Shear modulation of intercellular contact area between two deformable cells colliding under flow

Shear rate has been shown to critically affect the kinetics and receptor specificity of cell–cell interactions. In this study, the collision process between two modeled cells interacting in a linear shear flow is numerically investigated. The two identical biological or artificial cells are modeled...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanics Vol. 40; no. 13; pp. 2891 - 2897
Main Authors: Jadhav, Sameer, Chan, Kit Yan, Konstantopoulos, Konstantinos, Eggleton, Charles D.
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 01.01.2007
Elsevier Limited
Subjects:
ISSN:0021-9290, 1873-2380
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Shear rate has been shown to critically affect the kinetics and receptor specificity of cell–cell interactions. In this study, the collision process between two modeled cells interacting in a linear shear flow is numerically investigated. The two identical biological or artificial cells are modeled as deformable capsules composed of an elastic membrane. The cell deformation and trajectories are computed using the immersed boundary method (IBM) for shear rates of 100–400 s −1. As the two cells collide under hydrodynamic shear, large local cell deformations develop. The effective contact area between the two cells is modulated by the shear rate, and reaches a maximum value at intermediate levels of shear. At relatively low shear rate, the contact area is an enclosed region. As the shear rate increases, dimples form on the membrane surface, and the contact region becomes annular. The nonmonotonic increase of the contact area with the increase of shear rate from computational results implies that there is a maximum effective receptor–ligand binding area for cell adhesion. This finding suggests the existence of possible hydrodynamic mechanism that could be used to interpret the observed maximum leukocyte aggregation in shear flow. The critical shear rate for maximum intercellular contact area is shown to vary with cell properties such as radius and membrane elastic modulus.
AbstractList Shear rate has been shown to critically affect the kinetics and receptor specificity of cell–cell interactions. In this study, the collision process between two modeled cells interacting in a linear shear flow is numerically investigated. The two identical biological or artificial cells are modeled as deformable capsules composed of an elastic membrane. The cell deformation and trajectories are computed using the immersed boundary method (IBM) for shear rates of 100–400 s −1. As the two cells collide under hydrodynamic shear, large local cell deformations develop. The effective contact area between the two cells is modulated by the shear rate, and reaches a maximum value at intermediate levels of shear. At relatively low shear rate, the contact area is an enclosed region. As the shear rate increases, dimples form on the membrane surface, and the contact region becomes annular. The nonmonotonic increase of the contact area with the increase of shear rate from computational results implies that there is a maximum effective receptor–ligand binding area for cell adhesion. This finding suggests the existence of possible hydrodynamic mechanism that could be used to interpret the observed maximum leukocyte aggregation in shear flow. The critical shear rate for maximum intercellular contact area is shown to vary with cell properties such as radius and membrane elastic modulus.
Shear rate has been shown to critically affect the kinetics and receptor specificity of cell-cell interactions. In this study, the collision process between two modeled cells interacting in a linear shear flow is numerically investigated. The two identical biological or artificial cells are modeled as deformable capsules composed of an elastic membrane. The cell deformation and trajectories are computed using the immersed boundary method (IBM) for shear rates of 100-400s(-1). As the two cells collide under hydrodynamic shear, large local cell deformations develop. The effective contact area between the two cells is modulated by the shear rate, and reaches a maximum value at intermediate levels of shear. At relatively low shear rate, the contact area is an enclosed region. As the shear rate increases, dimples form on the membrane surface, and the contact region becomes annular. The nonmonotonic increase of the contact area with the increase of shear rate from computational results implies that there is a maximum effective receptor-ligand binding area for cell adhesion. This finding suggests the existence of possible hydrodynamic mechanism that could be used to interpret the observed maximum leukocyte aggregation in shear flow. The critical shear rate for maximum intercellular contact area is shown to vary with cell properties such as radius and membrane elastic modulus.
Shear rate has been shown to critically affect the kinetics and receptor specificity of cell-cell interactions. In this study, the collision process between two modeled cells interacting in a linear shear flow is numerically investigated. The two identical biological or artificial cells are modeled as deformable capsules composed of an elastic membrane. The cell deformation and trajectories are computed using the Immersed Boundary Method for shear rates of 100–400 s−1. As the two cells collide under hydrodynamic shear, large local cell deformations develop. The effective contact area between the two cells is modulated by the shear rate, and reaches a maximum value at intermediate levels of shear. At relatively low shear rate, the contact area is an enclosed region. As the shear rate increases, dimples form on the membrane surface, and the contact region becomes annular. The non-monotonic increase of the contact area with the increase of shear rate from computational results implies that there is a maximum effective receptor-ligand binding area for cell adhesion. This finding suggests the existence of possible hydrodynamic mechanism that could be used to interpret the observed maximum leukocyte aggregation in shear flow. The critical shear rate for maximum intercellular contact area is shown to vary with cell properties such as radius and membrane elastic modulus.
Abstract Shear rate has been shown to critically affect the kinetics and receptor specificity of cell–cell interactions. In this study, the collision process between two modeled cells interacting in a linear shear flow is numerically investigated. The two identical biological or artificial cells are modeled as deformable capsules composed of an elastic membrane. The cell deformation and trajectories are computed using the immersed boundary method (IBM) for shear rates of 100–400 s−1 . As the two cells collide under hydrodynamic shear, large local cell deformations develop. The effective contact area between the two cells is modulated by the shear rate, and reaches a maximum value at intermediate levels of shear. At relatively low shear rate, the contact area is an enclosed region. As the shear rate increases, dimples form on the membrane surface, and the contact region becomes annular. The nonmonotonic increase of the contact area with the increase of shear rate from computational results implies that there is a maximum effective receptor–ligand binding area for cell adhesion. This finding suggests the existence of possible hydrodynamic mechanism that could be used to interpret the observed maximum leukocyte aggregation in shear flow. The critical shear rate for maximum intercellular contact area is shown to vary with cell properties such as radius and membrane elastic modulus.
Shear rate has been shown to critically affect the kinetics and receptor specificity of cell-cell interactions. In this study, the collision process between two modeled cells interacting in a linear shear flow is numerically investigated. The two identical biological or artificial cells are modeled as deformable capsules composed of an elastic membrane. The cell deformation and trajectories are computed using the immersed boundary method (IBM) for shear rates of 100-400s(-1). As the two cells collide under hydrodynamic shear, large local cell deformations develop. The effective contact area between the two cells is modulated by the shear rate, and reaches a maximum value at intermediate levels of shear. At relatively low shear rate, the contact area is an enclosed region. As the shear rate increases, dimples form on the membrane surface, and the contact region becomes annular. The nonmonotonic increase of the contact area with the increase of shear rate from computational results implies that there is a maximum effective receptor-ligand binding area for cell adhesion. This finding suggests the existence of possible hydrodynamic mechanism that could be used to interpret the observed maximum leukocyte aggregation in shear flow. The critical shear rate for maximum intercellular contact area is shown to vary with cell properties such as radius and membrane elastic modulus.Shear rate has been shown to critically affect the kinetics and receptor specificity of cell-cell interactions. In this study, the collision process between two modeled cells interacting in a linear shear flow is numerically investigated. The two identical biological or artificial cells are modeled as deformable capsules composed of an elastic membrane. The cell deformation and trajectories are computed using the immersed boundary method (IBM) for shear rates of 100-400s(-1). As the two cells collide under hydrodynamic shear, large local cell deformations develop. The effective contact area between the two cells is modulated by the shear rate, and reaches a maximum value at intermediate levels of shear. At relatively low shear rate, the contact area is an enclosed region. As the shear rate increases, dimples form on the membrane surface, and the contact region becomes annular. The nonmonotonic increase of the contact area with the increase of shear rate from computational results implies that there is a maximum effective receptor-ligand binding area for cell adhesion. This finding suggests the existence of possible hydrodynamic mechanism that could be used to interpret the observed maximum leukocyte aggregation in shear flow. The critical shear rate for maximum intercellular contact area is shown to vary with cell properties such as radius and membrane elastic modulus.
Author Chan, Kit Yan
Konstantopoulos, Konstantinos
Jadhav, Sameer
Eggleton, Charles D.
AuthorAffiliation 2 Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250 USA
1 Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400 076 India
3 Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218 USA
AuthorAffiliation_xml – name: 3 Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218 USA
– name: 2 Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250 USA
– name: 1 Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400 076 India
Author_xml – sequence: 1
  givenname: Sameer
  surname: Jadhav
  fullname: Jadhav, Sameer
  organization: Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
– sequence: 2
  givenname: Kit Yan
  surname: Chan
  fullname: Chan, Kit Yan
  organization: Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
– sequence: 3
  givenname: Konstantinos
  surname: Konstantopoulos
  fullname: Konstantopoulos, Konstantinos
  organization: Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
– sequence: 4
  givenname: Charles D.
  surname: Eggleton
  fullname: Eggleton, Charles D.
  email: eggleton@umbc.edu
  organization: Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17467716$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEUhoNU7Lb6F8qA4N2u-ZiZZECKpfgFBS-q1zGTnOlmzSQ1yXTpvzfjtlX3wnoVSJ7z5j3nPUfowAcPCJ0QvCKYtK83q01vwwh6vaIY8xVmK0z4E7QggrMlZQIfoAXGlCw72uFDdJTSBhew5t0zdEh43XJO2gX6drkGFasxmMmpbIOvwlBZnyFqcK7cxUoHn5XOlYqgqh7yFsBXeRsqA0OIo-odVDOcCumcNdZfVZM3EKvBhe1z9HRQLsGLu_MYfX3_7sv5x-XF5w-fzs8ulrrlLC9NrTvdtIQLTTSDhtWDJjWpqRINNdBCPxCmehCNEoMQxNBG6U6IHnfCmK5lx-h0p3s99SMYDT5H5eR1tKOKtzIoK_9-8XYtr8KNpJQ0jHRF4NWdQAw_JkhZjjbNfSkPYUqyFbRueEcL-HIP3IQp-tKcJJg1hPCGsEKd_Onnwcj96AvwZgfoGFKKMEht868Iij3ripack5YbeZ-0nJOWmMmSdClv98offnis8O2uEEoaNxaiTNqC12BsBJ2lCfZxidM9Ce2st1q573AL6fc4ZKISy8t5D-c1xBxjQtru3wL_4-AnKEjy6A
CitedBy_id crossref_primary_10_1371_journal_pone_0030721
crossref_primary_10_1016_j_jnnfm_2014_08_011
crossref_primary_10_1016_j_colsurfb_2012_05_028
crossref_primary_10_1016_j_jbiomech_2013_01_027
crossref_primary_10_1007_s10237_010_0201_2
crossref_primary_10_1007_s10237_015_0742_5
crossref_primary_10_1016_j_compfluid_2009_04_002
crossref_primary_10_1016_j_jbiomech_2012_09_017
crossref_primary_10_1016_j_ces_2010_02_050
crossref_primary_10_1016_j_lwt_2017_02_022
crossref_primary_10_1080_17513758_2012_760759
crossref_primary_10_1016_j_jfluidstructs_2009_05_006
Cites_doi 10.1038/379266a0
10.1243/03093247V281031
10.1023/B:GLYC.0000044847.15797.2e
10.3109/15419069809004482
10.1017/S002211208500341X
10.1114/1.1467677
10.1016/S0006-3495(96)79544-9
10.1083/jcb.200403144
10.1017/S0022112081003480
10.1243/03093247V242055
10.1146/annurev.bioeng.7.060804.100423
10.1007/s001620050003
10.1063/1.869703
10.1529/biophysj.104.051029
10.1017/S0022112001004657
10.1063/1.1955127
10.1021/la052445c
10.1016/j.jcis.2005.08.062
10.1017/S0022112097005016
10.1038/nature01605
10.1126/science.715448
10.1016/0021-9991(89)90213-1
10.1115/1.2112907
10.1161/01.RES.79.6.1122
10.1016/S0006-3495(01)75852-3
10.1002/eji.1830200307
10.1017/S0022112001007042
10.1083/jcb.136.3.717
10.1529/biophysj.103.035782
10.1016/j.cub.2005.01.028
10.1021/la052314b
10.1152/ajpcell.00104.2002
ContentType Journal Article
Copyright 2007 Elsevier Ltd
Elsevier Ltd
Copyright_xml – notice: 2007 Elsevier Ltd
– notice: Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1016/j.jbiomech.2007.03.017
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

Research Library Prep

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 2897
ExternalDocumentID PMC2215319
2745311591
17467716
10_1016_j_jbiomech_2007_03_017
S0021929007001169
1_s2_0_S0021929007001169
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI 063366
– fundername: NIAID NIH HHS
  grantid: R01 AI063366
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUFD
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBD
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HEE
HMCUK
HMK
HMO
HVGLF
HZ~
H~9
I-F
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
ML~
MO0
MVM
N9A
O-L
O9-
OAUVE
OH.
OHT
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
VH1
WUQ
X7M
XOL
XPP
YQT
Z5R
ZGI
ZMT
~G-
~HD
3V.
AACTN
AFCTW
AFFDN
AFKWA
AJOXV
ALIPV
AMFUW
PKN
RIG
YCJ
9DU
AAYXX
AFFHD
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c673t-d4c9c56178c1c3e534fc14142a852de6ebf13abe85a8f881d25ac988b098dd963
IEDL.DBID M7P
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000250277800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9290
IngestDate Tue Nov 04 01:54:39 EST 2025
Thu Oct 02 09:49:47 EDT 2025
Tue Dec 02 13:41:04 EST 2025
Fri May 30 10:49:41 EDT 2025
Sat Nov 29 06:57:38 EST 2025
Tue Nov 18 22:28:53 EST 2025
Sun Apr 06 06:53:21 EDT 2025
Sun Feb 23 10:20:46 EST 2025
Tue Oct 14 19:25:07 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Contact area
Bulk flow
Cellular adhesion
Simulation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c673t-d4c9c56178c1c3e534fc14142a852de6ebf13abe85a8f881d25ac988b098dd963
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Undefined-1
ObjectType-Feature-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1016/j.jbiomech.2007.03.017
PMID 17467716
PQID 1035117513
PQPubID 1226346
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2215319
proquest_miscellaneous_68245792
proquest_journals_1035117513
pubmed_primary_17467716
crossref_citationtrail_10_1016_j_jbiomech_2007_03_017
crossref_primary_10_1016_j_jbiomech_2007_03_017
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2007_03_017
elsevier_clinicalkeyesjournals_1_s2_0_S0021929007001169
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2007_03_017
PublicationCentury 2000
PublicationDate 2007-01-01
PublicationDateYYYYMMDD 2007-01-01
PublicationDate_xml – month: 01
  year: 2007
  text: 2007-01-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2007
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Fischer, Stohr-Liesen, Schmid-Schonbein (bib10) 1978; 202
Lac, Barthes-Biesel (bib21) 2005; 17
Yago, Wu, Wey, Klopocki, Zhu, McEver (bib35) 2004; 166
Damiano, Westhider, Tozeren, Ley (bib7) 1996; 79
Simon, Green (bib29) 2005; 7
Kadash, Lawrence, Diamond (bib19) 2004; 86
Jadhav, Bochner, Konstantopoulos (bib16) 2001; 167
Pozrikidis (bib27) 2001; 440
Taylor, Neelamegham, Heelums, Simon (bib34) 1996; 71
Zdravkov, Peters, Meijer (bib36) 2006; 296
Loewenberg, Hinch (bib24) 1997; 338
Breyiannis, Pozrikidis (bib5) 2000; 13
Horn, Asadullah, Connor (bib15) 2006; 22
Smoluchowski (bib33) 1917; 1992
Eggleton, Popel (bib8) 1998; 10
Peskin, McQueen (bib26) 1989; 81
Zinchenko, Davis (bib37) 2002; 455
Barthes-Biesel, Rallison (bib3) 1981; 113
Goldsmith, Quinn, Drury, Spanos, McIntosh, Simon (bib11) 2001; 81
Hammer (bib14) 2005; 15
Lawerence, Kansas, Kunkel, Ley (bib22) 1997; 136
Barthes-Biesel, Sgaier (bib4) 1985; 160
Green, Adkins (bib13) 1970
Kuypers, Koenderman, Weening, Verhoeven, Roos (bib20) 1990; 20
Charrier, Shrivastava, Wu (bib6) 1989; 24
Gourier, Pincet, Perez, Zhang, Mallet, Sinay (bib12) 2004; 21
Marshall, Long, Piper, Yago, McEver, Zhu (bib25) 2003; 423
Shrivastava, Tang (bib28) 1993; 28
Simon, Neelamegham, Taylor, Smith (bib31) 1998; 6
Finger, Puri, Alon, Lawrence, von Andrian, Springer (bib9) 1996; 18
Jadhav, Eggleton, Konstantopoulos (bib17) 2005; 88
Jadhav, Konstantopoulos (bib18) 2002; 283
Smith, Smith, Lawerence, Ley (bib32) 2002; 9
Bagchi, Johnson, Popel (bib38) 2005; 127
Lin, Ghoroghchian, Zhang, Hammer (bib23) 2006; 22
Simon, Goldsmith (bib30) 2002; 30
Kuypers (10.1016/j.jbiomech.2007.03.017_bib20) 1990; 20
Bagchi (10.1016/j.jbiomech.2007.03.017_bib38) 2005; 127
Gourier (10.1016/j.jbiomech.2007.03.017_bib12) 2004; 21
Horn (10.1016/j.jbiomech.2007.03.017_bib15) 2006; 22
Zdravkov (10.1016/j.jbiomech.2007.03.017_bib36) 2006; 296
Simon (10.1016/j.jbiomech.2007.03.017_bib30) 2002; 30
Smith (10.1016/j.jbiomech.2007.03.017_bib32) 2002; 9
Damiano (10.1016/j.jbiomech.2007.03.017_bib7) 1996; 79
Peskin (10.1016/j.jbiomech.2007.03.017_bib26) 1989; 81
Fischer (10.1016/j.jbiomech.2007.03.017_bib10) 1978; 202
Eggleton (10.1016/j.jbiomech.2007.03.017_bib8) 1998; 10
Yago (10.1016/j.jbiomech.2007.03.017_bib35) 2004; 166
Jadhav (10.1016/j.jbiomech.2007.03.017_bib17) 2005; 88
Shrivastava (10.1016/j.jbiomech.2007.03.017_bib28) 1993; 28
Taylor (10.1016/j.jbiomech.2007.03.017_bib34) 1996; 71
Zinchenko (10.1016/j.jbiomech.2007.03.017_bib37) 2002; 455
Marshall (10.1016/j.jbiomech.2007.03.017_bib25) 2003; 423
Pozrikidis (10.1016/j.jbiomech.2007.03.017_bib27) 2001; 440
Green (10.1016/j.jbiomech.2007.03.017_bib13) 1970
Hammer (10.1016/j.jbiomech.2007.03.017_bib14) 2005; 15
Kadash (10.1016/j.jbiomech.2007.03.017_bib19) 2004; 86
Charrier (10.1016/j.jbiomech.2007.03.017_bib6) 1989; 24
Breyiannis (10.1016/j.jbiomech.2007.03.017_bib5) 2000; 13
Barthes-Biesel (10.1016/j.jbiomech.2007.03.017_bib3) 1981; 113
Lac (10.1016/j.jbiomech.2007.03.017_bib21) 2005; 17
Jadhav (10.1016/j.jbiomech.2007.03.017_bib16) 2001; 167
Loewenberg (10.1016/j.jbiomech.2007.03.017_bib24) 1997; 338
Lawerence (10.1016/j.jbiomech.2007.03.017_bib22) 1997; 136
Finger (10.1016/j.jbiomech.2007.03.017_bib9) 1996; 18
Smoluchowski (10.1016/j.jbiomech.2007.03.017_bib33) 1917; 1992
Simon (10.1016/j.jbiomech.2007.03.017_bib31) 1998; 6
Barthes-Biesel (10.1016/j.jbiomech.2007.03.017_bib4) 1985; 160
Simon (10.1016/j.jbiomech.2007.03.017_bib29) 2005; 7
Jadhav (10.1016/j.jbiomech.2007.03.017_bib18) 2002; 283
Lin (10.1016/j.jbiomech.2007.03.017_bib23) 2006; 22
Goldsmith (10.1016/j.jbiomech.2007.03.017_bib11) 2001; 81
References_xml – volume: 22
  start-page: 2610
  year: 2006
  end-page: 2619
  ident: bib15
  article-title: Thin film drainage: hydrodynamic and disjoining pressures determined from experimental measurements of the shape of a fluid drop approaching a solid wall
  publication-title: Langmuir
– volume: 86
  start-page: 4030
  year: 2004
  end-page: 4039
  ident: bib19
  article-title: Neutrophil string formation: hydrodynamic thresholding and cellular deformation during cell collisions
  publication-title: Biophysical Journal
– volume: 136
  start-page: 717
  year: 1997
  end-page: 727
  ident: bib22
  article-title: Threshold levels of fluid shear promote leukocyte adhesion through selectins
  publication-title: Journal of Cell Biology
– volume: 81
  start-page: 2020
  year: 2001
  end-page: 2034
  ident: bib11
  article-title: Dynamics of neutrophil aggregation in Couette flow revealed by videomicroscopy: effect of shear rate on two-body collision efficiency and doublet lifetime
  publication-title: Biophysical Journal
– volume: 79
  start-page: 1122
  year: 1996
  end-page: 1130
  ident: bib7
  article-title: Variation in the velocity, deformation and adhesion energy of density of leukocytes rolling within venules
  publication-title: Circulation Research
– volume: 7
  start-page: 151
  year: 2005
  end-page: 185
  ident: bib29
  article-title: Molecular mechanics and dynamics of leukocyte recruitment during inflammation
  publication-title: Annual Review of Biomedical Engineering
– volume: 166
  start-page: 913
  year: 2004
  end-page: 923
  ident: bib35
  article-title: Catch bonds govern adhesion through L-selectin at threshold shear
  publication-title: Journal of Cell Biology
– volume: 24
  start-page: 55
  year: 1989
  end-page: 74
  ident: bib6
  article-title: Free and constrained inflation of elastic membranes in relation to thermoforming—non-axisymmetric problems
  publication-title: Journal of Strain Analysis for Engineering Design
– volume: 10
  start-page: 1834
  year: 1998
  end-page: 1845
  ident: bib8
  article-title: Large deformation of red blood cell ghosts in a simple shear flow
  publication-title: Physics of Fluids
– volume: 167
  start-page: 5986
  year: 2001
  end-page: 5993
  ident: bib16
  article-title: Hydrodynamic shear regulates the kinetics and receptor specificity of polymorphonuclear leukocyte-colon carcinoma cell adhesive interactions
  publication-title: Journal of Immunopharmacology
– volume: 6
  start-page: 263
  year: 1998
  end-page: 276
  ident: bib31
  article-title: The multistep process of homotypic neutrophil aggregation: a review of the molecules and effects of hydrodynamics
  publication-title: Cell Adhesion and Communication
– volume: 338
  start-page: 299
  year: 1997
  end-page: 315
  ident: bib24
  article-title: Collision of two deformable drops in shear flow
  publication-title: Journal of Fluid Mechanics
– volume: 21
  start-page: 165
  year: 2004
  end-page: 174
  ident: bib12
  article-title: Specific and nonspecific interactions involving Le(X) determinant quantified by lipid vesicle micromanipulation
  publication-title: Glycoconjugate Journal
– volume: 160
  start-page: 119
  year: 1985
  end-page: 135
  ident: bib4
  article-title: Role of membrane viscosity in the orientation and deformation of a spherical capsule suspended in shear-flow
  publication-title: Journal of Fluid Mechanics
– volume: 423
  start-page: 190
  year: 2003
  end-page: 193
  ident: bib25
  article-title: Direct observation of catch bonds involving cell-adhesion molecules
  publication-title: Nature
– volume: 283
  start-page: C1133
  year: 2002
  end-page: C1143
  ident: bib18
  article-title: Fluid shear and time dependent modulation of molecular interactions between PMNs and colon carcinomas
  publication-title: American Journal of Physiology. Cell Physiology
– volume: 88
  start-page: 96
  year: 2005
  end-page: 104
  ident: bib17
  article-title: A 3-D computational model predicts that cell deformation affects selectin-mediated leukocyte rolling
  publication-title: Biophysical Journal
– volume: 15
  start-page: R96
  year: 2005
  end-page: R99
  ident: bib14
  article-title: Leukocyte adhesion: what's the Catch?
  publication-title: Current Biology
– volume: 455
  start-page: 21
  year: 2002
  end-page: 62
  ident: bib37
  article-title: Shear flow of highly concentrated emulsions of deformable drops by numerical simulations
  publication-title: Journal of Fluid Mechanics
– volume: 20
  start-page: 501
  year: 1990
  end-page: 508
  ident: bib20
  article-title: Continuous cell activation is necessary for stable interaction of complement receptor type-3 with its counter-structure in the aggregation response of human neutrophils
  publication-title: European Journal of Immunology
– volume: 1992
  start-page: 129
  year: 1917
  end-page: 168
  ident: bib33
  article-title: Versuch einer mathematichen theorie der koagulationskinetik kolloider losungen
  publication-title: Zeitschrift Physical Chemistry
– volume: 28
  start-page: 31
  year: 1993
  end-page: 51
  ident: bib28
  article-title: Large deformation finite-element analysis of nonlinear viscoelastic membranes with reference to thermoforming
  publication-title: Journal of Strain Analysis for Engineering Design
– volume: 113
  start-page: 251
  year: 1981
  end-page: 267
  ident: bib3
  article-title: The time-dependent deformation of a capsule freely suspended in a linear shear-flow
  publication-title: Journal of Fluid Mechanics
– volume: 17
  start-page: 1
  year: 2005
  end-page: 8
  ident: bib21
  article-title: Deformation of a capsule in simple shear flow: effect of membrane prestress
  publication-title: Physics of Fluids
– volume: 30
  start-page: 315
  year: 2002
  end-page: 332
  ident: bib30
  article-title: Leukocyte adhesion dynamics in shear flow
  publication-title: Annals of Biomedical Engineering
– year: 1970
  ident: bib13
  article-title: Large Elastic Deformations
– volume: 127
  start-page: 1070
  year: 2005
  end-page: 1080
  ident: bib38
  article-title: Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow
  publication-title: Journal of Biomechanical Engineering—Transactions of the ASME
– volume: 22
  start-page: 3975
  year: 2006
  end-page: 3979
  ident: bib23
  article-title: Adhesion of antibody-functionalized polymersomes
  publication-title: Langmuir
– volume: 202
  start-page: 894
  year: 1978
  end-page: 896
  ident: bib10
  article-title: The red blood cell as a fluid droplet: trank tread-like motion of the human erythrocyte membrane in shear flow
  publication-title: Science
– volume: 440
  start-page: 269
  year: 2001
  end-page: 291
  ident: bib27
  article-title: Effect of membrane bending stiffness on the deformation of capsules in simple shear flow
  publication-title: Journal of Fluid Mechanics
– volume: 9
  start-page: 523
  year: 2002
  end-page: 536
  ident: bib32
  article-title: Viscosity-independent velocity of neutrophils rolling on p-selectin in vitro or in vivo
  publication-title: Microcirculation
– volume: 13
  start-page: 327
  year: 2000
  end-page: 347
  ident: bib5
  article-title: Simple shear flow of suspensions of elastic capsules
  publication-title: Theoretical and Computational Fluid Dynamics
– volume: 296
  start-page: 86
  year: 2006
  end-page: 94
  ident: bib36
  article-title: Film drainage and interfacial instabilities in polymeric systems with diffuse interfaces
  publication-title: Journal of Colloid and Interface Science
– volume: 81
  start-page: 372
  year: 1989
  ident: bib26
  article-title: A three dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid
  publication-title: Journal of Computational Physics
– volume: 71
  start-page: 3488
  year: 1996
  end-page: 3500
  ident: bib34
  article-title: Molecular dynamics of the transition from
  publication-title: Biophysical Journal
– volume: 18
  start-page: 266
  year: 1996
  end-page: 269
  ident: bib9
  article-title: Adhesion through L-selectin requires a threshold hydrodynamic shear
  publication-title: Nature
– volume: 18
  start-page: 266
  year: 1996
  ident: 10.1016/j.jbiomech.2007.03.017_bib9
  article-title: Adhesion through L-selectin requires a threshold hydrodynamic shear
  publication-title: Nature
  doi: 10.1038/379266a0
– volume: 28
  start-page: 31
  year: 1993
  ident: 10.1016/j.jbiomech.2007.03.017_bib28
  article-title: Large deformation finite-element analysis of nonlinear viscoelastic membranes with reference to thermoforming
  publication-title: Journal of Strain Analysis for Engineering Design
  doi: 10.1243/03093247V281031
– volume: 21
  start-page: 165
  year: 2004
  ident: 10.1016/j.jbiomech.2007.03.017_bib12
  article-title: Specific and nonspecific interactions involving Le(X) determinant quantified by lipid vesicle micromanipulation
  publication-title: Glycoconjugate Journal
  doi: 10.1023/B:GLYC.0000044847.15797.2e
– volume: 6
  start-page: 263
  year: 1998
  ident: 10.1016/j.jbiomech.2007.03.017_bib31
  article-title: The multistep process of homotypic neutrophil aggregation: a review of the molecules and effects of hydrodynamics
  publication-title: Cell Adhesion and Communication
  doi: 10.3109/15419069809004482
– volume: 160
  start-page: 119
  year: 1985
  ident: 10.1016/j.jbiomech.2007.03.017_bib4
  article-title: Role of membrane viscosity in the orientation and deformation of a spherical capsule suspended in shear-flow
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S002211208500341X
– volume: 30
  start-page: 315
  year: 2002
  ident: 10.1016/j.jbiomech.2007.03.017_bib30
  article-title: Leukocyte adhesion dynamics in shear flow
  publication-title: Annals of Biomedical Engineering
  doi: 10.1114/1.1467677
– volume: 71
  start-page: 3488
  year: 1996
  ident: 10.1016/j.jbiomech.2007.03.017_bib34
  article-title: Molecular dynamics of the transition from l-selectin to beta(2)-integrin-dependent neutrophil adhesion under defined hydrodynamic shear
  publication-title: Biophysical Journal
  doi: 10.1016/S0006-3495(96)79544-9
– volume: 166
  start-page: 913
  year: 2004
  ident: 10.1016/j.jbiomech.2007.03.017_bib35
  article-title: Catch bonds govern adhesion through L-selectin at threshold shear
  publication-title: Journal of Cell Biology
  doi: 10.1083/jcb.200403144
– volume: 113
  start-page: 251
  year: 1981
  ident: 10.1016/j.jbiomech.2007.03.017_bib3
  article-title: The time-dependent deformation of a capsule freely suspended in a linear shear-flow
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112081003480
– volume: 9
  start-page: 523
  year: 2002
  ident: 10.1016/j.jbiomech.2007.03.017_bib32
  article-title: Viscosity-independent velocity of neutrophils rolling on p-selectin in vitro or in vivo
  publication-title: Microcirculation
– volume: 24
  start-page: 55
  issue: 2
  year: 1989
  ident: 10.1016/j.jbiomech.2007.03.017_bib6
  article-title: Free and constrained inflation of elastic membranes in relation to thermoforming—non-axisymmetric problems
  publication-title: Journal of Strain Analysis for Engineering Design
  doi: 10.1243/03093247V242055
– volume: 7
  start-page: 151
  year: 2005
  ident: 10.1016/j.jbiomech.2007.03.017_bib29
  article-title: Molecular mechanics and dynamics of leukocyte recruitment during inflammation
  publication-title: Annual Review of Biomedical Engineering
  doi: 10.1146/annurev.bioeng.7.060804.100423
– volume: 13
  start-page: 327
  year: 2000
  ident: 10.1016/j.jbiomech.2007.03.017_bib5
  article-title: Simple shear flow of suspensions of elastic capsules
  publication-title: Theoretical and Computational Fluid Dynamics
  doi: 10.1007/s001620050003
– volume: 10
  start-page: 1834
  year: 1998
  ident: 10.1016/j.jbiomech.2007.03.017_bib8
  article-title: Large deformation of red blood cell ghosts in a simple shear flow
  publication-title: Physics of Fluids
  doi: 10.1063/1.869703
– volume: 88
  start-page: 96
  year: 2005
  ident: 10.1016/j.jbiomech.2007.03.017_bib17
  article-title: A 3-D computational model predicts that cell deformation affects selectin-mediated leukocyte rolling
  publication-title: Biophysical Journal
  doi: 10.1529/biophysj.104.051029
– volume: 440
  start-page: 269
  year: 2001
  ident: 10.1016/j.jbiomech.2007.03.017_bib27
  article-title: Effect of membrane bending stiffness on the deformation of capsules in simple shear flow
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112001004657
– volume: 17
  start-page: 1
  issue: 7
  year: 2005
  ident: 10.1016/j.jbiomech.2007.03.017_bib21
  article-title: Deformation of a capsule in simple shear flow: effect of membrane prestress
  publication-title: Physics of Fluids
  doi: 10.1063/1.1955127
– volume: 22
  start-page: 3975
  year: 2006
  ident: 10.1016/j.jbiomech.2007.03.017_bib23
  article-title: Adhesion of antibody-functionalized polymersomes
  publication-title: Langmuir
  doi: 10.1021/la052445c
– volume: 296
  start-page: 86
  year: 2006
  ident: 10.1016/j.jbiomech.2007.03.017_bib36
  article-title: Film drainage and interfacial instabilities in polymeric systems with diffuse interfaces
  publication-title: Journal of Colloid and Interface Science
  doi: 10.1016/j.jcis.2005.08.062
– volume: 338
  start-page: 299
  year: 1997
  ident: 10.1016/j.jbiomech.2007.03.017_bib24
  article-title: Collision of two deformable drops in shear flow
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112097005016
– volume: 423
  start-page: 190
  year: 2003
  ident: 10.1016/j.jbiomech.2007.03.017_bib25
  article-title: Direct observation of catch bonds involving cell-adhesion molecules
  publication-title: Nature
  doi: 10.1038/nature01605
– volume: 1992
  start-page: 129
  year: 1917
  ident: 10.1016/j.jbiomech.2007.03.017_bib33
  article-title: Versuch einer mathematichen theorie der koagulationskinetik kolloider losungen
  publication-title: Zeitschrift Physical Chemistry
– volume: 202
  start-page: 894
  year: 1978
  ident: 10.1016/j.jbiomech.2007.03.017_bib10
  article-title: The red blood cell as a fluid droplet: trank tread-like motion of the human erythrocyte membrane in shear flow
  publication-title: Science
  doi: 10.1126/science.715448
– volume: 81
  start-page: 372
  year: 1989
  ident: 10.1016/j.jbiomech.2007.03.017_bib26
  article-title: A three dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid
  publication-title: Journal of Computational Physics
  doi: 10.1016/0021-9991(89)90213-1
– volume: 127
  start-page: 1070
  issue: 7
  year: 2005
  ident: 10.1016/j.jbiomech.2007.03.017_bib38
  article-title: Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow
  publication-title: Journal of Biomechanical Engineering—Transactions of the ASME
  doi: 10.1115/1.2112907
– volume: 79
  start-page: 1122
  year: 1996
  ident: 10.1016/j.jbiomech.2007.03.017_bib7
  article-title: Variation in the velocity, deformation and adhesion energy of density of leukocytes rolling within venules
  publication-title: Circulation Research
  doi: 10.1161/01.RES.79.6.1122
– volume: 81
  start-page: 2020
  year: 2001
  ident: 10.1016/j.jbiomech.2007.03.017_bib11
  article-title: Dynamics of neutrophil aggregation in Couette flow revealed by videomicroscopy: effect of shear rate on two-body collision efficiency and doublet lifetime
  publication-title: Biophysical Journal
  doi: 10.1016/S0006-3495(01)75852-3
– volume: 20
  start-page: 501
  year: 1990
  ident: 10.1016/j.jbiomech.2007.03.017_bib20
  article-title: Continuous cell activation is necessary for stable interaction of complement receptor type-3 with its counter-structure in the aggregation response of human neutrophils
  publication-title: European Journal of Immunology
  doi: 10.1002/eji.1830200307
– volume: 455
  start-page: 21
  year: 2002
  ident: 10.1016/j.jbiomech.2007.03.017_bib37
  article-title: Shear flow of highly concentrated emulsions of deformable drops by numerical simulations
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112001007042
– volume: 136
  start-page: 717
  year: 1997
  ident: 10.1016/j.jbiomech.2007.03.017_bib22
  article-title: Threshold levels of fluid shear promote leukocyte adhesion through selectins
  publication-title: Journal of Cell Biology
  doi: 10.1083/jcb.136.3.717
– volume: 167
  start-page: 5986
  year: 2001
  ident: 10.1016/j.jbiomech.2007.03.017_bib16
  article-title: Hydrodynamic shear regulates the kinetics and receptor specificity of polymorphonuclear leukocyte-colon carcinoma cell adhesive interactions
  publication-title: Journal of Immunopharmacology
– volume: 86
  start-page: 4030
  year: 2004
  ident: 10.1016/j.jbiomech.2007.03.017_bib19
  article-title: Neutrophil string formation: hydrodynamic thresholding and cellular deformation during cell collisions
  publication-title: Biophysical Journal
  doi: 10.1529/biophysj.103.035782
– volume: 15
  start-page: R96
  year: 2005
  ident: 10.1016/j.jbiomech.2007.03.017_bib14
  article-title: Leukocyte adhesion: what's the Catch?
  publication-title: Current Biology
  doi: 10.1016/j.cub.2005.01.028
– volume: 22
  start-page: 2610
  year: 2006
  ident: 10.1016/j.jbiomech.2007.03.017_bib15
  article-title: Thin film drainage: hydrodynamic and disjoining pressures determined from experimental measurements of the shape of a fluid drop approaching a solid wall
  publication-title: Langmuir
  doi: 10.1021/la052314b
– year: 1970
  ident: 10.1016/j.jbiomech.2007.03.017_bib13
– volume: 283
  start-page: C1133
  year: 2002
  ident: 10.1016/j.jbiomech.2007.03.017_bib18
  article-title: Fluid shear and time dependent modulation of molecular interactions between PMNs and colon carcinomas
  publication-title: American Journal of Physiology. Cell Physiology
  doi: 10.1152/ajpcell.00104.2002
SSID ssj0007479
Score 1.9629735
Snippet Shear rate has been shown to critically affect the kinetics and receptor specificity of cell–cell interactions. In this study, the collision process between...
Abstract Shear rate has been shown to critically affect the kinetics and receptor specificity of cell–cell interactions. In this study, the collision process...
Shear rate has been shown to critically affect the kinetics and receptor specificity of cell-cell interactions. In this study, the collision process between...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2891
SubjectTerms Bulk flow
Cell Adhesion
Cell Shape
Cellular adhesion
Computer Simulation
Contact area
Physical Medicine and Rehabilitation
Simulation
Title Shear modulation of intercellular contact area between two deformable cells colliding under flow
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929007001169
https://www.clinicalkey.es/playcontent/1-s2.0-S0021929007001169
https://dx.doi.org/10.1016/j.jbiomech.2007.03.017
https://www.ncbi.nlm.nih.gov/pubmed/17467716
https://www.proquest.com/docview/1035117513
https://www.proquest.com/docview/68245792
https://pubmed.ncbi.nlm.nih.gov/PMC2215319
Volume 40
WOSCitedRecordID wos000250277800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20251008
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: M7P
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20251008
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20251008
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Research Library
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20251008
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: M2O
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xDSF44EcHozCKHxBvYbGT1M4TGmgTLysVAqlvxnFs0apLtqZj4r_H5zhZBwgQvFSqEitNfT5_vvvuPoAXtmS5ipmKkrgUUWqtikRheERpSROrmU6t8GITfDIRs1k-DQG3JtAqO5_oHXVZa4yRu9WNKS-e0eT12XmEqlGYXQ0SGluwg10SEk_dm_ae2EHlQPGgkYMB8UaF8OLVwte3twkJ7hudetGyX25OP4PPHzmUG5vS8b3_fZ37cDfAUXLY2s8DuGGqAeweVu4ofvqNvCSeIOoj7wO4s9G7cAC3TkJWfhc-e1lsclqXQQuM1JZgHwqfFkCeK0FGvNJrohxGJYEbRtaXNSmNR83F0hC8uSFomHPcUAmWt62IXdaXD-HT8dHHt--ioNwQ6TFP1lGZ6lxnWH2oqU5MlqRW05SmTImMlWZsCksTVRiRKWGFg8wsUzoXoohzUZbOJzyC7aquzGMgVmMhkUqYLnQqtCiUHptEZ-5ka4tinA4h66ZM6tDWHNU1lrLjry1kN9WoucllnEg31UM46MedtY09_jiCdxYhu7JV52il23v-baRpgr9oJJUNk7HE1DlFS425z5DlQ8j7kQEStVDnr56635mevHpQb3dDeN5fdi4F51hVpr5o5FiwNOM5G8Jea-NXfxCK07gTtnuha9bf34DNyq9fqeZffNNyhuuT5k9-_6Oewu02eI4xrn3YXq8uzDO4qb-u581qBFt8xv2nGMHOm6PJ9IP7dsLej_y6_w43dGAn
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgigceGwLLBTqA3BLiZ2Xc0CoAqpWbVc9FKk313FssattUjYpq_4pfiMe59EtIEBIPXBOnIczM_6c-WY-gJcmZ6n0mfQCP-deaIz0eKYTj9KcBkYxFRruxCaS0YgfH6eHS_Ctq4VBWmUXE12gzkuF_8itd2PKK4lo8O7si4eqUZhd7SQ0GrPY0xdzu2Wr3u5-sN_3FWPbH4_e73itqoCn4iSovTxUqYqwMk5RFegoCI2iIQ2Z5BHLdawzQwOZaR5JbriFcyySKuU881Oe59Ze7XVvwE0LIxh3VMHDPvJbaN5SSqhnYYe_UJE82Zy4evomAZK4xqpOJO2Xi-HPYPdHzubCIrh9_3-bvgdwr4XbZKvxj4ewpIsBrG4Vsi5PL8hr4giwLrMwgLsLvRkHcPugZR2swomT_SanZd5qnZHSEOyz4dIeyOMlyPiXqibSYnDSct9IPS9Jrt2uIJtqgidXBB1vjICBYPnejJhpOV-DT9cyCY9guSgL_QSIUVgoJQOmMhVyxTOpYh2oyO7cTZbF4RCizkSEatu2o3rIVHT8vInoTAs1RRPhB8Ka1hDe9OPOmsYlfxyRdBYourJcu5AIu7b-20hdtfGwElRUTPgCqQEUPcNPXAYwHULaj2whXwPl_uqu652pi8sb9XY-hI3-sA2Z-I1locvzSsSchVGSsiE8bnzqcoJQfCehsX2hK97Wn4DN2K8eKcafXVN2ZrGzXc6e_v6hNmBl5-hgX-zvjvaewZ0mUYD_89ZhuZ6d6-dwS32tx9XshYssBE6u2xe_A3ctuUc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6Vgio48NjyWCjUB-CWNnZezgGhirKiKqz2AFJvruPYYlfbpGxSVv1r_Do8zqNbQICQeuCcOA9nxvM58818AM9NzlLpM-kFfs690Bjp8UwnHqU5DYxiKjTciU0k4zE_Okona_Ctq4VBWmW3JrqFOi8V_iO33o0prySiwa5paRGT_dHr0y8eKkhhprWT02hM5FCfL-32rXp1sG-_9QvGRm8_vnnntQoDnoqToPbyUKUqwio5RVWgoyA0ioY0ZJJHLNexzgwNZKZ5JLnhFtqxSKqU88xPeZ5b27XXvQbXE2xa7miDkz4KWJje0kuoZyGIv1KdPNuZudr6JhmSuCarTjDtl4HxZ-D7I39zJSCO7vzPU3kXbrcwnOw1fnMP1nQxgM29QtblyTl5SRwx1mUcBnBrpWfjADY-tGyETTh2cuDkpMxbDTRSGoL9N1w6BPm9BCsBpKqJtNictJw4Ui9Lkmu3W8jmmuDJFUGHnCKQIFjWtyBmXi7vw6crmYQHsF6UhX4ExCgsoJIBU5kKueKZVLEOVGR39CbL4nAIUWcuQrXt3FFVZC463t5MdGaGWqOJ8ANhzWwIu_2406ahyR9HJJ01iq5c1wYYYWPuv43UVbtOVoKKiglfIGWAopf4icsMpkNI-5EtFGwg3l_ddasze3Fxo97mh7DdH7ZLKX5jWejyrBIxZ2GUpGwIDxv_upggFOVJaGxf6JLn9Sdgk_bLR4rpZ9esnVlMbcPc498_1DZsWBcU7w_Gh0_gZpM_wN98W7BeL870U7ihvtbTavHMLTIEjq_aFb8DhQDCBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shear+modulation+of+intercellular+contact+area+between+two+deformable+cells+colliding+under+flow&rft.jtitle=Journal+of+biomechanics&rft.au=Jadhav%2C+Sameer&rft.au=Chan%2C+Kit+Yan&rft.au=Konstantopoulos%2C+Konstantinos&rft.au=Eggleton%2C+Charles+D.&rft.date=2007-01-01&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.volume=40&rft.issue=13&rft.spage=2891&rft.epage=2897&rft_id=info:doi/10.1016%2Fj.jbiomech.2007.03.017&rft.externalDocID=S0021929007001169
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929007X04457%2Fcov150h.gif