A general framework for updating belief distributions

We propose a framework for general Bayesian inference. We argue that a valid update of a prior belief distribution to a posterior can be made for parameters which are connected to observations through a loss function rather than the traditional likelihood function, which is recovered as a special ca...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of the Royal Statistical Society. Series B, Statistical methodology Ročník 78; číslo 5; s. 1103 - 1130
Hlavní autori: Bissiri, P. G., Holmes, C. C., Walker, S. G.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Blackwell Publishing Ltd 01.11.2016
John Wiley & Sons Ltd
Oxford University Press
John Wiley and Sons Inc
Predmet:
ISSN:1369-7412, 1467-9868
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We propose a framework for general Bayesian inference. We argue that a valid update of a prior belief distribution to a posterior can be made for parameters which are connected to observations through a loss function rather than the traditional likelihood function, which is recovered as a special case. Modern application areas make it increasingly challenging for Bayesians to attempt to model the true data-generating mechanism. For instance, when the object of interest is low dimensional, such as a mean or median, it is cumbersome to have to achieve this via a complete model for the whole data distribution. More importantly, there are settings where the parameter of interest does not directly index a family of density functions and thus the Bayesian approach to learning about such parameters is currently regarded as problematic. Our framework uses loss functions to connect information in the data to functionals of interest. The updating of beliefs then follows from a decision theoretic approach involving cumulative loss functions. Importantly, the procedure coincides with Bayesian updating when a true likelihood is known yet provides coherent subjective inference in much more general settings. Connections to other inference frameworks are highlighted.
AbstractList We propose a framework for general Bayesian inference. We argue that a valid update of a prior belief distribution to a posterior can be made for parameters which are connected to observations through a loss function rather than the traditional likelihood function, which is recovered as a special case. Modern application areas make it increasingly challenging for Bayesians to attempt to model the true data-generating mechanism. For instance, when the object of interest is low dimensional, such as a mean or median, it is cumbersome to have to achieve this via a complete model for the whole data distribution. More importantly, there are settings where the parameter of interest does not directly index a family of density functions and thus the Bayesian approach to learning about such parameters is currently regarded as problematic. Our framework uses loss functions to connect information in the data to functionals of interest. The updating of beliefs then follows from a decision theoretic approach involving cumulative loss functions. Importantly, the procedure coincides with Bayesian updating when a true likelihood is known yet provides coherent subjective inference in much more general settings. Connections to other inference frameworks are highlighted.
Summary We propose a framework for general Bayesian inference. We argue that a valid update of a prior belief distribution to a posterior can be made for parameters which are connected to observations through a loss function rather than the traditional likelihood function, which is recovered as a special case. Modern application areas make it increasingly challenging for Bayesians to attempt to model the true data‐generating mechanism. For instance, when the object of interest is low dimensional, such as a mean or median, it is cumbersome to have to achieve this via a complete model for the whole data distribution. More importantly, there are settings where the parameter of interest does not directly index a family of density functions and thus the Bayesian approach to learning about such parameters is currently regarded as problematic. Our framework uses loss functions to connect information in the data to functionals of interest. The updating of beliefs then follows from a decision theoretic approach involving cumulative loss functions. Importantly, the procedure coincides with Bayesian updating when a true likelihood is known yet provides coherent subjective inference in much more general settings. Connections to other inference frameworks are highlighted.
We propose a framework for general Bayesian inference. We argue that a valid update of a prior belief distribution to a posterior can be made for parameters which are connected to observations through a loss function rather than the traditional likelihood function, which is recovered as a special case. Modern application areas make it increasingly challenging for Bayesians to attempt to model the true data-generating mechanism. For instance, when the object of interest is low dimensional, such as a mean or median, it is cumbersome to have to achieve this via a complete model for the whole data distribution. More importantly, there are settings where the parameter of interest does not directly index a family of density functions and thus the Bayesian approach to learning about such parameters is currently regarded as problematic. Our framework uses loss functions to connect information in the data to functionals of interest. The updating of beliefs then follows from a decision theoretic approach involving cumulative loss functions. Importantly, the procedure coincides with Bayesian updating when a true likelihood is known yet provides coherent subjective inference in much more general settings. Connections to other inference frameworks are highlighted.We propose a framework for general Bayesian inference. We argue that a valid update of a prior belief distribution to a posterior can be made for parameters which are connected to observations through a loss function rather than the traditional likelihood function, which is recovered as a special case. Modern application areas make it increasingly challenging for Bayesians to attempt to model the true data-generating mechanism. For instance, when the object of interest is low dimensional, such as a mean or median, it is cumbersome to have to achieve this via a complete model for the whole data distribution. More importantly, there are settings where the parameter of interest does not directly index a family of density functions and thus the Bayesian approach to learning about such parameters is currently regarded as problematic. Our framework uses loss functions to connect information in the data to functionals of interest. The updating of beliefs then follows from a decision theoretic approach involving cumulative loss functions. Importantly, the procedure coincides with Bayesian updating when a true likelihood is known yet provides coherent subjective inference in much more general settings. Connections to other inference frameworks are highlighted.
Author Holmes, C. C.
Walker, S. G.
Bissiri, P. G.
AuthorAffiliation 1 University of Milano‐Bicocca Italy
2 University of Oxford UK
3 University of Texas at Austin USA
AuthorAffiliation_xml – name: 1 University of Milano‐Bicocca Italy
– name: 2 University of Oxford UK
– name: 3 University of Texas at Austin USA
Author_xml – sequence: 1
  givenname: P. G.
  surname: Bissiri
  fullname: Bissiri, P. G.
  organization: University of Milano-Bicocca, Italy
– sequence: 2
  givenname: C. C.
  surname: Holmes
  fullname: Holmes, C. C.
  email: c.holmes@stats.ox.ax.uk, c.holmes@stats.ox.ax.uk
  organization: University of Oxford, UK
– sequence: 3
  givenname: S. G.
  surname: Walker
  fullname: Walker, S. G.
  organization: University of Texas at Austin, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27840585$$D View this record in MEDLINE/PubMed
BookMark eNqNkttrFDEUxoNU7EVffFcGfBFhaq6TzEuhW2xVioJVC76ETOZkzXZ2siYzrf3vzTrtokXUPOTC-X0nJyffLtrqQw8IPSZ4n-TxMqbU7BNKhLqHdgivZFmrSm3lPavqUnJCt9FuSgucRyXZA7RNpeJYKLGDxGExhx6i6QoXzRKuQrwoXIjFuGrN4Pt50UDnwRWtT0P0zTj40KeH6L4zXYJHN-se-nT86uPR6_L0_cmbo8PT0uZ7VGmFFJSDAEedxa3hYInMk6PMUi4tdoZyk0-ihbpitGHKAXbE4LpuucFsDx1MeVdjs4TWQj_kSvUq-qWJ1zoYr3-P9P6rnodLLbCiQsmc4PlNghi-jZAGvfTJQteZHsKYNMUU514xwv6JEsWFwrmy_0FZTaioFcnoszvoIoyxz03LFJWiloqty3z66zs3D7z9pwy8mAAbQ0oR3AYhWK9NoNcm0D9NkGF8B7Z-MOuPyz3y3Z8lZJJc-Q6u_5Jcfzg7m91qnkyaRRpC3Gg4rxStcZ3j5RTPzoHvm7iJFzq7Qwp9_u5Ef6bnb9mXWaVn7Af39dw3
CitedBy_id crossref_primary_10_1086_724447
crossref_primary_10_1093_jrsssb_qkad005
crossref_primary_10_1093_biomet_asz066
crossref_primary_10_1016_j_geoderma_2025_117200
crossref_primary_10_1214_23_STS886
crossref_primary_10_1186_s13059_016_1076_z
crossref_primary_10_1017_eds_2024_5
crossref_primary_10_1177_00080683231199021
crossref_primary_10_1016_j_ijforecast_2024_03_001
crossref_primary_10_1007_s10955_022_02885_8
crossref_primary_10_1007_s11222_025_10617_7
crossref_primary_10_3390_e23010029
crossref_primary_10_1093_jjfinec_nbaf017
crossref_primary_10_3390_e22111272
crossref_primary_10_1093_jrsssb_qkae049
crossref_primary_10_1145_3402903
crossref_primary_10_1093_jrsssb_qkaf012
crossref_primary_10_1002_jae_2810
crossref_primary_10_1214_24_BA1502
crossref_primary_10_1214_21_BA1286
crossref_primary_10_1214_23_STS893
crossref_primary_10_1214_22_STS875
crossref_primary_10_1016_j_neunet_2024_106943
crossref_primary_10_1080_01621459_2021_2003201
crossref_primary_10_1002_sim_9316
crossref_primary_10_1016_j_ijforecast_2023_05_002
crossref_primary_10_1016_j_jspi_2021_10_003
crossref_primary_10_1016_j_jenvman_2025_126323
crossref_primary_10_1007_s11222_023_10205_7
crossref_primary_10_1093_rof_rfab020
crossref_primary_10_1093_jrsssb_qkad109
crossref_primary_10_3390_e22060661
crossref_primary_10_1016_j_ijforecast_2022_07_010
crossref_primary_10_1093_ej_ueab004
crossref_primary_10_3390_axioms12070716
crossref_primary_10_1080_01621459_2022_2086132
crossref_primary_10_1017_S1748499521000117
crossref_primary_10_1080_03610926_2021_1969409
crossref_primary_10_1093_jrsssb_qkaf009
crossref_primary_10_3389_fpsyg_2021_615162
crossref_primary_10_1093_biostatistics_kxaa022
crossref_primary_10_1093_biomet_asz006
crossref_primary_10_1080_10618600_2022_2134875
crossref_primary_10_1007_s11222_021_10053_3
crossref_primary_10_1080_10618600_2021_1875839
crossref_primary_10_1007_s13137_019_0135_5
crossref_primary_10_1007_s11749_020_00711_5
crossref_primary_10_1016_j_irfa_2021_101728
crossref_primary_10_4236_apm_2025_155016
crossref_primary_10_1002_sta4_70008
crossref_primary_10_1007_s10994_024_06691_z
crossref_primary_10_1007_s13253_024_00601_5
crossref_primary_10_1214_21_AAP1685
crossref_primary_10_1002_env_2890
crossref_primary_10_1080_03610926_2025_2535397
crossref_primary_10_1016_j_jebo_2021_09_040
crossref_primary_10_1007_s11222_022_10102_5
crossref_primary_10_1016_j_spl_2019_04_005
crossref_primary_10_1093_biomet_asaf022
crossref_primary_10_1002_asmb_2736
crossref_primary_10_1080_01621459_2023_2257891
crossref_primary_10_1016_j_jneumeth_2020_108912
crossref_primary_10_1214_17_BA1085
crossref_primary_10_1093_pnasnexus_pgad152
crossref_primary_10_1214_16_STS596
crossref_primary_10_1016_j_ijforecast_2024_05_005
crossref_primary_10_1093_biomet_asz077
crossref_primary_10_1214_20_BA1239
crossref_primary_10_1214_22_BA1325
crossref_primary_10_1214_21_BA1302
crossref_primary_10_1214_22_BA1322
crossref_primary_10_1186_s13595_022_01148_6
crossref_primary_10_1214_19_AOS1856
crossref_primary_10_1080_01621459_2024_2447111
crossref_primary_10_1214_20_BA1245
crossref_primary_10_1093_biomet_asz083
crossref_primary_10_1111_rssb_12553
crossref_primary_10_1080_01621459_2020_1725521
crossref_primary_10_1002_env_2767
crossref_primary_10_1146_annurev_statistics_040522_015915
crossref_primary_10_1007_s10994_025_06754_9
crossref_primary_10_1111_rssa_12276
crossref_primary_10_1146_annurev_statistics_112723_034249
crossref_primary_10_1111_sjos_12627
crossref_primary_10_1016_j_jeconom_2019_04_033
crossref_primary_10_3390_e20080572
crossref_primary_10_1002_sim_9109
crossref_primary_10_1093_jrsssb_qkae096
crossref_primary_10_1214_25_BA1536
crossref_primary_10_1093_biomet_asy054
crossref_primary_10_1016_j_jspi_2019_05_006
crossref_primary_10_1109_TMC_2020_2969352
crossref_primary_10_1007_s00440_023_01222_8
crossref_primary_10_3390_e20060442
crossref_primary_10_1016_j_jmva_2025_105481
crossref_primary_10_1080_10618600_2025_2527925
crossref_primary_10_1016_j_spl_2025_110559
crossref_primary_10_1080_07350015_2024_2326149
crossref_primary_10_1007_s11222_019_09902_z
crossref_primary_10_1016_j_spl_2017_10_013
crossref_primary_10_1002_asmb_2673
crossref_primary_10_1016_j_ijar_2020_06_009
crossref_primary_10_1111_stan_70013
crossref_primary_10_1016_j_ejor_2022_09_029
crossref_primary_10_1016_j_spa_2024_104374
crossref_primary_10_1093_biomet_asad004
crossref_primary_10_1007_s11334_021_00433_3
crossref_primary_10_1080_03610926_2023_2232905
crossref_primary_10_1214_20_AOS1948
crossref_primary_10_1093_biostatistics_kxad026
crossref_primary_10_3390_e25020333
crossref_primary_10_1016_j_jspi_2020_03_008
crossref_primary_10_1080_14685248_2025_2492711
crossref_primary_10_1111_nous_12539
crossref_primary_10_1016_j_ijar_2025_109506
crossref_primary_10_1007_s00180_025_01607_4
crossref_primary_10_1080_03461238_2019_1573754
crossref_primary_10_1093_biomet_asz013
crossref_primary_10_1093_bjps_axy054
crossref_primary_10_1080_01621459_2021_1909599
crossref_primary_10_1214_23_BA1367
crossref_primary_10_1016_j_neucom_2023_126553
crossref_primary_10_1093_jssam_smad012
crossref_primary_10_1016_j_jspi_2017_03_001
crossref_primary_10_1080_10618600_2024_2341899
crossref_primary_10_1007_s11222_023_10207_5
crossref_primary_10_1016_j_jspi_2016_11_003
crossref_primary_10_1080_01621459_2024_2370594
crossref_primary_10_1137_17M1139357
crossref_primary_10_1088_2632_2153_acc8b7
crossref_primary_10_1002_bimj_70002
crossref_primary_10_1111_rssc_12280
crossref_primary_10_1080_10485252_2024_2305811
crossref_primary_10_1088_1361_6420_acf51c
crossref_primary_10_1093_biomet_asaf034
crossref_primary_10_1007_s11222_023_10361_w
crossref_primary_10_1146_annurev_statistics_040220_091727
crossref_primary_10_1093_biostatistics_kxac007
crossref_primary_10_1093_ectj_utab015
crossref_primary_10_1080_03461238_2019_1711154
crossref_primary_10_1145_3656412
crossref_primary_10_1177_0272989X221150212
crossref_primary_10_1214_22_BA1357
crossref_primary_10_1016_j_jmva_2025_105461
crossref_primary_10_1111_stan_12342
crossref_primary_10_21919_remef_v20i2_870
crossref_primary_10_1214_19_AOS1827
crossref_primary_10_1016_j_ins_2025_122365
crossref_primary_10_1080_01621459_2018_1429274
crossref_primary_10_1515_jtse_2023_0039
crossref_primary_10_3390_e23010126
crossref_primary_10_1007_s42519_021_00203_1
crossref_primary_10_1007_s11222_023_10314_3
crossref_primary_10_1038_s41467_023_43522_6
crossref_primary_10_1108_IJCHM_04_2021_0471
crossref_primary_10_1111_rssb_12500
crossref_primary_10_1093_biostatistics_kxab023
crossref_primary_10_1214_21_AOAS1562
crossref_primary_10_3390_e26010063
crossref_primary_10_1007_s00180_022_01264_x
crossref_primary_10_1214_24_BA1448
crossref_primary_10_3982_QE1413
crossref_primary_10_1186_s12859_022_04830_8
crossref_primary_10_1080_00401706_2025_2515928
crossref_primary_10_3390_math11092190
crossref_primary_10_1007_s11222_025_10665_z
crossref_primary_10_1093_bjps_axz041
crossref_primary_10_1016_j_jinteco_2020_103302
crossref_primary_10_1016_j_csda_2024_107920
crossref_primary_10_1214_18_AOS1712
crossref_primary_10_1080_01621459_2023_2271199
crossref_primary_10_1111_rssb_12510
crossref_primary_10_1162_neco_a_01592
Cites_doi 10.1111/j.2517-6161.1981.tb01160.x
10.1093/oso/9780198504856.003.0015
10.1080/00031305.1988.10475585
10.1214/088342305000000016
10.1080/01621459.1996.10477003
10.1109/TIT.2005.864439
10.1214/aoms/1177703732
10.1016/j.jspi.2012.06.008
10.1002/9780470065662
10.1007/978-1-4757-3447-8
10.1080/01621459.1982.10477893
10.1111/1467-9868.00392
10.1109/18.720534
10.1016/j.jspi.2013.05.014
10.1166/asl.2008.022
10.1080/01621459.1972.10481214
10.3103/S1066530708040017
10.1093/bjps/50.4.665
10.2307/3316126
10.1073/pnas.0408393102
10.1002/9780470434697
10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
10.1214/07-AOS547
10.1214/aos/1176344689
10.1007/978-0-387-84858-7
10.1002/9780470316870
10.1016/0010-0277(82)90021-X
10.1017/CBO9781139167635
10.1214/aoms/1177729694
10.1016/S0169-7161(05)25003-4
10.1007/s10463-012-0350-4
10.1093/bioinformatics/18.suppl_1.S136
10.1111/j.2517-6161.1972.tb00899.x
10.1016/j.jspi.2010.05.023
10.1214/009053606000000704
10.1007/s11222-011-9288-2
10.1017/CBO9780511546921
10.1111/j.2517-6161.1966.tb00626.x
10.1214/aos/1015362185
10.1111/1467-9868.00314
10.2307/2533672
ContentType Journal Article
Copyright Copyright © 2016 The Royal Statistical Society and Blackwell Publishing Ltd.
2016 The Authors Journal of the Royal Statistical Society: Series B Statistical Methodology published by John Wiley & Sons Ltd on behalf of the Royal Statistical Society.
Copyright © 2016 The Royal Statistical Society and Blackwell Publishing Ltd
Copyright_xml – notice: Copyright © 2016 The Royal Statistical Society and Blackwell Publishing Ltd.
– notice: 2016 The Authors Journal of the Royal Statistical Society: Series B Statistical Methodology published by John Wiley & Sons Ltd on behalf of the Royal Statistical Society.
– notice: Copyright © 2016 The Royal Statistical Society and Blackwell Publishing Ltd
DBID BSCLL
24P
AAYXX
CITATION
NPM
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7X8
7S9
L.6
5PM
DOI 10.1111/rssb.12158
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
PubMed
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

International Bibliography of the Social Sciences (IBSS)
CrossRef
Computer and Information Systems Abstracts

MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
DocumentTitleAlternate P. G. Bissiri, C. C. Holmes and S. G. Walker
EISSN 1467-9868
EndPage 1130
ExternalDocumentID PMC5082587
4210256491
27840585
10_1111_rssb_12158
RSSB12158
44682909
ark_67375_WNG_V2WJ3ZB6_B
Genre article
Journal Article
Feature
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_UP_A390_1107
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
10A
1OC
29L
2AX
3-9
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AAHBH
AANHP
AAONW
AAPXW
AARHZ
AASGY
AAUAY
AAWIL
AAXRX
AAZKR
ABAWQ
ABBHK
ABCQN
ABCUV
ABDFA
ABEHJ
ABEJV
ABEML
ABFAN
ABIVO
ABLJU
ABPFR
ABPQH
ABPQP
ABPTD
ABPVW
ABWST
ABXSQ
ABYWD
ABZEH
ACAHQ
ACBWZ
ACCZN
ACFRR
ACGFS
ACHJO
ACIWK
ACMTB
ACNCT
ACPOU
ACRPL
ACSCC
ACTMH
ACUBG
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADNMO
ADODI
ADOZA
ADQBN
ADRDM
ADULT
ADVEK
ADZMN
AEGXH
AEIMD
AEMOZ
AEUPB
AFBPY
AFEBI
AFGKR
AFVYC
AFXHP
AFZJQ
AGLNM
AGQPQ
AHQJS
AIHAF
AIURR
AJAOE
AJNCP
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AMBMR
AMVHM
AMYDB
ANFBD
ARCSS
ASPBG
AS~
ATGXG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CJ0
CO8
COF
CS3
D-E
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
EBA
EBO
EBR
EBS
EBU
ECEWR
EDO
EJD
EMK
F00
F5P
FEDTE
FVMVE
G-S
G.N
GODZA
H.T
H.X
H13
HF~
HGD
HQ6
HVGLF
HZI
HZ~
H~9
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RJQFR
RNS
ROL
ROX
RX1
SA0
SUPJJ
TH9
TN5
TUS
UB1
UPT
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YQT
ZGI
ZL0
ZZTAW
~02
~IA
~KM
~WT
ALUQN
24P
AAHHS
ABYAD
ACCFJ
ACTWD
AEEZP
AELPN
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
JSODD
AAYXX
CITATION
O8X
NPM
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c6738-c57524e5ef2fc0da4ec174ecf23c247c0fa24af235de9632b38fe0f1a099d4a03
IEDL.DBID 24P
ISICitedReferencesCount 246
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386161900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1369-7412
IngestDate Tue Nov 04 01:52:41 EST 2025
Thu Oct 02 23:59:59 EDT 2025
Mon Sep 29 06:42:18 EDT 2025
Sat Sep 27 22:42:09 EDT 2025
Tue Nov 25 05:15:20 EST 2025
Mon Jul 21 06:01:40 EDT 2025
Sat Nov 29 05:52:02 EST 2025
Tue Nov 18 21:05:27 EST 2025
Wed Jan 22 16:36:00 EST 2025
Thu Jul 03 22:31:33 EDT 2025
Tue Nov 11 03:33:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Loss function
Self‐information loss function
Decision theory
Provably approximately correct Bayes methods
General Bayesian updating
Gibbs posteriors
Information
Maximum entropy
Generalized estimating equations
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6738-c57524e5ef2fc0da4ec174ecf23c247c0fa24af235de9632b38fe0f1a099d4a03
Notes ArticleID:RSSB12158
'Supplementary material'.
ark:/67375/WNG-V2WJ3ZB6-B
istex:F8AE7E12093DC32F720E23FF17B2BFAFC61EC32E
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssb.12158
PMID 27840585
PQID 1827597837
PQPubID 39359
PageCount 28
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5082587
proquest_miscellaneous_2020868313
proquest_miscellaneous_1845800993
proquest_miscellaneous_1839125981
proquest_journals_1827597837
pubmed_primary_27840585
crossref_primary_10_1111_rssb_12158
crossref_citationtrail_10_1111_rssb_12158
wiley_primary_10_1111_rssb_12158_RSSB12158
jstor_primary_44682909
istex_primary_ark_67375_WNG_V2WJ3ZB6_B
PublicationCentury 2000
PublicationDate November 2016
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: November 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle Journal of the Royal Statistical Society. Series B, Statistical methodology
PublicationTitleAlternate J. R. Stat. Soc. B
PublicationYear 2016
Publisher Blackwell Publishing Ltd
John Wiley & Sons Ltd
Oxford University Press
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons Ltd
– name: Oxford University Press
– name: John Wiley and Sons Inc
References Hüber, P. (2009) Robust Statistics, 2nd edn. Hoboken: Wiley.
Goldstein, M. and Wooff, D. (2007) Bayes Linear Statistics, Theory & Methods. Chichester: Wiley.
Hirshleifer, J. and Riley, J. G. (1992) The Analytics of Uncertainty and Information. Cambridge: Cambridge University Press.
Ibrahim, J. G., Chen, M. H. and MacEachern, S. N. (1999) Bayesian variable selection for proportional hazards models. Can. J. Statist., 27, 701-711.
Seldin, Y. and Tishby, N. (2010) PAC Bayesian analysis of co-clustering and beyond. J. Mach. Learn. Res., 11, 3595-3646.
Hartigan, J. A. (1972) Direct clustering of a data matrix. J. Am. Statist. Ass., 67, 123-129.
Bissiri, P. G. and Walker, S. G. (2012a) On Bayesian learning from loss functions. J. Statist. Planng Inf., 142, 3167-3173.
Hüber, P. (1964) Robust estimation of a location parameter. Ann. Math. Statist., 35, 73-101.
Merhav, N. and Feder, M. (1998) Universal prediction. IEEE Trans. Inform. Theor., 44, 2124-2147.
Kullback, S. and Leibler, R. A. (1951) On information and sufficiency. Ann. Math. Statist., 22, 79-86.
Savage, L. J. (1954) The Foundations of Statistics. New York: Wiley.
Bernardo, J. M. (1979) Expected information as expected utility. Ann. Statist., 7, 686-690.
Jasra, A., Holmes, C. C. and Stephens, D. A. (2005) Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Statist. Sci., 20, 50-67.
von Neumann, J. and Morgenstern, O. (1944) Theory of Games and Economic Behaviour. Princeton: Princeton University Press.
Hastie, T., Tibshirani, R. and Friedman, J. (2009) Elements of Statistical Learning. New York: Springer.
Marin, J. M., Pudlo, P., Robert, C. P. and Ryder, R. J. (2012) Approximate Bayesian computational methods. Statist. Comput., 22, 1167-1180.
Langford, J. (2005) Tutorial on practical prediction theory for classification. J. Mach. Learn. Res., 6, 273-306.
Cesa-Bianchi, N. and Lugosi, G. (2006) Prediction, Learning, and Games. Cambridge: Cambridge University Press.
Fan, J and Li, R. (2002) Variable selection for Cox's proportional hazards model and frailty model. Ann. Statist., 30, 74-99.
Heard, N. A., Holmes, C. C., Stephens, D. A., Hand, D. J. and Dimopoulos, G. (2005) Bayesian coclustering of Anopheles gene expression time series: study of immune defence response to multiple experimental challenges. Proc. Natn. Acad. Sci. USA, 102, 16939-16944.
Volinsky, C. T., Madigan, D., Raftery, A. E. and Kronmal, R. A. (1997) Bayesian model averaging in proportional hazard models: assessing the risk of a stroke. Appl. Statist., 46, 433-448.
Freund, J. E. (1965) Puzzle or paradox? Ann. Statist., 19, 29-44.
Goldstein, M. (1981) Revising previsions: a geometric interpretation. J. R. Statist. Soc. B, 43, 105-130.
de Finetti, B. (1937) La prévision: ses lois logiques, ses sources subjectives. Ann. Inst. H. Poincaré, 7, 1-68.
Bissiri, P. G. and Walker, S. G. (2010) On Bayesian learning from Bernoulli observations. J. Statist. Planng Inf., 140, 3520-3530.
Tibshirani, R. J. (1997) The lasso method for variable selection in the Cox model. Statist. Med., 16, 385-395.
Gardner, M. (1959) The Scientific American Book of Mathematical Puzzles and Diversions. New York: Simon and Schuster.
Hutchison, K. (2008) Resolving some puzzles of conditional probability. Adv. Sci. Lett., 1, 212-221.
Walker, S. and Hjort, N. L. (2001) On Bayesian consistency. J. R. Statist. Soc. B, 63, 811-821.
Ali, S. M. and Silvey, S. D. (1966) A general class of coefficients of divergence of one distribution from another. J. R. Statist. Soc. B, 28, 131-142.
Royall, R., and Tsou, T.-S. (2003) Interpreting statistical evidence by using imperfect models: robust adjusted likelihood functions. J. R. Statist. Soc. B, 65, 391-404.
Zhang, T. (2006a) From ε-entropy to KL-entropy: analysis of minimum information complexity density estimation. Ann. Statist., 34, 2180-2210.
Berger, J. O. (1993) Statistical Decision Theory and Bayesian Analysis. New York: Springer.
Datta, G. S. and Sweeting, T. J. (2005) Probability matching priors. In Handbook of Statistics (eds D. Dey and C. R. Rao), vol. 25, pp. 91-114. Amsterdam: Elsevier.
Bernardo, J. M. and Smith, A. F. M. (1994) Bayesian Theory. Chichester: Wiley.
Ibrahim, J. G. and Chen, M. H. (2000) Power prior distributions for regression models. Statist. Sci., 15, 46-60.
Tanay, A., Sharan, R. and Shamir, R. (2002) Discovering statistically significant biclusters in gene expression data. Bioinformatics, 18, 136-144.
Ibrahim, J. G., Chen, M. H. and Sinha, D. (2001) Bayesian Survival Analysis. New York: Springer.
Kass, R. E. and Wasserman, L. A. (1996) The selection of prior distributions by formal rules. J. Am. Statist. Ass., 91, 1343-1370.
Bar-Hillel, M. and Falk, R. (1982) Some teasers concerning conditional probabilities. Cognition, 11, 109-122.
Hutchison, K. (1999) What are conditional probabilities conditional upon? Br. J. Philos. Sci., 50, 665-695.
Alquier, P. (2008) PAC-Bayesian bounds for randomized empirical risk minimizers. Math. Meth. Statist., 17, 279-304.
Diaconis, P. and Zabell, S. L. (1982) Updating subjective probability. J. Am. Statist. Ass., 77, 822-830.
Zellner, A. (1988) Optimal information processing and Bayes's theorem. Am. Statistn, 42, 278-284.
Hoff, P. and Wakefield, J. C. (2013) Bayesian sandwich posteriors for pseudo-true parameters. J. Statist. Planng Inf., 143, 1638-1642.
Bissiri, P. G. and Walker, S. G. (2012b) Converting information into probability measures via the Kullback-Leibler divergence. Ann. Inst. Statist. Math., 64, 1139-1160.
Faraggi, D. and Simon, R. (1998) Bayesian variable selection method for censored survival data. Biometrics, 54, 1475-1485.
Cox, D. R. (1972) Regression models and life-tables (with discussion). J. R. Statist. Soc. B, 34, 187-220.
Jiang, W. and Tanner, M. A. (2008) Gibbs posterior for variable selection in high-dimensional classification and data mining. Ann. Statist., 36, 2207-2231.
Zhang, T. (2006b) Information theoretical upper and lower bounds for statistical estimation. IEEE Trans. Inform. Theor., 52, 1307-1321.
2010; 11
2002; 18
1997; 46
1982; 11
2008; 36
2005; 20
1951; 22
2010; 140
2008; 1
1965; 19
1981; 43
1998; 44
2005; 25
1966; 28
2006b; 52
2001
2000
2000; 15
2005; 102
1997; 16
1964; 35
1999; 50
1988; 42
1937; 7
1998; 54
2012; 22
1979; 7
1944
2012
2002; 30
1999; 27
2008; 17
1982; 77
2009
1998
1954
1997
2007
2006
1994
1993
2003
1992
2013; 143
1996; 91
1972; 67
2006a; 34
1959
2012b; 64
2001; 63
1999
2005; 6
2012a; 142
1972; 34
2003; 65
Zellner (2023021709301395800_rssb12158-cit-0057) 1988; 42
Goldstein (2023021709301395800_rssb12158-cit-0023) 1981; 43
Royall (2023021709301395800_rssb12158-cit-0049) 2003; 65
Hüber (2023021709301395800_rssb12158-cit-0029) 1964; 35
Kass (2023021709301395800_rssb12158-cit-0038) 1996; 91
Hüber (2023021709301395800_rssb12158-cit-0030) 2009
Catoni (2023021709301395800_rssb12158-cit-0010) 2003
de Finetti (2023021709301395800_rssb12158-cit-0019) 1937; 7
Savage (2023021709301395800_rssb12158-cit-0050) 1954
Freund (2023021709301395800_rssb12158-cit-0020) 1965; 19
Tibshirani (2023021709301395800_rssb12158-cit-0054) 1997; 16
Merhav (2023021709301395800_rssb12158-cit-0045) 1998; 44
Jasra (2023021709301395800_rssb12158-cit-0036) 2005; 20
Gardner (2023021709301395800_rssb12158-cit-0021) 1959
Hartigan (2023021709301395800_rssb12158-cit-00501) 1972; 67
Cheng (2023021709301395800_rssb12158-cit-0012) 2000
Cesa-Bianchi (2023021709301395800_rssb12158-cit-0011) 2006
Cox (2023021709301395800_rssb12158-cit-0013) 1972; 34
Berger (2023021709301395800_rssb12158-cit-0004) 1993
Tanay (2023021709301395800_rssb12158-cit-0053) 2002; 18
Shawe-Taylor (2023021709301395800_rssb12158-cit-0052) 1997
Jiang (2023021709301395800_rssb12158-cit-0037) 2008; 36
Cooley (2023021709301395800_rssb12158-cit-0048) 2009
Zhang (2023021709301395800_rssb12158-cit-0059) 2006; 52
Bar-Hillel (2023021709301395800_rssb12158-cit-0003) 1982; 11
Bernardo (2023021709301395800_rssb12158-cit-0005) 1979; 7
Ali (2023021709301395800_rssb12158-cit-0001) 1966; 28
Walker (2023021709301395800_rssb12158-cit-0056) 2001; 63
Hutchison (2023021709301395800_rssb12158-cit-0031) 1999; 50
Kullback (2023021709301395800_rssb12158-cit-0040) 1951; 22
Müller (2023021709301395800_rssb12158-cit-0046) 2012
Bissiri (2023021709301395800_rssb12158-cit-0007) 2010; 140
Ibrahim (2023021709301395800_rssb12158-cit-0034) 1999; 27
McAllester (2023021709301395800_rssb12158-cit-0044) 1998
Ibrahim (2023021709301395800_rssb12158-cit-0035) 2001
Hirshleifer (2023021709301395800_rssb12158-cit-0027) 1992
Alquier (2023021709301395800_rssb12158-cit-0002) 2008; 17
Diaconis (2023021709301395800_rssb12158-cit-0015) 1982; 77
Heard (2023021709301395800_rssb12158-cit-0026) 2005; 102
Bissiri (2023021709301395800_rssb12158-cit-0009) 2012; 64
Faraggi (2023021709301395800_rssb12158-cit-0018) 1998; 54
Seldin (2023021709301395800_rssb12158-cit-0051) 2010; 11
Goldstein (2023021709301395800_rssb12158-cit-0024) 2007
Fan (2023021709301395800_rssb12158-cit-0017) 2002; 30
Volinsky (2023021709301395800_rssb12158-cit-0055) 1997; 46
Langford (2023021709301395800_rssb12158-cit-0041) 2005; 6
Doucet (2023021709301395800_rssb12158-cit-0016) 2012
Bissiri (2023021709301395800_rssb12158-cit-0008) 2012; 142
von Neumann (2023021709301395800_rssb12158-cit-0047) 1944
Hoff (2023021709301395800_rssb12158-cit-0028) 2013; 143
Ibrahim (2023021709301395800_rssb12158-cit-0033) 2000; 15
Marin (2023021709301395800_rssb12158-cit-0043) 2012; 22
Bernardo (2023021709301395800_rssb12158-cit-0006) 1994
Hastie (2023021709301395800_rssb12158-cit-0025) 2009
Key (2023021709301395800_rssb12158-cit-0039) 1999
Zhang (2023021709301395800_rssb12158-cit-0058) 2006; 34
Hutchison (2023021709301395800_rssb12158-cit-0032) 2008; 1
Datta (2023021709301395800_rssb12158-cit-0014) 2005; 25
References_xml – reference: Kullback, S. and Leibler, R. A. (1951) On information and sufficiency. Ann. Math. Statist., 22, 79-86.
– reference: Heard, N. A., Holmes, C. C., Stephens, D. A., Hand, D. J. and Dimopoulos, G. (2005) Bayesian coclustering of Anopheles gene expression time series: study of immune defence response to multiple experimental challenges. Proc. Natn. Acad. Sci. USA, 102, 16939-16944.
– reference: Hastie, T., Tibshirani, R. and Friedman, J. (2009) Elements of Statistical Learning. New York: Springer.
– reference: Tibshirani, R. J. (1997) The lasso method for variable selection in the Cox model. Statist. Med., 16, 385-395.
– reference: Bernardo, J. M. (1979) Expected information as expected utility. Ann. Statist., 7, 686-690.
– reference: Cox, D. R. (1972) Regression models and life-tables (with discussion). J. R. Statist. Soc. B, 34, 187-220.
– reference: Zhang, T. (2006a) From ε-entropy to KL-entropy: analysis of minimum information complexity density estimation. Ann. Statist., 34, 2180-2210.
– reference: Hüber, P. (2009) Robust Statistics, 2nd edn. Hoboken: Wiley.
– reference: Marin, J. M., Pudlo, P., Robert, C. P. and Ryder, R. J. (2012) Approximate Bayesian computational methods. Statist. Comput., 22, 1167-1180.
– reference: Bissiri, P. G. and Walker, S. G. (2010) On Bayesian learning from Bernoulli observations. J. Statist. Planng Inf., 140, 3520-3530.
– reference: Ibrahim, J. G., Chen, M. H. and MacEachern, S. N. (1999) Bayesian variable selection for proportional hazards models. Can. J. Statist., 27, 701-711.
– reference: Kass, R. E. and Wasserman, L. A. (1996) The selection of prior distributions by formal rules. J. Am. Statist. Ass., 91, 1343-1370.
– reference: Zhang, T. (2006b) Information theoretical upper and lower bounds for statistical estimation. IEEE Trans. Inform. Theor., 52, 1307-1321.
– reference: Ali, S. M. and Silvey, S. D. (1966) A general class of coefficients of divergence of one distribution from another. J. R. Statist. Soc. B, 28, 131-142.
– reference: Seldin, Y. and Tishby, N. (2010) PAC Bayesian analysis of co-clustering and beyond. J. Mach. Learn. Res., 11, 3595-3646.
– reference: Hutchison, K. (1999) What are conditional probabilities conditional upon? Br. J. Philos. Sci., 50, 665-695.
– reference: Langford, J. (2005) Tutorial on practical prediction theory for classification. J. Mach. Learn. Res., 6, 273-306.
– reference: Goldstein, M. and Wooff, D. (2007) Bayes Linear Statistics, Theory & Methods. Chichester: Wiley.
– reference: Royall, R., and Tsou, T.-S. (2003) Interpreting statistical evidence by using imperfect models: robust adjusted likelihood functions. J. R. Statist. Soc. B, 65, 391-404.
– reference: Jasra, A., Holmes, C. C. and Stephens, D. A. (2005) Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Statist. Sci., 20, 50-67.
– reference: Fan, J and Li, R. (2002) Variable selection for Cox's proportional hazards model and frailty model. Ann. Statist., 30, 74-99.
– reference: de Finetti, B. (1937) La prévision: ses lois logiques, ses sources subjectives. Ann. Inst. H. Poincaré, 7, 1-68.
– reference: Ibrahim, J. G. and Chen, M. H. (2000) Power prior distributions for regression models. Statist. Sci., 15, 46-60.
– reference: Hartigan, J. A. (1972) Direct clustering of a data matrix. J. Am. Statist. Ass., 67, 123-129.
– reference: Ibrahim, J. G., Chen, M. H. and Sinha, D. (2001) Bayesian Survival Analysis. New York: Springer.
– reference: Bernardo, J. M. and Smith, A. F. M. (1994) Bayesian Theory. Chichester: Wiley.
– reference: von Neumann, J. and Morgenstern, O. (1944) Theory of Games and Economic Behaviour. Princeton: Princeton University Press.
– reference: Berger, J. O. (1993) Statistical Decision Theory and Bayesian Analysis. New York: Springer.
– reference: Hutchison, K. (2008) Resolving some puzzles of conditional probability. Adv. Sci. Lett., 1, 212-221.
– reference: Hoff, P. and Wakefield, J. C. (2013) Bayesian sandwich posteriors for pseudo-true parameters. J. Statist. Planng Inf., 143, 1638-1642.
– reference: Zellner, A. (1988) Optimal information processing and Bayes's theorem. Am. Statistn, 42, 278-284.
– reference: Goldstein, M. (1981) Revising previsions: a geometric interpretation. J. R. Statist. Soc. B, 43, 105-130.
– reference: Merhav, N. and Feder, M. (1998) Universal prediction. IEEE Trans. Inform. Theor., 44, 2124-2147.
– reference: Bar-Hillel, M. and Falk, R. (1982) Some teasers concerning conditional probabilities. Cognition, 11, 109-122.
– reference: Diaconis, P. and Zabell, S. L. (1982) Updating subjective probability. J. Am. Statist. Ass., 77, 822-830.
– reference: Bissiri, P. G. and Walker, S. G. (2012b) Converting information into probability measures via the Kullback-Leibler divergence. Ann. Inst. Statist. Math., 64, 1139-1160.
– reference: Tanay, A., Sharan, R. and Shamir, R. (2002) Discovering statistically significant biclusters in gene expression data. Bioinformatics, 18, 136-144.
– reference: Datta, G. S. and Sweeting, T. J. (2005) Probability matching priors. In Handbook of Statistics (eds D. Dey and C. R. Rao), vol. 25, pp. 91-114. Amsterdam: Elsevier.
– reference: Alquier, P. (2008) PAC-Bayesian bounds for randomized empirical risk minimizers. Math. Meth. Statist., 17, 279-304.
– reference: Gardner, M. (1959) The Scientific American Book of Mathematical Puzzles and Diversions. New York: Simon and Schuster.
– reference: Jiang, W. and Tanner, M. A. (2008) Gibbs posterior for variable selection in high-dimensional classification and data mining. Ann. Statist., 36, 2207-2231.
– reference: Cesa-Bianchi, N. and Lugosi, G. (2006) Prediction, Learning, and Games. Cambridge: Cambridge University Press.
– reference: Walker, S. and Hjort, N. L. (2001) On Bayesian consistency. J. R. Statist. Soc. B, 63, 811-821.
– reference: Freund, J. E. (1965) Puzzle or paradox? Ann. Statist., 19, 29-44.
– reference: Bissiri, P. G. and Walker, S. G. (2012a) On Bayesian learning from loss functions. J. Statist. Planng Inf., 142, 3167-3173.
– reference: Hüber, P. (1964) Robust estimation of a location parameter. Ann. Math. Statist., 35, 73-101.
– reference: Volinsky, C. T., Madigan, D., Raftery, A. E. and Kronmal, R. A. (1997) Bayesian model averaging in proportional hazard models: assessing the risk of a stroke. Appl. Statist., 46, 433-448.
– reference: Savage, L. J. (1954) The Foundations of Statistics. New York: Wiley.
– reference: Faraggi, D. and Simon, R. (1998) Bayesian variable selection method for censored survival data. Biometrics, 54, 1475-1485.
– reference: Hirshleifer, J. and Riley, J. G. (1992) The Analytics of Uncertainty and Information. Cambridge: Cambridge University Press.
– volume: 142
  start-page: 3167
  year: 2012a
  end-page: 3173
  article-title: On Bayesian learning from loss functions
  publication-title: J. Statist. Planng Inf.
– year: 2009
– volume: 34
  start-page: 187
  year: 1972
  end-page: 220
  article-title: Regression models and life‐tables (with discussion)
  publication-title: J. R. Statist. Soc.
– volume: 20
  start-page: 50
  year: 2005
  end-page: 67
  article-title: Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling
  publication-title: Statist. Sci.
– volume: 36
  start-page: 2207
  year: 2008
  end-page: 2231
  article-title: Gibbs posterior for variable selection in high‐dimensional classification and data mining
  publication-title: Ann. Statist.
– year: 2001
– volume: 46
  start-page: 433
  year: 1997
  end-page: 448
  article-title: Bayesian model averaging in proportional hazard models: assessing the risk of a stroke
  publication-title: Appl. Statist.
– volume: 16
  start-page: 385
  year: 1997
  end-page: 395
  article-title: The lasso method for variable selection in the Cox model
  publication-title: Statist. Med.
– volume: 64
  start-page: 1139
  year: 2012b
  end-page: 1160
  article-title: Converting information into probability measures via the Kullback–Leibler divergence
  publication-title: Ann. Inst. Statist. Math.
– volume: 91
  start-page: 1343
  year: 1996
  end-page: 1370
  article-title: The selection of prior distributions by formal rules
  publication-title: J. Am. Statist. Ass.
– start-page: 343
  year: 1999
  end-page: 370
– volume: 43
  start-page: 105
  year: 1981
  end-page: 130
  article-title: Revising previsions: a geometric interpretation
  publication-title: J. R. Statist. Soc. B
– volume: 7
  start-page: 1
  year: 1937
  end-page: 68
  article-title: La prévision: ses lois logiques, ses sources subjectives
  publication-title: Ann. Inst. H. Poincaré
– year: 1994
– volume: 50
  start-page: 665
  year: 1999
  end-page: 695
  article-title: What are conditional probabilities conditional upon?
  publication-title: Br. J. Philos. Sci.
– volume: 7
  start-page: 686
  year: 1979
  end-page: 690
  article-title: Expected information as expected utility
  publication-title: Ann. Statist.
– year: 1959
– volume: 11
  start-page: 3595
  year: 2010
  end-page: 3646
  article-title: PAC Bayesian analysis of co‐clustering and beyond
  publication-title: J. Mach. Learn. Res.
– volume: 77
  start-page: 822
  year: 1982
  end-page: 830
  article-title: Updating subjective probability
  publication-title: J. Am. Statist. Ass.
– volume: 52
  start-page: 1307
  year: 2006b
  end-page: 1321
  article-title: Information theoretical upper and lower bounds for statistical estimation
  publication-title: IEEE Trans. Inform. Theor.
– volume: 19
  start-page: 29
  year: 1965
  end-page: 44
  article-title: Puzzle or paradox?
  publication-title: Ann. Statist
– volume: 22
  start-page: 79
  year: 1951
  end-page: 86
  article-title: On information and sufficiency
  publication-title: Ann. Math. Statist.
– volume: 65
  start-page: 391
  year: 2003
  end-page: 404
  article-title: Interpreting statistical evidence by using imperfect models: robust adjusted likelihood functions
  publication-title: J. R. Statist. Soc.
– year: 1993
– volume: 30
  start-page: 74
  year: 2002
  end-page: 99
  article-title: Variable selection for Cox's proportional hazards model and frailty model
  publication-title: Ann. Statist.
– volume: 34
  start-page: 2180
  year: 2006a
  end-page: 2210
  article-title: From ‐entropy to KL‐entropy: analysis of minimum information complexity density estimation
  publication-title: Ann. Statist.
– volume: 28
  start-page: 131
  year: 1966
  end-page: 142
  article-title: A general class of coefficients of divergence of one distribution from another
  publication-title: J. R. Statist. Soc.
– volume: 67
  start-page: 123
  year: 1972
  end-page: 129
  article-title: Direct clustering of a data matrix
  publication-title: J. Am. Statist. Ass.
– start-page: 2
  year: 1997
  end-page: 9
– volume: 42
  start-page: 278
  year: 1988
  end-page: 284
  article-title: Optimal information processing and Bayes's theorem
  publication-title: Am. Statistn
– start-page: 164
  year: 1998
  end-page: 170
– volume: 22
  start-page: 1167
  year: 2012
  end-page: 1180
  article-title: Approximate Bayesian computational methods
  publication-title: Statist. Comput.
– year: 2007
– year: 2003
– volume: 15
  start-page: 46
  year: 2000
  end-page: 60
  article-title: Power prior distributions for regression models
  publication-title: Statist. Sci.
– volume: 27
  start-page: 701
  year: 1999
  end-page: 711
  article-title: Bayesian variable selection for proportional hazards models
  publication-title: Can. J. Statist.
– volume: 17
  start-page: 279
  year: 2008
  end-page: 304
  article-title: PAC‐Bayesian bounds for randomized empirical risk minimizers
  publication-title: Math. Meth. Statist.
– volume: 44
  start-page: 2124
  year: 1998
  end-page: 2147
  article-title: Universal prediction
  publication-title: IEEE Trans. Inform. Theor.
– year: 1944
– year: 1954
– year: 1992
– volume: 1
  start-page: 212
  year: 2008
  end-page: 221
  article-title: Resolving some puzzles of conditional probability
  publication-title: Adv. Sci. Lett.
– year: 2012
– volume: 18
  start-page: 136
  year: 2002
  end-page: 144
  article-title: Discovering statistically significant biclusters in gene expression data
  publication-title: Bioinformatics
– volume: 140
  start-page: 3520
  year: 2010
  end-page: 3530
  article-title: On Bayesian learning from Bernoulli observations
  publication-title: J. Statist. Planng Inf.
– volume: 54
  start-page: 1475
  year: 1998
  end-page: 1485
  article-title: Bayesian variable selection method for censored survival data
  publication-title: Biometrics
– volume: 102
  start-page: 16939
  year: 2005
  end-page: 16944
  article-title: Bayesian coclustering of Anopheles gene expression time series: study of immune defence response to multiple experimental challenges
  publication-title: Proc. Natn. Acad. Sci. USA
– volume: 63
  start-page: 811
  year: 2001
  end-page: 821
  article-title: On Bayesian consistency
  publication-title: J. R. Statist. Soc. B
– volume: 25
  start-page: 91
  year: 2005
  end-page: 114
  article-title: Probability matching priors
  publication-title: Handbook of Statistics
– year: 2006
– volume: 6
  start-page: 273
  year: 2005
  end-page: 306
  article-title: Tutorial on practical prediction theory for classification
  publication-title: J. Mach. Learn. Res.
– start-page: 93
  year: 2000
  end-page: 103
– volume: 11
  start-page: 109
  year: 1982
  end-page: 122
  article-title: Some teasers concerning conditional probabilities
  publication-title: Cognition
– volume: 35
  start-page: 73
  year: 1964
  end-page: 101
  article-title: Robust estimation of a location parameter
  publication-title: Ann. Math. Statist.
– volume: 143
  start-page: 1638
  year: 2013
  end-page: 1642
  article-title: Bayesian sandwich posteriors for pseudo‐true parameters
  publication-title: J. Statist. Planng Inf.
– start-page: 2
  volume-title: Proc. 10th A. Conf. Computational Learning Theory
  year: 1997
  ident: 2023021709301395800_rssb12158-cit-0052
– volume: 43
  start-page: 105
  year: 1981
  ident: 2023021709301395800_rssb12158-cit-0023
  article-title: Revising previsions: a geometric interpretation
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.2517-6161.1981.tb01160.x
– start-page: 343
  volume-title: Bayesian Statistics 6
  year: 1999
  ident: 2023021709301395800_rssb12158-cit-0039
  doi: 10.1093/oso/9780198504856.003.0015
– volume: 42
  start-page: 278
  year: 1988
  ident: 2023021709301395800_rssb12158-cit-0057
  article-title: Optimal information processing and Bayes's theorem
  publication-title: Am. Statistn
  doi: 10.1080/00031305.1988.10475585
– volume-title: Robust inference on parameters via particle filters and sandwich covariance matrices
  year: 2012
  ident: 2023021709301395800_rssb12158-cit-0016
– volume: 20
  start-page: 50
  year: 2005
  ident: 2023021709301395800_rssb12158-cit-0036
  article-title: Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling
  publication-title: Statist. Sci.
  doi: 10.1214/088342305000000016
– volume: 91
  start-page: 1343
  year: 1996
  ident: 2023021709301395800_rssb12158-cit-0038
  article-title: The selection of prior distributions by formal rules
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1996.10477003
– volume: 11
  start-page: 3595
  year: 2010
  ident: 2023021709301395800_rssb12158-cit-0051
  article-title: PAC Bayesian analysis of co-clustering and beyond
  publication-title: J. Mach. Learn. Res.
– volume: 52
  start-page: 1307
  year: 2006
  ident: 2023021709301395800_rssb12158-cit-0059
  article-title: Information theoretical upper and lower bounds for statistical estimation
  publication-title: IEEE Trans. Inform. Theor.
  doi: 10.1109/TIT.2005.864439
– volume: 19
  start-page: 29
  year: 1965
  ident: 2023021709301395800_rssb12158-cit-0020
  article-title: Puzzle or paradox?
  publication-title: Ann. Statist
– volume: 35
  start-page: 73
  year: 1964
  ident: 2023021709301395800_rssb12158-cit-0029
  article-title: Robust estimation of a location parameter
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177703732
– volume: 142
  start-page: 3167
  year: 2012
  ident: 2023021709301395800_rssb12158-cit-0008
  article-title: On Bayesian learning from loss functions
  publication-title: J. Statist. Planng Inf.
  doi: 10.1016/j.jspi.2012.06.008
– volume-title: Bayes Linear Statistics, Theory & Methods
  year: 2007
  ident: 2023021709301395800_rssb12158-cit-0024
  doi: 10.1002/9780470065662
– volume-title: Bayesian Survival Analysis
  year: 2001
  ident: 2023021709301395800_rssb12158-cit-0035
  doi: 10.1007/978-1-4757-3447-8
– volume-title: Statistical Decision Theory and Bayesian Analysis
  year: 1993
  ident: 2023021709301395800_rssb12158-cit-0004
– volume: 77
  start-page: 822
  year: 1982
  ident: 2023021709301395800_rssb12158-cit-0015
  article-title: Updating subjective probability
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1982.10477893
– volume: 65
  start-page: 391
  year: 2003
  ident: 2023021709301395800_rssb12158-cit-0049
  article-title: Interpreting statistical evidence by using imperfect models: robust adjusted likelihood functions
  publication-title: J. R. Statist. Soc.
  doi: 10.1111/1467-9868.00392
– volume: 44
  start-page: 2124
  year: 1998
  ident: 2023021709301395800_rssb12158-cit-0045
  article-title: Universal prediction
  publication-title: IEEE Trans. Inform. Theor.
  doi: 10.1109/18.720534
– volume: 143
  start-page: 1638
  year: 2013
  ident: 2023021709301395800_rssb12158-cit-0028
  article-title: Bayesian sandwich posteriors for pseudo-true parameters
  publication-title: J. Statist. Planng Inf.
  doi: 10.1016/j.jspi.2013.05.014
– start-page: 93
  volume-title: Proc. 8th Int. Conf. Intelligent Systems for Molecular Biology
  year: 2000
  ident: 2023021709301395800_rssb12158-cit-0012
– volume: 1
  start-page: 212
  year: 2008
  ident: 2023021709301395800_rssb12158-cit-0032
  article-title: Resolving some puzzles of conditional probability
  publication-title: Adv. Sci. Lett.
  doi: 10.1166/asl.2008.022
– volume: 67
  start-page: 123
  year: 1972
  ident: 2023021709301395800_rssb12158-cit-00501
  article-title: Direct clustering of a data matrix
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1972.10481214
– volume: 17
  start-page: 279
  year: 2008
  ident: 2023021709301395800_rssb12158-cit-0002
  article-title: PAC-Bayesian bounds for randomized empirical risk minimizers
  publication-title: Math. Meth. Statist.
  doi: 10.3103/S1066530708040017
– volume: 50
  start-page: 665
  year: 1999
  ident: 2023021709301395800_rssb12158-cit-0031
  article-title: What are conditional probabilities conditional upon?
  publication-title: Br. J. Philos. Sci.
  doi: 10.1093/bjps/50.4.665
– volume: 27
  start-page: 701
  year: 1999
  ident: 2023021709301395800_rssb12158-cit-0034
  article-title: Bayesian variable selection for proportional hazards models
  publication-title: Can. J. Statist.
  doi: 10.2307/3316126
– volume: 102
  start-page: 16939
  year: 2005
  ident: 2023021709301395800_rssb12158-cit-0026
  article-title: Bayesian coclustering of Anopheles gene expression time series: study of immune defence response to multiple experimental challenges
  publication-title: Proc. Natn. Acad. Sci. USA
  doi: 10.1073/pnas.0408393102
– volume-title: Robust Statistics
  year: 2009
  ident: 2023021709301395800_rssb12158-cit-0030
  doi: 10.1002/9780470434697
– volume: 6
  start-page: 273
  year: 2005
  ident: 2023021709301395800_rssb12158-cit-0041
  article-title: Tutorial on practical prediction theory for classification
  publication-title: J. Mach. Learn. Res.
– volume-title: The Scientific American Book of Mathematical Puzzles and Diversions
  year: 1959
  ident: 2023021709301395800_rssb12158-cit-0021
– volume: 16
  start-page: 385
  year: 1997
  ident: 2023021709301395800_rssb12158-cit-0054
  article-title: The lasso method for variable selection in the Cox model
  publication-title: Statist. Med.
  doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
– volume: 36
  start-page: 2207
  year: 2008
  ident: 2023021709301395800_rssb12158-cit-0037
  article-title: Gibbs posterior for variable selection in high-dimensional classification and data mining
  publication-title: Ann. Statist.
  doi: 10.1214/07-AOS547
– volume: 7
  start-page: 686
  year: 1979
  ident: 2023021709301395800_rssb12158-cit-0005
  article-title: Expected information as expected utility
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176344689
– volume-title: Elements of Statistical Learning
  year: 2009
  ident: 2023021709301395800_rssb12158-cit-0025
  doi: 10.1007/978-0-387-84858-7
– volume-title: A PAC Bayesian approach to adaptive classification
  year: 2003
  ident: 2023021709301395800_rssb12158-cit-0010
– volume-title: Bayesian Theory
  year: 1994
  ident: 2023021709301395800_rssb12158-cit-0006
  doi: 10.1002/9780470316870
– volume-title: The Foundations of Statistics
  year: 1954
  ident: 2023021709301395800_rssb12158-cit-0050
– volume: 15
  start-page: 46
  year: 2000
  ident: 2023021709301395800_rssb12158-cit-0033
  article-title: Power prior distributions for regression models
  publication-title: Statist. Sci.
– volume-title: Risk of Bayesian inference in misspecified models, and the sandwich covariance matrix
  year: 2012
  ident: 2023021709301395800_rssb12158-cit-0046
– start-page: 164
  volume-title: Proc. 11th A. Conf. Computational Learning Theory
  year: 1998
  ident: 2023021709301395800_rssb12158-cit-0044
– volume: 11
  start-page: 109
  year: 1982
  ident: 2023021709301395800_rssb12158-cit-0003
  article-title: Some teasers concerning conditional probabilities
  publication-title: Cognition
  doi: 10.1016/0010-0277(82)90021-X
– volume-title: The Analytics of Uncertainty and Information
  year: 1992
  ident: 2023021709301395800_rssb12158-cit-0027
  doi: 10.1017/CBO9781139167635
– volume: 22
  start-page: 79
  year: 1951
  ident: 2023021709301395800_rssb12158-cit-0040
  article-title: On information and sufficiency
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177729694
– volume: 25
  start-page: 91
  year: 2005
  ident: 2023021709301395800_rssb12158-cit-0014
  article-title: Probability matching priors
  publication-title: Handbook of Statistics
  doi: 10.1016/S0169-7161(05)25003-4
– volume-title: Bayesian inference from composite likelihoods, with an application to spatial extremes
  year: 2009
  ident: 2023021709301395800_rssb12158-cit-0048
– volume: 7
  start-page: 1
  year: 1937
  ident: 2023021709301395800_rssb12158-cit-0019
  article-title: La prévision: ses lois logiques, ses sources subjectives
  publication-title: Ann. Inst. H. Poincaré
– volume: 64
  start-page: 1139
  year: 2012
  ident: 2023021709301395800_rssb12158-cit-0009
  article-title: Converting information into probability measures via the Kullback–Leibler divergence
  publication-title: Ann. Inst. Statist. Math.
  doi: 10.1007/s10463-012-0350-4
– volume: 18
  start-page: 136
  year: 2002
  ident: 2023021709301395800_rssb12158-cit-0053
  article-title: Discovering statistically significant biclusters in gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.suppl_1.S136
– volume-title: Theory of Games and Economic Behaviour
  year: 1944
  ident: 2023021709301395800_rssb12158-cit-0047
– volume: 34
  start-page: 187
  year: 1972
  ident: 2023021709301395800_rssb12158-cit-0013
  article-title: Regression models and life-tables (with discussion)
  publication-title: J. R. Statist. Soc.
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– volume: 140
  start-page: 3520
  year: 2010
  ident: 2023021709301395800_rssb12158-cit-0007
  article-title: On Bayesian learning from Bernoulli observations
  publication-title: J. Statist. Planng Inf.
  doi: 10.1016/j.jspi.2010.05.023
– volume: 34
  start-page: 2180
  year: 2006
  ident: 2023021709301395800_rssb12158-cit-0058
  article-title: From ε-entropy to KL-entropy: analysis of minimum information complexity density estimation
  publication-title: Ann. Statist.
  doi: 10.1214/009053606000000704
– volume: 46
  start-page: 433
  year: 1997
  ident: 2023021709301395800_rssb12158-cit-0055
  article-title: Bayesian model averaging in proportional hazard models: assessing the risk of a stroke
  publication-title: Appl. Statist.
– volume: 22
  start-page: 1167
  year: 2012
  ident: 2023021709301395800_rssb12158-cit-0043
  article-title: Approximate Bayesian computational methods
  publication-title: Statist. Comput.
  doi: 10.1007/s11222-011-9288-2
– volume-title: Prediction, Learning, and Games
  year: 2006
  ident: 2023021709301395800_rssb12158-cit-0011
  doi: 10.1017/CBO9780511546921
– volume: 28
  start-page: 131
  year: 1966
  ident: 2023021709301395800_rssb12158-cit-0001
  article-title: A general class of coefficients of divergence of one distribution from another
  publication-title: J. R. Statist. Soc.
  doi: 10.1111/j.2517-6161.1966.tb00626.x
– volume: 30
  start-page: 74
  year: 2002
  ident: 2023021709301395800_rssb12158-cit-0017
  article-title: Variable selection for Cox's proportional hazards model and frailty model
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1015362185
– volume: 63
  start-page: 811
  year: 2001
  ident: 2023021709301395800_rssb12158-cit-0056
  article-title: On Bayesian consistency
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/1467-9868.00314
– volume: 54
  start-page: 1475
  year: 1998
  ident: 2023021709301395800_rssb12158-cit-0018
  article-title: Bayesian variable selection method for censored survival data
  publication-title: Biometrics
  doi: 10.2307/2533672
SSID ssj0000673
Score 2.6509638
Snippet We propose a framework for general Bayesian inference. We argue that a valid update of a prior belief distribution to a posterior can be made for parameters...
Summary We propose a framework for general Bayesian inference. We argue that a valid update of a prior belief distribution to a posterior can be made for...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1103
SubjectTerms Bayesian analysis
Bayesian theory
Beliefs
Coherence
Data
Decision theory
Density
equations
Frame analysis
General Bayesian updating
Generalized estimating equations
Gibbs posteriors
Inference
Information
Joints
Learning
Loss function
Mathematical models
Maximum entropy
Original
Parameters
probability
Provably approximately correct Bayes methods
Self-information loss function
Statistics
Studies
Subjectivity
Title A general framework for updating belief distributions
URI https://api.istex.fr/ark:/67375/WNG-V2WJ3ZB6-B/fulltext.pdf
https://www.jstor.org/stable/44682909
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssb.12158
https://www.ncbi.nlm.nih.gov/pubmed/27840585
https://www.proquest.com/docview/1827597837
https://www.proquest.com/docview/1839125981
https://www.proquest.com/docview/1845800993
https://www.proquest.com/docview/2020868313
https://pubmed.ncbi.nlm.nih.gov/PMC5082587
Volume 78
WOSCitedRecordID wos000386161900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-9868
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000673
  issn: 1369-7412
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NlYe9jJ9jgTEFgZBAipQ4TuxIvKxAQWiqpo1tFS-R7dgDgbKpodP-fO6cH7RiTEK8RG3zVU3Pd_F3se87gBf4cSKQBkc495iIM20iFTMVudwo7XRcaV9bdbIvplM5mxUHa_Cmr4Vp9SGGB24UGf5-TQGudLMU5POm0V4bQd6CUZKkkho3MH6wfB9O26qrIsJ5k3XipLSP5_d3V6ajEVn2qt-ZeB3n_HPr5DKl9XPS5M7__Zu7sNlx0XCvdZ57sGbr-7BB9LNVb34A2V541upSh67fxRUizQ0XF1QWUZ-FGn_XurAi_d2udVbzEI4n7z-__Rh1jRYiQ00_I4OcjXGbWceciSvFaQDx4FhqGBcmdopxhe-yymLAMp1KZ2OXKKSXFVdxugXr9XlttyE0lZMu51ZLXXFZUWl2XPGM24ILWeQ8gFe9vUvTqZBTM4wfZZ-NkCVKb4kAng_Yi1Z741rUSz9sA0TNv9NuNZGVp9MP5Qk7_ZR-GeflOIAtP64DEDNhWkYuAtjpB7rsIrgpMe8SGT0XEwE8G05j7NGCiqrt-YIwaYEEsZDJTRieSeLh6d8xjDql5jJNEPOo9a_hImlhOMacLgCx4nkDgPTBV8_U3756nfCM0n-J1__ae94NNiwPj47G_tXjfwE_gQ3kj3lbmrkD6z_nC_sUbptLdNP5ro9GPIqZ3IXRu8PJ8f4vaFY62w
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9sK7QvftdGq0YUQSGQ22ySzWNPrFXPo9jalr4s-1mlkpY7T_zzndl8eIe1UPpy5C4Tkpudyfx2d-Y3AC_x50GJMDjB2GMSzrRJVMpU4gujtNep1aG26mBUjsfi6KjabXNzqBam4YfoF9zIM8L7mhycFqTnvHwynepAjiCWYIVjmCEzZ3x3_kWcNWVXVYKBk7XspJTI8_fahXi0Qqr93aUmXgQ6_82dnMe0ISht377m37kDt1o0Gm815nMXbrj6HqwRAG34m-9DvhWfNMzUse_yuGIEuvHsnAoj6pNY442djy0x8LbNs6YP4Ov2u_23O0nbaiEx1PYzMYjaGHe588yb1CpOQ4gfnmWG8dKkXjGu8FtuHbos05nwLvUDhQDTcpVm67Bcn9VuA2JjvfAFd1poy4Wl4uzU8py7ipeiKngErzuFS9PykFM7jB-ym4-QJmTQRAQvetnzhn3jQqlXYdx6ETU5pXy1MpeH4_fygB1-zI6HhRxGsB4GthfEuTBtJFcRbHYjLVsfnkqceZU5rYyVETzvT6P30ZaKqt3ZjGSyCiFiJQaXyfBcEBLP_i_DqFdqIbIByjxsDKx_SNoaTnFWF0G5YHq9ADGEL56pv38LTOE5LQAIfP43wfQu0aH8src3DEePriL8DFZ39j-P5OjD-NNjWEM0WTSFmpuw_HMyc0_gpvmFJjt5GlzzD8_MPD4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEB5BglBfuEtdChiBkECy5KzX9vqxoYQriqqWHuJltd6jVK3cKCEVP5-Z9UEiSiXES-TEn2Vndsf77e7MNwCv8OdBjjQ4wrFHR5yVOlIxU5HLtCpdGZvS51YdjvPJRBwfF7tNbA7lwtT6EN2CG3mGf1-Tg9upcUtePpvPSy-OIG5Cn1MVmR70d_ZGB-PlV3FSJ14VEQ6drNEnpVCe31evjEh9Mu7PNjjxKtr5Z_TkMqv1w9Lo7n_-oXtwp-Gj4Xbdge7DDVs9gDWioLWC80NIt8OTWps6dG0kV4hUN1xMKTWiOglLvLF1oSEN3qZ81vwRHIzef333MWqKLUSaCn9GGnkb4za1jjkdG8WpEfHDsUQznuvYKcYVfkuNRadlZSKcjd1AIcU0XMXJOvSqi8puQKiNEy7jthSl4cJQenZseMptwXNRZDyAN63BpW6UyKkgxrlsZyRkCektEcDLDjut9TeuRL327dZB1OyMItbyVB5NPshDdvQ5-TbM5DCAdd-wHRBnw7SVXASw1ba0bLx4LnHulae0NpYH8KI7jf5HmyqqshcLwiQFksRCDK7D8FQQF0_-jmFULTUTyQAxj-sO1j0kbQ7HOK8LIF_peh2ANMJXz1Sn371WeEpLAAKf_63vetfYUO7t7w_90ea_gJ_D7d2dkRx_mnx5AmtIJ7M6U3MLej9mC_sUbulL7LGzZ41v_gK9Mj1U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+framework+for+updating+belief+distributions&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+B%2C+Statistical+methodology&rft.au=Bissiri%2C+P+G&rft.au=Holmes%2C+C+C&rft.au=Walker%2C+S+G&rft.date=2016-11-01&rft.issn=1369-7412&rft.volume=78&rft.issue=5&rft.spage=1103&rft_id=info:doi/10.1111%2Frssb.12158&rft_id=info%3Apmid%2F27840585&rft.externalDocID=27840585
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-7412&client=summon