Concordance between single-nucleotide polymorphism–based genomic instability assays and a next-generation sequencing–based homologous recombination deficiency test

Background: We evaluated the performance of single-nucleotide polymorphism (SNP) genotyping arrays OncoScan (Thermo Fisher Scientific, San Diego, CA) and Infinium CytoSNP-850K (CytoSNP; Illumina, Waltham, MA) for assessing homologous recombination deficiency (HRD) genomic instability. Methods: DNA (...

Full description

Saved in:
Bibliographic Details
Published in:BMC cancer Vol. 22; no. 1; pp. 1310 - 9
Main Authors: Cristescu, Razvan, Liu, Xiao Qiao, Arreaza, Gladys, Chen, Cai, Albright, Andrew, Qiu, Ping, Marton, Matthew J.
Format: Journal Article
Language:English
Published: London BioMed Central 14.12.2022
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects:
ISSN:1471-2407, 1471-2407
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background: We evaluated the performance of single-nucleotide polymorphism (SNP) genotyping arrays OncoScan (Thermo Fisher Scientific, San Diego, CA) and Infinium CytoSNP-850K (CytoSNP; Illumina, Waltham, MA) for assessing homologous recombination deficiency (HRD) genomic instability. Methods: DNA (pretreatment samples) across 20 tumor types was evaluated with OncoScan, CytoSNP, and the clinically validated HRD test. Copy number variation (CNV) and loss of heterozygosity (LOH) analyses were performed with ASCATv2.5.1. Aggregate HRD genomic metrics included LOH, telomeric-allelic imbalance number (TAI), and large-scale state transition (LST). Associations between BRCA mutation ( BRCA m) status and the clinically validated HRD test metric (dichotomized at a clinical cut-off) were evaluated using area under the receiver operating characteristic (AUROC); Spearman ρ was calculated for continuous metrics. CNV segmentation and HRD genomic metrics were calculated ( n  = 120, n  = 106, and n  = 126 for OncoScan, CytoSNP and clinically validated HRD test, respectively). Results: When assessed by SNP arrays, the genomic metric demonstrated good association with BRCA m (AUROC of HRD: OncoScan, 0.87; CytoSNP, 0.75) and the clinically validated test (cut-off, 42; AUROC of HRD: OncoScan, 0.92; CytoSNP, 0.91). The genomic metrics demonstrated good correlation with the clinically validated aggregate HRD test metric (ρ: OncoScan, 0.82; CytoSNP, 0.81) and for each component (ρ: OncoScan, 0.68 [LOH], 0.76 [TAI], and 0.78 [LST]; CytoSNP, 0.59 [LOH], 0.77 [TAI], and 0.82 [LST]). HRD assessed by SNP genotyping arrays and the clinically validated test showed good correlation. Conclusion: OncoScan and CytoSNP may potentially identify most HRD-positive tumors with appropriate clinically relevant cut-offs.
AbstractList We evaluated the performance of single-nucleotide polymorphism (SNP) genotyping arrays OncoScan (Thermo Fisher Scientific, San Diego, CA) and Infinium CytoSNP-850K (CytoSNP; Illumina, Waltham, MA) for assessing homologous recombination deficiency (HRD) genomic instability. DNA (pretreatment samples) across 20 tumor types was evaluated with OncoScan, CytoSNP, and the clinically validated HRD test. Copy number variation (CNV) and loss of heterozygosity (LOH) analyses were performed with ASCATv2.5.1. Aggregate HRD genomic metrics included LOH, telomeric-allelic imbalance number (TAI), and large-scale state transition (LST). Associations between BRCA mutation (BRCAm) status and the clinically validated HRD test metric (dichotomized at a clinical cut-off) were evaluated using area under the receiver operating characteristic (AUROC); Spearman [rho] was calculated for continuous metrics. CNV segmentation and HRD genomic metrics were calculated (n = 120, n = 106, and n = 126 for OncoScan, CytoSNP and clinically validated HRD test, respectively). When assessed by SNP arrays, the genomic metric demonstrated good association with BRCAm (AUROC of HRD: OncoScan, 0.87; CytoSNP, 0.75) and the clinically validated test (cut-off, 42; AUROC of HRD: OncoScan, 0.92; CytoSNP, 0.91). The genomic metrics demonstrated good correlation with the clinically validated aggregate HRD test metric ([rho]: OncoScan, 0.82; CytoSNP, 0.81) and for each component ([rho]: OncoScan, 0.68 [LOH], 0.76 [TAI], and 0.78 [LST]; CytoSNP, 0.59 [LOH], 0.77 [TAI], and 0.82 [LST]). HRD assessed by SNP genotyping arrays and the clinically validated test showed good correlation. OncoScan and CytoSNP may potentially identify most HRD-positive tumors with appropriate clinically relevant cut-offs.
Background: We evaluated the performance of single-nucleotide polymorphism (SNP) genotyping arrays OncoScan (Thermo Fisher Scientific, San Diego, CA) and Infinium CytoSNP-850K (CytoSNP; Illumina, Waltham, MA) for assessing homologous recombination deficiency (HRD) genomic instability. Methods: DNA (pretreatment samples) across 20 tumor types was evaluated with OncoScan, CytoSNP, and the clinically validated HRD test. Copy number variation (CNV) and loss of heterozygosity (LOH) analyses were performed with ASCATv2.5.1. Aggregate HRD genomic metrics included LOH, telomeric-allelic imbalance number (TAI), and large-scale state transition (LST). Associations between BRCA mutation (BRCAm) status and the clinically validated HRD test metric (dichotomized at a clinical cut-off) were evaluated using area under the receiver operating characteristic (AUROC); Spearman [rho] was calculated for continuous metrics. CNV segmentation and HRD genomic metrics were calculated (n = 120, n = 106, and n = 126 for OncoScan, CytoSNP and clinically validated HRD test, respectively). Results: When assessed by SNP arrays, the genomic metric demonstrated good association with BRCAm (AUROC of HRD: OncoScan, 0.87; CytoSNP, 0.75) and the clinically validated test (cut-off, 42; AUROC of HRD: OncoScan, 0.92; CytoSNP, 0.91). The genomic metrics demonstrated good correlation with the clinically validated aggregate HRD test metric ([rho]: OncoScan, 0.82; CytoSNP, 0.81) and for each component ([rho]: OncoScan, 0.68 [LOH], 0.76 [TAI], and 0.78 [LST]; CytoSNP, 0.59 [LOH], 0.77 [TAI], and 0.82 [LST]). HRD assessed by SNP genotyping arrays and the clinically validated test showed good correlation. Conclusion: OncoScan and CytoSNP may potentially identify most HRD-positive tumors with appropriate clinically relevant cut-offs. Keywords: BRCA, Loss of heterozygosity, Homologous recombination deficiency, Large-scale state transition, Telomeric-allelic imbalance number
Abstract Background: We evaluated the performance of single-nucleotide polymorphism (SNP) genotyping arrays OncoScan (Thermo Fisher Scientific, San Diego, CA) and Infinium CytoSNP-850K (CytoSNP; Illumina, Waltham, MA) for assessing homologous recombination deficiency (HRD) genomic instability. Methods: DNA (pretreatment samples) across 20 tumor types was evaluated with OncoScan, CytoSNP, and the clinically validated HRD test. Copy number variation (CNV) and loss of heterozygosity (LOH) analyses were performed with ASCATv2.5.1. Aggregate HRD genomic metrics included LOH, telomeric-allelic imbalance number (TAI), and large-scale state transition (LST). Associations between BRCA mutation (BRCAm) status and the clinically validated HRD test metric (dichotomized at a clinical cut-off) were evaluated using area under the receiver operating characteristic (AUROC); Spearman ρ was calculated for continuous metrics. CNV segmentation and HRD genomic metrics were calculated (n = 120, n = 106, and n = 126 for OncoScan, CytoSNP and clinically validated HRD test, respectively). Results: When assessed by SNP arrays, the genomic metric demonstrated good association with BRCAm (AUROC of HRD: OncoScan, 0.87; CytoSNP, 0.75) and the clinically validated test (cut-off, 42; AUROC of HRD: OncoScan, 0.92; CytoSNP, 0.91). The genomic metrics demonstrated good correlation with the clinically validated aggregate HRD test metric (ρ: OncoScan, 0.82; CytoSNP, 0.81) and for each component (ρ: OncoScan, 0.68 [LOH], 0.76 [TAI], and 0.78 [LST]; CytoSNP, 0.59 [LOH], 0.77 [TAI], and 0.82 [LST]). HRD assessed by SNP genotyping arrays and the clinically validated test showed good correlation. Conclusion: OncoScan and CytoSNP may potentially identify most HRD-positive tumors with appropriate clinically relevant cut-offs.
We evaluated the performance of single-nucleotide polymorphism (SNP) genotyping arrays OncoScan (Thermo Fisher Scientific, San Diego, CA) and Infinium CytoSNP-850K (CytoSNP; Illumina, Waltham, MA) for assessing homologous recombination deficiency (HRD) genomic instability. DNA (pretreatment samples) across 20 tumor types was evaluated with OncoScan, CytoSNP, and the clinically validated HRD test. Copy number variation (CNV) and loss of heterozygosity (LOH) analyses were performed with ASCATv2.5.1. Aggregate HRD genomic metrics included LOH, telomeric-allelic imbalance number (TAI), and large-scale state transition (LST). Associations between BRCA mutation (BRCAm) status and the clinically validated HRD test metric (dichotomized at a clinical cut-off) were evaluated using area under the receiver operating characteristic (AUROC); Spearman ρ was calculated for continuous metrics. CNV segmentation and HRD genomic metrics were calculated (n = 120, n = 106, and n = 126 for OncoScan, CytoSNP and clinically validated HRD test, respectively). When assessed by SNP arrays, the genomic metric demonstrated good association with BRCAm (AUROC of HRD: OncoScan, 0.87; CytoSNP, 0.75) and the clinically validated test (cut-off, 42; AUROC of HRD: OncoScan, 0.92; CytoSNP, 0.91). The genomic metrics demonstrated good correlation with the clinically validated aggregate HRD test metric (ρ: OncoScan, 0.82; CytoSNP, 0.81) and for each component (ρ: OncoScan, 0.68 [LOH], 0.76 [TAI], and 0.78 [LST]; CytoSNP, 0.59 [LOH], 0.77 [TAI], and 0.82 [LST]). HRD assessed by SNP genotyping arrays and the clinically validated test showed good correlation. OncoScan and CytoSNP may potentially identify most HRD-positive tumors with appropriate clinically relevant cut-offs.
We evaluated the performance of single-nucleotide polymorphism (SNP) genotyping arrays OncoScan (Thermo Fisher Scientific, San Diego, CA) and Infinium CytoSNP-850K (CytoSNP; Illumina, Waltham, MA) for assessing homologous recombination deficiency (HRD) genomic instability.BACKGROUNDWe evaluated the performance of single-nucleotide polymorphism (SNP) genotyping arrays OncoScan (Thermo Fisher Scientific, San Diego, CA) and Infinium CytoSNP-850K (CytoSNP; Illumina, Waltham, MA) for assessing homologous recombination deficiency (HRD) genomic instability.DNA (pretreatment samples) across 20 tumor types was evaluated with OncoScan, CytoSNP, and the clinically validated HRD test. Copy number variation (CNV) and loss of heterozygosity (LOH) analyses were performed with ASCATv2.5.1. Aggregate HRD genomic metrics included LOH, telomeric-allelic imbalance number (TAI), and large-scale state transition (LST). Associations between BRCA mutation (BRCAm) status and the clinically validated HRD test metric (dichotomized at a clinical cut-off) were evaluated using area under the receiver operating characteristic (AUROC); Spearman ρ was calculated for continuous metrics. CNV segmentation and HRD genomic metrics were calculated (n = 120, n = 106, and n = 126 for OncoScan, CytoSNP and clinically validated HRD test, respectively).METHODSDNA (pretreatment samples) across 20 tumor types was evaluated with OncoScan, CytoSNP, and the clinically validated HRD test. Copy number variation (CNV) and loss of heterozygosity (LOH) analyses were performed with ASCATv2.5.1. Aggregate HRD genomic metrics included LOH, telomeric-allelic imbalance number (TAI), and large-scale state transition (LST). Associations between BRCA mutation (BRCAm) status and the clinically validated HRD test metric (dichotomized at a clinical cut-off) were evaluated using area under the receiver operating characteristic (AUROC); Spearman ρ was calculated for continuous metrics. CNV segmentation and HRD genomic metrics were calculated (n = 120, n = 106, and n = 126 for OncoScan, CytoSNP and clinically validated HRD test, respectively).When assessed by SNP arrays, the genomic metric demonstrated good association with BRCAm (AUROC of HRD: OncoScan, 0.87; CytoSNP, 0.75) and the clinically validated test (cut-off, 42; AUROC of HRD: OncoScan, 0.92; CytoSNP, 0.91). The genomic metrics demonstrated good correlation with the clinically validated aggregate HRD test metric (ρ: OncoScan, 0.82; CytoSNP, 0.81) and for each component (ρ: OncoScan, 0.68 [LOH], 0.76 [TAI], and 0.78 [LST]; CytoSNP, 0.59 [LOH], 0.77 [TAI], and 0.82 [LST]). HRD assessed by SNP genotyping arrays and the clinically validated test showed good correlation.RESULTSWhen assessed by SNP arrays, the genomic metric demonstrated good association with BRCAm (AUROC of HRD: OncoScan, 0.87; CytoSNP, 0.75) and the clinically validated test (cut-off, 42; AUROC of HRD: OncoScan, 0.92; CytoSNP, 0.91). The genomic metrics demonstrated good correlation with the clinically validated aggregate HRD test metric (ρ: OncoScan, 0.82; CytoSNP, 0.81) and for each component (ρ: OncoScan, 0.68 [LOH], 0.76 [TAI], and 0.78 [LST]; CytoSNP, 0.59 [LOH], 0.77 [TAI], and 0.82 [LST]). HRD assessed by SNP genotyping arrays and the clinically validated test showed good correlation.OncoScan and CytoSNP may potentially identify most HRD-positive tumors with appropriate clinically relevant cut-offs.CONCLUSIONOncoScan and CytoSNP may potentially identify most HRD-positive tumors with appropriate clinically relevant cut-offs.
Background: We evaluated the performance of single-nucleotide polymorphism (SNP) genotyping arrays OncoScan (Thermo Fisher Scientific, San Diego, CA) and Infinium CytoSNP-850K (CytoSNP; Illumina, Waltham, MA) for assessing homologous recombination deficiency (HRD) genomic instability. Methods: DNA (pretreatment samples) across 20 tumor types was evaluated with OncoScan, CytoSNP, and the clinically validated HRD test. Copy number variation (CNV) and loss of heterozygosity (LOH) analyses were performed with ASCATv2.5.1. Aggregate HRD genomic metrics included LOH, telomeric-allelic imbalance number (TAI), and large-scale state transition (LST). Associations between BRCA mutation (BRCAm) status and the clinically validated HRD test metric (dichotomized at a clinical cut-off) were evaluated using area under the receiver operating characteristic (AUROC); Spearman ρ was calculated for continuous metrics. CNV segmentation and HRD genomic metrics were calculated (n = 120, n = 106, and n = 126 for OncoScan, CytoSNP and clinically validated HRD test, respectively). Results: When assessed by SNP arrays, the genomic metric demonstrated good association with BRCAm (AUROC of HRD: OncoScan, 0.87; CytoSNP, 0.75) and the clinically validated test (cut-off, 42; AUROC of HRD: OncoScan, 0.92; CytoSNP, 0.91). The genomic metrics demonstrated good correlation with the clinically validated aggregate HRD test metric (ρ: OncoScan, 0.82; CytoSNP, 0.81) and for each component (ρ: OncoScan, 0.68 [LOH], 0.76 [TAI], and 0.78 [LST]; CytoSNP, 0.59 [LOH], 0.77 [TAI], and 0.82 [LST]). HRD assessed by SNP genotyping arrays and the clinically validated test showed good correlation. Conclusion: OncoScan and CytoSNP may potentially identify most HRD-positive tumors with appropriate clinically relevant cut-offs.
Background: We evaluated the performance of single-nucleotide polymorphism (SNP) genotyping arrays OncoScan (Thermo Fisher Scientific, San Diego, CA) and Infinium CytoSNP-850K (CytoSNP; Illumina, Waltham, MA) for assessing homologous recombination deficiency (HRD) genomic instability. Methods: DNA (pretreatment samples) across 20 tumor types was evaluated with OncoScan, CytoSNP, and the clinically validated HRD test. Copy number variation (CNV) and loss of heterozygosity (LOH) analyses were performed with ASCATv2.5.1. Aggregate HRD genomic metrics included LOH, telomeric-allelic imbalance number (TAI), and large-scale state transition (LST). Associations between BRCA mutation ( BRCA m) status and the clinically validated HRD test metric (dichotomized at a clinical cut-off) were evaluated using area under the receiver operating characteristic (AUROC); Spearman ρ was calculated for continuous metrics. CNV segmentation and HRD genomic metrics were calculated ( n  = 120, n  = 106, and n  = 126 for OncoScan, CytoSNP and clinically validated HRD test, respectively). Results: When assessed by SNP arrays, the genomic metric demonstrated good association with BRCA m (AUROC of HRD: OncoScan, 0.87; CytoSNP, 0.75) and the clinically validated test (cut-off, 42; AUROC of HRD: OncoScan, 0.92; CytoSNP, 0.91). The genomic metrics demonstrated good correlation with the clinically validated aggregate HRD test metric (ρ: OncoScan, 0.82; CytoSNP, 0.81) and for each component (ρ: OncoScan, 0.68 [LOH], 0.76 [TAI], and 0.78 [LST]; CytoSNP, 0.59 [LOH], 0.77 [TAI], and 0.82 [LST]). HRD assessed by SNP genotyping arrays and the clinically validated test showed good correlation. Conclusion: OncoScan and CytoSNP may potentially identify most HRD-positive tumors with appropriate clinically relevant cut-offs.
ArticleNumber 1310
Audience Academic
Author Chen, Cai
Albright, Andrew
Marton, Matthew J.
Cristescu, Razvan
Qiu, Ping
Arreaza, Gladys
Liu, Xiao Qiao
Author_xml – sequence: 1
  givenname: Razvan
  surname: Cristescu
  fullname: Cristescu, Razvan
  email: razvan_cristescu@merck.com
  organization: Merck & Co., Inc
– sequence: 2
  givenname: Xiao Qiao
  surname: Liu
  fullname: Liu, Xiao Qiao
  organization: MSD R&D (China) Co. Ltd
– sequence: 3
  givenname: Gladys
  surname: Arreaza
  fullname: Arreaza, Gladys
  organization: Merck & Co., Inc
– sequence: 4
  givenname: Cai
  surname: Chen
  fullname: Chen, Cai
  organization: Merck & Co., Inc
– sequence: 5
  givenname: Andrew
  surname: Albright
  fullname: Albright, Andrew
  organization: Merck & Co., Inc
– sequence: 6
  givenname: Ping
  surname: Qiu
  fullname: Qiu, Ping
  organization: Merck & Co., Inc
– sequence: 7
  givenname: Matthew J.
  surname: Marton
  fullname: Marton, Matthew J.
  organization: Merck & Co., Inc
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36517748$$D View this record in MEDLINE/PubMed
BookMark eNp9k9lu1DAUhiNURBd4AS5QJCQEFylekthzg1RVLCNVQmK5trycZFwl9mA7wPSKd-AheC-eBE-ny0yFqlwkcr7_t_2fcw6LPecdFMVTjI4x5u3riAnnTYUIqTDCM1ZdPCgOcM1wRWrE9ra-94vDGM8Rwowj_qjYp22DGav5QfHn1Dvtg5FOQ6kg_QBwZbSuH6Bykx7AJ2ugXPphNfqwXNg4_v31W8kIpuzB-dHq0rqYpLKDTatSxihXsZTOlLJ08DNVmYIgk_XZF75N4HR2v_FY-NEPvvdTLANoPyrrNqyBzmqb6VWZIKbHxcNODhGeXL2Piq_v3n45_VCdfXw_Pz05q3TLSKo6aChWyBCMVDNrCaFNg4zhoLFWlLWyRsS0mjW87qCjrVFIKoJJ00LXKIXpUTHf-Bovz8Uy2FGGlfDSissFH3ohQ7I5GAFcGmhzxorj2nAkOWGEckq1RqQjKHu92XgtJzWC0eBSkMOO6e4fZxei99_FjNUzSkk2eHllEHxOLiYx2qhhGKSDnJggrKl5w1s8y-jzO-i5n4LLUa2ppmUNQvyW6mW-gHWdz_vqtak4YRRhwmrMMnX8Hyo_BnK5cw92Nq_vCF7tCDKTcul7OcUo5p8_7bIvttgFyCEtoh-mddHjLvhsO72b2K57NwN8A-jgYwzQCW3TZfPk49pBYCTWYyI2YyLymIjLMREXWUruSK_d7xXRjShm2PUQbiO-R_UPnFMpkw
CitedBy_id crossref_primary_10_1007_s40291_024_00745_7
crossref_primary_10_3390_cancers15235525
crossref_primary_10_3892_ol_2023_14060
crossref_primary_10_1016_j_ygyno_2024_01_016
crossref_primary_10_3390_cancers16193252
crossref_primary_10_1093_gpbjnl_qzaf017
crossref_primary_10_1016_j_brainresbull_2025_111517
Cites_doi 10.1186/gb-2011-12-8-r80
10.1158/2159-8290.CD-11-0206
10.1002/onco.13551
10.1093/nar/gkn556
10.1172/JCI120388
10.1056/NEJMoa1910962
10.1200/JCO.2014.57.0085
10.1016/j.annonc.2020.08.2102
10.1093/annonc/mdx821
10.1186/s40425-019-0643-8
10.1016/j.jmoldx.2012.06.002
10.1038/s41416-018-0274-8
10.1158/0008-5472.CAN-12-1470
10.1016/S1470-2045(16)30559-9
10.1038/s41586-019-1382-1
10.1186/s40364-015-0033-4
10.1016/j.esmoop.2021.100144
10.1016/j.tcb.2019.07.008
10.1200/JCO.2014.57.6660
10.1056/NEJMoa1911361
10.1038/bjc.2012.451
10.1056/NEJMoa1911440
10.1073/pnas.1009843107
10.1038/nrc2342
10.1158/1541-7786.MCR-18-0034
10.1056/NEJMoa1611310
10.1200/JCO.2020.38.15_suppl.1586
10.3390/cancers12051206
10.1016/S0140-6736(17)32440-6
ContentType Journal Article
Copyright Merck&Co., Inc., Rahway, NJ, USA and its affiliates 2022
2022. © Merck&Co., Inc., Rahway, NJ, USA and its affiliates.
COPYRIGHT 2022 BioMed Central Ltd.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Merck&Co., Inc., Rahway, NJ, USA and its affiliates 2022
– notice: 2022. © Merck&Co., Inc., Rahway, NJ, USA and its affiliates.
– notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7TO
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12885-022-10197-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE


MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2407
EndPage 9
ExternalDocumentID oai_doaj_org_article_e8ade6147b814d80a82723833cc02f20
PMC9749332
A730127417
36517748
10_1186_s12885_022_10197_z
Genre Journal Article
GeographicLocations China
United States--US
GeographicLocations_xml – name: China
– name: United States--US
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
IHW
INH
INR
ISR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
AFFHD
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7TO
7XB
8FK
AZQEC
DWQXO
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c672t-fe531b0d210b596223550dd8ec1cb376a402d6c7584fef36db0ab21256ef5bb13
IEDL.DBID RSV
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000899197000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2407
IngestDate Fri Oct 03 12:53:23 EDT 2025
Tue Nov 04 02:07:17 EST 2025
Sun Nov 09 09:29:19 EST 2025
Mon Oct 06 18:26:11 EDT 2025
Tue Nov 11 10:29:44 EST 2025
Tue Nov 04 18:05:00 EST 2025
Thu Nov 13 14:48:40 EST 2025
Thu May 22 21:32:57 EDT 2025
Thu Jan 02 22:53:13 EST 2025
Tue Nov 18 22:31:08 EST 2025
Sat Nov 29 06:42:41 EST 2025
Sat Sep 06 07:18:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Telomeric-allelic imbalance number
BRCA
Homologous recombination deficiency
Loss of heterozygosity
Large-scale state transition
Language English
License 2022. © Merck&Co., Inc., Rahway, NJ, USA and its affiliates.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c672t-fe531b0d210b596223550dd8ec1cb376a402d6c7584fef36db0ab21256ef5bb13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s12885-022-10197-z
PMID 36517748
PQID 2755675008
PQPubID 44074
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_e8ade6147b814d80a82723833cc02f20
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9749332
proquest_miscellaneous_2754858619
proquest_journals_2755675008
gale_infotracmisc_A730127417
gale_infotracacademiconefile_A730127417
gale_incontextgauss_ISR_A730127417
gale_healthsolutions_A730127417
pubmed_primary_36517748
crossref_citationtrail_10_1186_s12885_022_10197_z
crossref_primary_10_1186_s12885_022_10197_z
springer_journals_10_1186_s12885_022_10197_z
PublicationCentury 2000
PublicationDate 2022-12-14
PublicationDateYYYYMMDD 2022-12-14
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC cancer
PublicationTitleAbbrev BMC Cancer
PublicationTitleAlternate BMC Cancer
PublicationYear 2022
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References P Jonsson (10197_CR29) 2019; 571
P Van Loo (10197_CR23) 2010; 107
J de Bono (10197_CR30) 2020; 382
CF Lin (10197_CR34) 2013; 79
P Sharma (10197_CR14) 2018; 29
A González-Martín (10197_CR13) 2019; 381
DR Hodgson (10197_CR8) 2018; 119
10197_CR20
T Popova (10197_CR27) 2012; 72
RL Coleman (10197_CR32) 2017; 390
EA Stronach (10197_CR9) 2018; 16
EM Swisher (10197_CR11) 2017; 18
10197_CR16
A Leo (10197_CR21) 2012; 14
MR Mirza (10197_CR15) 2016; 375
D Aurora-Garg (10197_CR19) 2019; 7
AM Marquard (10197_CR24) 2015; 3
NJ Birkbak (10197_CR26) 2012; 2
10197_CR7
NYL Ngoi (10197_CR31) 2021; 6
V Abkevich (10197_CR25) 2012; 107
S Bouberhan (10197_CR1) 2020; 12
SJ Isakoff (10197_CR10) 2015; 33
I Ray-Coquard (10197_CR12) 2019; 381
10197_CR5
KM Timms (10197_CR17) 2020; 38
ML Telli (10197_CR18) 2015; 33
SM Noordermeer (10197_CR33) 2019; 29
J Cheng (10197_CR22) 2011; 12
RE Miller (10197_CR2) 2020; 31
A Thomas (10197_CR4) 2018; 128
S Arora (10197_CR6) 2021; 26
J Yin (10197_CR28) 2017; 5
SJ Diskin (10197_CR35) 2008; 36
T Helleday (10197_CR3) 2008; 8
References_xml – volume: 12
  start-page: R80
  year: 2011
  ident: 10197_CR22
  publication-title: Genome Biol
  doi: 10.1186/gb-2011-12-8-r80
– volume: 2
  start-page: 366
  year: 2012
  ident: 10197_CR26
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-11-0206
– volume: 26
  start-page: e164
  year: 2021
  ident: 10197_CR6
  publication-title: Oncologist
  doi: 10.1002/onco.13551
– volume: 36
  start-page: e126
  year: 2008
  ident: 10197_CR35
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn556
– volume: 128
  start-page: 1727
  year: 2018
  ident: 10197_CR4
  publication-title: J Clin Invest
  doi: 10.1172/JCI120388
– volume: 381
  start-page: 2391
  year: 2019
  ident: 10197_CR13
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1910962
– volume: 33
  start-page: 1895
  year: 2015
  ident: 10197_CR18
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2014.57.0085
– volume: 31
  start-page: 1606
  year: 2020
  ident: 10197_CR2
  publication-title: Ann Oncol
  doi: 10.1016/j.annonc.2020.08.2102
– volume: 29
  start-page: 654
  year: 2018
  ident: 10197_CR14
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdx821
– volume: 7
  start-page: 172
  year: 2019
  ident: 10197_CR19
  publication-title: J Immunother Cancer
  doi: 10.1186/s40425-019-0643-8
– volume: 14
  start-page: 550
  year: 2012
  ident: 10197_CR21
  publication-title: J Mol Diagnos
  doi: 10.1016/j.jmoldx.2012.06.002
– volume: 119
  start-page: 1401
  year: 2018
  ident: 10197_CR8
  publication-title: Br J Cancer
  doi: 10.1038/s41416-018-0274-8
– volume: 72
  start-page: 5454
  year: 2012
  ident: 10197_CR27
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-1470
– ident: 10197_CR20
– volume: 18
  start-page: 75
  year: 2017
  ident: 10197_CR11
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(16)30559-9
– volume: 571
  start-page: 576
  year: 2019
  ident: 10197_CR29
  publication-title: Nature
  doi: 10.1038/s41586-019-1382-1
– volume: 79
  start-page: unit 1.27
  year: 2013
  ident: 10197_CR34
  publication-title: Curr Protoc Hum Genet
– volume: 3
  start-page: 9
  year: 2015
  ident: 10197_CR24
  publication-title: Biomark Res
  doi: 10.1186/s40364-015-0033-4
– volume: 6
  start-page: 100144
  year: 2021
  ident: 10197_CR31
  publication-title: ESMO Open
  doi: 10.1016/j.esmoop.2021.100144
– volume: 29
  start-page: 820
  year: 2019
  ident: 10197_CR33
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2019.07.008
– volume: 5
  start-page: 95
  year: 2017
  ident: 10197_CR28
  publication-title: Biomet Biostat Internat J
– ident: 10197_CR7
– volume: 33
  start-page: 1902
  year: 2015
  ident: 10197_CR10
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2014.57.6660
– volume: 381
  start-page: 2416
  year: 2019
  ident: 10197_CR12
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1911361
– ident: 10197_CR5
– volume: 107
  start-page: 1776
  year: 2012
  ident: 10197_CR25
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2012.451
– volume: 382
  start-page: 2091
  year: 2020
  ident: 10197_CR30
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1911440
– volume: 107
  start-page: 16910
  year: 2010
  ident: 10197_CR23
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1009843107
– volume: 8
  start-page: 193
  year: 2008
  ident: 10197_CR3
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2342
– volume: 16
  start-page: 1103
  year: 2018
  ident: 10197_CR9
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-18-0034
– ident: 10197_CR16
– volume: 375
  start-page: 2154
  year: 2016
  ident: 10197_CR15
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1611310
– volume: 38
  start-page: 1586
  year: 2020
  ident: 10197_CR17
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2020.38.15_suppl.1586
– volume: 12
  start-page: 1206
  year: 2020
  ident: 10197_CR1
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers12051206
– volume: 390
  start-page: 1949
  year: 2017
  ident: 10197_CR32
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)32440-6
SSID ssj0017808
Score 2.420856
Snippet Background: We evaluated the performance of single-nucleotide polymorphism (SNP) genotyping arrays OncoScan (Thermo Fisher Scientific, San Diego, CA) and...
We evaluated the performance of single-nucleotide polymorphism (SNP) genotyping arrays OncoScan (Thermo Fisher Scientific, San Diego, CA) and Infinium...
Background: We evaluated the performance of single-nucleotide polymorphism (SNP) genotyping arrays OncoScan (Thermo Fisher Scientific, San Diego, CA) and...
Abstract Background: We evaluated the performance of single-nucleotide polymorphism (SNP) genotyping arrays OncoScan (Thermo Fisher Scientific, San Diego, CA)...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1310
SubjectTerms Algorithms
Analysis
Biological markers
Biomarkers
Biomedical and Life Sciences
Biomedicine
BRCA
Cancer Research
Care and treatment
Chromosomal instability syndromes
Clinical trials
Copy number
Copy number variations
Diagnosis
DNA Copy Number Variations
FDA approval
Gene polymorphism
Genetic aspects
Genomic Instability
Genotyping
Health Promotion and Disease Prevention
Heterozygosity
High-Throughput Nucleotide Sequencing
Homologous Recombination
Homologous recombination deficiency
Humans
International organizations
Large-scale state transition
Loss of Heterozygosity
Medical prognosis
Medicine/Public Health
Mutation
Next-generation sequencing
Oncology
Ovarian cancer
Patients
Polymorphism
Polymorphism, Single Nucleotide
Prevention
Risk factors
Segmentation
Single nucleotide polymorphisms
Single-nucleotide polymorphism
Surgical Oncology
Telomeric-allelic imbalance number
Tumors
Vascular endothelial growth factor
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQhRAXRPkNFDAIiQNETZw4do6looIDFeJH6s2Kf9JG2k2qZhepPfUdeAjeiydhxnFCUwRckPa0GVtZz3hmvvX4G0KeC1bVEFfL2BWcx7mWaSxLU8epTLQWubSOW99sQuzvy4OD8sOFVl9YEzbQAw8Lt-1kZR3EEAHT5FYmlWTYJyvLjElYzTxaT0Q5gqlwfiBkIscrMrLY7sELS7yJzMDtpKWIz2ZhyLP1_-6TLwSlywWTl05NfTDau0luhCyS7gxvv0muuPYWufY-nJPfJt93O-SntKhSGkqxKP4rsHBxiwzG3aqxjh53C4D-sNJNv_xx_g0jmqXI2rpsDG0wcfSls6cUMuzqtKdVa2lFWwTLh56uGrVKQzU2zD7NcdQt0al2654i4l4C_B5krUPGCrzuSSHHXd0hX_befN59G4eWDLEpBFvFtYM9qxMLQFFj3x4G6UpirXQmNRp8VQVw1BYGQEheuzorrE4qDdGRF67mWqfZXbLRdq27TyjsfMMz8K48zXJZg145KFdDhme0sDWLSDpqSJnAV45tMxbK4xZZqEGrCrSqvFbVWUReTmOOB7aOv0q_RsVPksi07b8A-1PB_tS_7C8iT9Bs1HBtdfIXagddJ3IDiYg88xLIttFiOc9hte579e7Tx5nQiyBUd_ArTRVuR8BaIUHXTHJrJgnuwMwfj_argjvqFROcAzKEfC8iT6fHOBJL7FoH5oAyueQSAHVE7g3mPq1MVvAUcAKMFrONMFu6-ZO2OfJk5YBXyywDbb4at8yv1_qzah78D9U8JNeZ3_LwybfIxupk7R6Rq-brqulPHnuH8ROsWXK_
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIMSlvCFQwCAkDjRqXo69J1QqKjhQIR7S3qz4kW2k3WS72UXanvgP_Aj-F7-EGcebkiJ6QdrTZhzF9vibGXv8DSEveFKUYFdHoc0ZCzMl4lCMdBnGIlKKZ8JYZlyxCX50JMbj0Ue_4db6tMoNJjqgNo3GPfK9hDMGzi2YrNfzkxCrRuHpqi-hcZlcwbLZqOd83AdcMReR2FyUEfleC1gs8D5yAuATj3h4OjBGjrP_b2T-wzSdT5s8d3bqTNLhjf_tzE2y7Z1Rut9pzy1yyda3ybUP_rj9Dvl50CDNpUHNoD6ji-LmwtSGNRIhN8vKWDpvputZAxNWtbNf33-gYTQUyV9nlaYV-p8uA3dNwVEv1i0takMLWmPMPXGs16gc1Cd1w9v7dxw3M8TmZtVSDNxnEMV3ssYi8QXeGqXgKi_vkq-Hb78cvAt9ZYdQ5zxZhqWFpa8iA_GmwvI_CXg9kTHC6lgrgLwColqTa4hlstKWaW5UVCgwsiy3JVMqTu-Rrbqp7QNCAUA0SwGkWZxmoiwg4o0KocBR1IqbMglIvJliqT3tOVbfmEoX_ohcdmohQS2kUwt5GpBXfZt5R_pxofQb1JxeEgm73R_NYiL9-pdWFMaCK8RhNWRGwCcmWO4tTbWOkjKJAvIU9U52t1972JH7iMBIMcQD8txJIGlHjVlBk2LVtvL9508DoZdeqGygl7rwlyxgrJDnayC5M5AEVNHDxxvNlR7VWnmmtgF51j_GlpipV1tQB5TJBBMQlwfkfrde-pFJcxZDuAGt-WAlDYZu-KSujh3nOYS9ozSF2dzdrLmzz_r31Dy8uBePyPXEoQH8sh2ytVys7GNyVX9bVu3iicOS3-ZkgX8
  priority: 102
  providerName: ProQuest
Title Concordance between single-nucleotide polymorphism–based genomic instability assays and a next-generation sequencing–based homologous recombination deficiency test
URI https://link.springer.com/article/10.1186/s12885-022-10197-z
https://www.ncbi.nlm.nih.gov/pubmed/36517748
https://www.proquest.com/docview/2755675008
https://www.proquest.com/docview/2754858619
https://pubmed.ncbi.nlm.nih.gov/PMC9749332
https://doaj.org/article/e8ade6147b814d80a82723833cc02f20
Volume 22
WOSCitedRecordID wos000899197000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1471-2407
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017808
  issn: 1471-2407
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2407
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017808
  issn: 1471-2407
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2407
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017808
  issn: 1471-2407
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2407
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017808
  issn: 1471-2407
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1471-2407
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017808
  issn: 1471-2407
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2407
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017808
  issn: 1471-2407
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2407
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017808
  issn: 1471-2407
  databaseCode: RSV
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF3RFiFeuF8MJSwIiQew8H03j23Vij40ilJA4WnlvTi1lNhVnCClT_wDH8F_8SXMrC_gcpFAiiIlnrVsz8yZGe_sWUJesCDNIK4OXZPEsRtJ7rt8qDLX556ULOLaxNpuNsFGIz6dDsfNorCq7XZvpyQtUlu35smbCpCU42riAKDDHzL3YovsQLjjuGHD5PRDN3fAuMfb5TG_HdcLQZap_1c8_ikgXW6WvDRjagPR0c3_u4Vb5EaTeNK92lJukyumuEOunTRT63fJ14MSKS01WgFturcovkiYG7dA0uNylWtDz8v5ZlGCcvJq8e3zFwyCmiLR6yJXNMdc03bbbigk5emmommhaUoLrK9nluEaDYE2Ddxw9u4cZ-UCcbhcVxSL9AVU7LWsNkhygStEKaTFq3vk_dHhu4O3brOLg6sSFqzczICbS09DbSlxq58AMhxPa26UryTAWwoVrE4U1C1RZrIw0dJLJQTUODFZLKUf3ifbRVmYh4QCWKg4BECO_TDiWQrVrZdyCUmhkkxngUP8VrFCNRTnuNPGXNhShyei1oAADQirAXHhkFfdmPOa4OOv0vtoL50kknPbP8rlTDS-LgxPtYG0h4HlR5rDJQa4tVsYKuUFWeA55Clam6hXunYQI_YQbZFOiDnkuZVAgo4CO4Bm6bqqxPHppCf0shHKSrhLlTYLKuBZIadXT3K3JwkIovqHW7MXDYJVImBxDMUkpIgOedYdxpHYlVcYMAeUiXjMoQZ3yIPaS7onEyaxD6UFjGY9_-k9uv6RIj-z_OZQ4g7DELT5uvWiH5f1Z9U8-jfxx-R6YB0RPtEu2V4t1-YJuao-rfJqOSBbbMrsNx-Qnf3D0XgysK9r4Nf4-GT8cWAx5zvdLn6Q
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQcCF92OhUINAHCBq3nYOCJVC1aoPISjS3kz8yDbSbrI0W9D2xH_gR3DjR_FLmHEeJUX01gPSntZjK7Fnvplx5kHIE-anGejVxDFxFDmh5J7DE5U5HnelZCHXJtK22QTb3eXDYfJugfxsc2EwrLLFRAvUulR4R77isygC4xZU1qvpZwe7RuHX1baFRs0WW2b-FVy26uXmGzjfp76__nZvbcNpugo4Kmb-zMkMsJ10Nfg6ElvP-KBxXa25UZ6SIG4peFQ6VmBHh5nJglhLN5UA8FFsskhKL4B1z5HzgOMMnT027Bw8j3GXt4k5PF6pAPs55j_7AHZewpyjnvKzPQL-1gR_qMKTYZonvtVaFbh-9X_bvGvkSmNs09VaOq6TBVPcIBd3mnCCm-THWollPDVyPm0i1ihenoyNU2Ch53KWa0On5Xg-KYEh82ry69t3VPyaYnHbSa5ojva1jTCeU3BE0nlF00LTlBZ4pzCyVb2R-WkTtA6rd2vslxPUPeVhRfFiYiLz-m6WaoOFPTArloIrMLtFPp7JNt0mi0VZmLuEAkCqKAAlFHlByLMUPHo35RIMYSWZzvwB8VqWEqop647dRcbCunc8FjUbCmBDYdlQHA3I827OtC5qcir1a-TUjhILkts_yoORaPBNGJ5qA6YeA2kPNYdH9LGdXRAo5fqZ7w7IMvK5qLN7O1gVq6hhsIQSG5DHlgKLkhQY9TRKD6tKbH543yN61hBlJbylSpskEtgrrGPWo1zqUQJqqv5wKymiQe1KHIvJgDzqhnEmRiIWBtgBaUIe8dhLBuROLZ_dzgRx5IE7BbNZT3J7W9cfKfJ9W9Md3PokCOA0X7QyfvxY_z6ae6e_xTK5tLG3sy22N3e37pPLvkUi-IVLZHF2cGgekAvqyyyvDh5aHKPk01nL_m9AJ95d
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEF1BQRUv3C-GQheExAO16vuuH0shogKiigLq28p7cWopsaPYQUqf-Ac-gv_iS5hZO6YuFwkh5SmetWLPztk52ZmzhDxlQZbDupq6JoljN5Lcd3mqctfnnpQs4trE2h42wcZjfnycHp7p4rfV7ustybanAVWaymZ3rvM2xHmyWwOqcuwsDgBG_JS5pxfJpQgL6ZGvH33q9xEY9_i6Vea34wbLkVXt_xWbzyxO5wsnz-2e2kVpdO3_H-c6udolpHSvnUE3yAVT3iSb77ot91vk236FUpcaZwftqroo_sEwNW6JYshVU2hD59V0NavAaUU9-_7lKy6OmqIA7KxQtMAc1Fbhrigk69mqplmpaUZL5N0Tq3yNE4R2hd1w9_4eJ9UM8bla1hTJ-wyYfGurDYpfYOcohXS5uU0-jl592H_tdqc7uCphQePmBsJfeho4p8QjgALIfDytuVG-kgB7GTBbnSjgM1Fu8jDR0sskLLRxYvJYSj-8QzbKqjT3CAUQUXEIQB37YcTzDFivl3EJyaKSTOeBQ_y1k4XqpM_xBI6psBSIJ6L1gAAPCOsBceqQ5_2YeSv88VfrFzh3eksU7bZfVIuJ6DBAGJ5pA-kQg4iINIefGOCRb2GolBfkgeeQbZx5ou2A7aFH7CEKo8wQc8gTa4HCHSVWBk2yZV2Lg6P3A6NnnVFewVOqrGu0gHeFWl8Dy62BJSCLGl5eh4DokK0WAYtjIJmQOjrkcX8ZR2K1XmlgOqBNxGMO3Nwhd9uI6d9MmMQ-UA4YzQaxNHh1wytlcWJ1z4H6pmEI3txZR9TPn_Vn19z_N_Ntsnn4ciTeHozfPCBXAhuT8Im2yEazWJqH5LL63BT14pEFmh_K74RI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concordance+between+single-nucleotide+polymorphism-based+genomic+instability+assays+and+a+next-generation+sequencing-based+homologous+recombination+deficiency+test&rft.jtitle=BMC+cancer&rft.au=Cristescu%2C+Razvan&rft.au=Liu%2C+Xiao+Qiao&rft.au=Arreaza%2C+Gladys&rft.au=Chen%2C+Cai&rft.date=2022-12-14&rft.eissn=1471-2407&rft.volume=22&rft.issue=1&rft.spage=1310&rft_id=info:doi/10.1186%2Fs12885-022-10197-z&rft_id=info%3Apmid%2F36517748&rft.externalDocID=36517748
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2407&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2407&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2407&client=summon