Shear modulation of intercellular contact area between two deformable cells colliding under flow
Shear rate has been shown to critically affect the kinetics and receptor specificity of cell–cell interactions. In this study, the collision process between two modeled cells interacting in a linear shear flow is numerically investigated. The two identical biological or artificial cells are modeled...
Saved in:
| Published in: | Journal of biomechanics Vol. 40; no. 13; pp. 2891 - 2897 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Ltd
01.01.2007
Elsevier Limited |
| Subjects: | |
| ISSN: | 0021-9290, 1873-2380 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Shear rate has been shown to critically affect the kinetics and receptor specificity of cell–cell interactions. In this study, the collision process between two modeled cells interacting in a linear shear flow is numerically investigated. The two identical biological or artificial cells are modeled as deformable capsules composed of an elastic membrane. The cell deformation and trajectories are computed using the immersed boundary method (IBM) for shear rates of 100–400
s
−1. As the two cells collide under hydrodynamic shear, large local cell deformations develop. The effective contact area between the two cells is modulated by the shear rate, and reaches a maximum value at intermediate levels of shear. At relatively low shear rate, the contact area is an enclosed region. As the shear rate increases, dimples form on the membrane surface, and the contact region becomes annular. The nonmonotonic increase of the contact area with the increase of shear rate from computational results implies that there is a maximum effective receptor–ligand binding area for cell adhesion. This finding suggests the existence of possible hydrodynamic mechanism that could be used to interpret the observed maximum leukocyte aggregation in shear flow. The critical shear rate for maximum intercellular contact area is shown to vary with cell properties such as radius and membrane elastic modulus. |
|---|---|
| AbstractList | Shear rate has been shown to critically affect the kinetics and receptor specificity of cell–cell interactions. In this study, the collision process between two modeled cells interacting in a linear shear flow is numerically investigated. The two identical biological or artificial cells are modeled as deformable capsules composed of an elastic membrane. The cell deformation and trajectories are computed using the immersed boundary method (IBM) for shear rates of 100–400
s
−1. As the two cells collide under hydrodynamic shear, large local cell deformations develop. The effective contact area between the two cells is modulated by the shear rate, and reaches a maximum value at intermediate levels of shear. At relatively low shear rate, the contact area is an enclosed region. As the shear rate increases, dimples form on the membrane surface, and the contact region becomes annular. The nonmonotonic increase of the contact area with the increase of shear rate from computational results implies that there is a maximum effective receptor–ligand binding area for cell adhesion. This finding suggests the existence of possible hydrodynamic mechanism that could be used to interpret the observed maximum leukocyte aggregation in shear flow. The critical shear rate for maximum intercellular contact area is shown to vary with cell properties such as radius and membrane elastic modulus. Shear rate has been shown to critically affect the kinetics and receptor specificity of cell-cell interactions. In this study, the collision process between two modeled cells interacting in a linear shear flow is numerically investigated. The two identical biological or artificial cells are modeled as deformable capsules composed of an elastic membrane. The cell deformation and trajectories are computed using the immersed boundary method (IBM) for shear rates of 100-400s(-1). As the two cells collide under hydrodynamic shear, large local cell deformations develop. The effective contact area between the two cells is modulated by the shear rate, and reaches a maximum value at intermediate levels of shear. At relatively low shear rate, the contact area is an enclosed region. As the shear rate increases, dimples form on the membrane surface, and the contact region becomes annular. The nonmonotonic increase of the contact area with the increase of shear rate from computational results implies that there is a maximum effective receptor-ligand binding area for cell adhesion. This finding suggests the existence of possible hydrodynamic mechanism that could be used to interpret the observed maximum leukocyte aggregation in shear flow. The critical shear rate for maximum intercellular contact area is shown to vary with cell properties such as radius and membrane elastic modulus. Shear rate has been shown to critically affect the kinetics and receptor specificity of cell-cell interactions. In this study, the collision process between two modeled cells interacting in a linear shear flow is numerically investigated. The two identical biological or artificial cells are modeled as deformable capsules composed of an elastic membrane. The cell deformation and trajectories are computed using the Immersed Boundary Method for shear rates of 100–400 s−1. As the two cells collide under hydrodynamic shear, large local cell deformations develop. The effective contact area between the two cells is modulated by the shear rate, and reaches a maximum value at intermediate levels of shear. At relatively low shear rate, the contact area is an enclosed region. As the shear rate increases, dimples form on the membrane surface, and the contact region becomes annular. The non-monotonic increase of the contact area with the increase of shear rate from computational results implies that there is a maximum effective receptor-ligand binding area for cell adhesion. This finding suggests the existence of possible hydrodynamic mechanism that could be used to interpret the observed maximum leukocyte aggregation in shear flow. The critical shear rate for maximum intercellular contact area is shown to vary with cell properties such as radius and membrane elastic modulus. Abstract Shear rate has been shown to critically affect the kinetics and receptor specificity of cell–cell interactions. In this study, the collision process between two modeled cells interacting in a linear shear flow is numerically investigated. The two identical biological or artificial cells are modeled as deformable capsules composed of an elastic membrane. The cell deformation and trajectories are computed using the immersed boundary method (IBM) for shear rates of 100–400 s−1 . As the two cells collide under hydrodynamic shear, large local cell deformations develop. The effective contact area between the two cells is modulated by the shear rate, and reaches a maximum value at intermediate levels of shear. At relatively low shear rate, the contact area is an enclosed region. As the shear rate increases, dimples form on the membrane surface, and the contact region becomes annular. The nonmonotonic increase of the contact area with the increase of shear rate from computational results implies that there is a maximum effective receptor–ligand binding area for cell adhesion. This finding suggests the existence of possible hydrodynamic mechanism that could be used to interpret the observed maximum leukocyte aggregation in shear flow. The critical shear rate for maximum intercellular contact area is shown to vary with cell properties such as radius and membrane elastic modulus. Shear rate has been shown to critically affect the kinetics and receptor specificity of cell-cell interactions. In this study, the collision process between two modeled cells interacting in a linear shear flow is numerically investigated. The two identical biological or artificial cells are modeled as deformable capsules composed of an elastic membrane. The cell deformation and trajectories are computed using the immersed boundary method (IBM) for shear rates of 100-400s(-1). As the two cells collide under hydrodynamic shear, large local cell deformations develop. The effective contact area between the two cells is modulated by the shear rate, and reaches a maximum value at intermediate levels of shear. At relatively low shear rate, the contact area is an enclosed region. As the shear rate increases, dimples form on the membrane surface, and the contact region becomes annular. The nonmonotonic increase of the contact area with the increase of shear rate from computational results implies that there is a maximum effective receptor-ligand binding area for cell adhesion. This finding suggests the existence of possible hydrodynamic mechanism that could be used to interpret the observed maximum leukocyte aggregation in shear flow. The critical shear rate for maximum intercellular contact area is shown to vary with cell properties such as radius and membrane elastic modulus.Shear rate has been shown to critically affect the kinetics and receptor specificity of cell-cell interactions. In this study, the collision process between two modeled cells interacting in a linear shear flow is numerically investigated. The two identical biological or artificial cells are modeled as deformable capsules composed of an elastic membrane. The cell deformation and trajectories are computed using the immersed boundary method (IBM) for shear rates of 100-400s(-1). As the two cells collide under hydrodynamic shear, large local cell deformations develop. The effective contact area between the two cells is modulated by the shear rate, and reaches a maximum value at intermediate levels of shear. At relatively low shear rate, the contact area is an enclosed region. As the shear rate increases, dimples form on the membrane surface, and the contact region becomes annular. The nonmonotonic increase of the contact area with the increase of shear rate from computational results implies that there is a maximum effective receptor-ligand binding area for cell adhesion. This finding suggests the existence of possible hydrodynamic mechanism that could be used to interpret the observed maximum leukocyte aggregation in shear flow. The critical shear rate for maximum intercellular contact area is shown to vary with cell properties such as radius and membrane elastic modulus. |
| Author | Chan, Kit Yan Konstantopoulos, Konstantinos Jadhav, Sameer Eggleton, Charles D. |
| AuthorAffiliation | 2 Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250 USA 1 Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400 076 India 3 Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218 USA |
| AuthorAffiliation_xml | – name: 3 Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218 USA – name: 2 Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250 USA – name: 1 Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400 076 India |
| Author_xml | – sequence: 1 givenname: Sameer surname: Jadhav fullname: Jadhav, Sameer organization: Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400 076, India – sequence: 2 givenname: Kit Yan surname: Chan fullname: Chan, Kit Yan organization: Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA – sequence: 3 givenname: Konstantinos surname: Konstantopoulos fullname: Konstantopoulos, Konstantinos organization: Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA – sequence: 4 givenname: Charles D. surname: Eggleton fullname: Eggleton, Charles D. email: eggleton@umbc.edu organization: Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17467716$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl1rFDEUhoNU7Lb6F8qA4N2u-ZiZZECKpfgFBS-q1zGTnOlmzSQ1yXTpvzfjtlX3wnoVSJ7z5j3nPUfowAcPCJ0QvCKYtK83q01vwwh6vaIY8xVmK0z4E7QggrMlZQIfoAXGlCw72uFDdJTSBhew5t0zdEh43XJO2gX6drkGFasxmMmpbIOvwlBZnyFqcK7cxUoHn5XOlYqgqh7yFsBXeRsqA0OIo-odVDOcCumcNdZfVZM3EKvBhe1z9HRQLsGLu_MYfX3_7sv5x-XF5w-fzs8ulrrlLC9NrTvdtIQLTTSDhtWDJjWpqRINNdBCPxCmehCNEoMQxNBG6U6IHnfCmK5lx-h0p3s99SMYDT5H5eR1tKOKtzIoK_9-8XYtr8KNpJQ0jHRF4NWdQAw_JkhZjjbNfSkPYUqyFbRueEcL-HIP3IQp-tKcJJg1hPCGsEKd_Onnwcj96AvwZgfoGFKKMEht868Iij3ripack5YbeZ-0nJOWmMmSdClv98offnis8O2uEEoaNxaiTNqC12BsBJ2lCfZxidM9Ce2st1q573AL6fc4ZKISy8t5D-c1xBxjQtru3wL_4-AnKEjy6A |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0030721 crossref_primary_10_1016_j_jnnfm_2014_08_011 crossref_primary_10_1016_j_colsurfb_2012_05_028 crossref_primary_10_1016_j_jbiomech_2013_01_027 crossref_primary_10_1007_s10237_010_0201_2 crossref_primary_10_1007_s10237_015_0742_5 crossref_primary_10_1016_j_compfluid_2009_04_002 crossref_primary_10_1016_j_jbiomech_2012_09_017 crossref_primary_10_1016_j_ces_2010_02_050 crossref_primary_10_1016_j_lwt_2017_02_022 crossref_primary_10_1080_17513758_2012_760759 crossref_primary_10_1016_j_jfluidstructs_2009_05_006 |
| Cites_doi | 10.1038/379266a0 10.1243/03093247V281031 10.1023/B:GLYC.0000044847.15797.2e 10.3109/15419069809004482 10.1017/S002211208500341X 10.1114/1.1467677 10.1016/S0006-3495(96)79544-9 10.1083/jcb.200403144 10.1017/S0022112081003480 10.1243/03093247V242055 10.1146/annurev.bioeng.7.060804.100423 10.1007/s001620050003 10.1063/1.869703 10.1529/biophysj.104.051029 10.1017/S0022112001004657 10.1063/1.1955127 10.1021/la052445c 10.1016/j.jcis.2005.08.062 10.1017/S0022112097005016 10.1038/nature01605 10.1126/science.715448 10.1016/0021-9991(89)90213-1 10.1115/1.2112907 10.1161/01.RES.79.6.1122 10.1016/S0006-3495(01)75852-3 10.1002/eji.1830200307 10.1017/S0022112001007042 10.1083/jcb.136.3.717 10.1529/biophysj.103.035782 10.1016/j.cub.2005.01.028 10.1021/la052314b 10.1152/ajpcell.00104.2002 |
| ContentType | Journal Article |
| Copyright | 2007 Elsevier Ltd Elsevier Ltd |
| Copyright_xml | – notice: 2007 Elsevier Ltd – notice: Elsevier Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
| DOI | 10.1016/j.jbiomech.2007.03.017 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database ProQuest Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Research Library Prep MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Anatomy & Physiology |
| EISSN | 1873-2380 |
| EndPage | 2897 |
| ExternalDocumentID | PMC2215319 2745311591 17467716 10_1016_j_jbiomech_2007_03_017 S0021929007001169 1_s2_0_S0021929007001169 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI 063366 – fundername: NIAID NIH HHS grantid: R01 AI063366 |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUFD ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHMBA AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBD EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GUQSH HCIFZ HEE HMCUK HMK HMO HVGLF HZ~ H~9 I-F IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P ML~ MO0 MVM N9A O-L O9- OAUVE OH. OHT OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT VH1 WUQ X7M XOL XPP YQT Z5R ZGI ZMT ~G- ~HD 3V. AACTN AFCTW AFFDN AFKWA AJOXV ALIPV AMFUW PKN RIG YCJ 9DU AAYXX AFFHD CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM PMFND 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c673t-d4c9c56178c1c3e534fc14142a852de6ebf13abe85a8f881d25ac988b098dd963 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000250277800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9290 |
| IngestDate | Tue Nov 04 01:54:39 EST 2025 Thu Oct 02 09:49:47 EDT 2025 Tue Dec 02 13:41:04 EST 2025 Fri May 30 10:49:41 EDT 2025 Sat Nov 29 06:57:38 EST 2025 Tue Nov 18 22:28:53 EST 2025 Sun Apr 06 06:53:21 EDT 2025 Sun Feb 23 10:20:46 EST 2025 Tue Oct 14 19:25:07 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | Contact area Bulk flow Cellular adhesion Simulation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c673t-d4c9c56178c1c3e534fc14142a852de6ebf13abe85a8f881d25ac988b098dd963 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Undefined-1 ObjectType-Feature-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://doi.org/10.1016/j.jbiomech.2007.03.017 |
| PMID | 17467716 |
| PQID | 1035117513 |
| PQPubID | 1226346 |
| PageCount | 7 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2215319 proquest_miscellaneous_68245792 proquest_journals_1035117513 pubmed_primary_17467716 crossref_citationtrail_10_1016_j_jbiomech_2007_03_017 crossref_primary_10_1016_j_jbiomech_2007_03_017 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2007_03_017 elsevier_clinicalkeyesjournals_1_s2_0_S0021929007001169 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2007_03_017 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-01-01 |
| PublicationDateYYYYMMDD | 2007-01-01 |
| PublicationDate_xml | – month: 01 year: 2007 text: 2007-01-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Kidlington |
| PublicationTitle | Journal of biomechanics |
| PublicationTitleAlternate | J Biomech |
| PublicationYear | 2007 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Fischer, Stohr-Liesen, Schmid-Schonbein (bib10) 1978; 202 Lac, Barthes-Biesel (bib21) 2005; 17 Yago, Wu, Wey, Klopocki, Zhu, McEver (bib35) 2004; 166 Damiano, Westhider, Tozeren, Ley (bib7) 1996; 79 Simon, Green (bib29) 2005; 7 Kadash, Lawrence, Diamond (bib19) 2004; 86 Jadhav, Bochner, Konstantopoulos (bib16) 2001; 167 Pozrikidis (bib27) 2001; 440 Taylor, Neelamegham, Heelums, Simon (bib34) 1996; 71 Zdravkov, Peters, Meijer (bib36) 2006; 296 Loewenberg, Hinch (bib24) 1997; 338 Breyiannis, Pozrikidis (bib5) 2000; 13 Horn, Asadullah, Connor (bib15) 2006; 22 Smoluchowski (bib33) 1917; 1992 Eggleton, Popel (bib8) 1998; 10 Peskin, McQueen (bib26) 1989; 81 Zinchenko, Davis (bib37) 2002; 455 Barthes-Biesel, Rallison (bib3) 1981; 113 Goldsmith, Quinn, Drury, Spanos, McIntosh, Simon (bib11) 2001; 81 Hammer (bib14) 2005; 15 Lawerence, Kansas, Kunkel, Ley (bib22) 1997; 136 Barthes-Biesel, Sgaier (bib4) 1985; 160 Green, Adkins (bib13) 1970 Kuypers, Koenderman, Weening, Verhoeven, Roos (bib20) 1990; 20 Charrier, Shrivastava, Wu (bib6) 1989; 24 Gourier, Pincet, Perez, Zhang, Mallet, Sinay (bib12) 2004; 21 Marshall, Long, Piper, Yago, McEver, Zhu (bib25) 2003; 423 Shrivastava, Tang (bib28) 1993; 28 Simon, Neelamegham, Taylor, Smith (bib31) 1998; 6 Finger, Puri, Alon, Lawrence, von Andrian, Springer (bib9) 1996; 18 Jadhav, Eggleton, Konstantopoulos (bib17) 2005; 88 Jadhav, Konstantopoulos (bib18) 2002; 283 Smith, Smith, Lawerence, Ley (bib32) 2002; 9 Bagchi, Johnson, Popel (bib38) 2005; 127 Lin, Ghoroghchian, Zhang, Hammer (bib23) 2006; 22 Simon, Goldsmith (bib30) 2002; 30 Kuypers (10.1016/j.jbiomech.2007.03.017_bib20) 1990; 20 Bagchi (10.1016/j.jbiomech.2007.03.017_bib38) 2005; 127 Gourier (10.1016/j.jbiomech.2007.03.017_bib12) 2004; 21 Horn (10.1016/j.jbiomech.2007.03.017_bib15) 2006; 22 Zdravkov (10.1016/j.jbiomech.2007.03.017_bib36) 2006; 296 Simon (10.1016/j.jbiomech.2007.03.017_bib30) 2002; 30 Smith (10.1016/j.jbiomech.2007.03.017_bib32) 2002; 9 Damiano (10.1016/j.jbiomech.2007.03.017_bib7) 1996; 79 Peskin (10.1016/j.jbiomech.2007.03.017_bib26) 1989; 81 Fischer (10.1016/j.jbiomech.2007.03.017_bib10) 1978; 202 Eggleton (10.1016/j.jbiomech.2007.03.017_bib8) 1998; 10 Yago (10.1016/j.jbiomech.2007.03.017_bib35) 2004; 166 Jadhav (10.1016/j.jbiomech.2007.03.017_bib17) 2005; 88 Shrivastava (10.1016/j.jbiomech.2007.03.017_bib28) 1993; 28 Taylor (10.1016/j.jbiomech.2007.03.017_bib34) 1996; 71 Zinchenko (10.1016/j.jbiomech.2007.03.017_bib37) 2002; 455 Marshall (10.1016/j.jbiomech.2007.03.017_bib25) 2003; 423 Pozrikidis (10.1016/j.jbiomech.2007.03.017_bib27) 2001; 440 Green (10.1016/j.jbiomech.2007.03.017_bib13) 1970 Hammer (10.1016/j.jbiomech.2007.03.017_bib14) 2005; 15 Kadash (10.1016/j.jbiomech.2007.03.017_bib19) 2004; 86 Charrier (10.1016/j.jbiomech.2007.03.017_bib6) 1989; 24 Breyiannis (10.1016/j.jbiomech.2007.03.017_bib5) 2000; 13 Barthes-Biesel (10.1016/j.jbiomech.2007.03.017_bib3) 1981; 113 Lac (10.1016/j.jbiomech.2007.03.017_bib21) 2005; 17 Jadhav (10.1016/j.jbiomech.2007.03.017_bib16) 2001; 167 Loewenberg (10.1016/j.jbiomech.2007.03.017_bib24) 1997; 338 Lawerence (10.1016/j.jbiomech.2007.03.017_bib22) 1997; 136 Finger (10.1016/j.jbiomech.2007.03.017_bib9) 1996; 18 Smoluchowski (10.1016/j.jbiomech.2007.03.017_bib33) 1917; 1992 Simon (10.1016/j.jbiomech.2007.03.017_bib31) 1998; 6 Barthes-Biesel (10.1016/j.jbiomech.2007.03.017_bib4) 1985; 160 Simon (10.1016/j.jbiomech.2007.03.017_bib29) 2005; 7 Jadhav (10.1016/j.jbiomech.2007.03.017_bib18) 2002; 283 Lin (10.1016/j.jbiomech.2007.03.017_bib23) 2006; 22 Goldsmith (10.1016/j.jbiomech.2007.03.017_bib11) 2001; 81 |
| References_xml | – volume: 22 start-page: 2610 year: 2006 end-page: 2619 ident: bib15 article-title: Thin film drainage: hydrodynamic and disjoining pressures determined from experimental measurements of the shape of a fluid drop approaching a solid wall publication-title: Langmuir – volume: 86 start-page: 4030 year: 2004 end-page: 4039 ident: bib19 article-title: Neutrophil string formation: hydrodynamic thresholding and cellular deformation during cell collisions publication-title: Biophysical Journal – volume: 136 start-page: 717 year: 1997 end-page: 727 ident: bib22 article-title: Threshold levels of fluid shear promote leukocyte adhesion through selectins publication-title: Journal of Cell Biology – volume: 81 start-page: 2020 year: 2001 end-page: 2034 ident: bib11 article-title: Dynamics of neutrophil aggregation in Couette flow revealed by videomicroscopy: effect of shear rate on two-body collision efficiency and doublet lifetime publication-title: Biophysical Journal – volume: 79 start-page: 1122 year: 1996 end-page: 1130 ident: bib7 article-title: Variation in the velocity, deformation and adhesion energy of density of leukocytes rolling within venules publication-title: Circulation Research – volume: 7 start-page: 151 year: 2005 end-page: 185 ident: bib29 article-title: Molecular mechanics and dynamics of leukocyte recruitment during inflammation publication-title: Annual Review of Biomedical Engineering – volume: 166 start-page: 913 year: 2004 end-page: 923 ident: bib35 article-title: Catch bonds govern adhesion through L-selectin at threshold shear publication-title: Journal of Cell Biology – volume: 24 start-page: 55 year: 1989 end-page: 74 ident: bib6 article-title: Free and constrained inflation of elastic membranes in relation to thermoforming—non-axisymmetric problems publication-title: Journal of Strain Analysis for Engineering Design – volume: 10 start-page: 1834 year: 1998 end-page: 1845 ident: bib8 article-title: Large deformation of red blood cell ghosts in a simple shear flow publication-title: Physics of Fluids – volume: 167 start-page: 5986 year: 2001 end-page: 5993 ident: bib16 article-title: Hydrodynamic shear regulates the kinetics and receptor specificity of polymorphonuclear leukocyte-colon carcinoma cell adhesive interactions publication-title: Journal of Immunopharmacology – volume: 6 start-page: 263 year: 1998 end-page: 276 ident: bib31 article-title: The multistep process of homotypic neutrophil aggregation: a review of the molecules and effects of hydrodynamics publication-title: Cell Adhesion and Communication – volume: 338 start-page: 299 year: 1997 end-page: 315 ident: bib24 article-title: Collision of two deformable drops in shear flow publication-title: Journal of Fluid Mechanics – volume: 21 start-page: 165 year: 2004 end-page: 174 ident: bib12 article-title: Specific and nonspecific interactions involving Le(X) determinant quantified by lipid vesicle micromanipulation publication-title: Glycoconjugate Journal – volume: 160 start-page: 119 year: 1985 end-page: 135 ident: bib4 article-title: Role of membrane viscosity in the orientation and deformation of a spherical capsule suspended in shear-flow publication-title: Journal of Fluid Mechanics – volume: 423 start-page: 190 year: 2003 end-page: 193 ident: bib25 article-title: Direct observation of catch bonds involving cell-adhesion molecules publication-title: Nature – volume: 283 start-page: C1133 year: 2002 end-page: C1143 ident: bib18 article-title: Fluid shear and time dependent modulation of molecular interactions between PMNs and colon carcinomas publication-title: American Journal of Physiology. Cell Physiology – volume: 88 start-page: 96 year: 2005 end-page: 104 ident: bib17 article-title: A 3-D computational model predicts that cell deformation affects selectin-mediated leukocyte rolling publication-title: Biophysical Journal – volume: 15 start-page: R96 year: 2005 end-page: R99 ident: bib14 article-title: Leukocyte adhesion: what's the Catch? publication-title: Current Biology – volume: 455 start-page: 21 year: 2002 end-page: 62 ident: bib37 article-title: Shear flow of highly concentrated emulsions of deformable drops by numerical simulations publication-title: Journal of Fluid Mechanics – volume: 20 start-page: 501 year: 1990 end-page: 508 ident: bib20 article-title: Continuous cell activation is necessary for stable interaction of complement receptor type-3 with its counter-structure in the aggregation response of human neutrophils publication-title: European Journal of Immunology – volume: 1992 start-page: 129 year: 1917 end-page: 168 ident: bib33 article-title: Versuch einer mathematichen theorie der koagulationskinetik kolloider losungen publication-title: Zeitschrift Physical Chemistry – volume: 28 start-page: 31 year: 1993 end-page: 51 ident: bib28 article-title: Large deformation finite-element analysis of nonlinear viscoelastic membranes with reference to thermoforming publication-title: Journal of Strain Analysis for Engineering Design – volume: 113 start-page: 251 year: 1981 end-page: 267 ident: bib3 article-title: The time-dependent deformation of a capsule freely suspended in a linear shear-flow publication-title: Journal of Fluid Mechanics – volume: 17 start-page: 1 year: 2005 end-page: 8 ident: bib21 article-title: Deformation of a capsule in simple shear flow: effect of membrane prestress publication-title: Physics of Fluids – volume: 30 start-page: 315 year: 2002 end-page: 332 ident: bib30 article-title: Leukocyte adhesion dynamics in shear flow publication-title: Annals of Biomedical Engineering – year: 1970 ident: bib13 article-title: Large Elastic Deformations – volume: 127 start-page: 1070 year: 2005 end-page: 1080 ident: bib38 article-title: Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow publication-title: Journal of Biomechanical Engineering—Transactions of the ASME – volume: 22 start-page: 3975 year: 2006 end-page: 3979 ident: bib23 article-title: Adhesion of antibody-functionalized polymersomes publication-title: Langmuir – volume: 202 start-page: 894 year: 1978 end-page: 896 ident: bib10 article-title: The red blood cell as a fluid droplet: trank tread-like motion of the human erythrocyte membrane in shear flow publication-title: Science – volume: 440 start-page: 269 year: 2001 end-page: 291 ident: bib27 article-title: Effect of membrane bending stiffness on the deformation of capsules in simple shear flow publication-title: Journal of Fluid Mechanics – volume: 9 start-page: 523 year: 2002 end-page: 536 ident: bib32 article-title: Viscosity-independent velocity of neutrophils rolling on p-selectin in vitro or in vivo publication-title: Microcirculation – volume: 13 start-page: 327 year: 2000 end-page: 347 ident: bib5 article-title: Simple shear flow of suspensions of elastic capsules publication-title: Theoretical and Computational Fluid Dynamics – volume: 296 start-page: 86 year: 2006 end-page: 94 ident: bib36 article-title: Film drainage and interfacial instabilities in polymeric systems with diffuse interfaces publication-title: Journal of Colloid and Interface Science – volume: 81 start-page: 372 year: 1989 ident: bib26 article-title: A three dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid publication-title: Journal of Computational Physics – volume: 71 start-page: 3488 year: 1996 end-page: 3500 ident: bib34 article-title: Molecular dynamics of the transition from publication-title: Biophysical Journal – volume: 18 start-page: 266 year: 1996 end-page: 269 ident: bib9 article-title: Adhesion through L-selectin requires a threshold hydrodynamic shear publication-title: Nature – volume: 18 start-page: 266 year: 1996 ident: 10.1016/j.jbiomech.2007.03.017_bib9 article-title: Adhesion through L-selectin requires a threshold hydrodynamic shear publication-title: Nature doi: 10.1038/379266a0 – volume: 28 start-page: 31 year: 1993 ident: 10.1016/j.jbiomech.2007.03.017_bib28 article-title: Large deformation finite-element analysis of nonlinear viscoelastic membranes with reference to thermoforming publication-title: Journal of Strain Analysis for Engineering Design doi: 10.1243/03093247V281031 – volume: 21 start-page: 165 year: 2004 ident: 10.1016/j.jbiomech.2007.03.017_bib12 article-title: Specific and nonspecific interactions involving Le(X) determinant quantified by lipid vesicle micromanipulation publication-title: Glycoconjugate Journal doi: 10.1023/B:GLYC.0000044847.15797.2e – volume: 6 start-page: 263 year: 1998 ident: 10.1016/j.jbiomech.2007.03.017_bib31 article-title: The multistep process of homotypic neutrophil aggregation: a review of the molecules and effects of hydrodynamics publication-title: Cell Adhesion and Communication doi: 10.3109/15419069809004482 – volume: 160 start-page: 119 year: 1985 ident: 10.1016/j.jbiomech.2007.03.017_bib4 article-title: Role of membrane viscosity in the orientation and deformation of a spherical capsule suspended in shear-flow publication-title: Journal of Fluid Mechanics doi: 10.1017/S002211208500341X – volume: 30 start-page: 315 year: 2002 ident: 10.1016/j.jbiomech.2007.03.017_bib30 article-title: Leukocyte adhesion dynamics in shear flow publication-title: Annals of Biomedical Engineering doi: 10.1114/1.1467677 – volume: 71 start-page: 3488 year: 1996 ident: 10.1016/j.jbiomech.2007.03.017_bib34 article-title: Molecular dynamics of the transition from l-selectin to beta(2)-integrin-dependent neutrophil adhesion under defined hydrodynamic shear publication-title: Biophysical Journal doi: 10.1016/S0006-3495(96)79544-9 – volume: 166 start-page: 913 year: 2004 ident: 10.1016/j.jbiomech.2007.03.017_bib35 article-title: Catch bonds govern adhesion through L-selectin at threshold shear publication-title: Journal of Cell Biology doi: 10.1083/jcb.200403144 – volume: 113 start-page: 251 year: 1981 ident: 10.1016/j.jbiomech.2007.03.017_bib3 article-title: The time-dependent deformation of a capsule freely suspended in a linear shear-flow publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112081003480 – volume: 9 start-page: 523 year: 2002 ident: 10.1016/j.jbiomech.2007.03.017_bib32 article-title: Viscosity-independent velocity of neutrophils rolling on p-selectin in vitro or in vivo publication-title: Microcirculation – volume: 24 start-page: 55 issue: 2 year: 1989 ident: 10.1016/j.jbiomech.2007.03.017_bib6 article-title: Free and constrained inflation of elastic membranes in relation to thermoforming—non-axisymmetric problems publication-title: Journal of Strain Analysis for Engineering Design doi: 10.1243/03093247V242055 – volume: 7 start-page: 151 year: 2005 ident: 10.1016/j.jbiomech.2007.03.017_bib29 article-title: Molecular mechanics and dynamics of leukocyte recruitment during inflammation publication-title: Annual Review of Biomedical Engineering doi: 10.1146/annurev.bioeng.7.060804.100423 – volume: 13 start-page: 327 year: 2000 ident: 10.1016/j.jbiomech.2007.03.017_bib5 article-title: Simple shear flow of suspensions of elastic capsules publication-title: Theoretical and Computational Fluid Dynamics doi: 10.1007/s001620050003 – volume: 10 start-page: 1834 year: 1998 ident: 10.1016/j.jbiomech.2007.03.017_bib8 article-title: Large deformation of red blood cell ghosts in a simple shear flow publication-title: Physics of Fluids doi: 10.1063/1.869703 – volume: 88 start-page: 96 year: 2005 ident: 10.1016/j.jbiomech.2007.03.017_bib17 article-title: A 3-D computational model predicts that cell deformation affects selectin-mediated leukocyte rolling publication-title: Biophysical Journal doi: 10.1529/biophysj.104.051029 – volume: 440 start-page: 269 year: 2001 ident: 10.1016/j.jbiomech.2007.03.017_bib27 article-title: Effect of membrane bending stiffness on the deformation of capsules in simple shear flow publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112001004657 – volume: 17 start-page: 1 issue: 7 year: 2005 ident: 10.1016/j.jbiomech.2007.03.017_bib21 article-title: Deformation of a capsule in simple shear flow: effect of membrane prestress publication-title: Physics of Fluids doi: 10.1063/1.1955127 – volume: 22 start-page: 3975 year: 2006 ident: 10.1016/j.jbiomech.2007.03.017_bib23 article-title: Adhesion of antibody-functionalized polymersomes publication-title: Langmuir doi: 10.1021/la052445c – volume: 296 start-page: 86 year: 2006 ident: 10.1016/j.jbiomech.2007.03.017_bib36 article-title: Film drainage and interfacial instabilities in polymeric systems with diffuse interfaces publication-title: Journal of Colloid and Interface Science doi: 10.1016/j.jcis.2005.08.062 – volume: 338 start-page: 299 year: 1997 ident: 10.1016/j.jbiomech.2007.03.017_bib24 article-title: Collision of two deformable drops in shear flow publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112097005016 – volume: 423 start-page: 190 year: 2003 ident: 10.1016/j.jbiomech.2007.03.017_bib25 article-title: Direct observation of catch bonds involving cell-adhesion molecules publication-title: Nature doi: 10.1038/nature01605 – volume: 1992 start-page: 129 year: 1917 ident: 10.1016/j.jbiomech.2007.03.017_bib33 article-title: Versuch einer mathematichen theorie der koagulationskinetik kolloider losungen publication-title: Zeitschrift Physical Chemistry – volume: 202 start-page: 894 year: 1978 ident: 10.1016/j.jbiomech.2007.03.017_bib10 article-title: The red blood cell as a fluid droplet: trank tread-like motion of the human erythrocyte membrane in shear flow publication-title: Science doi: 10.1126/science.715448 – volume: 81 start-page: 372 year: 1989 ident: 10.1016/j.jbiomech.2007.03.017_bib26 article-title: A three dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid publication-title: Journal of Computational Physics doi: 10.1016/0021-9991(89)90213-1 – volume: 127 start-page: 1070 issue: 7 year: 2005 ident: 10.1016/j.jbiomech.2007.03.017_bib38 article-title: Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow publication-title: Journal of Biomechanical Engineering—Transactions of the ASME doi: 10.1115/1.2112907 – volume: 79 start-page: 1122 year: 1996 ident: 10.1016/j.jbiomech.2007.03.017_bib7 article-title: Variation in the velocity, deformation and adhesion energy of density of leukocytes rolling within venules publication-title: Circulation Research doi: 10.1161/01.RES.79.6.1122 – volume: 81 start-page: 2020 year: 2001 ident: 10.1016/j.jbiomech.2007.03.017_bib11 article-title: Dynamics of neutrophil aggregation in Couette flow revealed by videomicroscopy: effect of shear rate on two-body collision efficiency and doublet lifetime publication-title: Biophysical Journal doi: 10.1016/S0006-3495(01)75852-3 – volume: 20 start-page: 501 year: 1990 ident: 10.1016/j.jbiomech.2007.03.017_bib20 article-title: Continuous cell activation is necessary for stable interaction of complement receptor type-3 with its counter-structure in the aggregation response of human neutrophils publication-title: European Journal of Immunology doi: 10.1002/eji.1830200307 – volume: 455 start-page: 21 year: 2002 ident: 10.1016/j.jbiomech.2007.03.017_bib37 article-title: Shear flow of highly concentrated emulsions of deformable drops by numerical simulations publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112001007042 – volume: 136 start-page: 717 year: 1997 ident: 10.1016/j.jbiomech.2007.03.017_bib22 article-title: Threshold levels of fluid shear promote leukocyte adhesion through selectins publication-title: Journal of Cell Biology doi: 10.1083/jcb.136.3.717 – volume: 167 start-page: 5986 year: 2001 ident: 10.1016/j.jbiomech.2007.03.017_bib16 article-title: Hydrodynamic shear regulates the kinetics and receptor specificity of polymorphonuclear leukocyte-colon carcinoma cell adhesive interactions publication-title: Journal of Immunopharmacology – volume: 86 start-page: 4030 year: 2004 ident: 10.1016/j.jbiomech.2007.03.017_bib19 article-title: Neutrophil string formation: hydrodynamic thresholding and cellular deformation during cell collisions publication-title: Biophysical Journal doi: 10.1529/biophysj.103.035782 – volume: 15 start-page: R96 year: 2005 ident: 10.1016/j.jbiomech.2007.03.017_bib14 article-title: Leukocyte adhesion: what's the Catch? publication-title: Current Biology doi: 10.1016/j.cub.2005.01.028 – volume: 22 start-page: 2610 year: 2006 ident: 10.1016/j.jbiomech.2007.03.017_bib15 article-title: Thin film drainage: hydrodynamic and disjoining pressures determined from experimental measurements of the shape of a fluid drop approaching a solid wall publication-title: Langmuir doi: 10.1021/la052314b – year: 1970 ident: 10.1016/j.jbiomech.2007.03.017_bib13 – volume: 283 start-page: C1133 year: 2002 ident: 10.1016/j.jbiomech.2007.03.017_bib18 article-title: Fluid shear and time dependent modulation of molecular interactions between PMNs and colon carcinomas publication-title: American Journal of Physiology. Cell Physiology doi: 10.1152/ajpcell.00104.2002 |
| SSID | ssj0007479 |
| Score | 1.9629735 |
| Snippet | Shear rate has been shown to critically affect the kinetics and receptor specificity of cell–cell interactions. In this study, the collision process between... Abstract Shear rate has been shown to critically affect the kinetics and receptor specificity of cell–cell interactions. In this study, the collision process... Shear rate has been shown to critically affect the kinetics and receptor specificity of cell-cell interactions. In this study, the collision process between... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2891 |
| SubjectTerms | Bulk flow Cell Adhesion Cell Shape Cellular adhesion Computer Simulation Contact area Physical Medicine and Rehabilitation Simulation |
| Title | Shear modulation of intercellular contact area between two deformable cells colliding under flow |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929007001169 https://www.clinicalkey.es/playcontent/1-s2.0-S0021929007001169 https://dx.doi.org/10.1016/j.jbiomech.2007.03.017 https://www.ncbi.nlm.nih.gov/pubmed/17467716 https://www.proquest.com/docview/1035117513 https://www.proquest.com/docview/68245792 https://pubmed.ncbi.nlm.nih.gov/PMC2215319 |
| Volume | 40 |
| WOSCitedRecordID | wos000250277800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1873-2380 dateEnd: 20251008 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: M7P dateStart: 20030101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1873-2380 dateEnd: 20251008 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1873-2380 dateEnd: 20251008 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Research Library customDbUrl: eissn: 1873-2380 dateEnd: 20251008 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: M2O dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xDSF44EcHozCKHxBvYbGT1M4TGmgTLysVAqlvxnFs0apLtqZj4r_H5zhZBwgQvFSqEitNfT5_vvvuPoAXtmS5ipmKkrgUUWqtikRheERpSROrmU6t8GITfDIRs1k-DQG3JtAqO5_oHXVZa4yRu9WNKS-e0eT12XmEqlGYXQ0SGluwg10SEk_dm_ae2EHlQPGgkYMB8UaF8OLVwte3twkJ7hudetGyX25OP4PPHzmUG5vS8b3_fZ37cDfAUXLY2s8DuGGqAeweVu4ofvqNvCSeIOoj7wO4s9G7cAC3TkJWfhc-e1lsclqXQQuM1JZgHwqfFkCeK0FGvNJrohxGJYEbRtaXNSmNR83F0hC8uSFomHPcUAmWt62IXdaXD-HT8dHHt--ioNwQ6TFP1lGZ6lxnWH2oqU5MlqRW05SmTImMlWZsCksTVRiRKWGFg8wsUzoXoohzUZbOJzyC7aquzGMgVmMhkUqYLnQqtCiUHptEZ-5ka4tinA4h66ZM6tDWHNU1lrLjry1kN9WoucllnEg31UM46MedtY09_jiCdxYhu7JV52il23v-baRpgr9oJJUNk7HE1DlFS425z5DlQ8j7kQEStVDnr56635mevHpQb3dDeN5fdi4F51hVpr5o5FiwNOM5G8Jea-NXfxCK07gTtnuha9bf34DNyq9fqeZffNNyhuuT5k9-_6Oewu02eI4xrn3YXq8uzDO4qb-u581qBFt8xv2nGMHOm6PJ9IP7dsLej_y6_w43dGAn |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgigceGwLLBTqA3BLiZ2Xc0CoAqpWbVc9FKk313FssattUjYpq_4pfiMe59EtIEBIPXBOnIczM_6c-WY-gJcmZ6n0mfQCP-deaIz0eKYTj9KcBkYxFRruxCaS0YgfH6eHS_Ctq4VBWmUXE12gzkuF_8itd2PKK4lo8O7si4eqUZhd7SQ0GrPY0xdzu2Wr3u5-sN_3FWPbH4_e73itqoCn4iSovTxUqYqwMk5RFegoCI2iIQ2Z5BHLdawzQwOZaR5JbriFcyySKuU881Oe59Ze7XVvwE0LIxh3VMHDPvJbaN5SSqhnYYe_UJE82Zy4evomAZK4xqpOJO2Xi-HPYPdHzubCIrh9_3-bvgdwr4XbZKvxj4ewpIsBrG4Vsi5PL8hr4giwLrMwgLsLvRkHcPugZR2swomT_SanZd5qnZHSEOyz4dIeyOMlyPiXqibSYnDSct9IPS9Jrt2uIJtqgidXBB1vjICBYPnejJhpOV-DT9cyCY9guSgL_QSIUVgoJQOmMhVyxTOpYh2oyO7cTZbF4RCizkSEatu2o3rIVHT8vInoTAs1RRPhB8Ka1hDe9OPOmsYlfxyRdBYourJcu5AIu7b-20hdtfGwElRUTPgCqQEUPcNPXAYwHULaj2whXwPl_uqu652pi8sb9XY-hI3-sA2Z-I1locvzSsSchVGSsiE8bnzqcoJQfCehsX2hK97Wn4DN2K8eKcafXVN2ZrGzXc6e_v6hNmBl5-hgX-zvjvaewZ0mUYD_89ZhuZ6d6-dwS32tx9XshYssBE6u2xe_A3ctuUc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6Vgio48NjyWCjUB-CWNnZezgGhirKiKqz2AFJvruPYYlfbpGxSVv1r_Do8zqNbQICQeuCcOA9nxvM58818AM9NzlLpM-kFfs690Bjp8UwnHqU5DYxiKjTciU0k4zE_Okona_Ctq4VBWmW3JrqFOi8V_iO33o0prySiwa5paRGT_dHr0y8eKkhhprWT02hM5FCfL-32rXp1sG-_9QvGRm8_vnnntQoDnoqToPbyUKUqwio5RVWgoyA0ioY0ZJJHLNexzgwNZKZ5JLnhFtqxSKqU88xPeZ5b27XXvQbXE2xa7miDkz4KWJje0kuoZyGIv1KdPNuZudr6JhmSuCarTjDtl4HxZ-D7I39zJSCO7vzPU3kXbrcwnOw1fnMP1nQxgM29QtblyTl5SRwx1mUcBnBrpWfjADY-tGyETTh2cuDkpMxbDTRSGoL9N1w6BPm9BCsBpKqJtNictJw4Ui9Lkmu3W8jmmuDJFUGHnCKQIFjWtyBmXi7vw6crmYQHsF6UhX4ExCgsoJIBU5kKueKZVLEOVGR39CbL4nAIUWcuQrXt3FFVZC463t5MdGaGWqOJ8ANhzWwIu_2406ahyR9HJJ01iq5c1wYYYWPuv43UVbtOVoKKiglfIGWAopf4icsMpkNI-5EtFGwg3l_ddasze3Fxo97mh7DdH7ZLKX5jWejyrBIxZ2GUpGwIDxv_upggFOVJaGxf6JLn9Sdgk_bLR4rpZ9esnVlMbcPc498_1DZsWBcU7w_Gh0_gZpM_wN98W7BeL870U7ihvtbTavHMLTIEjq_aFb8DhQDCBA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shear+modulation+of+intercellular+contact+area+between+two+deformable+cells+colliding+under+flow&rft.jtitle=Journal+of+biomechanics&rft.au=Jadhav%2C+Sameer&rft.au=Chan%2C+Kit+Yan&rft.au=Konstantopoulos%2C+Konstantinos&rft.au=Eggleton%2C+Charles+D.&rft.date=2007-01-01&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.volume=40&rft.issue=13&rft.spage=2891&rft.epage=2897&rft_id=info:doi/10.1016%2Fj.jbiomech.2007.03.017&rft.externalDocID=S0021929007001169 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929007X04457%2Fcov150h.gif |