Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types
We introduce an approach to identify disease-relevant tissues and cell types by analyzing gene expression data together with genome-wide association study (GWAS) summary statistics. Our approach uses stratified linkage disequilibrium (LD) score regression to test whether disease heritability is enri...
Uloženo v:
| Vydáno v: | Nature genetics Ročník 50; číslo 4; s. 621 - 629 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Nature Publishing Group US
01.04.2018
Nature Publishing Group |
| Témata: | |
| ISSN: | 1061-4036, 1546-1718, 1546-1718 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We introduce an approach to identify disease-relevant tissues and cell types by analyzing gene expression data together with genome-wide association study (GWAS) summary statistics. Our approach uses stratified linkage disequilibrium (LD) score regression to test whether disease heritability is enriched in regions surrounding genes with the highest specific expression in a given tissue. We applied our approach to gene expression data from several sources together with GWAS summary statistics for 48 diseases and traits (average
N
= 169,331) and found significant tissue-specific enrichments (false discovery rate (FDR) < 5%) for 34 traits. In our analysis of multiple tissues, we detected a broad range of enrichments that recapitulated known biology. In our brain-specific analysis, significant enrichments included an enrichment of inhibitory over excitatory neurons for bipolar disorder, and excitatory over inhibitory neurons for schizophrenia and body mass index. Our results demonstrate that our polygenic approach is a powerful way to leverage gene expression data for interpreting GWAS signals.
A new method tests whether disease heritability is enriched near genes with high tissue-specific expression. The authors use gene expression data together with GWAS summary statistics for 48 diseases and traits to identify disease-relevant tissues. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
| ISSN: | 1061-4036 1546-1718 1546-1718 |
| DOI: | 10.1038/s41588-018-0081-4 |