The potential for immunoglobulins and host defense peptides (HDPs) to reduce the use of antibiotics in animal production
Innate defense mechanisms are aimed at quickly containing and removing infectious microorganisms and involve local stromal and immune cell activation, neutrophil recruitment and activation and the induction of host defense peptides (defensins and cathelicidins), acute phase proteins and complement a...
Uložené v:
| Vydané v: | Veterinary research (Paris) Ročník 49; číslo 1; s. 68 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
BioMed Central
31.07.2018
BioMed Central Ltd Springer Nature B.V BMC |
| Predmet: | |
| ISSN: | 1297-9716, 0928-4249, 1297-9716 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Innate defense mechanisms are aimed at quickly containing and removing infectious microorganisms and involve local stromal and immune cell activation, neutrophil recruitment and activation and the induction of host defense peptides (defensins and cathelicidins), acute phase proteins and complement activation. As an alternative to antibiotics, innate immune mechanisms are highly relevant as they offer rapid general ways to, at least partially, protect against infections and enable the build-up of a sufficient adaptive immune response. This review describes two classes of promising alternatives to antibiotics based on components of the innate host defense. First we describe immunoglobulins applied to mimic the way in which they work in the newborn as locally acting broadly active defense molecules enforcing innate immunity barriers. Secondly, the potential of host defense peptides with different modes of action, used directly, induced in situ or used as vaccine adjuvants is described. |
|---|---|
| AbstractList | AbstractInnate defense mechanisms are aimed at quickly containing and removing infectious microorganisms and involve local stromal and immune cell activation, neutrophil recruitment and activation and the induction of host defense peptides (defensins and cathelicidins), acute phase proteins and complement activation. As an alternative to antibiotics, innate immune mechanisms are highly relevant as they offer rapid general ways to, at least partially, protect against infections and enable the build-up of a sufficient adaptive immune response. This review describes two classes of promising alternatives to antibiotics based on components of the innate host defense. First we describe immunoglobulins applied to mimic the way in which they work in the newborn as locally acting broadly active defense molecules enforcing innate immunity barriers. Secondly, the potential of host defense peptides with different modes of action, used directly, induced in situ or used as vaccine adjuvants is described. Innate defense mechanisms are aimed at quickly containing and removing infectious microorganisms and involve local stromal and immune cell activation, neutrophil recruitment and activation and the induction of host defense peptides (defensins and cathelicidins), acute phase proteins and complement activation. As an alternative to antibiotics, innate immune mechanisms are highly relevant as they offer rapid general ways to, at least partially, protect against infections and enable the build-up of a sufficient adaptive immune response. This review describes two classes of promising alternatives to antibiotics based on components of the innate host defense. First we describe immunoglobulins applied to mimic the way in which they work in the newborn as locally acting broadly active defense molecules enforcing innate immunity barriers. Secondly, the potential of host defense peptides with different modes of action, used directly, induced in situ or used as vaccine adjuvants is described. [...]the potential of host defense peptides with different modes of action, used directly, induced in situ or used as vaccine adjuvants is described. 1 Introduction Resistance of microbes to antimicrobial agents is a global threat. [...]some cytokines show early promise (such as IL-22 [13, 14]) and some have been tested successfully for controlling infection in production animals [15]. [...]bovine G-CSF (granulocyte colony stimulating factor) was reported to have a significantly reducing effect on the number of cattle with clinical mastitis as well as on the absolute neutrophil counts in a herd investigation involving 211 periparturient Holstein cows and heifers given two doses of PEGylated (polyethylene glycol-attached) bovine G-CSF subcutaneously at day-7 and 1 after parturition [16]. For transplacentally supplied immunoglobulins this pool is simply an aliquot of the circulating pool of immunoglobulins in the maternal blood, while in mammals depending on colostrum and milk immunoglobulins the origin depends on the immunoglobulin type. [...]secretory IgA (sIgA) which is the dominating milk immunoglobulin in primates is mainly produced by local plasma cells in the lymphoid mucosal tissue of the mammary gland. [...]innate host defense mechanisms offer interesting modes of actions for new strategies for counteracting microbial infections and disease in animal husbandry. Abstract Innate defense mechanisms are aimed at quickly containing and removing infectious microorganisms and involve local stromal and immune cell activation, neutrophil recruitment and activation and the induction of host defense peptides (defensins and cathelicidins), acute phase proteins and complement activation. As an alternative to antibiotics, innate immune mechanisms are highly relevant as they offer rapid general ways to, at least partially, protect against infections and enable the build-up of a sufficient adaptive immune response. This review describes two classes of promising alternatives to antibiotics based on components of the innate host defense. First we describe immunoglobulins applied to mimic the way in which they work in the newborn as locally acting broadly active defense molecules enforcing innate immunity barriers. Secondly, the potential of host defense peptides with different modes of action, used directly, induced in situ or used as vaccine adjuvants is described. Innate defense mechanisms are aimed at quickly containing and removing infectious microorganisms and involve local stromal and immune cell activation, neutrophil recruitment and activation and the induction of host defense peptides (defensins and cathelicidins), acute phase proteins and complement activation. As an alternative to antibiotics, innate immune mechanisms are highly relevant as they offer rapid general ways to, at least partially, protect against infections and enable the build-up of a sufficient adaptive immune response. This review describes two classes of promising alternatives to antibiotics based on components of the innate host defense. First we describe immunoglobulins applied to mimic the way in which they work in the newborn as locally acting broadly active defense molecules enforcing innate immunity barriers. Secondly, the potential of host defense peptides with different modes of action, used directly, induced in situ or used as vaccine adjuvants is described.Innate defense mechanisms are aimed at quickly containing and removing infectious microorganisms and involve local stromal and immune cell activation, neutrophil recruitment and activation and the induction of host defense peptides (defensins and cathelicidins), acute phase proteins and complement activation. As an alternative to antibiotics, innate immune mechanisms are highly relevant as they offer rapid general ways to, at least partially, protect against infections and enable the build-up of a sufficient adaptive immune response. This review describes two classes of promising alternatives to antibiotics based on components of the innate host defense. First we describe immunoglobulins applied to mimic the way in which they work in the newborn as locally acting broadly active defense molecules enforcing innate immunity barriers. Secondly, the potential of host defense peptides with different modes of action, used directly, induced in situ or used as vaccine adjuvants is described. |
| ArticleNumber | 68 |
| Audience | Academic |
| Author | Haagsman, Henk P. van Dijk, Albert Hedegaard, Chris J. Heegaard, Peter M. H. |
| Author_xml | – sequence: 1 givenname: Albert surname: van Dijk fullname: van Dijk, Albert organization: Division Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University – sequence: 2 givenname: Chris J. surname: Hedegaard fullname: Hedegaard, Chris J. organization: Innate Immunology Group, National Veterinary Institute, Technical University of Denmark – sequence: 3 givenname: Henk P. orcidid: 0000-0002-4931-5201 surname: Haagsman fullname: Haagsman, Henk P. email: H.P.Haagsman@uu.nl organization: Division Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University – sequence: 4 givenname: Peter M. H. surname: Heegaard fullname: Heegaard, Peter M. H. organization: Innate Immunology Group, National Veterinary Institute, Technical University of Denmark |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30060758$$D View this record in MEDLINE/PubMed https://hal.science/hal-02973509$$DView record in HAL |
| BookMark | eNqFkktv1DAUhSNURB_wA9igSGzaRYodx49skEblMZUqwaKsLY99M-MqYw92UpV_zw1p6UM8lEWSm-8cO8fnsNgLMUBRvKbklFIl3mXKuJAVoaoinKuqflYc0LqVVSup2HvwvF8c5nxFCBWMNy-KfUaIIJKrg-LmcgPlLg4QBm_6soup9NvtGOK6j6ux9yGXJrhyE_NQOuggZMRhN3gHuTxefviaT8ohlgncaKEc0GxEInaoGvzKx8HbXPqAr36L_rsUERx8DC-L553pM7y6vR8V3z59vDxbVhdfPp-fLS4qKyQZKoZrtlYZcI5QarlshGkb5yRIWxvJmKEUFGUgZcutZapRXdtaYhmz0NaOHRXns6-L5krvEm4j_dDReP1rENNam4S77EF3qhZUuhVYB40AMI1jDadAMC2zYpPX-9lrN6624CyGlkz_yPTxl-A3eh2vtSBCtE2NBiezweaJbLm40NOM4IkxTtpriuzx7WIpfh8hD3rrs4W-NwHimHVNGVVK4d7-jxJFFJe8kYi-fYJexTEFPIGJapUQXLX31NpgLj50EX_HTqZ6wRs1pVJzpE7_QOHlYOstVrXzOH8kePMwv98J3NURATkDNsWcE3Ta-sFMdUFn32tK9FR8PRdfY_H1VHw9JUufKO_M_6WpZ01GNqwh3Wfxd9FPI4cTpw |
| CitedBy_id | crossref_primary_10_1038_s41573_019_0058_8 crossref_primary_10_1111_dth_14921 crossref_primary_10_1007_s00586_021_06826_z crossref_primary_10_1016_j_ijbiomac_2024_132025 crossref_primary_10_1016_j_micpath_2021_104936 crossref_primary_10_3389_fvets_2025_1605215 crossref_primary_10_1080_10408398_2022_2056574 crossref_primary_10_1016_j_bbrc_2021_05_005 crossref_primary_10_3389_fmicb_2025_1590400 crossref_primary_10_3390_molecules25143219 crossref_primary_10_3390_microorganisms7080219 crossref_primary_10_1186_s40104_021_00663_2 crossref_primary_10_1016_j_dci_2020_103961 crossref_primary_10_1007_s12602_023_10155_6 crossref_primary_10_3389_fmicb_2020_01902 crossref_primary_10_3390_ani15071023 crossref_primary_10_4103_ijmr_IJMR_3514_20 crossref_primary_10_1016_j_psj_2024_104758 crossref_primary_10_1016_j_rvsc_2024_105523 crossref_primary_10_1111_jpn_13198 crossref_primary_10_3390_microorganisms13071443 crossref_primary_10_3390_foods13213415 crossref_primary_10_3390_antibiotics13030251 crossref_primary_10_1371_journal_pone_0302913 crossref_primary_10_3390_antibiotics9120926 crossref_primary_10_3390_antibiotics9120903 crossref_primary_10_1111_asj_13258 crossref_primary_10_1186_s42523_024_00375_8 crossref_primary_10_3390_biom15070980 |
| Cites_doi | 10.1073/pnas.0602888103 10.4049/jimmunol.1000376 10.1016/j.ab.2009.12.002 10.1016/j.vaccine.2009.05.094 10.1002/eji.201444988 10.1016/j.micinf.2013.08.007 10.1126/science.aaf1098 10.1074/jbc.M109.001180 10.1111/imm.12418 10.1016/j.it.2015.04.005 10.1073/pnas.1301975110 10.1016/j.clnu.2015.12.004 10.1038/nchembio.1393 10.1111/j.1574-6968.1998.tb12896.x 10.1385/IR:21:1:1 10.3390/nu3040442 10.4049/jimmunol.1501242 10.1038/srep40874 10.1016/j.molimm.2017.07.005 10.4049/jimmunol.172.6.3758 10.1084/jem.192.7.1069 10.1016/j.cvfa.2007.10.005 10.1155/2013/270301 10.1038/ncb1240 10.1097/COH.0000000000000154 10.1371/journal.pone.0154546 10.1038/nri.2016.29 10.1111/1541-4337.12013 10.1203/01.PDR.0000057205.64451.B7 10.1016/j.peptides.2013.10.008 10.1126/science.286.5439.525 10.1111/wrr.12211 10.1189/jlb.6AB0914-416R 10.1038/ni.1825 10.2119/2008-00002.Steinstraesser 10.1016/j.molimm.2008.12.015 10.4049/jimmunol.163.12.6718 10.1111/j.1365-2249.2007.03587.x 10.1016/j.dci.2016.03.008 10.1046/j.1523-1747.2003.12069.x 10.1111/zph.12167 10.1016/j.chom.2014.08.017 10.4049/jimmunol.0901813 10.1371/journal.pone.0059119 10.1038/nbt1267 10.1111/j.1939-1676.2000.tb02278.x 10.1074/jbc.M007816200 10.1016/j.molimm.2013.09.003 10.1182/blood.V97.12.3951 10.1038/nri3228 10.1111/j.1365-2567.2008.02834.x 10.1371/journal.pone.0072922 10.1038/nature22058 10.1038/nature13777 10.1038/srep26622 10.4049/jimmunol.0903984 10.1007/978-1-4614-3146-6_7 10.1038/nrmicro2745 10.1136/bmj.2.1859.399 10.1016/S0161-5890(03)00161-5 10.1016/j.dci.2016.02.023 10.1172/JCI114198 10.1111/imm.12148 10.4049/jimmunol.1201648 10.1016/j.vaccine.2009.01.117 10.1111/j.1462-5822.2009.01299.x 10.1371/journal.pone.0147373 10.1128/IAI.01563-06 10.1038/nrd3591 10.1086/424463 10.1126/science.1254009 10.1016/j.dld.2004.12.008 10.1126/scitranslmed.3003515 10.1016/j.molimm.2005.09.013 10.5713/ajas.2010.70630 10.2527/2005.83122876x 10.3382/ps.2008-00366 10.1016/j.vaccine.2012.10.011 10.1007/s00253-012-4588-9 10.1021/acs.jafc.6b00968 10.2460/ajvr.76.3.231 10.1136/gut.52.5.735 10.1080/15548627.2015.1075110 10.2174/2212798410901030231 10.1016/j.vaccine.2009.01.118 10.1111/j.1462-5822.2008.01227.x 10.4049/jimmunol.172.2.1146 10.1189/jlb.0708412 10.1189/jlb.5RI0315-096R 10.3109/08820137609033871 10.1146/annurev-food-022811-101137 10.1016/j.smim.2016.05.003 10.1038/srep33274 10.1016/j.jaci.2016.06.033 10.1128/CMR.13.4.602-614.2000 10.1371/journal.pone.0020637 10.1074/jbc.274.37.26249 10.1016/j.vetimm.2016.04.007 10.1371/journal.pone.0051337 10.1111/j.1365-3083.2006.001752.x 10.1073/pnas.1202870109 10.1016/j.vetmic.2012.05.034 10.4049/jimmunol.176.4.2455 10.1039/b813787k 10.1016/j.vaccine.2014.10.075 10.1073/pnas.220424597 10.1128/AAC.35.6.1153 10.1016/j.vetimm.2017.02.001 10.1002/jlb.64.6.845 10.1016/j.peptides.2011.06.005 10.3389/fimmu.2014.00520 10.1126/science.1251086 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2018 COPYRIGHT 2018 BioMed Central Ltd. Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: The Author(s) 2018 – notice: COPYRIGHT 2018 BioMed Central Ltd. – notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88E 88I 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. M0S M1P M2P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 7S9 L.6 1XC VOOES 5PM DOA |
| DOI | 10.1186/s13567-018-0558-2 |
| DatabaseName | Springer Nature Link CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA PubMed Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Veterinary Medicine |
| EISSN | 1297-9716 |
| EndPage | 68 |
| ExternalDocumentID | oai_doaj_org_article_f82617dbecde46eea4d3451e0006ab3d PMC6066942 oai:HAL:hal-02973509v1 A548345125 30060758 10_1186_s13567_018_0558_2 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: Immuno Valley ALTANT ASIA2 program grant of the Dutch Ministry of Economic Affairs – fundername: ; |
| GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 88I 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABUWG ACGFS ACGOD ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS AZQEC BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EBD EBLON EBS ECGQY EJD EMOBN EYRJQ F5P FRP FYUFA GNUQQ GROUPED_DOAJ H13 HCIFZ HMCUK HYE IAG IAO INH INR ITC KQ8 M1P M2P M41 M48 O5R O5S OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RED RNS ROL RPM RSV SMD SOJ SV3 UKHRP AAYXX AFFHD CITATION -A0 3V. ACRMQ ADINQ ALIPV C24 M~E NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 7S9 L.6 --K 1B1 1XC 2VQ 4.4 AAOTM ABUBZ AHSBF GI~ IHE IPNFZ NQ- RIG RPZ TR2 VOOES 5PM |
| ID | FETCH-LOGICAL-c670t-3efe9c8aedd011c5746a94dd7e7c2a733a11e813e7795cc3848f99c0c33ce92d3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 39 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000440478400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1297-9716 0928-4249 |
| IngestDate | Fri Oct 03 12:41:56 EDT 2025 Tue Nov 04 02:00:54 EST 2025 Tue Oct 14 20:03:28 EDT 2025 Thu Oct 02 11:12:17 EDT 2025 Sun Nov 09 10:00:09 EST 2025 Sun Oct 19 01:28:18 EDT 2025 Tue Nov 11 09:53:59 EST 2025 Tue Nov 04 17:25:41 EST 2025 Wed Feb 19 02:42:45 EST 2025 Tue Nov 18 19:42:09 EST 2025 Sat Nov 29 06:05:07 EST 2025 Sat Sep 06 07:20:50 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Porcine Reproductive And Respiratory Syndrome Virus (PRRSV) Cathelicidin-related Antimicrobial Peptide (CRAMP) Indolicidin Spray-dried Plasma (SDP) Host Defense Peptides (HDPs) |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c670t-3efe9c8aedd011c5746a94dd7e7c2a733a11e813e7795cc3848f99c0c33ce92d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-4931-5201 |
| OpenAccessLink | https://www.proquest.com/docview/2089866589?pq-origsite=%requestingapplication% |
| PMID | 30060758 |
| PQID | 2089866589 |
| PQPubID | 2040250 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f82617dbecde46eea4d3451e0006ab3d pubmedcentral_primary_oai_pubmedcentral_nih_gov_6066942 hal_primary_oai_HAL_hal_02973509v1 proquest_miscellaneous_2131888006 proquest_miscellaneous_2080857547 proquest_journals_2089866589 gale_infotracmisc_A548345125 gale_infotracacademiconefile_A548345125 pubmed_primary_30060758 crossref_citationtrail_10_1186_s13567_018_0558_2 crossref_primary_10_1186_s13567_018_0558_2 springer_journals_10_1186_s13567_018_0558_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-31 |
| PublicationDateYYYYMMDD | 2018-07-31 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-31 day: 31 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Veterinary research (Paris) |
| PublicationTitleAbbrev | Vet Res |
| PublicationTitleAlternate | Vet Res |
| PublicationYear | 2018 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | M Akdis (558_CR11) 2016; 138 J Kovacs-Nolan (558_CR113) 2009; 27 LT Sunkara (558_CR83) 2014; 57 AH Achtman (558_CR118) 2012; 4 A Al-Mamun (558_CR79) 2013; 15 RP Darveau (558_CR117) 1991; 35 OE Sorensen (558_CR63) 2001; 97 A Gronberg (558_CR95) 2014; 22 RL Hassfurther (558_CR16) 2015; 76 D Carlander (558_CR37) 2000; 21 A Calmette (558_CR26) 1896; 2 558_CR2 558_CR3 VK Lishko (558_CR104) 2016; 2016 M Schlee (558_CR87) 2007; 75 A Dijk van (558_CR42) 2009; 46 A Dijk van (558_CR94) 2012; 160 J Kovacs-Nolan (558_CR112) 2009; 27 CJ Hedegaard (558_CR39) 2016; 11 K Chakraborty (558_CR84) 2009; 284 558_CR1 AL Hilchie (558_CR96) 2013; 9 F Nimmerjahn (558_CR22) 2015; 36 JB Schaal (558_CR49) 2012; 7 X Zeng (558_CR74) 2013; 8 R Fisher (558_CR30) 2016 JH Es van (558_CR58) 2005; 7 RI Lehrer (558_CR64) 1989; 84 V Virdi (558_CR34) 2013; 110 A Nijnik (558_CR110) 2010; 184 MD Kraaij (558_CR100) 2017; 90 N Mookherjee (558_CR50) 2006; 176 TA Pham (558_CR13) 2014; 16 H Sherman (558_CR73) 2006; 43 RE Hancock (558_CR41) 2006; 24 DM Weaver (558_CR19) 2000; 14 MJ Alam (558_CR82) 2015; 33 RE Hancock (558_CR97) 2012; 10 MA Keller (558_CR27) 2000; 13 NH Salzman (558_CR70) 2010; 11 CJ Hedegaard (558_CR40) 2017; 186 G Vidarsson (558_CR23) 2014; 5 J Kindrachuk (558_CR114) 2009; 27 S Caro Di (558_CR86) 2005; 37 D Yang (558_CR47) 2000; 192 R Ramos (558_CR106) 2011; 32 NY Yount (558_CR62) 1999; 274 G Marano (558_CR29) 2016; 14 RA Dorschner (558_CR68) 2003; 53 DA O’Neil (558_CR66) 1999; 163 V Petrov (558_CR43) 2013; 140 CSF Bah (558_CR35) 2013; 12 CJ Hedegaard (558_CR18) 2016; 174 X Qiu (558_CR28) 2014; 514 J Rohrl (558_CR48) 2010; 184 M Schwab (558_CR80) 2008; 125 L Bandholtz (558_CR98) 2006; 63 R Nocerino (558_CR89) 2017; 36 J Kleinnijenhuis (558_CR7) 2012; 109 K Moor (558_CR21) 2017; 544 R Raqib (558_CR77) 2006; 103 M Coorens (558_CR51) 2017; 7 RS Rekha (558_CR75) 2015; 11 M Cappelletti (558_CR103) 2015; 144 A Lihme (558_CR38) 2010; 399 T Cuperus (558_CR108) 2016; 6 Y Goto (558_CR14) 2014; 345 T Cuperus (558_CR57) 2016; 61 P Sarker (558_CR78) 2011; 6 M Coorens (558_CR53) 2015; 195 K Chakraborty (558_CR85) 2008; 10 JL Pierce (558_CR33) 2005; 83 DA O’Neil (558_CR60) 2003; 40 AS Ferreira (558_CR31) 2009; 1 N Mookherjee (558_CR44) 2009; 5 DC Speksnijder (558_CR4) 2015; 62 U Gerstel (558_CR67) 2009; 11 RJ Arts (558_CR8) 2015; 98 P Presicce (558_CR102) 2009; 86 D Torrallardona (558_CR32) 2010; 23 A Kalita (558_CR116) 2004; 190 S Saeed (558_CR9) 2014; 345 CD Fjell (558_CR93) 2011; 11 MG Netea (558_CR5) 2016; 352 DJ Davidson (558_CR99) 2004; 172 J Schauber (558_CR71) 2003; 52 S Godden (558_CR20) 2008; 24 E Miraglia (558_CR81) 2016; 6 W Jiang (558_CR72) 2013; 50 RL Gallo (558_CR65) 2012; 12 L Kannan (558_CR56) 2009; 88 MM Rahman (558_CR15) 2012; 30 H Liu (558_CR52) 2013; 97 MA Hamon (558_CR10) 2016; 28 DM Bowdish (558_CR45) 2004; 172 P Fehlbaum (558_CR90) 2000; 97 E Tourneur (558_CR69) 2013; 2013 BA Blok (558_CR6) 2015; 98 M Ren (558_CR91) 2016; 64 AM Does van der (558_CR101) 2010; 185 WL Hurley (558_CR17) 2011; 3 BS Graham (558_CR25) 2015; 10 D Yang (558_CR46) 1999; 286 K Putsep (558_CR59) 2000; 275 RE Hancock (558_CR55) 2016; 16 L Steinstraesser (558_CR105) 2008; 14 VA Schneider (558_CR109) 2016; 60 C Subbalakshmi (558_CR92) 1998; 160 SH Kim (558_CR115) 2015; 45 M Schlee (558_CR88) 2008; 151 B Rivas-Santiago (558_CR111) 2013; 8 M Ohno (558_CR12) 2012; 746 I Nagaoka (558_CR61) 1998; 64 L Zhang (558_CR76) 2016; 11 TJ Newby (558_CR24) 1976; 5 P Tewary (558_CR54) 2013; 191 JD Heilborn (558_CR107) 2003; 120 J Kovacs-Nolan (558_CR36) 2012; 3 |
| References_xml | – volume: 103 start-page: 9178 year: 2006 ident: 558_CR77 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0602888103 – volume: 185 start-page: 1442 year: 2010 ident: 558_CR101 publication-title: J Immunol doi: 10.4049/jimmunol.1000376 – volume: 399 start-page: 102 year: 2010 ident: 558_CR38 publication-title: Anal Biochem doi: 10.1016/j.ab.2009.12.002 – volume: 27 start-page: 4662 year: 2009 ident: 558_CR114 publication-title: Vaccine doi: 10.1016/j.vaccine.2009.05.094 – volume: 45 start-page: 1402 year: 2015 ident: 558_CR115 publication-title: Eur J Immunol doi: 10.1002/eji.201444988 – volume: 15 start-page: 939 year: 2013 ident: 558_CR79 publication-title: Microbes Infect doi: 10.1016/j.micinf.2013.08.007 – volume: 352 start-page: aaf1098 year: 2016 ident: 558_CR5 publication-title: Science doi: 10.1126/science.aaf1098 – volume: 284 start-page: 21810 year: 2009 ident: 558_CR84 publication-title: J Biol Chem doi: 10.1074/jbc.M109.001180 – volume: 144 start-page: 661 year: 2015 ident: 558_CR103 publication-title: Immunology doi: 10.1111/imm.12418 – volume: 36 start-page: 325 year: 2015 ident: 558_CR22 publication-title: Trends Immunol doi: 10.1016/j.it.2015.04.005 – volume: 110 start-page: 11809 year: 2013 ident: 558_CR34 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1301975110 – volume: 36 start-page: 118 year: 2017 ident: 558_CR89 publication-title: Clin Nutr doi: 10.1016/j.clnu.2015.12.004 – volume: 9 start-page: 761 year: 2013 ident: 558_CR96 publication-title: Nat Chem Biol doi: 10.1038/nchembio.1393 – volume: 160 start-page: 91 year: 1998 ident: 558_CR92 publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.1998.tb12896.x – volume: 21 start-page: 1 year: 2000 ident: 558_CR37 publication-title: Immunol Res doi: 10.1385/IR:21:1:1 – volume: 3 start-page: 442 year: 2011 ident: 558_CR17 publication-title: Nutrients doi: 10.3390/nu3040442 – volume: 195 start-page: 3970 year: 2015 ident: 558_CR53 publication-title: J Immunol doi: 10.4049/jimmunol.1501242 – volume: 7 start-page: 40874 year: 2017 ident: 558_CR51 publication-title: Sci Rep doi: 10.1038/srep40874 – volume: 90 start-page: 118 year: 2017 ident: 558_CR100 publication-title: Mol Immunol doi: 10.1016/j.molimm.2017.07.005 – volume: 172 start-page: 3758 year: 2004 ident: 558_CR45 publication-title: J Immunol doi: 10.4049/jimmunol.172.6.3758 – volume: 192 start-page: 1069 year: 2000 ident: 558_CR47 publication-title: J Exp Med doi: 10.1084/jem.192.7.1069 – volume: 24 start-page: 19 year: 2008 ident: 558_CR20 publication-title: Vet Clin North Am Food Anim Pract doi: 10.1016/j.cvfa.2007.10.005 – volume: 2013 start-page: 270301 year: 2013 ident: 558_CR69 publication-title: Clin Dev Immunol doi: 10.1155/2013/270301 – volume: 7 start-page: 381 year: 2005 ident: 558_CR58 publication-title: Nat Cell Biol doi: 10.1038/ncb1240 – volume: 10 start-page: 129 year: 2015 ident: 558_CR25 publication-title: Curr Opin HIV AIDS doi: 10.1097/COH.0000000000000154 – volume: 11 start-page: e0154546 year: 2016 ident: 558_CR76 publication-title: PLoS One doi: 10.1371/journal.pone.0154546 – volume: 16 start-page: 321 year: 2016 ident: 558_CR55 publication-title: Nat Rev Immunol doi: 10.1038/nri.2016.29 – ident: 558_CR3 – volume: 12 start-page: 314 year: 2013 ident: 558_CR35 publication-title: Compr Rev Food Sci Food Saf doi: 10.1111/1541-4337.12013 – volume: 53 start-page: 566 year: 2003 ident: 558_CR68 publication-title: Pediatr Res doi: 10.1203/01.PDR.0000057205.64451.B7 – volume: 50 start-page: 129 year: 2013 ident: 558_CR72 publication-title: Peptides doi: 10.1016/j.peptides.2013.10.008 – volume: 286 start-page: 525 year: 1999 ident: 558_CR46 publication-title: Science doi: 10.1126/science.286.5439.525 – volume: 22 start-page: 613 year: 2014 ident: 558_CR95 publication-title: Wound Repair Regen doi: 10.1111/wrr.12211 – volume-title: Emerging infections, Chapter 3 year: 2016 ident: 558_CR30 – volume: 98 start-page: 129 year: 2015 ident: 558_CR8 publication-title: J Leukoc Biol doi: 10.1189/jlb.6AB0914-416R – volume: 11 start-page: 76 year: 2010 ident: 558_CR70 publication-title: Nat Immunol doi: 10.1038/ni.1825 – volume: 14 start-page: 528 year: 2008 ident: 558_CR105 publication-title: Mol Med doi: 10.2119/2008-00002.Steinstraesser – volume: 46 start-page: 1517 year: 2009 ident: 558_CR42 publication-title: Mol Immunol doi: 10.1016/j.molimm.2008.12.015 – volume: 163 start-page: 6718 year: 1999 ident: 558_CR66 publication-title: J Immunol doi: 10.4049/jimmunol.163.12.6718 – volume: 151 start-page: 528 year: 2008 ident: 558_CR88 publication-title: Clin Exp Immunol doi: 10.1111/j.1365-2249.2007.03587.x – volume: 61 start-page: 48 year: 2016 ident: 558_CR57 publication-title: Dev Comp Immunol doi: 10.1016/j.dci.2016.03.008 – volume: 120 start-page: 379 year: 2003 ident: 558_CR107 publication-title: J Invest Dermatol doi: 10.1046/j.1523-1747.2003.12069.x – volume: 62 start-page: 79 issue: Suppl 1 year: 2015 ident: 558_CR4 publication-title: Zoonoses Public Health doi: 10.1111/zph.12167 – volume: 16 start-page: 504 year: 2014 ident: 558_CR13 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.08.017 – volume: 184 start-page: 2539 year: 2010 ident: 558_CR110 publication-title: J Immunol doi: 10.4049/jimmunol.0901813 – volume: 8 start-page: e59119 year: 2013 ident: 558_CR111 publication-title: PLoS One doi: 10.1371/journal.pone.0059119 – volume: 24 start-page: 1551 year: 2006 ident: 558_CR41 publication-title: Nat Biotechnol doi: 10.1038/nbt1267 – volume: 14 start-page: 569 year: 2000 ident: 558_CR19 publication-title: J Vet Intern Med doi: 10.1111/j.1939-1676.2000.tb02278.x – volume: 275 start-page: 40478 year: 2000 ident: 558_CR59 publication-title: J Biol Chem doi: 10.1074/jbc.M007816200 – volume: 57 start-page: 171 year: 2014 ident: 558_CR83 publication-title: Mol Immunol doi: 10.1016/j.molimm.2013.09.003 – volume: 14 start-page: 152 year: 2016 ident: 558_CR29 publication-title: Blood Transfus – volume: 97 start-page: 3951 year: 2001 ident: 558_CR63 publication-title: Blood doi: 10.1182/blood.V97.12.3951 – volume: 12 start-page: 503 year: 2012 ident: 558_CR65 publication-title: Nat Rev Immunol doi: 10.1038/nri3228 – volume: 2016 start-page: 39 year: 2016 ident: 558_CR104 publication-title: Res Rep Biochem – volume: 125 start-page: 241 year: 2008 ident: 558_CR80 publication-title: Immunology doi: 10.1111/j.1365-2567.2008.02834.x – volume: 8 start-page: e72922 year: 2013 ident: 558_CR74 publication-title: PLoS One doi: 10.1371/journal.pone.0072922 – volume: 544 start-page: 498 year: 2017 ident: 558_CR21 publication-title: Nature doi: 10.1038/nature22058 – volume: 514 start-page: 47 year: 2014 ident: 558_CR28 publication-title: Nature doi: 10.1038/nature13777 – volume: 6 start-page: 26622 year: 2016 ident: 558_CR108 publication-title: Sci Rep doi: 10.1038/srep26622 – volume: 184 start-page: 6688 year: 2010 ident: 558_CR48 publication-title: J Immunol doi: 10.4049/jimmunol.0903984 – volume: 746 start-page: 86 year: 2012 ident: 558_CR12 publication-title: Adv Exp Med Biol doi: 10.1007/978-1-4614-3146-6_7 – volume: 10 start-page: 243 year: 2012 ident: 558_CR97 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2745 – volume: 2 start-page: 399 year: 1896 ident: 558_CR26 publication-title: Br Med J doi: 10.1136/bmj.2.1859.399 – volume: 40 start-page: 445 year: 2003 ident: 558_CR60 publication-title: Mol Immunol doi: 10.1016/S0161-5890(03)00161-5 – volume: 60 start-page: 108 year: 2016 ident: 558_CR109 publication-title: Dev Comp Immunol doi: 10.1016/j.dci.2016.02.023 – volume: 84 start-page: 553 year: 1989 ident: 558_CR64 publication-title: J Clin Invest doi: 10.1172/JCI114198 – volume: 140 start-page: 413 year: 2013 ident: 558_CR43 publication-title: Immunology doi: 10.1111/imm.12148 – volume: 191 start-page: 865 year: 2013 ident: 558_CR54 publication-title: J Immunol doi: 10.4049/jimmunol.1201648 – volume: 27 start-page: 2048 year: 2009 ident: 558_CR113 publication-title: Vaccine doi: 10.1016/j.vaccine.2009.01.117 – volume: 11 start-page: 842 year: 2009 ident: 558_CR67 publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2009.01299.x – ident: 558_CR2 – volume: 11 start-page: e0147373 year: 2016 ident: 558_CR39 publication-title: PLoS One doi: 10.1371/journal.pone.0147373 – volume: 75 start-page: 2399 year: 2007 ident: 558_CR87 publication-title: Infect Immun doi: 10.1128/IAI.01563-06 – volume: 11 start-page: 37 year: 2011 ident: 558_CR93 publication-title: Nat Rev Drug Discov doi: 10.1038/nrd3591 – volume: 190 start-page: 1476 year: 2004 ident: 558_CR116 publication-title: J Infect Dis doi: 10.1086/424463 – volume: 345 start-page: 1254009 year: 2014 ident: 558_CR14 publication-title: Science doi: 10.1126/science.1254009 – volume: 37 start-page: 320 year: 2005 ident: 558_CR86 publication-title: Dig Liver Dis doi: 10.1016/j.dld.2004.12.008 – volume: 4 start-page: 135ra164 year: 2012 ident: 558_CR118 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3003515 – volume: 43 start-page: 1617 year: 2006 ident: 558_CR73 publication-title: Mol Immunol doi: 10.1016/j.molimm.2005.09.013 – volume: 23 start-page: 131 year: 2010 ident: 558_CR32 publication-title: Asian-Austr J Anim Sci doi: 10.5713/ajas.2010.70630 – volume: 83 start-page: 2876 year: 2005 ident: 558_CR33 publication-title: J Anim Sci doi: 10.2527/2005.83122876x – volume: 88 start-page: 372 year: 2009 ident: 558_CR56 publication-title: Poult Sci doi: 10.3382/ps.2008-00366 – volume: 30 start-page: 7165 year: 2012 ident: 558_CR15 publication-title: Vaccine doi: 10.1016/j.vaccine.2012.10.011 – volume: 97 start-page: 3395 year: 2013 ident: 558_CR52 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-012-4588-9 – volume: 64 start-page: 3371 year: 2016 ident: 558_CR91 publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.6b00968 – volume: 76 start-page: 231 year: 2015 ident: 558_CR16 publication-title: Am J Vet Res doi: 10.2460/ajvr.76.3.231 – volume: 52 start-page: 735 year: 2003 ident: 558_CR71 publication-title: Gut doi: 10.1136/gut.52.5.735 – volume: 11 start-page: 1688 year: 2015 ident: 558_CR75 publication-title: Autophagy doi: 10.1080/15548627.2015.1075110 – volume: 1 start-page: 231 year: 2009 ident: 558_CR31 publication-title: Recent Pat Food Nutr Agric doi: 10.2174/2212798410901030231 – volume: 27 start-page: 2055 year: 2009 ident: 558_CR112 publication-title: Vaccine doi: 10.1016/j.vaccine.2009.01.118 – volume: 10 start-page: 2520 year: 2008 ident: 558_CR85 publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2008.01227.x – volume: 172 start-page: 1146 year: 2004 ident: 558_CR99 publication-title: J Immunol doi: 10.4049/jimmunol.172.2.1146 – volume: 86 start-page: 941 year: 2009 ident: 558_CR102 publication-title: J Leukoc Biol doi: 10.1189/jlb.0708412 – volume: 98 start-page: 347 year: 2015 ident: 558_CR6 publication-title: J Leukoc Biol doi: 10.1189/jlb.5RI0315-096R – volume: 5 start-page: 631 year: 1976 ident: 558_CR24 publication-title: Immunol Commun doi: 10.3109/08820137609033871 – volume: 3 start-page: 163 year: 2012 ident: 558_CR36 publication-title: Annu Rev Food Sci Technol doi: 10.1146/annurev-food-022811-101137 – volume: 28 start-page: 351 year: 2016 ident: 558_CR10 publication-title: Semin Immunol doi: 10.1016/j.smim.2016.05.003 – volume: 6 start-page: 33274 year: 2016 ident: 558_CR81 publication-title: Sci Rep doi: 10.1038/srep33274 – volume: 138 start-page: 984 year: 2016 ident: 558_CR11 publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2016.06.033 – volume: 13 start-page: 602 year: 2000 ident: 558_CR27 publication-title: Clin Microbiol Rev doi: 10.1128/CMR.13.4.602-614.2000 – volume: 6 start-page: e20637 year: 2011 ident: 558_CR78 publication-title: PLoS One doi: 10.1371/journal.pone.0020637 – volume: 274 start-page: 26249 year: 1999 ident: 558_CR62 publication-title: J Biol Chem doi: 10.1074/jbc.274.37.26249 – volume: 174 start-page: 50 year: 2016 ident: 558_CR18 publication-title: Vet Immunol Immunopathol doi: 10.1016/j.vetimm.2016.04.007 – volume: 7 start-page: e51337 year: 2012 ident: 558_CR49 publication-title: PLoS One doi: 10.1371/journal.pone.0051337 – volume: 63 start-page: 410 year: 2006 ident: 558_CR98 publication-title: Scand J Immunol doi: 10.1111/j.1365-3083.2006.001752.x – volume: 109 start-page: 17537 year: 2012 ident: 558_CR7 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1202870109 – volume: 160 start-page: 347 year: 2012 ident: 558_CR94 publication-title: Vet Microbiol doi: 10.1016/j.vetmic.2012.05.034 – volume: 176 start-page: 2455 year: 2006 ident: 558_CR50 publication-title: J Immunol doi: 10.4049/jimmunol.176.4.2455 – volume: 5 start-page: 483 year: 2009 ident: 558_CR44 publication-title: Mol BioSyst doi: 10.1039/b813787k – volume: 33 start-page: 18 year: 2015 ident: 558_CR82 publication-title: Vaccine doi: 10.1016/j.vaccine.2014.10.075 – volume: 97 start-page: 12723 year: 2000 ident: 558_CR90 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.220424597 – volume: 35 start-page: 1153 year: 1991 ident: 558_CR117 publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.35.6.1153 – volume: 186 start-page: 9 year: 2017 ident: 558_CR40 publication-title: Vet Immunol Immunopathol doi: 10.1016/j.vetimm.2017.02.001 – volume: 64 start-page: 845 year: 1998 ident: 558_CR61 publication-title: J Leukoc Biol doi: 10.1002/jlb.64.6.845 – volume: 32 start-page: 1469 year: 2011 ident: 558_CR106 publication-title: Peptides doi: 10.1016/j.peptides.2011.06.005 – volume: 5 start-page: 520 year: 2014 ident: 558_CR23 publication-title: Front Immunol doi: 10.3389/fimmu.2014.00520 – volume: 345 start-page: 1251086 year: 2014 ident: 558_CR9 publication-title: Science doi: 10.1126/science.1251086 – ident: 558_CR1 |
| RelatedPersons | Yang, Cindy |
| RelatedPersons_xml | – fullname: Yang, Cindy |
| SSID | ssj0016354 |
| Score | 2.421551 |
| SecondaryResourceType | review_article |
| Snippet | Innate defense mechanisms are aimed at quickly containing and removing infectious microorganisms and involve local stromal and immune cell activation,... [...]the potential of host defense peptides with different modes of action, used directly, induced in situ or used as vaccine adjuvants is described. 1... AbstractInnate defense mechanisms are aimed at quickly containing and removing infectious microorganisms and involve local stromal and immune cell activation,... Abstract Innate defense mechanisms are aimed at quickly containing and removing infectious microorganisms and involve local stromal and immune cell activation,... |
| SourceID | doaj pubmedcentral hal proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 68 |
| SubjectTerms | 2nd International Symposium on Alternatives to Antibiotics acute phase proteins adaptive immunity animal production Antibiotic growth promoters Antibiotics Antimicrobial agents Bacterial infections Breeding of animals cathelicidins Chemokines complement Defense mechanisms Health aspects Immune response Immune system Immunoglobulins Immunology Infections Infectious diseases innate immunity Life Sciences mechanism of action Medicine Medicine & Public Health Microbiology microorganisms neonates Neutrophils Peptides Review Rodents vaccine adjuvants veterinary medicine Veterinary Medicine/Veterinary Science Virology Yang, Cindy |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4sAF0fIKtMggJF6KGsdObB-XR7WHUvUAVW-W13bUSCVZbbIVP58ZJ7sQKsqFY-KxM8mMxzPxzGdCXhV54Zh0OtVZpVLBg0i15Q4cOcWC5SHYWF9xdixPTtT5uT797agvzAkb4IGHD3dYKcQM9_AoH0SJfT0XBQtoZ-2Ce7S-4PVsgqlx_wCWUTHuYTJVHnaMFyWmWKo0KwpQjckqFMH6tyb59gVmRF53N69nTf6xdRpXpKP75N7oStLZ8Aq75FZo9sjeGea3xCJb-mXcN39AfoA20GXbY2oQdAFHldZYGNIiHgjmonfUNp5ixQf1oYLQFsgx38WHjr6Zfzrt3tK-pSvEeQ0UfEa6Boq2gl5Yc9Ii1jOtG7isv8P4ywFGFkT-kHw7-vz14zwdz1xIXSmzPuXwDO2UDd7DzHeFFKXVwnsZpMut5NwyFhTjQUpdOMeVUJXWLnOcu6Bzzx-RnaZtwhNCYfHPtcJol1lw2rwV4PosWAhuAWbEy4RkGxkYNwKS47kYlyYGJqo0g9gMiM2g2EyekHfbLssBjeMm4g8o2C0hAmnHG6BeZlQv8y_1SshrVAuD0x2Yc3asWoBXROAsMyvwbyx4TUVC9ieUME3dpPklKNaEmfns2OC9eH4YOG5XDMbY6J0ZbUlnQL01ohIqnZAX22YcHvPjmtCuI008a1XIG2gY2G8w11mZkMeDKm_Z4YjLA6FjQuREySf8Tlua-iKikWMErAV87feb6fCL9b_K5un_kM0zcjePUxr_tO-TnX61Dgfkjrvq6271PBqEn_ncY4k priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerLink Contemporary (1997 - Present) dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYQIgXPspXYCCDkIChiDh2YvuxfEx9GNPER7U3y7VdVgmSqmkn_nzu3CQoDCbBY-yzc7Hvzuf47mdCnhV54Zh0OtXZXKWCB5Fqyx04cooFy0OwMb9ieiiPjtTJiT5u87ibLtq9O5KMljqqtSpfN4wXJYZJqjQrCpjeHXIZVjuF2vjx07Q_OoAVVLTHl39sNliAIk5_b413TjEY8ryneT5g8rdT07gYHdz4r8-4Sa63vicdb4XlFrkUqhG5-qE9XR-R0RRjY2KCLu1Kb5MfIEl0Wa8xrAhag5NLF5hUUiOWCMaxN9RWnmK2CPVhDttiIMdYGR8a-mLy7rh5Sdc1XSFGbKDgb9INUNRzaIX5KjXiRNNFBY-L79D_cgtBC-Jyh3w5eP_57SRt72tIXSmzdcrhHdopG7wHq-EKKUqrhfcySJdbybllLCjGg5S6cI4roeZau8xx7oLOPb9Ldqu6CvcJBcchh6kFa8MsOHzeCnCbZiwENwMT5GVCsm4SjWvBzPFOjW8mbmpUabbjbGCcDY6zyROy3zdZbpE8LiJ-g5LREyIIdyyoV19Nq9NmrhDO3oMW-CBKFGvPRcECugB2xn1CnqNcGTQVwJyzbcYDfCKCbplxgX9yweMqErI3oAQVd4PqpyCZA2Ym40ODZfHuMVCDMwZ9dIJrWjvUmDxTGhENlU7Ik74au8fYuirUm0gT72kV8gIaBrYfTH1WJuTeVhd6djhi-sC2MyFyoCUDfoc11eI0Ipnj7lkLGO1Xna78Yv2vc_Pgn6gfkmt5VDb8Hb9HdterTXhErriz9aJZPY6m4yesXmlU priority: 102 providerName: Springer Nature |
| Title | The potential for immunoglobulins and host defense peptides (HDPs) to reduce the use of antibiotics in animal production |
| URI | https://link.springer.com/article/10.1186/s13567-018-0558-2 https://www.ncbi.nlm.nih.gov/pubmed/30060758 https://www.proquest.com/docview/2089866589 https://www.proquest.com/docview/2080857547 https://www.proquest.com/docview/2131888006 https://hal.science/hal-02973509 https://pubmed.ncbi.nlm.nih.gov/PMC6066942 https://doaj.org/article/f82617dbecde46eea4d3451e0006ab3d |
| Volume | 49 |
| WOSCitedRecordID | wos000440478400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1297-9716 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016354 issn: 1297-9716 databaseCode: RBZ dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1297-9716 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016354 issn: 1297-9716 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1297-9716 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016354 issn: 1297-9716 databaseCode: 7X7 dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1297-9716 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016354 issn: 1297-9716 databaseCode: BENPR dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1297-9716 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016354 issn: 1297-9716 databaseCode: PIMPY dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1297-9716 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016354 issn: 1297-9716 databaseCode: M2P dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1297-9716 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016354 issn: 1297-9716 databaseCode: RSV dateStart: 20111201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYxwMvfIyvwKgMQuJLEUmcxPYT6mBTkdaqGlB1T1Zqu6wSJKVpJ_587lw3U5joCy-REp9du747353PPxPyMksyHXMtQxnNRJgym4ayYBoMORHbgllbuPMV41M-HIrJRI58wK32aZVbnegUtak0xsjBSRcSsdmE_LD4FeKtUbi76q_Q2CP7iFSWdsj-0fFwdNbsI8By6gCkJMaQwNPw-5qxyN_XMctyTLsUYZRlwC6tlckB-Ddqeu8CsySvm6DXMyn_2k51q9TJnf8d311y29untLdhqHvkhi0PyMEYk2bcyV068Jvx98lvYDG6qFaYbwRVwPqlczxtUiHICCa417QoDcVjJNTYGfjLQI5JNMbW9HX_06h-Q1cVXSJ4rKVgiNI1UFQzqIUHWSoEkKbzEl7nP6H9xQabFvjoAfl2cvz1Yz_0FzmEOufRKmTwG1KLwhoD6kRnPM0LmRrDLddJwRkr4tiKmFnOZaY1E6mYSakjzZi2MjHsIemUVWkfEwoWRSIFutBxAZagKVKwp6axtXoKusnwgETbSVTao5zjZRs_lPN2RK42865g3hXOu0oC8rapsthAfOwiPkLOaAgRndt9qJbflRd2NROIc29APIxNc-R3w9IstmgbFFNmAvIK-UqhDoHO6cIfhYAhIhqX6mUY4gVTLAvIYYsSZF-3il8AZ7Y60--dKvzmLiUDa_Ayhja2HKe8gqrVFbsF5HlTjM1j0l1pq7WjcRe4pnwHTQyLAqwBUR6QRxtZaLrDEOwH_NGA8JaUtPrbLinnFw7iHN1qmcK__W4rT1dd_-fcPNk90KfkVuKkHQPzh6SzWq7tM3JTX67m9bJL9viEu6foei3SdQEaeA6SEXwbfR6MzuHt7Mv4DxAdenI |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbaggQXHuUVKGAQiJcikjiJ7QNCC6XaqttVD221N5O1vXQlSJbNboE_xW9kxnlUoWJvPXBMPLYcZ2b8jT0PQp4lUaJDrqUvg4nwY2ZjX2ZMA5AToc2YtZmLrzge8OFQjEbyYI38bmJh0K2y0YlOUZtC4xk5GOlCYm42Id_PvvtYNQpvV5sSGhVb7NlfP8BkK9_tbsP_fR5FO58OP_b9uqqAr1MeLHxmJ1ZqkVljgLd1wuM0k7Ex3HIdZZyxLAytCJnlXCZaMxGLiZQ60IxpKyPDYNx1cgn0OEcXMj5qDTyANq7qWiDxxArsmvoWNRTp2zJkSYpOnsIPkgSYs7MPunIB7aawfoI-mecB73m_zb8ub92euHP9f1vNG-Rajb5prxKXm2TN5ptk8xhdglxcMt2vXQ1ukZ8gQHRWLNCbCroAtqdTjKUpMIUKuu-XNMsNxSAZamB6eQnk6CJkbElf9rcPyld0UdA5psa1FGA2XQJFMYFeGKZTYHpsOs3hcfoNxp9VmXdBSm6TowtZgjtkIy9ye49QwEuRFHhAEGaAc00WA1och9bqMWhewz0SNEyjdJ3DHUuJfFXOlhOpqvhMAZ8p5DMVeeR122VWJTBZRfwBObElxNzj7kUx_6JqVaYmArP4GxB-Y-MUpdmwOAktIp9szIxHXiAfK9SQMDmd1YEe8ImYa0z1EjzABqCZeGSrQwmaTXean4IkdCbT7w0UvnMl1wDrnoYwRsPhqla_pTpjb488aZtxeHQpzG2xdDSuPG3MV9CEsOXBDhekHrlbyV47HYapjMDa9gjvSGVnvt2WfHriErjjoYGMYbXfNPJ7NvV__pv7qz_0MbnSP9wfqMHucO8BuRo5TYNXEFtkYzFf2ofksj5dTMv5I6ezKPl80WL9ByXF0I8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYQBMvfJSvwACDkPhStCR2EvuxMKoiSlUJqPZmubbDKkFSNe3En8-dkwaFwSTEY-yz49h357v47mdCnqVJauLcyFBGhQg5czyUmhkw5ETsNHNO-_yK-SSfTsXJiZy195zWu2j33ZFkk9OAKE3l5mhli0bERXZUxyzNMGRShFGawlLvkcsc7wxCd_3TvDtGgN2Ut0eZf2zW24w8Zn-nmfdOMTDyvNV5PnjytxNUvzGNrv_3J90g11qblA4bJrpJLrlyQA4-tqfuAzKYY8yMT9ylu9Jb5AdwGF1V-ArgYQrGL11iskmFGCMY315TXVqKWSTUugLcZSDHGBrravpifDyrX9JNRdeIHeso2KF0CxRVAa0wj6VC_Gi6LOFx-R36XzXQtMBGt8mX0bvPb8dhe49DaLI82oQM3iGN0M5a0CYmzXmmJbc2d7lJdM6YjmMnYubyXKbGMMFFIaWJDGPGycSyO2S_rEp3j1AwKBIp0IOONRiCVnMwpxaxc2YBqsnmAYl2C6pMC3KOd218U97ZEZlq5lnBPCucZ5UE5FXXZNUgfFxE_Aa5pCNEcG5fUK2_qlbWVSEQ5t6CdFjHM2R3y3gaOzQN9ILZgDxHHlOoQmBwRreZEPCJCMalhin-4QVLLA3IYY8SRN_0qp8Cl_YGMx5OFJb5O8nAGDyLoY8dE6tWP9UqiYREpEMhA_Kkq8buMeaudNXW0_j7W3l-AU0MewJsAVEWkLuNXHTDYYj1A-5oQPKexPTG268pl6ce4Ry9aslhtl_v5ObX0P-6Nvf_ifoxOZgdj9Tk_fTDA3I18XKHf-wPyf5mvXUPyRVztlnW60deo_wEY3Z1HA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+potential+for+immunoglobulins+and+host+defense+peptides+%28HDPs%29+to+reduce+the+use+of+antibiotics+in+animal+production&rft.jtitle=Veterinary+research+%28Paris%29&rft.au=van+Dijk%2C+Albert&rft.au=Hedegaard%2C+Chris+J.&rft.au=Haagsman%2C+Henk+P.&rft.au=Heegaard%2C+Peter+M.+H.&rft.date=2018-07-31&rft.issn=1297-9716&rft.eissn=1297-9716&rft.volume=49&rft.issue=1&rft_id=info:doi/10.1186%2Fs13567-018-0558-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13567_018_0558_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1297-9716&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1297-9716&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1297-9716&client=summon |