 Jan;23(1):7-9 – reference: 3934395 - J Mol Evol. 1985;22(2):160-74 – reference: 15608047 - Bioinformatics. 2005 Feb 15;21(4):456-63 – reference: 8064867 - J Mol Evol. 1994 Jul;39(1):105-11 – reference: 11934758 - Bioinformatics. 2002 Mar;18(3):502-4 – reference: 16683862 - PLoS Biol. 2006 May;4(5):e88 – reference: 16046495 - Bioinformatics. 2005 Oct 1;21(19):3794-6 – reference: 11080365 - J Mol Evol. 2000 Nov;51(5):423-32 – reference: 7968486 - Mol Biol Evol. 1994 Sep;11(5):725-36 – reference: 7288891 - J Mol Evol. 1981;17(6):368-76 – reference: 15522797 - Mol Phylogenet Evol. 2004 Dec;33(3):694-705 – reference: 11083933 - Mol Phylogenet Evol. 2000 Nov;17(2):190-9 – reference: 10790415 - Genetics. 2000 May;155(1):431-49 – reference: 18387198 - BMC Bioinformatics. 2008;9 Suppl 2:S10 – reference: 14960467 - Bioinformatics. 2004 Feb 12;20(3):407-15 – reference: 15964215 - Mol Phylogenet Evol. 2005 Oct;37(1):192-201 – reference: 6429346 - J Mol Evol. 1984;20(1):86-93 – reference: 10396181 - Biol Rev Camb Philos Soc. 1999 May;74(2):143-75 – reference: 9521926 - Genome Res. 1998 Mar;8(3):222-33 – reference: 16243764 - Syst Biol. 2005 Oct;54(5):808-18 |
| SSID | ssj0051444 ssj0005056 |
| Score | 2.478401 |
| Snippet | Motivation: Statistical phylogenetics is computationally intensive, resulting in considerable attention meted on techniques for parallelization. Codon-based... Statistical phylogenetics is computationally intensive, resulting in considerable attention meted on techniques for parallelization. Codon-based models allow... |
| SourceID | pubmedcentral proquest pubmed pascalfrancis crossref oup istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1370 |
| SubjectTerms | Algorithms Bayes Theorem Biological and medical sciences Carnivores Codon - genetics Computational Biology - methods Evolution, Molecular Fundamental and applied biological sciences. Psychology General aspects Genome, Mitochondrial - genetics Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Original Papers Phylogeny |
| Title | Many-core algorithms for statistical phylogenetics |
| URI | https://api.istex.fr/ark:/67375/HXZ-VN8P6M8W-N/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/19369496 https://www.proquest.com/docview/198664429 https://www.proquest.com/docview/20663966 https://www.proquest.com/docview/34514371 https://www.proquest.com/docview/67264295 https://pubmed.ncbi.nlm.nih.gov/PMC2682525 |
| Volume | 25 |
| WOSCitedRecordID | wos000266109500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1460-2059 dateEnd: 20220930 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKAQkJ8X6EwrIHhMQhbdZ2_DgiRNUDXXpYQcTFmjxMV5TsaneL4N8zEycpqVhBj5FnLGU89kwynu9j7FXJbS4997EuZEktORDn4PPYGw6QYIRNoGEt-aCnU5Nl9mSHJV0vzOUSvhUH-XzRgogScPFBvlliSMJDd5IaoiyYfcwu7nQkhAwTHjATkIHSlpC9TSK6_p1tUw4i03Uy8s-u6-32EtZoMh-4Lv6WjF6-U_lHkDq8e_XXu8futAnp-G3woPtsp6ofsJuBovLXQ8aP8bSICetyDGdfF6v55vT7eowTjakVqUF5Rm1cKxTHY5Mmf8Rmh-9n747ilmchLpQWm9jbQnOwVubGqypJjS8hrURSaai4UT4Bo4SEUmO4z4uyBJt4abXI00qCB_GY7daLunrKxj73AJ6X2uoUox5mD2riPZdaFFRRVBGTnYld0WKQExXGmQu1cOGG1nDBGhHb79WWAYTjXwqvm_XrpWH1jW6w6dQdZV_cp6k5Ucfms5tG7A0u8P9OOhq4Qa9FVE9CGRuxvc4vXHsSrN3EGoU5J8fRl_0obmGqy0BdLc7XjhD1BX52bpcQkvJaPdkuoTRmttymEXsS_PDinYiyUZLt9cBDewECGB-O1PPTBmicK8NTnj67gpH22K1Qb6P_VM_Z7mZ1Xr1gN4of6JGrEbumMzNq9uxvqY5JGg |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Many-core+algorithms+for+statistical+phylogenetics&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Suchard%2C+Marc+A&rft.au=Rambaut%2C+Andrew&rft.date=2009-06-01&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=25&rft.issue=11&rft.spage=1370&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtp244&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |