Mitochondrial DNA as a marker of molecular diversity: a reappraisal
Over the last three decades, mitochondrial DNA has been the most popular marker of molecular diversity, for a combination of technical ease-of-use considerations, and supposed biological and evolutionary properties of clonality, near-neutrality and clock-like nature of its substitution rate. Reviewi...
Uloženo v:
| Vydáno v: | Molecular ecology Ročník 18; číslo 22; s. 4541 - 4550 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.11.2009
Blackwell Publishing Ltd |
| Témata: | |
| ISSN: | 0962-1083, 1365-294X, 1365-294X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Over the last three decades, mitochondrial DNA has been the most popular marker of molecular diversity, for a combination of technical ease-of-use considerations, and supposed biological and evolutionary properties of clonality, near-neutrality and clock-like nature of its substitution rate. Reviewing recent literature on the subject, we argue that mitochondrial DNA is not always clonal, far from neutrally evolving and certainly not clock-like, questioning its relevance as a witness of recent species and population history. We critically evaluate the usage of mitochondrial DNA for species delineation and identification. Finally, we note the great potential of accumulating mtDNA data for evolutionary and functional analysis of the mitochondrial genome. |
|---|---|
| AbstractList | Over the last three decades, mitochondrial DNA has been the most popular marker of molecular diversity, for a combination of technical ease‐of‐use considerations, and supposed biological and evolutionary properties of clonality, near‐neutrality and clock‐like nature of its substitution rate. Reviewing recent literature on the subject, we argue that mitochondrial DNA is not always clonal, far from neutrally evolving and certainly not clock‐like, questioning its relevance as a witness of recent species and population history. We critically evaluate the usage of mitochondrial DNA for species delineation and identification. Finally, we note the great potential of accumulating mtDNA data for evolutionary and functional analysis of the mitochondrial genome. Over the last three decades, mitochondrial DNA has been the most popular marker of molecular diversity, for a combination of technical ease-of-use considerations, and supposed biological and evolutionary properties of clonality, near-neutrality and clock-like nature of its substitution rate. Reviewing recent literature on the subject, we argue that mitochondrial DNA is not always clonal, far from neutrally evolving and certainly not clock-like, questioning its relevance as a witness of recent species and population history. We critically evaluate the usage of mitochondrial DNA for species delineation and identification. Finally, we note the great potential of accumulating mtDNA data for evolutionary and functional analysis of the mitochondrial genome. [PUBLICATION ABSTRACT] Over the last three decades, mitochondrial DNA has been the most popular marker of molecular diversity, for a combination of technical ease-of-use considerations, and supposed biological and evolutionary properties of clonality, near-neutrality and clock-like nature of its substitution rate. Reviewing recent literature on the subject, we argue that mitochondrial DNA is not always clonal, far from neutrally evolving and certainly not clock-like, questioning its relevance as a witness of recent species and population history. We critically evaluate the usage of mitochondrial DNA for species delineation and identification. Finally, we note the great potential of accumulating mtDNA data for evolutionary and functional analysis of the mitochondrial genome.Over the last three decades, mitochondrial DNA has been the most popular marker of molecular diversity, for a combination of technical ease-of-use considerations, and supposed biological and evolutionary properties of clonality, near-neutrality and clock-like nature of its substitution rate. Reviewing recent literature on the subject, we argue that mitochondrial DNA is not always clonal, far from neutrally evolving and certainly not clock-like, questioning its relevance as a witness of recent species and population history. We critically evaluate the usage of mitochondrial DNA for species delineation and identification. Finally, we note the great potential of accumulating mtDNA data for evolutionary and functional analysis of the mitochondrial genome. |
| Author | GLÉMIN, S. HURST, G. D. D. GALTIER, N. NABHOLZ, B. |
| Author_xml | – sequence: 1 fullname: Galtier, N – sequence: 2 fullname: Nabholz, B – sequence: 3 fullname: Glemin, S – sequence: 4 fullname: Hurst, G.D.D |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19821901$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-142175$$DView record from Swedish Publication Index (Uppsala universitet) |
| BookMark | eNqNkl1v0zAUhi00xLrCX4CIG7ggxcfOl5FA6tqxIm1DCAbcHTmJPVzSuLMT1v57XDJ6sQuGb2zJz3s-3yNy0NpWERIBnUA4r5cT4FkaM5F8nzBKxYQmvKCTzQMy2n8ckBEVGYuBFvyQHHm_pBQ4S9NH5BBEwUBQGJHZuels9cO2tTOyieYX00j6SEYr6X4qF1kdrWyjqr6RLqrNL-W86bZvAuCUXK-dNF42j8lDLRuvntzeY3L5_uTLbBGffTz9MJuexVWWUxqXqta1VEVWc5noWiVQJ1XOSqVTKnjCmRJS5JkEXWugJYVES6YrKnMmMygLPiavhrj-Rq37EtfOhDK3aKXBufk6ReuusO8REgZ5GvAXA7529rpXvsOV8ZVqGtkq23vMecJ4SAiBfPlPEoCLNM8SoAF9fgdd2t61oW1kQHMKRZbfDyUh85g8vYX6cqXqfTd_dxOAdwNQOeu9Uxor08nO2LYLc28QKO7MgEvc7Rx3O8edGfCPGXATAhR3Auxz3C99O0hvTKO2_63D85PZ7hX08aA3vlObvT6YCsN88hS_XZxiKhbHi_mnHGeBfzbwWlqUV854vPzMwhAoZCJLgfHfKMThsg |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0245138 crossref_primary_10_1007_s10750_022_04840_w crossref_primary_10_3109_19401736_2015_1118085 crossref_primary_10_1111_j_1558_5646_2012_01657_x crossref_primary_10_3109_19401736_2015_1126827 crossref_primary_10_1093_jhered_esr090 crossref_primary_10_1038_srep24875 crossref_primary_10_1007_s00227_021_03970_4 crossref_primary_10_1007_s13127_015_0217_7 crossref_primary_10_1016_j_mito_2011_06_012 crossref_primary_10_1007_s11033_023_08272_0 crossref_primary_10_1371_journal_pone_0122407 crossref_primary_10_1002_ece3_434 crossref_primary_10_1080_23802359_2020_1842262 crossref_primary_10_1093_zoolinnean_zlae110 crossref_primary_10_1002_ece3_1366 crossref_primary_10_1007_s00294_016_0572_8 crossref_primary_10_7717_peerj_19952 crossref_primary_10_1007_s10530_016_1134_1 crossref_primary_10_3390_life15010052 crossref_primary_10_1016_j_ympev_2013_09_019 crossref_primary_10_1111_1744_7917_12798 crossref_primary_10_3109_19401736_2012_690747 crossref_primary_10_3390_genes14051018 crossref_primary_10_3109_19401736_2010_532212 crossref_primary_10_1002_ece3_4516 crossref_primary_10_1016_j_gene_2010_08_001 crossref_primary_10_1088_1755_1315_1001_1_012041 crossref_primary_10_1111_jbi_12137 crossref_primary_10_1007_s12686_017_0803_4 crossref_primary_10_1016_j_ygeno_2022_110297 crossref_primary_10_1002_ece3_9093 crossref_primary_10_1017_S0022149X21000146 crossref_primary_10_1111_ibi_12511 crossref_primary_10_1111_evo_14407 crossref_primary_10_3389_fpls_2024_1449606 crossref_primary_10_1038_s41598_024_77913_6 crossref_primary_10_1111_j_1755_0998_2011_03056_x crossref_primary_10_1007_s10592_021_01333_6 crossref_primary_10_1111_jeb_14080 crossref_primary_10_1186_1756_3305_7_9 crossref_primary_10_1016_j_gene_2024_148728 crossref_primary_10_1016_j_rsma_2023_102833 crossref_primary_10_1016_j_ijbiomac_2019_08_064 crossref_primary_10_1093_jme_tjab112 crossref_primary_10_1111_jzs_12078 crossref_primary_10_3389_fevo_2025_1295369 crossref_primary_10_1525_auk_2013_12241 crossref_primary_10_1371_journal_pone_0020722 crossref_primary_10_1007_s00217_025_04847_2 crossref_primary_10_1016_j_aspen_2018_07_012 crossref_primary_10_1093_aesa_saab020 crossref_primary_10_1111_rec_14068 crossref_primary_10_3389_fpls_2024_1347945 crossref_primary_10_1111_evo_12230 crossref_primary_10_1111_j_1558_5646_2010_01071_x crossref_primary_10_1371_journal_pntd_0003364 crossref_primary_10_4102_ojvr_v86i1_1768 crossref_primary_10_1111_evo_12118 crossref_primary_10_1111_j_1365_2699_2010_02401_x crossref_primary_10_1016_j_gene_2013_07_059 crossref_primary_10_3389_ffunb_2021_802511 crossref_primary_10_1186_1475_2875_11_76 crossref_primary_10_1016_j_margen_2014_11_007 crossref_primary_10_1094_PHYTO_12_21_0532_R crossref_primary_10_1111_mec_13959 crossref_primary_10_1371_journal_pone_0235430 crossref_primary_10_1111_1755_0998_14034 crossref_primary_10_1186_s12863_015_0221_0 crossref_primary_10_1007_s12686_018_1003_6 crossref_primary_10_1038_hdy_2012_114 crossref_primary_10_1080_24750263_2022_2036256 crossref_primary_10_1002_ece3_5621 crossref_primary_10_1371_journal_pone_0100755 crossref_primary_10_1007_s10750_011_0879_x crossref_primary_10_1088_1755_1315_591_1_012037 crossref_primary_10_3109_19401736_2010_533765 crossref_primary_10_1093_jhered_est133 crossref_primary_10_1111_j_1365_294X_2011_05213_x crossref_primary_10_1007_s00227_011_1647_1 crossref_primary_10_1080_14772000_2011_627953 crossref_primary_10_1093_sysbio_sys051 crossref_primary_10_1111_jzs_12095 crossref_primary_10_1080_24750263_2018_1540669 crossref_primary_10_1371_journal_pone_0165105 crossref_primary_10_1007_s11250_024_04229_y crossref_primary_10_1371_journal_pone_0169944 crossref_primary_10_1002_arch_21920 crossref_primary_10_1002_ece3_644 crossref_primary_10_1002_ece3_886 crossref_primary_10_1016_j_actatropica_2022_106778 crossref_primary_10_1007_s12161_018_1239_5 crossref_primary_10_1038_s41598_017_07419_x crossref_primary_10_1038_s41598_025_85507_z crossref_primary_10_1111_j_1365_3113_2011_00597_x crossref_primary_10_1038_s41598_018_25138_9 crossref_primary_10_3897_zookeys_1081_77043 crossref_primary_10_3390_biology11050654 crossref_primary_10_1007_s00227_021_03918_8 crossref_primary_10_1073_pnas_1409328111 crossref_primary_10_1080_24701394_2019_1580270 crossref_primary_10_1111_j_1095_8312_2011_01728_x crossref_primary_10_1111_bij_12289 crossref_primary_10_1111_syen_12089 crossref_primary_10_1186_s12862_025_02414_7 crossref_primary_10_1007_s13127_016_0275_5 crossref_primary_10_1371_journal_pone_0051263 crossref_primary_10_1111_j_1365_294X_2011_05101_x crossref_primary_10_1186_1471_2148_10_392 crossref_primary_10_1111_bij_12259 crossref_primary_10_1186_s12862_019_1430_3 crossref_primary_10_1016_j_ijpara_2014_04_003 crossref_primary_10_3390_ani12060681 crossref_primary_10_1016_j_aqrep_2025_102748 crossref_primary_10_1080_17451000_2017_1312005 crossref_primary_10_1080_24701394_2023_2276749 crossref_primary_10_1016_j_cub_2017_04_060 crossref_primary_10_1017_pao_2018_2 crossref_primary_10_1134_S1022795421010038 crossref_primary_10_1186_s43008_023_00118_5 crossref_primary_10_1111_evo_12788 crossref_primary_10_1186_s12915_019_0724_7 crossref_primary_10_1371_journal_pone_0030239 crossref_primary_10_1101_gr_102954_109 crossref_primary_10_1371_journal_pone_0026357 crossref_primary_10_1007_s10592_017_1012_0 crossref_primary_10_1093_femsre_fuab047 crossref_primary_10_3390_d2040450 crossref_primary_10_3897_zookeys_705_13001 crossref_primary_10_1111_ele_12195 crossref_primary_10_1111_j_1365_294X_2010_04965_x crossref_primary_10_1111_ecog_04951 crossref_primary_10_3390_ani13132191 crossref_primary_10_1093_biolinnean_blw013 crossref_primary_10_1093_jisesa_ieaf064 crossref_primary_10_1111_mec_17282 crossref_primary_10_1111_jeb_12822 crossref_primary_10_1016_j_aspen_2016_09_005 crossref_primary_10_3389_fgene_2018_00651 crossref_primary_10_1007_s12686_016_0629_5 crossref_primary_10_3390_genes13010125 crossref_primary_10_1007_s10059_012_2151_2 crossref_primary_10_1016_j_jembe_2014_06_008 crossref_primary_10_1016_j_ympev_2015_07_023 crossref_primary_10_1093_molbev_msr226 crossref_primary_10_3106_ms2022_0013 crossref_primary_10_3897_zookeys_1221_129136 crossref_primary_10_1016_j_biocon_2016_03_029 crossref_primary_10_1017_S0043933915000318 crossref_primary_10_1007_s10750_015_2216_2 crossref_primary_10_1038_s41437_021_00455_4 crossref_primary_10_1111_nph_18219 crossref_primary_10_1111_syen_12299 crossref_primary_10_3390_ani14050721 crossref_primary_10_1371_journal_ppat_1012811 crossref_primary_10_1093_carcin_bgy133 crossref_primary_10_1016_j_ympev_2019_05_018 crossref_primary_10_1093_molbev_msad082 crossref_primary_10_1007_s13364_019_00461_2 crossref_primary_10_1016_j_ympev_2012_07_033 crossref_primary_10_1080_23802359_2018_1495114 crossref_primary_10_1093_jmammal_gyaf010 crossref_primary_10_1007_s13127_020_00430_7 crossref_primary_10_1007_s10750_020_04203_3 crossref_primary_10_1111_j_1095_8312_2011_01703_x crossref_primary_10_3109_19401736_2013_830289 crossref_primary_10_1007_s10493_015_9944_x crossref_primary_10_3389_fmicb_2021_707281 crossref_primary_10_1186_s12864_022_08743_x crossref_primary_10_1186_s13071_016_1909_3 crossref_primary_10_1007_s10641_017_0581_6 crossref_primary_10_1093_mollus_eyy035 crossref_primary_10_1016_j_ygeno_2018_04_013 crossref_primary_10_1111_1755_0998_12904 crossref_primary_10_1525_auk_2010_10151 crossref_primary_10_1016_j_fsigen_2019_102197 crossref_primary_10_1093_jmammal_gyz093 crossref_primary_10_3897_zookeys_1135_94628 crossref_primary_10_1093_jcbiol_ruy100 crossref_primary_10_1371_journal_pone_0084080 crossref_primary_10_1016_j_mito_2017_02_001 crossref_primary_10_1371_journal_pone_0224336 crossref_primary_10_1371_journal_pone_0097268 crossref_primary_10_21425_fob_18_139911 crossref_primary_10_1111_j_1558_5646_2012_01830_x crossref_primary_10_1371_journal_pone_0255291 crossref_primary_10_1016_j_ympev_2023_107781 crossref_primary_10_1371_journal_pone_0057745 crossref_primary_10_1186_s12864_020_07292_5 crossref_primary_10_1016_j_ympev_2018_10_029 crossref_primary_10_1038_srep30355 crossref_primary_10_1016_j_ympev_2013_07_003 crossref_primary_10_1111_j_1365_294X_2011_05107_x crossref_primary_10_3109_19401736_2011_653798 crossref_primary_10_1016_j_rvsc_2025_105863 crossref_primary_10_1080_24701394_2024_2427841 crossref_primary_10_3390_fishes6040044 crossref_primary_10_1007_s10530_016_1130_5 crossref_primary_10_1111_icad_12129 crossref_primary_10_1111_jfb_15848 crossref_primary_10_1016_j_ympev_2010_09_015 crossref_primary_10_1016_j_ympev_2010_09_018 crossref_primary_10_1111_zsc_12615 crossref_primary_10_1111_mec_13203 crossref_primary_10_1111_mec_13324 crossref_primary_10_1080_23802359_2019_1574643 crossref_primary_10_1080_24701394_2018_1467410 crossref_primary_10_1093_zoolinnean_zlaf059 crossref_primary_10_1007_s10336_013_0980_1 crossref_primary_10_1007_s12041_021_01341_y crossref_primary_10_1080_23802359_2024_2368206 crossref_primary_10_1111_mec_15981 crossref_primary_10_1371_journal_pone_0047710 crossref_primary_10_7717_peerj_10850 crossref_primary_10_7717_peerj_18699 crossref_primary_10_1093_jcbiol_ruac007 crossref_primary_10_2983_035_044_0201 crossref_primary_10_1111_zoj_12380 crossref_primary_10_1371_journal_pone_0066324 crossref_primary_10_3390_d14121089 crossref_primary_10_1002_ece3_2989 crossref_primary_10_1016_j_bse_2013_02_004 crossref_primary_10_1007_s11802_014_2139_y crossref_primary_10_1016_j_ympev_2010_09_009 crossref_primary_10_1186_1471_2148_12_196 crossref_primary_10_1093_biolinnean_blz166 crossref_primary_10_1016_j_ympev_2011_03_006 crossref_primary_10_1080_23802359_2019_1689859 crossref_primary_10_1007_s12041_024_01469_7 crossref_primary_10_1093_molbev_msq336 crossref_primary_10_1016_j_jia_2024_12_008 crossref_primary_10_1016_j_ympev_2021_107082 crossref_primary_10_1038_s41598_018_33806_z crossref_primary_10_1186_s40851_021_00169_9 crossref_primary_10_1371_journal_pone_0024127 crossref_primary_10_1007_s00414_010_0524_7 crossref_primary_10_1186_s13071_016_1730_z crossref_primary_10_3390_jof7030226 crossref_primary_10_1093_zoolinnean_zlae099 crossref_primary_10_1186_s13059_021_02336_9 crossref_primary_10_1038_s41437_024_00713_1 crossref_primary_10_1111_j_1365_294X_2010_04594_x crossref_primary_10_1007_s00343_020_0332_y crossref_primary_10_1080_13235818_2024_2333723 crossref_primary_10_1007_s12686_011_9474_8 crossref_primary_10_3897_zookeys_1179_100006 crossref_primary_10_1002_aqc_3684 crossref_primary_10_1371_journal_pone_0329906 crossref_primary_10_1007_s12526_018_0877_6 crossref_primary_10_1038_nrg_2016_58 crossref_primary_10_1371_journal_pone_0052089 crossref_primary_10_1007_s00227_015_2676_y crossref_primary_10_1603_AN12033 crossref_primary_10_3109_19401736_2015_1089501 crossref_primary_10_1016_j_genrep_2016_08_003 crossref_primary_10_1134_S0013873819040055 crossref_primary_10_1016_j_biocon_2024_110828 crossref_primary_10_1093_mutage_gex004 crossref_primary_10_1007_s00436_025_08516_x crossref_primary_10_1007_s10750_018_3633_9 crossref_primary_10_1371_journal_pone_0184529 crossref_primary_10_1111_j_1365_294X_2010_04790_x crossref_primary_10_1007_s00438_024_02099_5 crossref_primary_10_1111_mec_13425 crossref_primary_10_1007_s13127_013_0141_7 crossref_primary_10_1080_23802359_2023_2262692 crossref_primary_10_1007_s10841_013_9605_5 crossref_primary_10_1007_s11033_023_08700_1 crossref_primary_10_1016_j_fishres_2011_04_013 crossref_primary_10_1093_molbev_msy184 crossref_primary_10_1371_journal_pone_0054373 crossref_primary_10_1016_j_gene_2012_12_093 crossref_primary_10_1007_s10592_022_01464_4 crossref_primary_10_1007_s12686_017_0835_9 crossref_primary_10_1016_j_ympev_2023_107798 crossref_primary_10_1080_24701394_2016_1214727 crossref_primary_10_3897_zookeys_1078_64116 crossref_primary_10_1007_s10493_016_0062_1 crossref_primary_10_1002_ece3_71084 crossref_primary_10_1111_zoj_12443 crossref_primary_10_1111_jeb_13186 crossref_primary_10_1016_j_ympev_2017_11_023 crossref_primary_10_1111_mec_12689 crossref_primary_10_1016_j_mito_2016_03_005 crossref_primary_10_1016_j_margen_2015_08_005 crossref_primary_10_1016_j_plgene_2025_100530 crossref_primary_10_1111_icad_12289 crossref_primary_10_1007_s10592_024_01658_y crossref_primary_10_1002_evl3_221 crossref_primary_10_1186_1471_2148_11_369 crossref_primary_10_1186_1471_2148_12_161 crossref_primary_10_1007_s00436_015_4726_2 crossref_primary_10_1093_biolinnean_bly166 crossref_primary_10_1016_j_hal_2010_08_004 crossref_primary_10_1002_jemt_23484 crossref_primary_10_1038_s41598_020_61389_1 crossref_primary_10_1038_s41598_023_30570_7 crossref_primary_10_1111_jfb_13572 crossref_primary_10_1186_1471_2148_10_325 crossref_primary_10_1111_1755_0998_13178 crossref_primary_10_1146_annurev_marine_120308_080950 crossref_primary_10_1016_j_meegid_2023_105504 crossref_primary_10_1038_s41576_021_00394_0 crossref_primary_10_1111_j_1365_2699_2012_02782_x crossref_primary_10_1111_mec_12558 crossref_primary_10_1111_1755_0998_13059 crossref_primary_10_1002_1438_390X_12203 crossref_primary_10_1002_ece3_3514 crossref_primary_10_1016_j_ympev_2018_11_014 crossref_primary_10_1016_j_vetpar_2015_02_032 crossref_primary_10_1111_1744_7917_12881 crossref_primary_10_1371_journal_pone_0276475 crossref_primary_10_1093_jmedent_47_4_565 crossref_primary_10_1111_aen_12395 crossref_primary_10_2478_s11756_019_00402_z crossref_primary_10_1080_23802359_2019_1678422 crossref_primary_10_1093_biolinnean_blx064 crossref_primary_10_1093_molbev_msx074 crossref_primary_10_3390_d15030367 crossref_primary_10_1007_s11033_012_1455_9 crossref_primary_10_1016_j_gene_2014_01_064 crossref_primary_10_1093_molbev_msx197 crossref_primary_10_3109_19401736_2010_494727 crossref_primary_10_1016_j_crvi_2013_11_007 crossref_primary_10_1016_j_ympev_2016_01_003 crossref_primary_10_1038_s41598_019_55764_w crossref_primary_10_1016_j_jnc_2013_12_001 crossref_primary_10_1371_journal_pone_0078107 crossref_primary_10_1016_j_scitotenv_2020_141729 crossref_primary_10_1007_s12041_019_1096_z crossref_primary_10_1111_1755_0998_12173 crossref_primary_10_3109_19401736_2014_880890 crossref_primary_10_3389_fevo_2023_1142810 crossref_primary_10_1111_mec_13639 crossref_primary_10_1007_s11692_017_9423_x crossref_primary_10_1080_23802359_2021_1927875 crossref_primary_10_1007_s13592_025_01210_y crossref_primary_10_1016_j_ympev_2018_06_028 crossref_primary_10_3390_insects12080757 crossref_primary_10_3390_insects15030174 crossref_primary_10_1007_s13127_017_0337_3 crossref_primary_10_1017_S0007485314000169 crossref_primary_10_1016_j_mad_2010_01_005 crossref_primary_10_1111_jeb_14138 crossref_primary_10_1080_23802359_2020_1748542 crossref_primary_10_1111_j_1463_6409_2012_00556_x crossref_primary_10_1016_j_ympev_2021_107168 crossref_primary_10_4039_tce_2023_13 crossref_primary_10_3390_genes14081591 crossref_primary_10_1163_15685381_00003123 crossref_primary_10_1080_23802359_2025_2552811 crossref_primary_10_1016_j_meegid_2015_03_014 crossref_primary_10_1016_j_ijpara_2017_06_008 crossref_primary_10_1186_s13059_018_1588_9 crossref_primary_10_1371_journal_pone_0066034 crossref_primary_10_1007_s11756_024_01729_y crossref_primary_10_1186_s12864_022_08482_z crossref_primary_10_1111_ens_12361 crossref_primary_10_1016_j_aquaculture_2019_734823 crossref_primary_10_1111_jse_12806 crossref_primary_10_1186_s12870_024_05974_w crossref_primary_10_3390_ani12233403 crossref_primary_10_1016_j_ympev_2012_10_009 crossref_primary_10_1007_s00227_023_04254_9 crossref_primary_10_1016_j_ympev_2011_03_031 crossref_primary_10_1093_genetics_iyad036 crossref_primary_10_1007_s10228_021_00824_3 crossref_primary_10_1371_journal_pone_0077156 crossref_primary_10_3390_genes14071433 crossref_primary_10_1007_s12686_016_0592_1 crossref_primary_10_1038_srep08045 crossref_primary_10_1111_j_1558_5646_2011_01243_x crossref_primary_10_3389_fgene_2018_00593 crossref_primary_10_1038_s41598_018_27805_3 crossref_primary_10_1080_24701394_2016_1233533 crossref_primary_10_3161_00034541ANZ2023_73_2_010 crossref_primary_10_3389_fmicb_2025_1605218 crossref_primary_10_1186_s12870_025_06516_8 crossref_primary_10_1016_j_jgg_2012_02_003 crossref_primary_10_1007_s10592_023_01550_1 crossref_primary_10_1038_s41598_022_07369_z crossref_primary_10_1002_ece3_70587 crossref_primary_10_1007_s13127_022_00571_x crossref_primary_10_1111_1755_0998_12557 crossref_primary_10_1038_hdy_2011_68 crossref_primary_10_1186_1471_2148_12_248 crossref_primary_10_1655_HERPMONOGRAPHS_D_10_00003_1 crossref_primary_10_5598_imafungus_2012_03_01_10 crossref_primary_10_1007_s11692_015_9340_9 crossref_primary_10_1016_j_ympev_2018_07_003 crossref_primary_10_1016_j_smallrumres_2025_107527 crossref_primary_10_1016_j_ympev_2014_07_007 crossref_primary_10_1186_s12864_024_10896_w crossref_primary_10_1016_j_ympev_2013_05_002 crossref_primary_10_1016_j_ympev_2014_07_014 crossref_primary_10_1371_journal_pone_0047670 crossref_primary_10_2478_s11686_019_00053_9 crossref_primary_10_1111_j_1365_2699_2011_02514_x crossref_primary_10_1071_PC14934 crossref_primary_10_1080_14772000_2013_764507 crossref_primary_10_1111_1749_4877_12380 crossref_primary_10_1186_s40850_017_0020_3 crossref_primary_10_1515_mammalia_2024_0105 crossref_primary_10_1186_1471_2229_12_108 crossref_primary_10_3897_BDJ_10_e95935 crossref_primary_10_1016_j_ympev_2016_04_025 crossref_primary_10_3389_fmicb_2022_928464 crossref_primary_10_1111_j_1365_294X_2011_05175_x crossref_primary_10_1371_journal_pone_0134183 crossref_primary_10_1111_zoj_12417 crossref_primary_10_3390_microorganisms12102053 crossref_primary_10_1093_biolinnean_blad013 crossref_primary_10_1002_ece3_1811 crossref_primary_10_1186_s12862_015_0463_5 crossref_primary_10_1007_s10493_022_00741_8 crossref_primary_10_1093_biolinnean_blad015 crossref_primary_10_1371_journal_pone_0073935 crossref_primary_10_1111_jeb_12468 crossref_primary_10_1080_23802359_2020_1748537 crossref_primary_10_1016_j_ijbiomac_2023_124568 crossref_primary_10_1038_s41598_024_77525_0 crossref_primary_10_1093_evolut_qpac043 crossref_primary_10_1111_mve_12665 crossref_primary_10_1016_j_polar_2011_02_002 crossref_primary_10_1016_j_ijpara_2023_03_006 crossref_primary_10_1111_j_1439_0426_2011_01834_x crossref_primary_10_3390_ani14142020 crossref_primary_10_1016_j_dsr2_2017_10_005 crossref_primary_10_1371_journal_pone_0170392 crossref_primary_10_1002_ece3_8219 crossref_primary_10_1093_biolinnean_blaa195 crossref_primary_10_1016_j_vetpar_2010_10_042 crossref_primary_10_1111_ens_12051 crossref_primary_10_1371_journal_pone_0198754 crossref_primary_10_1038_srep41422 crossref_primary_10_1080_23802359_2018_1456372 crossref_primary_10_1111_1758_2229_70054 crossref_primary_10_1111_nph_12431 crossref_primary_10_1186_1471_2164_15_468 crossref_primary_10_1007_s10750_010_0236_5 crossref_primary_10_4137_EBO_S8532 crossref_primary_10_1186_1471_2148_12_57 crossref_primary_10_1038_srep23192 crossref_primary_10_1656_045_022_0314 crossref_primary_10_3897_natureconservation_19_12877 crossref_primary_10_1371_journal_pone_0216361 crossref_primary_10_1017_S0022149X17000189 crossref_primary_10_3109_19401736_2015_1106526 crossref_primary_10_1002_ar_24956 crossref_primary_10_1016_j_tree_2019_12_003 crossref_primary_10_1093_jisesa_ieab038 crossref_primary_10_1016_j_vetpar_2025_110607 crossref_primary_10_1111_mec_14235 crossref_primary_10_1371_journal_pone_0061970 crossref_primary_10_1134_S0032945223050119 crossref_primary_10_1111_mec_14237 crossref_primary_10_1371_journal_pone_0067048 crossref_primary_10_1007_s00436_015_4847_7 crossref_primary_10_1016_j_meegid_2011_10_010 crossref_primary_10_1093_biolinnean_blad115 crossref_primary_10_1016_j_ympev_2020_106924 crossref_primary_10_1111_mms_12894 crossref_primary_10_1186_1471_2148_12_130 crossref_primary_10_1038_s41467_023_40936_0 crossref_primary_10_1093_zoolinnean_zlaa107 crossref_primary_10_1016_j_ympev_2011_01_005 crossref_primary_10_1111_j_1365_294X_2012_05642_x crossref_primary_10_1016_j_ympev_2019_106568 crossref_primary_10_1038_s41598_018_31535_x crossref_primary_10_3897_zookeys_1239_143837 crossref_primary_10_1371_journal_pone_0116602 crossref_primary_10_3390_ani14020209 crossref_primary_10_1186_1471_2164_15_691 crossref_primary_10_1111_mec_13011 crossref_primary_10_3390_insects10090275 crossref_primary_10_1111_jeb_12491 crossref_primary_10_1371_journal_pone_0104982 crossref_primary_10_1002_ece3_7148 crossref_primary_10_1111_1440_1703_12190 crossref_primary_10_1038_s41598_023_37425_1 crossref_primary_10_1111_j_1558_5646_2011_01554_x crossref_primary_10_1016_j_funbio_2012_04_013 crossref_primary_10_3109_19401736_2013_873895 crossref_primary_10_1186_s40168_025_02169_9 crossref_primary_10_1016_j_ympev_2018_08_001 crossref_primary_10_1111_j_1744_7917_2010_01367_x crossref_primary_10_2108_zs200017 crossref_primary_10_1080_24750263_2025_2513385 crossref_primary_10_1093_jhered_esad001 crossref_primary_10_1186_s12915_017_0351_0 crossref_primary_10_1093_jhered_esab063 crossref_primary_10_1016_j_mito_2021_08_006 crossref_primary_10_1111_gcb_16460 crossref_primary_10_1016_j_ympev_2016_05_039 crossref_primary_10_1016_j_mito_2020_06_007 crossref_primary_10_1186_s12862_018_1170_9 crossref_primary_10_1016_j_bse_2016_05_013 crossref_primary_10_1111_1365_2656_13196 crossref_primary_10_1515_mammalia_2024_0149 crossref_primary_10_1134_S1022795413100025 crossref_primary_10_1007_s10592_012_0436_9 crossref_primary_10_1111_mec_15663 crossref_primary_10_1007_s10530_014_0699_9 crossref_primary_10_1371_journal_pone_0038521 crossref_primary_10_3390_life12050661 crossref_primary_10_7554_eLife_63167 crossref_primary_10_1111_geb_13344 crossref_primary_10_1093_jhered_esr104 crossref_primary_10_1016_j_jembe_2011_05_011 crossref_primary_10_1016_j_fsigen_2017_11_001 crossref_primary_10_1080_23802359_2018_1467232 crossref_primary_10_1098_rspb_2014_2476 crossref_primary_10_1371_journal_pone_0137325 crossref_primary_10_1007_s11515_018_1487_1 crossref_primary_10_1111_mec_13475 crossref_primary_10_1530_REP_17_0600 crossref_primary_10_1111_eea_13369 crossref_primary_10_1186_1471_2148_13_74 crossref_primary_10_3390_genes14010128 crossref_primary_10_1007_s10530_015_0854_y crossref_primary_10_1016_j_ympev_2013_04_014 crossref_primary_10_1007_s41063_015_0019_3 crossref_primary_10_1111_jzs_12440 crossref_primary_10_1111_1755_0998_12335 crossref_primary_10_1371_journal_pone_0158582 crossref_primary_10_1038_hdy_2014_9 crossref_primary_10_1080_23802359_2019_1627924 crossref_primary_10_1093_biolinnean_blae111 crossref_primary_10_1080_23802359_2020_1848474 crossref_primary_10_1016_j_jtbi_2015_08_007 crossref_primary_10_1134_S1062359014090052 crossref_primary_10_1016_j_japb_2025_01_006 crossref_primary_10_1038_s41598_024_82054_x crossref_primary_10_1080_23802359_2019_1711224 crossref_primary_10_1038_s41598_020_79620_4 crossref_primary_10_1007_s10592_015_0718_0 crossref_primary_10_1016_j_aspen_2019_12_009 crossref_primary_10_1111_mec_12373 crossref_primary_10_1371_journal_pone_0159325 crossref_primary_10_1016_j_mito_2010_10_004 crossref_primary_10_1016_j_ygeno_2018_08_003 crossref_primary_10_1080_07060661_2017_1357661 crossref_primary_10_3390_genes14010018 crossref_primary_10_1007_s10592_012_0437_8 crossref_primary_10_3390_insects5010001 crossref_primary_10_1016_j_meegid_2014_10_027 crossref_primary_10_1534_genetics_113_157776 crossref_primary_10_1007_s10452_025_10196_9 crossref_primary_10_1111_mec_12379 crossref_primary_10_1155_2013_783925 crossref_primary_10_1007_s10682_019_09968_1 crossref_primary_10_7717_peerj_2381 crossref_primary_10_1007_s11756_022_01234_0 crossref_primary_10_1016_j_ympev_2020_106843 crossref_primary_10_1093_cz_zoy074 crossref_primary_10_1111_j_1463_6409_2012_00563_x crossref_primary_10_1186_1756_3305_4_101 crossref_primary_10_4103_JVBD_JVBD_13_24 crossref_primary_10_1111_j_1744_7917_2010_01357_x crossref_primary_10_1007_s13744_018_0637_0 crossref_primary_10_1038_s41598_018_35760_2 crossref_primary_10_3390_cells8050433 crossref_primary_10_1016_j_ympev_2017_07_002 crossref_primary_10_1002_ece3_6775 crossref_primary_10_3109_19401736_2012_668894 crossref_primary_10_1111_mec_12920 crossref_primary_10_4039_tce_2016_14 crossref_primary_10_1038_srep19318 crossref_primary_10_1002_ece3_6539 crossref_primary_10_1016_j_ympev_2014_10_016 crossref_primary_10_1111_eea_12613 crossref_primary_10_3897_BDJ_9_e69196 crossref_primary_10_1186_s13071_023_05902_1 crossref_primary_10_1016_j_ympev_2014_10_012 crossref_primary_10_1007_s11033_013_2747_4 crossref_primary_10_1016_j_heliyon_2024_e38765 crossref_primary_10_1007_s10592_020_01263_9 crossref_primary_10_1038_s41598_020_70957_4 crossref_primary_10_1016_S2095_3119_18_62019_2 crossref_primary_10_1186_s12862_016_0836_4 crossref_primary_10_1038_hdy_2013_4 crossref_primary_10_1139_gen_2015_0090 crossref_primary_10_1111_cobi_14064 crossref_primary_10_2478_s11756_019_00273_4 crossref_primary_10_1002_ece3_6667 crossref_primary_10_1016_j_ympev_2012_09_006 crossref_primary_10_1111_jen_12047 crossref_primary_10_1007_s00227_010_1577_3 crossref_primary_10_3389_fmars_2014_00047 crossref_primary_10_1093_biosci_biu219 crossref_primary_10_1093_jcbiol_ruy084 crossref_primary_10_1111_syen_12226 crossref_primary_10_1080_23802359_2018_1542981 crossref_primary_10_1038_s41437_025_00772_y crossref_primary_10_1371_journal_pone_0296305 crossref_primary_10_1371_journal_pone_0047284 crossref_primary_10_1007_s10592_015_0744_y crossref_primary_10_1371_journal_pone_0248102 crossref_primary_10_1007_s10750_014_1900_y crossref_primary_10_1590_0074_02760160463 crossref_primary_10_1016_j_ympev_2010_06_013 crossref_primary_10_1111_j_1365_294X_2012_05525_x crossref_primary_10_1002_ece3_2199 crossref_primary_10_1016_j_bse_2013_06_003 crossref_primary_10_1016_j_ympev_2010_06_015 crossref_primary_10_1086_709109 crossref_primary_10_1093_sysbio_syaa044 crossref_primary_10_1016_j_dci_2023_104704 crossref_primary_10_1002_arch_21750 crossref_primary_10_1007_s10493_022_00750_7 crossref_primary_10_1134_S0032945213050044 crossref_primary_10_1093_molbev_msv104 crossref_primary_10_3390_d14110948 crossref_primary_10_1111_evo_13296 crossref_primary_10_1111_jzs_12248 crossref_primary_10_1007_s11756_025_01887_7 crossref_primary_10_1016_j_jaridenv_2021_104607 crossref_primary_10_3390_ani15010075 crossref_primary_10_1016_j_ympev_2016_05_009 crossref_primary_10_1111_j_1365_294X_2011_05157_x crossref_primary_10_25225_fozo_v64_i3_a7_2015 crossref_primary_10_1016_j_ijpara_2016_01_009 crossref_primary_10_1016_j_mito_2020_12_015 crossref_primary_10_3390_life12010061 crossref_primary_10_1016_j_gene_2015_06_074 crossref_primary_10_1007_s13364_024_00747_0 crossref_primary_10_1016_j_bse_2017_06_001 crossref_primary_10_1111_j_1365_294X_2010_04775_x crossref_primary_10_1016_j_ympev_2010_06_006 crossref_primary_10_1038_srep35275 crossref_primary_10_3390_life15091446 crossref_primary_10_3389_fevo_2022_1000493 crossref_primary_10_1093_fsr_owae018 crossref_primary_10_1007_s00253_018_9350_5 crossref_primary_10_1515_bot_2017_0040 crossref_primary_10_1080_14772000_2024_2404829 crossref_primary_10_3390_pathogens12070878 crossref_primary_10_1016_j_ympev_2024_108146 crossref_primary_10_3390_genes14051088 crossref_primary_10_3109_19401736_2011_588213 crossref_primary_10_1016_j_gene_2022_146230 crossref_primary_10_1016_j_meegid_2020_104303 crossref_primary_10_1016_j_ympev_2010_11_028 crossref_primary_10_1016_j_ecss_2024_108974 crossref_primary_10_1371_journal_pone_0028381 crossref_primary_10_1111_mec_16126 crossref_primary_10_1093_biolinnean_blab022 crossref_primary_10_3390_ani15152254 crossref_primary_10_1016_j_meegid_2013_10_016 crossref_primary_10_1016_j_ympev_2010_11_023 crossref_primary_10_1080_24701394_2018_1482284 crossref_primary_10_1080_12298093_2018_1561238 crossref_primary_10_1080_14772000_2020_1729892 crossref_primary_10_1080_23802359_2020_1742220 crossref_primary_10_3390_d14070548 crossref_primary_10_1111_zsc_12254 crossref_primary_10_1007_s11274_018_2490_z crossref_primary_10_1017_S0031182013000528 crossref_primary_10_1016_j_ympev_2014_03_021 crossref_primary_10_1111_mec_15030 crossref_primary_10_1007_s10201_019_00597_9 crossref_primary_10_1111_j_1365_294X_2011_05309_x crossref_primary_10_1111_mec_15153 crossref_primary_10_1016_j_sjbs_2022_103388 crossref_primary_10_1111_zsc_12139 crossref_primary_10_1111_j_1365_294X_2012_05612_x crossref_primary_10_3390_insects10100317 crossref_primary_10_1111_j_1365_294X_2011_05275_x crossref_primary_10_1007_s12686_017_0776_3 crossref_primary_10_1016_j_ympev_2012_08_015 crossref_primary_10_1111_cla_12166 crossref_primary_10_1080_00379271_2013_774741 crossref_primary_10_1186_s13071_022_05488_0 crossref_primary_10_1371_journal_pone_0091907 crossref_primary_10_1016_j_domaniend_2016_03_005 crossref_primary_10_4039_tce_2018_12 crossref_primary_10_1080_23802359_2019_1616623 crossref_primary_10_1186_s12862_017_1012_1 crossref_primary_10_1111_jbi_12043 crossref_primary_10_1016_j_aspen_2019_10_006 crossref_primary_10_1007_s10530_013_0472_5 crossref_primary_10_1080_14772001003756751 crossref_primary_10_1111_1462_2920_15944 crossref_primary_10_1093_molbev_mst155 crossref_primary_10_1007_s10228_022_00883_0 crossref_primary_10_1016_j_aqrep_2022_101144 crossref_primary_10_1093_jhered_esy016 crossref_primary_10_1002_edn3_448 crossref_primary_10_1007_s10709_015_9847_0 crossref_primary_10_1186_s13071_016_1811_z crossref_primary_10_1016_j_ympev_2015_11_008 crossref_primary_10_1093_sysbio_syaa085 crossref_primary_10_3109_19401736_2015_1110816 crossref_primary_10_1093_sysbio_syab053 crossref_primary_10_1016_j_vetpar_2015_12_012 crossref_primary_10_1093_jisesa_ieac055 crossref_primary_10_1111_j_1365_3113_2010_00549_x crossref_primary_10_3390_d15010088 crossref_primary_10_1111_j_1755_0998_2012_03169_x crossref_primary_10_1016_j_margen_2014_01_001 crossref_primary_10_1186_s12862_014_0262_4 crossref_primary_10_3390_ani10101785 crossref_primary_10_1002_ps_3834 crossref_primary_10_1017_S0025315422000029 crossref_primary_10_1111_j_1752_4571_2011_00220_x crossref_primary_10_1186_s13071_016_1603_5 crossref_primary_10_1111_j_1095_8649_2010_02821_x crossref_primary_10_1111_jzs_12291 crossref_primary_10_1016_j_quascirev_2014_05_026 crossref_primary_10_1111_j_1365_294X_2011_05178_x crossref_primary_10_1111_j_1558_5646_2011_01228_x crossref_primary_10_1111_mec_12097 crossref_primary_10_1007_s10340_019_01121_9 crossref_primary_10_1007_s10592_023_01542_1 crossref_primary_10_1007_s13127_016_0307_1 crossref_primary_10_1002_ece3_11365 crossref_primary_10_1007_s12686_024_01364_4 crossref_primary_10_1016_j_tree_2017_12_002 crossref_primary_10_3390_ijms24010889 crossref_primary_10_1007_s11033_013_2755_4 crossref_primary_10_1093_molbev_msr072 crossref_primary_10_1111_jeb_12520 crossref_primary_10_1111_j_1365_2699_2010_02408_x crossref_primary_10_3390_biology11060807 crossref_primary_10_3390_plants10030435 crossref_primary_10_1111_mec_12094 crossref_primary_10_1656_058_011_0211 crossref_primary_10_3390_insects16050535 crossref_primary_10_1111_syen_12201 crossref_primary_10_1016_j_tig_2023_08_002 |
| Cites_doi | 10.1016/S0169-5347(01)02151-6 10.1016/0169-5347(94)90126-0 10.1093/oxfordjournals.molbev.a004014 10.1098/rspb.2007.1035 10.1073/pnas.0900233106 10.1111/j.1471-8286.2007.01678.x 10.1111/j.1365-294X.2008.03982.x 10.1146/annurev.ecolsys.32.081501.114109 10.1093/hmg/ddm180 10.1093/molbev/msh244 10.1098/rspb.2007.1290 10.1534/genetics.106.060202 10.1186/1742-9994-4-8 10.1093/emboj/20.7.1807 10.1016/j.tree.2006.11.013 10.1038/nature01743 10.1073/pnas.92.14.6389 10.1098/rspb.2007.0062 10.1016/S0169-5347(00)01856-5 10.1126/science.1096342 10.1534/genetics.107.073346 10.1186/1471-2148-9-64 10.1016/S0764-4469(01)01324-5 10.1080/10635150701258795 10.1146/annurev.es.18.110187.002421 10.1098/rsbl.2007.0290 10.1101/gr.4305906 10.1073/pnas.0408302101 10.1093/oxfordjournals.molbev.a004170 10.1046/j.1365-294X.2003.02063.x 10.1038/35047064 10.1038/hdy.1994.19 10.1038/hdy.2008.6 10.1046/j.1469-1809.2001.6510043.x 10.1146/annurev.genet.35.102401.090231 10.1073/pnas.76.4.1967 10.1086/286149 10.1093/molbev/msi084 10.1126/science.1088434 10.1046/j.1365-294x.1998.00318.x 10.1007/s00239-005-0246-5 10.1146/annurev.ecolsys.36.091704.175513 10.1186/1741-7007-6-27 10.1098/rspb.2005.3056 10.1186/1471-2148-7-135 10.1098/rspb.2000.1183 10.1093/molbev/msi145 10.1111/j.1558-5646.2007.00305.x 10.1016/j.tree.2008.05.011 10.1098/rspb.2002.2100 10.1098/rsbl.2006.0587 10.1086/303092 10.1080/10635150701435401 10.1038/383224a0 10.1080/10635150802032982 10.1098/rspb.1999.0663 10.1371/journal.pone.0004396 10.1016/S0070-2153(06)77004-1 10.1002/jez.1401590310 10.1093/molbev/msp073 10.1093/oxfordjournals.molbev.a003825 10.1093/oxfordjournals.molbev.a026383 10.1093/molbev/msm106 10.1016/j.ympev.2006.05.033 10.1016/j.tig.2007.05.011 10.1371/journal.pone.0002201 10.1038/nature05388 10.1098/rspb.1992.0027 10.1038/sj.hdy.6800413 10.1111/j.1574-6968.2008.01110.x 10.1111/j.1755-0998.2009.02631.x 10.1111/j.1474-9726.2007.00331.x 10.1093/genetics/160.3.1075 10.1098/rspb.2004.3017 10.1093/genetics/156.1.385 10.1016/j.ympev.2006.12.005 10.1093/oxfordjournals.molbev.a026394 10.1016/j.tig.2004.09.002 10.1186/1471-2148-9-54 10.1111/j.0014-3820.2003.tb00265.x 10.1111/j.1365-2583.1995.tb00029.x 10.1371/journal.pbio.0020354 10.1083/jcb.10.3.301 10.1534/genetics.104.91769 10.1098/rstb.2008.0053 10.1038/sj.hdy.6801014 10.1126/science.1122033 10.1126/science.286.5449.2524 10.1177/117693430700300008 10.1111/j.1365-3113.2008.00433.x 10.1016/j.tig.2005.03.006 10.1111/j.1755-0998.2009.02650.x 10.1038/353440a0 10.1093/genetics/155.2.909 10.1371/journal.pbio.0030422 10.1073/pnas.172318099 10.1111/j.1365-294X.2005.02773.x 10.1086/285179 10.1093/genetics/164.1.5 10.1017/CBO9780511623486 10.1038/46466 10.1093/oxfordjournals.molbev.a003755 10.1046/j.1365-294X.2003.01864.x 10.1093/genetics/132.3.713 10.1186/1471-2148-8-53 10.1098/rspb.1999.0662 10.1038/hdy.2008.62 10.1139/g05-082 10.1093/oxfordjournals.molbev.a004049 10.1111/j.1755-0998.2009.02652.x 10.1098/rsbl.2008.0662 10.1093/molbev/msm248 |
| ContentType | Journal Article |
| Copyright | 2009 Blackwell Publishing Ltd |
| Copyright_xml | – notice: 2009 Blackwell Publishing Ltd |
| DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7S9 L.6 7X8 ADTPV AOWAS DF2 |
| DOI | 10.1111/j.1365-294X.2009.04380.x |
| DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic SwePub SwePub Articles SWEPUB Uppsala universitet |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | CrossRef Entomology Abstracts MEDLINE - Academic Entomology Abstracts AGRICOLA MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Ecology |
| EISSN | 1365-294X |
| EndPage | 4550 |
| ExternalDocumentID | oai_DiVA_org_uu_142175 1893972501 1893972361 19821901 10_1111_j_1365_294X_2009_04380_x MEC4380 ark_67375_WNG_59HBHDQ7_C US201301696512 |
| Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review Feature |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29M 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABEML ABHUG ABJNI ABPTK ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIAGR AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XJT Y6R ZZTAW ~02 ~IA ~KM ~WT AAHBH AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG ALVPJ BSCLL HGLYW OIG AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7S9 L.6 7X8 ADTPV AOWAS DF2 |
| ID | FETCH-LOGICAL-c6700-bedfdae86d3a4fde41d4c72bef5093432e9a976a1fdf10b014fa2fc0a72a61b83 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 879 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000271468800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0962-1083 1365-294X |
| IngestDate | Tue Nov 04 16:26:08 EST 2025 Fri Sep 05 10:57:39 EDT 2025 Sun Nov 09 13:42:18 EST 2025 Mon Nov 10 02:49:33 EST 2025 Mon Nov 10 02:51:54 EST 2025 Mon Jul 21 05:37:05 EDT 2025 Sat Nov 29 02:38:26 EST 2025 Tue Nov 18 20:03:59 EST 2025 Wed Jan 22 16:39:37 EST 2025 Sun Sep 21 06:25:39 EDT 2025 Wed Dec 27 19:11:09 EST 2023 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6700-bedfdae86d3a4fde41d4c72bef5093432e9a976a1fdf10b014fa2fc0a72a61b83 |
| Notes | http://dx.doi.org/10.1111/j.1365-294X.2009.04380.x ark:/67375/WNG-59HBHDQ7-C istex:B0F84AFE7F61BE3D6503D947EA498CE6D77B5D34 ArticleID:MEC4380 N.G. is interested in various aspects of molecular evolution, and especially the relationship between species biology and genome evolutionary trends in animals. B.N. studies the evolutionary genomics of vertebrates, with a preference for birds and interests in phylogeny, molecular dating, polymorphism, influence of population size, and of mutation rate. S.G. combines theoretical and empirical population genomic approaches to analyse the influence of mating systems and other life‐history traits on genome evolution, with some focus on plants. G.H. is an evolutionary geneticist interested in genomic conflicts, and especially the interaction between maternally‐transmitted symbiotic microbes and their arthropod hosts. SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Review-3 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-294X.2009.04380.x |
| PMID | 19821901 |
| PQID | 210701442 |
| PQPubID | 31465 |
| PageCount | 10 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_uu_142175 proquest_miscellaneous_734239761 proquest_miscellaneous_1139576410 proquest_journals_210701867 proquest_journals_210701442 pubmed_primary_19821901 crossref_citationtrail_10_1111_j_1365_294X_2009_04380_x crossref_primary_10_1111_j_1365_294X_2009_04380_x wiley_primary_10_1111_j_1365_294X_2009_04380_x_MEC4380 istex_primary_ark_67375_WNG_59HBHDQ7_C fao_agris_US201301696512 |
| PublicationCentury | 2000 |
| PublicationDate | November 2009 |
| PublicationDateYYYYMMDD | 2009-11-01 |
| PublicationDate_xml | – month: 11 year: 2009 text: November 2009 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: England – name: Oxford |
| PublicationTitle | Molecular ecology |
| PublicationTitleAlternate | Mol Ecol |
| PublicationYear | 2009 |
| Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd |
| Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd |
| References | Ujvari B, Dowton M, Madsen T (2007) Mitochondrial DNA recombination in a free-ranging Australian lizard. Biology Letters, 3, 189-192. Nabholz B, Mauffrey JF, Bazin E, Galtier N, Glémin S (2008a) Determination of mitochondrial genetic diversity in mammals. Genetics, 178, 352-361. Hoshizaki S, Shimada T (1995) PCR-based detection of Wolbachia, cytoplasmic microorganisms, infected in natural populations of Laodelphax striatellus (Homoptera: Delphacidae) in central Japan: has the distribution of Wolbachia spread recently? Insect Molecular Biology, 4, 237-243. Brown WM, George M, Wilson A (1979) Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the USA, 76, 1967-1971. Gillespie JH (2000) Genetic drift in a infinite population: the pseudohitchhiking model. Genetics, 155, 909-919. Ursprung H, Schabtach E (1965) Fertilization in tunicates: loss of the paternal mitochondrion prior to sperm entry. Journal of Experimental Zoology, 159, 379-383. Shoubridge EA, Wai T (2007) Mitochondrial DNA and the mammalian oocyte. Current Topics in Developmental Biology, 77, 87-111. Avise JC, Arnold J, Ball RM et al. (1987) Intraspecific phylogeography - the mitochondrial-DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18, 489-522. Castoe TA, De Koning AP, Kim HM et al. (2009) From the Cover: evidence for an ancient adaptive episode of convergent molecular evolution. Proceedings of the National Academy of Sciences of the USA, 106, 8986-8991. Birky Jr CW (2001) The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annual Review of Genetics, 35, 125-1248. Hurst LD, Hamilton WD (1992) Cytoplasmic inheritance and the nature of sexes. Proceedings of the Royal Society of London Series B-Biological Sciences, 247, 189-194. Bazin E, Glémin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science, 312, 570-571. Andolfatto P, Scriber JM, Charlesworth B (2003) No association between mitochondrial DNA haplotypes and a female-limited mimicry phenotype in Papilio glaucus. Evolution, 57, 305-316. Gissi C, Iannelli F, Pesole G (2008) Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity, 101, 301-320. Kimura M (1983) The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge. Breton S, Beaupré HD, Stewart DT, Hoeh WR, Blier PU (2007) The unusual system of doubly uniparental inheritance of mtDNA: isn't one enough? Trends in Genetics, 23, 465-474. Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia? - a statistical analysis of current data. FEMS Microbiology Letters, 281, 215-220. Rousset F, Solignac M (1995) Evolution of single and double Wolbachia symbioses during speciation in the Drosophila simulans complex. Proceedings of the National Academy of Sciences of the USA, 92, 6389-6393. Ellison CK, Burton RS (2008) Interpopulation hybrid breakdown maps to the mitochondrial genome. Evolution, 62, 631-638. Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G (1999) Ubiquitin tag for sperm mitochondria. Nature, 402, 371-372. Schmidt BC, Sperling FAH (2008) Widespread decoupling of mtDNA variation and species integrity in Grammia tiger moths (Lepidoptera: Noctuidae). Systematic Entomology, 33, 613-634. Piganeau G, Eyre-Walker A (2009) Evidence for variation in the effective population size of animal mitochondrial DNA. PLoS ONE, 4, e4396. Fazekas AJ, Kesanakurti P, Burgess KS et al. (2009) Are plant species inherently harder to discriminate than animal species using DNA barcoding markers? Molecular Ecology Resources, 9, 130-139. Turelli M, Hoffmann AA, McKechnie SW (1992) Dynamics of cytoplasmic incompatibility and mtDNA variation in natural Drosophila simulans populations. Genetics, 132, 713-723. Gissi C, Reyes A, Pesole G, Saccone C (2000) Lineage-specific evolutionary rate in mammalian mtDNA. Molecular Biology and Evolution, 17, 1022-1031. Couvet D, Ronce O, Gliddon C (1998) The maintenance of nucleocytoplasmic polymorphism in a metapopulation: the case of gynodioecy. American Naturalist, 152, 59-70. Hickey AJR (2008) An alternate explanation for low mtDNA diversity in birds: an age-old solution? Heredity, 100, 443-443. Baker AJ, Tavares ES, Elbourne RF (2009) Countering criticisms of single mitochondrial DNA gene barcoding in birds. Molecular Ecology Resources, 9, 257-268. Hagelberg E, Goldman N, Lió P et al. (2000) Evidence for mitochondrial DNA recombination in a human population of island Melanesia: correction. Proceedings of the Royal Society B-Biological Sciences, 267, 1595-1596. Shoemaker DD, Keller G, Ross KG (2003) Effects of Wolbachia on mtDNA variation in two fire ant species. Molecular Ecology, 12, 1757-1771. Rand D (2001) The units of selection on mitochondrial DNA. Annual Review of Ecology and Systematics, 32, 415-448. Ingman M, Kaessmann H, Pääbo S, Gyllensten U (2000) Mitochondrial genome variation and the origin of modern humans. Nature, 408, 708-713. Moses MJ (1961) Spermiogenesis in the crayfish (Procambarus clarkii) II. Description of stages. Journal of Biophysical and Biochemical Cytology, 10, 301-333. Ballard JWO (2000) When one is not enough: introgression of mitochondrial DNA in Drosophila. Molecular Biology and Evolution, 17, 1126-1130. White DJ, Gemmell NJ (2009) Can indirect tests detect a known recombination event in human mtDNA? Molecular Biology and Evolution, 26, 1435-1439. Ratnasingham S, Hebert PD (2007) bold: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes, 7, 355-364. Galtier N, Jobson RW, Nabholz B, Glémin S, Blier P (2009) Mitochondrial whims: metabolic rate, longevity, and the rate of molecular evolution. Biology Letters, 5, 413-416. Moritz C, Dowlin TE, Brown WM (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annual Review of Ecology and Systematics, 18, 269-292. Welch JJ, Bininda-Emonds OR, Bromham L (2008) Correlates of substitution rate variation in mammalian protein-coding sequences. BMC Evolutionary Biology, 8, 53. Rach J, DeSalle R, Sarkar IN, Schierwater B, Hadrys H (2008) Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata. Proceedings of the Royal Society B-Biological Sciences, 275, 237-247. Castresana J (2001) Cytochrome b phylogeny and the taxonomy of great apes and mammals. Molecular Biology and Evolution, 18, 465-471. Elias M, Hill RI, Willmott KR et al. (2007) Limited performance of DNA barcoding in a diverse community of tropical butterflies. Proceedings of the Royal Society B-Biological Sciences, 274, 2881-2889. Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. Plos Biology, 3, 2229-2238. Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC (2004) Effects of purifying and adaptive selection on regional variation in human mtDNA. Science, 303, 223-226. Pulquério MJ, Nichols RA (2007) Dates from the molecular clock: how wrong can we be? Trends in Ecology and Evolution, 22, 180-184. Ballard JWO, Melvin RG, Miller JT, Katewa SD (2007) Sex differences in survival and mitochondrial bioenergetics during aging in Drosophila. Aging Cell, 6, 699-708. Awadalla P, Eyre-Walker A, Maynard-Smith J (1999) Linkage disequilibrium and recombination in hominid mitochondrial DNA. Science, 286, 2524-2525. McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature, 351, 652-654. Piganeau G, Eyre-Walker A (2004) A reanalysis of the indirect evidence for recombination in human mitochondrial DNA. Heredity, 92, 282-288. Innan H, Nordborg M (2002) Recombination or mutational hot spots in human mtDNA? Molecular Biology and Evolution, 19, 1122-1127. Saumitou-Laprade P, Cuguen J, Vernet P (1994) Cytoplasmic male-sterility in plants - molecular evidence and the nucleocytoplasmic conflict. Trends in Ecology & Evolution, 9, 431-435. Lane N (2005) Power, Sex, Suicide. Mitochondria and the Meaning of Life. Oxford University Press, Oxford. Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Molecular Ecology, 13, 729-744. Stoneking M (2000) Hypervariable sites in the mtDNA control region are mutational hotspots. American Journal of Human Genetics, 67, 1029-1032. Reboud X, Zeyl C (1994) Organelle inheritance in plants. Heredity, 72, 132-140. Doiron S, Bernatchez L, Blier PU (2002) A comparative mitogenomic analysis of the potential adaptive value of Arctic charr mtDNA introgression in brook charr populations (Salvelinus fontinalis Mitchill). Molecular Biology and Evolution, 19, 1902-1909. Hurst GDD, Jiggins FM (2005) Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proceedings of the Royal Society B-Biological Sciences, 272, 1525-1534. Tsaousis AD, Martin DP, Ladoukakis ED, Posada D, Zouros E (2005) Widespread recombination in published animal mtDNA sequences. Molecular Biology and Evolution, 22, 925-933. Ciborowski KL, Consuegra S, García de Leániz C, Beaumont MA, Wang J, Jordan WC (2007) Rare and fleeting: an example of interspecific recombination in animal mitochondrial DNA. Biology Letters, 3, 554-557. Bensasson D, Zhang DX, Hartl DL, Hewitt GM (2001) Mitochondrial pseudogenes: evolution's misplaced witnesses. Trends in Ecology and Evolution, 16, 314-321. Wiemers M, Fiedler K (2007) Does the DNA barcoding gap exist? - a case study in blue butterflies (Lepidoptera: Lycaenidae) Frontiers in Zoology, 4, 8. Budar F, Pelletier G (2001) Male sterility in plants: occurrence, determinism, significance and use. Comptes Rendus de l'Academie des Sciences Série II-Sciences De La Vie-Life Sciences, 324, 543-550. Turelli M, Hoffmann AA (1991) Rapid spread of an inherited incompatibility in California Drosophila. Nature, 353, 440-442. Duron O, Bo 2004; 21 1991; 351 2004; 20 2002; 19 1991; 353 1992; 247 2002; 99 2003; 57 2006; 174 1999; 286 2008; 33 2004; 2 1996; 383 2008; 101 2008; 100 2007; 77 1998; 152 2000; 408 1965; 159 2000; 17 2000; 15 2007; 6 2008; 23 2002; 269 2007; 7 1983 2007; 4 2007; 3 1994; 72 2003; 164 2007; 445 2004; 303 2000; 67 2006; 55 2008; 57 2008; 363 2007; 99 1995; 4 2004; 304 2001; 324 2001; 20 2007; 16 2006; 41 2008a; 178 1992; 132 2007; 274 2008b; 25 2005; 3 2001; 35 2009; 106 2001; 32 2008; 8 2005; 21 2008; 6 2008; 3 1979; 76 1999; 402 2005; 22 2003; 12 2006; 63 2001; 16 2001; 18 2008; 62 2007; 22 2008; 275 2007; 23 2007; 24 2005; 36 2004; 101 2005; 272 1995; 92 2006; 16 1995; 12 2008; 17 2005 2000; 155 1999; 266 1961; 10 2000; 156 2005; 48 2007; 56 1991; 137 1987; 18 2009; 26 2006; 312 2008; 281 1994; 9 2002; 160 2004; 92 2003; 424 2000; 267 2004; 13 2009; 9 2009; 5 2009; 4 2008; 179 2007; 44 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 Martin AP (e_1_2_7_69_1) 1995; 12 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_90_1 e_1_2_7_112_1 Lane N (e_1_2_7_67_1) 2005 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_109_1 e_1_2_7_105_1 e_1_2_7_8_1 Avise JC (e_1_2_7_4_1) 1987; 18 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 Schulenburg JHGvd (e_1_2_7_94_1) 2002; 160 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_27_1 Gillespie JH (e_1_2_7_40_1) 2000; 155 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 |
| References_xml | – reference: Berlin S, Tomaras D, Charlesworth B (2007) Low mitochondrial variability in birds may indicate Hill-Robertson effects on the W chromosome. Heredity, 99, 389-396. – reference: Hurst GDD, Jiggins FM (2005) Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proceedings of the Royal Society B-Biological Sciences, 272, 1525-1534. – reference: Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Molecular Ecology, 13, 729-744. – reference: Packer L, Gibbs J, Sheffield C, Hanner R (2009) DNA barcoding and the mediocrity of morphology. Molecular Ecology Resources, 9, 42-50. – reference: Duron O, Bouchon D, Boutin S et al. (2008) The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biology, 6, 27. – reference: Couvet D, Ronce O, Gliddon C (1998) The maintenance of nucleocytoplasmic polymorphism in a metapopulation: the case of gynodioecy. American Naturalist, 152, 59-70. – reference: Hurst LD, Hamilton WD (1992) Cytoplasmic inheritance and the nature of sexes. Proceedings of the Royal Society of London Series B-Biological Sciences, 247, 189-194. – reference: Ballard JWO (2000) When one is not enough: introgression of mitochondrial DNA in Drosophila. Molecular Biology and Evolution, 17, 1126-1130. – reference: Kraytsberg Y, Schwartz M, Brown TA et al. (2004) Recombination of human mitochondrial DNA. Science, 304, 981. – reference: Xu W, Jameson D, Tang B, Higgs PG (2006) The relationship between the rate of molecular evolution and the rate of genome rearrangement in animal mitochondrial genomes. Journal of Molecular Evolution, 63, 375-392. – reference: Fazekas AJ, Kesanakurti P, Burgess KS et al. (2009) Are plant species inherently harder to discriminate than animal species using DNA barcoding markers? Molecular Ecology Resources, 9, 130-139. – reference: Piganeau G, Eyre-Walker A (2009) Evidence for variation in the effective population size of animal mitochondrial DNA. PLoS ONE, 4, e4396. – reference: Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC (2004) Effects of purifying and adaptive selection on regional variation in human mtDNA. Science, 303, 223-226. – reference: Ursprung H, Schabtach E (1965) Fertilization in tunicates: loss of the paternal mitochondrion prior to sperm entry. Journal of Experimental Zoology, 159, 379-383. – reference: Andolfatto P, Scriber JM, Charlesworth B (2003) No association between mitochondrial DNA haplotypes and a female-limited mimicry phenotype in Papilio glaucus. Evolution, 57, 305-316. – reference: Castresana J (2001) Cytochrome b phylogeny and the taxonomy of great apes and mammals. Molecular Biology and Evolution, 18, 465-471. – reference: Nabholz B, Glémin S, Galtier N (2008b) Strong variations of mitochondrial mutation rate across mammals - the longevity hypothesis. Molecular Biology and Evolution, 25, 120-130. – reference: Ropiquet A, Hassanin A (2006) Hybrid origin of the Pliocene ancestor of wild goats. Molecular Phylogenetics and Evolution, 41, 395-404. – reference: Shoubridge EA, Wai T (2007) Mitochondrial DNA and the mammalian oocyte. Current Topics in Developmental Biology, 77, 87-111. – reference: Shoemaker DD, Machado CA, Molbo D et al. (2002) The distribution of Wolbachia in fig wasps: correlations with host phylogeny, ecology and population structure. Proceedings of the Royal Society of London Series B-Biological Sciences, 269, 2257-2267. – reference: Cho Y, Mower JP, Qiu YL, Palmer JD (2004) Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proceedings of the National Academy of Sciences of the USA, 101, 17741-17746. – reference: Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia? - a statistical analysis of current data. FEMS Microbiology Letters, 281, 215-220. – reference: Ingman M, Gyllensten U (2007) Rate variation between mitochondrial domains and adaptive evolution in humans. Human Molecular Genetics, 16, 2281-2287. – reference: Galtier N, Jobson RW, Nabholz B, Glémin S, Blier P (2009) Mitochondrial whims: metabolic rate, longevity, and the rate of molecular evolution. Biology Letters, 5, 413-416. – reference: Elias M, Hill RI, Willmott KR et al. (2007) Limited performance of DNA barcoding in a diverse community of tropical butterflies. Proceedings of the Royal Society B-Biological Sciences, 274, 2881-2889. – reference: Ballard JWO, Melvin RG, Miller JT, Katewa SD (2007) Sex differences in survival and mitochondrial bioenergetics during aging in Drosophila. Aging Cell, 6, 699-708. – reference: Eyre-Walker A, Smith NH, Maynard-Smith J (1999) How clonal are human mitochondria? Proceedings of the Royal Society B-Biological Sciences, 266, 477-483. – reference: Welch JJ, Bininda-Emonds OR, Bromham L (2008) Correlates of substitution rate variation in mammalian protein-coding sequences. BMC Evolutionary Biology, 8, 53. – reference: Rand D (2001) The units of selection on mitochondrial DNA. Annual Review of Ecology and Systematics, 32, 415-448. – reference: Dowling DK, Friberg U, Lindell J (2008) Evolutionary implications of non-neutral mitochondrial genetic variation. Trends in Ecology & Evolution, 23, 546-554. – reference: Grossman LI, Wildman DE, Schmidt TR, Goodman M (2004) Accelerated evolution of the electron transport chain in anthropoid primates. Trends in Genetics, 20, 578-585. – reference: Budar F, Pelletier G (2001) Male sterility in plants: occurrence, determinism, significance and use. Comptes Rendus de l'Academie des Sciences Série II-Sciences De La Vie-Life Sciences, 324, 543-550. – reference: Haag-Liautard C, Dorris M, Maside X et al. (2007) Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature, 445, 82-85. – reference: Ladoukakis ED, Zouros E (2001) Direct evidence for homologous recombination in mussel (Mytilus galloprovincialis) mitochondrial DNA. Molecular Biology and Evolution, 18, 2127-2131. – reference: Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G (1999) Ubiquitin tag for sperm mitochondria. Nature, 402, 371-372. – reference: Gissi C, Iannelli F, Pesole G (2008) Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity, 101, 301-320. – reference: Birky Jr CW (2001) The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annual Review of Genetics, 35, 125-1248. – reference: Mower JP, Touzet P, Gummow JS, Delph LF, Palmer JD (2007) Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants. BMC Evolutionary Biology, 7, 135. – reference: Weinreich DM, Rand DM (2000) Contrasting patterns of nonneutral evolution in proteins encoded in nuclear and mitochondrial genomes. Genetics, 156, 385-399. – reference: Pulquério MJ, Nichols RA (2007) Dates from the molecular clock: how wrong can we be? Trends in Ecology and Evolution, 22, 180-184. – reference: Shoemaker DD, Keller G, Ross KG (2003) Effects of Wolbachia on mtDNA variation in two fire ant species. Molecular Ecology, 12, 1757-1771. – reference: Castoe TA, De Koning AP, Kim HM et al. (2009) From the Cover: evidence for an ancient adaptive episode of convergent molecular evolution. Proceedings of the National Academy of Sciences of the USA, 106, 8986-8991. – reference: Ujvari B, Dowton M, Madsen T (2007) Mitochondrial DNA recombination in a free-ranging Australian lizard. Biology Letters, 3, 189-192. – reference: Doiron S, Bernatchez L, Blier PU (2002) A comparative mitogenomic analysis of the potential adaptive value of Arctic charr mtDNA introgression in brook charr populations (Salvelinus fontinalis Mitchill). Molecular Biology and Evolution, 19, 1902-1909. – reference: Ingvarsson PK, Taylor DR (2002) Genealogical evidence for epidemics of selfish genes. Proceedings of the National Academy of Sciences of the USA, 99, 11265-11269. – reference: Piganeau G, Eyre-Walker A (2004) A reanalysis of the indirect evidence for recombination in human mitochondrial DNA. Heredity, 92, 282-288. – reference: Reboud X, Zeyl C (1994) Organelle inheritance in plants. Heredity, 72, 132-140. – reference: Gantenbein B, Fet V, Gantenbein-Ritter IA, Balloux F (2005) Evidence for recombination in scorpion mitochondrial DNA (Scorpiones: Buthidae). Proceedings of the Royal Society B-Biological Sciences, 272, 697-704. – reference: Hickerson MJ, Meyer CP, Moritz C (2006) DNA barcoding will often fail to discover new animal species over broad parameter space. Systematic Biology, 55, 729-739. – reference: Martin AP (1995) Metabolic rate and directional nucleotide substitution in animal mitochondrial DNA. Molecular Biology and Evolution, 12, 1124-1131. – reference: White DJ, Gemmell NJ (2009) Can indirect tests detect a known recombination event in human mtDNA? Molecular Biology and Evolution, 26, 1435-1439. – reference: Saumitou-Laprade P, Cuguen J, Vernet P (1994) Cytoplasmic male-sterility in plants - molecular evidence and the nucleocytoplasmic conflict. Trends in Ecology & Evolution, 9, 431-435. – reference: Baker AJ, Tavares ES, Elbourne RF (2009) Countering criticisms of single mitochondrial DNA gene barcoding in birds. Molecular Ecology Resources, 9, 257-268. – reference: Breton S, Beaupré HD, Stewart DT, Hoeh WR, Blier PU (2007) The unusual system of doubly uniparental inheritance of mtDNA: isn't one enough? Trends in Genetics, 23, 465-474. – reference: Hickey AJR (2008) An alternate explanation for low mtDNA diversity in birds: an age-old solution? Heredity, 100, 443-443. – reference: McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature, 351, 652-654. – reference: White DJ, Wolff JN, Pierson M, Gemmell NJ (2008) Revealing the hidden complexities of mtDNA inheritance. Molecular Ecology, 17, 4925-4942. – reference: Bensasson D, Zhang DX, Hartl DL, Hewitt GM (2001) Mitochondrial pseudogenes: evolution's misplaced witnesses. Trends in Ecology and Evolution, 16, 314-321. – reference: Galtier N, Enard D, Radondy Y, Bazin E, Belkhir K (2006) Mutation hotspots in mammalian mitochondrial DNA. Genome Research, 16, 215-222. – reference: Ho SY, Phillips MJ, Cooper A, Drummond AJ (2005) Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Molecular Biology and Evolution, 22, 1561-1568. – reference: Brown WM, George M, Wilson A (1979) Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the USA, 76, 1967-1971. – reference: Hagelberg E, Goldman N, Lió P et al. (2000) Evidence for mitochondrial DNA recombination in a human population of island Melanesia: correction. Proceedings of the Royal Society B-Biological Sciences, 267, 1595-1596. – reference: Houliston GJ, Olson MS (2006) Nonneutral evolution of organelle genes in Silene vulgaris. Genetics, 174, 1983-1994. – reference: Moritz C, Dowlin TE, Brown WM (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annual Review of Ecology and Systematics, 18, 269-292. – reference: Schulenburg JHGvd, Hurst GDD, Tetzlaff D, Booth GE, Zakharov IA, Majerus ME (2002) History of infection with different male-killing bacteria in the two spot ladybid beetle Adalia bipunctata revealed through mitochondrial DNA sequence analysis. Genetics, 160, 1075-1086. – reference: Turelli M, Hoffmann AA (1991) Rapid spread of an inherited incompatibility in California Drosophila. Nature, 353, 440-442. – reference: Moritz C, Cicero C (2004) DNA barcoding: promise and pitfalls. Plos Biology, 2, 1529-1531. – reference: Nabholz B, Glémin S, Galtier N (2009) The erratic mitochondrial clock: variations of mutation rate, not population size, affect mtDNA diversity across mammals and birds. BMC Evolutionary Biology, 9, 54. – reference: Barr CM, Keller SR, Ingvarsson PK, Sloan DB, Taylor DR (2007) Variation in mutation rate and polymorphism among mitochondrial genes of Silene vulgaris. Molecular Biology and Evolution, 24, 1783-1791. – reference: Castoe TA, Jiang ZJ, Gu W, Wang ZO, Pollock DD (2008) Adaptive evolution and functional redesign of core metabolic proteins in snakes. PLoS ONE, 3, e2201. – reference: Ingman M, Kaessmann H, Pääbo S, Gyllensten U (2000) Mitochondrial genome variation and the origin of modern humans. Nature, 408, 708-713. – reference: Rach J, DeSalle R, Sarkar IN, Schierwater B, Hadrys H (2008) Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata. Proceedings of the Royal Society B-Biological Sciences, 275, 237-247. – reference: Bininda-Emonds ORP (2007) Fast genes and slow clades: comparative rates of molecular evolution in mammals. Evolutionary Bioinformatics, 3, 59-85. – reference: Gissi C, Reyes A, Pesole G, Saccone C (2000) Lineage-specific evolutionary rate in mammalian mtDNA. Molecular Biology and Evolution, 17, 1022-1031. – reference: Wiemers M, Fiedler K (2007) Does the DNA barcoding gap exist? - a case study in blue butterflies (Lepidoptera: Lycaenidae) Frontiers in Zoology, 4, 8. – reference: Turelli M, Hoffmann AA, McKechnie SW (1992) Dynamics of cytoplasmic incompatibility and mtDNA variation in natural Drosophila simulans populations. Genetics, 132, 713-723. – reference: Hagelberg E, Goldman N, Lió P et al. (1999) Evidence for mitochondrial DNA recombination in a human population of island Melanesia. Proceedings of the Royal Society B-Biological Sciences, 266, 485-492. – reference: Ciborowski KL, Consuegra S, García de Leániz C, Beaumont MA, Wang J, Jordan WC (2007) Rare and fleeting: an example of interspecific recombination in animal mitochondrial DNA. Biology Letters, 3, 554-557. – reference: Roe AD, Sperling FAH (2007) Patterns of evolution of mitochondrial cytochrome c oxidase I and II DNA and implications for DNA barcoding. Molecular Phylogenetics and Evolution, 44, 325-345. – reference: Gillespie JH (2000) Genetic drift in a infinite population: the pseudohitchhiking model. Genetics, 155, 909-919. – reference: Stoneking M (2000) Hypervariable sites in the mtDNA control region are mutational hotspots. American Journal of Human Genetics, 67, 1029-1032. – reference: Innan H, Nordborg M (2002) Recombination or mutational hot spots in human mtDNA? Molecular Biology and Evolution, 19, 1122-1127. – reference: Ellison CK, Burton RS (2008) Interpopulation hybrid breakdown maps to the mitochondrial genome. Evolution, 62, 631-638. – reference: Whitworth TL, Dawson RD, Magalon H, Baudry E (2007) DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera : Calliphoridae). Proceedings of the Royal Society B-Biological Sciences, 274, 1731-1739. – reference: Bazin E, Glémin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science, 312, 570-571. – reference: Ratnasingham S, Hebert PD (2007) bold: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes, 7, 355-364. – reference: Frank SA, Hurst LD (1996) Mitochondria and male disease. Nature, 383, 224. – reference: Schmidt BC, Sperling FAH (2008) Widespread decoupling of mtDNA variation and species integrity in Grammia tiger moths (Lepidoptera: Noctuidae). Systematic Entomology, 33, 613-634. – reference: Jiggins FM (2003) Male-killing Wolbachia and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics. Genetics, 164, 5-12. – reference: Wallace DC (2008) Mitochondria as chi. Genetics, 179, 727-735. – reference: Emerson BC (2007) Alarm bells for the molecular clock? No support for Ho et al.'s model of time-dependent molecular rate estimates. Systematic Biology, 56, 337-345. – reference: Hoshizaki S, Shimada T (1995) PCR-based detection of Wolbachia, cytoplasmic microorganisms, infected in natural populations of Laodelphax striatellus (Homoptera: Delphacidae) in central Japan: has the distribution of Wolbachia spread recently? Insect Molecular Biology, 4, 237-243. – reference: Hoarau G, Holla S, Lescasse R, Stam WT, Olsen JL (2002) Heteroplasmy and evidence for recombination in the mitochondrial control region of the flatfish Platichthys flesus. Molecular Biology and Evolution, 19, 2261-2264. – reference: Lane N (2005) Power, Sex, Suicide. Mitochondria and the Meaning of Life. Oxford University Press, Oxford. – reference: Rousset F, Solignac M (1995) Evolution of single and double Wolbachia symbioses during speciation in the Drosophila simulans complex. Proceedings of the National Academy of Sciences of the USA, 92, 6389-6393. – reference: Charlat S, Duplouy A, Hornett EA et al. (2009) The joint evolutionary histories of Wolbachia and mitochondria in Hypolimnas bolina. BMC Evolutionary Biology, 9, 64. – reference: Zhang AB, Sikes DS, Muster C, Li SQ (2008) Inferring species membership using DNA sequences with back-propagation neural networks. Systematic Biology, 57, 202-215. – reference: Ballard JWO, Rand DM (2005) The population biology of mitochondrial DNA and its phylogenetic implications. Annual Review Of Ecology Evolution And Systematics, 36, 621-642. – reference: Hey J (2000) Human mitochondrial DNA recombination: can it be true? Trends in Ecology and Evolution, 15, 181-182. – reference: Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. Plos Biology, 3, 2229-2238. – reference: Bergthorsson U, Adams KL, Thomason B, Palmer JD (2003) Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature, 424, 197-201. – reference: Moses MJ (1961) Spermiogenesis in the crayfish (Procambarus clarkii) II. Description of stages. Journal of Biophysical and Biochemical Cytology, 10, 301-333. – reference: Xu J (2005) The inheritance of organelle genes and genomes: patterns and mechanisms. Genome, 48, 951-958. – reference: Alves PC, Melo-Ferreira J, Freitas H, Boursot P (2008) The ubiquitous mountain hare mitochondria: multiple introgressive hybridization in hares, genus Lepus. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363, 2831-2839. – reference: Ho SY, Shapiro B, Phillips MJ, Cooper A, Drummond AJ (2007) Evidence for time dependency of molecular rate estimates. Systematic Biology, 56, 515-522. – reference: Avise JC, Arnold J, Ball RM et al. (1987) Intraspecific phylogeography - the mitochondrial-DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18, 489-522. – reference: Awadalla P, Eyre-Walker A, Maynard-Smith J (1999) Linkage disequilibrium and recombination in hominid mitochondrial DNA. Science, 286, 2524-2525. – reference: MacAlpine DM, Kolesar J, Okamoto K, Butow RA, Perlman PS (2001) Replication and preferential inheritance of hypersuppressive petite mitochondrial DNA. Embo Journal, 20, 1807-1817. – reference: Tsaousis AD, Martin DP, Ladoukakis ED, Posada D, Zouros E (2005) Widespread recombination in published animal mtDNA sequences. Molecular Biology and Evolution, 22, 925-933. – reference: Piganeau G, Gardner M, Eyre-Walker A (2004) A broad survey of recombination in animal mitochondria. Molecular Biology and Evolution, 21, 2319-2325. – reference: Gouyon PH, Vichot F, Vandamme JMM (1991) Nuclear-cytoplasmic male-sterility - single-point equilibria versus limit-cycles. American Naturalist, 137, 498-514. – reference: Zeh JA, Zeh DW (2005) Maternal inheritance, sexual conflict and the maladapted male. Trends in Genetics, 21, 281-286. – reference: Kimura M (1983) The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge. – reference: Nabholz B, Mauffrey JF, Bazin E, Galtier N, Glémin S (2008a) Determination of mitochondrial genetic diversity in mammals. Genetics, 178, 352-361. – volume: 4 start-page: 237 year: 1995 end-page: 243 article-title: PCR‐based detection of , cytoplasmic microorganisms, infected in natural populations of (Homoptera: Delphacidae) in central Japan: has the distribution of spread recently? publication-title: Insect Molecular Biology – volume: 12 start-page: 1757 year: 2003 end-page: 1771 article-title: Effects of on mtDNA variation in two fire ant species publication-title: Molecular Ecology – volume: 266 start-page: 477 year: 1999 end-page: 483 article-title: How clonal are human mitochondria? publication-title: Proceedings of the Royal Society B-Biological Sciences – year: 2005 – volume: 18 start-page: 465 year: 2001 end-page: 471 article-title: Cytochrome b phylogeny and the taxonomy of great apes and mammals publication-title: Molecular Biology and Evolution – volume: 3 start-page: 2229 year: 2005 end-page: 2238 article-title: DNA barcoding: error rates based on comprehensive sampling publication-title: Plos Biology – volume: 179 start-page: 727 year: 2008 end-page: 735 article-title: Mitochondria as chi publication-title: Genetics – volume: 21 start-page: 281 year: 2005 end-page: 286 article-title: Maternal inheritance, sexual conflict and the maladapted male publication-title: Trends in Genetics – volume: 9 start-page: 130 year: 2009 end-page: 139 article-title: Are plant species inherently harder to discriminate than animal species using DNA barcoding markers? publication-title: Molecular Ecology Resources – volume: 445 start-page: 82 year: 2007 end-page: 85 article-title: Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila publication-title: Nature – volume: 164 start-page: 5 year: 2003 end-page: 12 article-title: Male‐killing and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics publication-title: Genetics – volume: 6 start-page: 699 year: 2007 end-page: 708 article-title: Sex differences in survival and mitochondrial bioenergetics during aging in publication-title: Aging Cell – volume: 56 start-page: 515 year: 2007 end-page: 522 article-title: Evidence for time dependency of molecular rate estimates publication-title: Systematic Biology – volume: 25 start-page: 120 year: 2008b end-page: 130 article-title: Strong variations of mitochondrial mutation rate across mammals – the longevity hypothesis publication-title: Molecular Biology and Evolution – volume: 5 start-page: 413 year: 2009 end-page: 416 article-title: Mitochondrial whims: metabolic rate, longevity, and the rate of molecular evolution publication-title: Biology Letters – volume: 18 start-page: 269 year: 1987 end-page: 292 article-title: Evolution of animal mitochondrial DNA: relevance for population biology and systematics publication-title: Annual Review of Ecology and Systematics – volume: 72 start-page: 132 year: 1994 end-page: 140 article-title: Organelle inheritance in plants publication-title: Heredity – volume: 41 start-page: 395 year: 2006 end-page: 404 article-title: Hybrid origin of the Pliocene ancestor of wild goats publication-title: Molecular Phylogenetics and Evolution – volume: 35 start-page: 125 year: 2001 end-page: 1248 article-title: The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models publication-title: Annual Review of Genetics – volume: 281 start-page: 215 year: 2008 end-page: 220 article-title: How many species are infected with ? – a statistical analysis of current data publication-title: FEMS Microbiology Letters – volume: 16 start-page: 215 year: 2006 end-page: 222 article-title: Mutation hotspots in mammalian mitochondrial DNA publication-title: Genome Research – volume: 17 start-page: 1126 year: 2000 end-page: 1130 article-title: When one is not enough: introgression of mitochondrial DNA in publication-title: Molecular Biology and Evolution – volume: 16 start-page: 314 year: 2001 end-page: 321 article-title: Mitochondrial pseudogenes: evolution’s misplaced witnesses publication-title: Trends in Ecology and Evolution – volume: 10 start-page: 301 year: 1961 end-page: 333 article-title: Spermiogenesis in the crayfish ( ) II. Description of stages publication-title: Journal of Biophysical and Biochemical Cytology – volume: 4 start-page: 8 year: 2007 article-title: Does the DNA barcoding gap exist? – a case study in blue butterflies (Lepidoptera: Lycaenidae) publication-title: Frontiers in Zoology – volume: 3 start-page: 189 year: 2007 end-page: 192 article-title: Mitochondrial DNA recombination in a free‐ranging Australian lizard publication-title: Biology Letters – volume: 152 start-page: 59 year: 1998 end-page: 70 article-title: The maintenance of nucleocytoplasmic polymorphism in a metapopulation: the case of gynodioecy publication-title: American Naturalist – volume: 9 start-page: 431 year: 1994 end-page: 435 article-title: Cytoplasmic male‐sterility in plants – molecular evidence and the nucleocytoplasmic conflict publication-title: Trends in Ecology & Evolution – volume: 19 start-page: 1902 year: 2002 end-page: 1909 article-title: A comparative mitogenomic analysis of the potential adaptive value of Arctic charr mtDNA introgression in brook charr populations ( ) publication-title: Molecular Biology and Evolution – volume: 266 start-page: 485 year: 1999 end-page: 492 article-title: Evidence for mitochondrial DNA recombination in a human population of island Melanesia publication-title: Proceedings of the Royal Society B-Biological Sciences – volume: 33 start-page: 613 year: 2008 end-page: 634 article-title: Widespread decoupling of mtDNA variation and species integrity in tiger moths (Lepidoptera: Noctuidae) publication-title: Systematic Entomology – volume: 19 start-page: 1122 year: 2002 end-page: 1127 article-title: Recombination or mutational hot spots in human mtDNA? publication-title: Molecular Biology and Evolution – volume: 9 start-page: 42 year: 2009 end-page: 50 article-title: DNA barcoding and the mediocrity of morphology publication-title: Molecular Ecology Resources – volume: 106 start-page: 8986 year: 2009 end-page: 8991 article-title: From the Cover: evidence for an ancient adaptive episode of convergent molecular evolution publication-title: Proceedings of the National Academy of Sciences of the USA – volume: 267 start-page: 1595 year: 2000 end-page: 1596 article-title: Evidence for mitochondrial DNA recombination in a human population of island Melanesia: correction publication-title: Proceedings of the Royal Society B-Biological Sciences – volume: 274 start-page: 1731 year: 2007 end-page: 1739 article-title: DNA barcoding cannot reliably identify species of the blowfly genus (Diptera : Calliphoridae) publication-title: Proceedings of the Royal Society B-Biological Sciences – volume: 62 start-page: 631 year: 2008 end-page: 638 article-title: Interpopulation hybrid breakdown maps to the mitochondrial genome publication-title: Evolution – volume: 351 start-page: 652 year: 1991 end-page: 654 article-title: Adaptive protein evolution at the locus in publication-title: Nature – volume: 3 start-page: 554 year: 2007 end-page: 557 article-title: Rare and fleeting: an example of interspecific recombination in animal mitochondrial DNA publication-title: Biology Letters – volume: 286 start-page: 2524 year: 1999 end-page: 2525 article-title: Linkage disequilibrium and recombination in hominid mitochondrial DNA publication-title: Science – volume: 57 start-page: 305 year: 2003 end-page: 316 article-title: No association between mitochondrial DNA haplotypes and a female‐limited mimicry phenotype in publication-title: Evolution – volume: 3 start-page: 59 year: 2007 end-page: 85 article-title: Fast genes and slow clades: comparative rates of molecular evolution in mammals publication-title: Evolutionary Bioinformatics – volume: 56 start-page: 337 year: 2007 end-page: 345 article-title: Alarm bells for the molecular clock? No support for Ho ’s model of time‐dependent molecular rate estimates publication-title: Systematic Biology – volume: 9 start-page: 257 year: 2009 end-page: 268 article-title: Countering criticisms of single mitochondrial DNA gene barcoding in birds publication-title: Molecular Ecology Resources – volume: 178 start-page: 352 year: 2008a end-page: 361 article-title: Determination of mitochondrial genetic diversity in mammals publication-title: Genetics – volume: 363 start-page: 2831 year: 2008 end-page: 2839 article-title: The ubiquitous mountain hare mitochondria: multiple introgressive hybridization in hares, genus publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences – volume: 3 start-page: e2201 year: 2008 article-title: Adaptive evolution and functional redesign of core metabolic proteins in snakes publication-title: PLoS ONE – volume: 137 start-page: 498 year: 1991 end-page: 514 article-title: Nuclear‐cytoplasmic male‐sterility – single‐point equilibria versus limit‐cycles publication-title: American Naturalist – volume: 272 start-page: 697 year: 2005 end-page: 704 article-title: Evidence for recombination in scorpion mitochondrial DNA (Scorpiones: Buthidae) publication-title: Proceedings of the Royal Society B-Biological Sciences – volume: 274 start-page: 2881 year: 2007 end-page: 2889 article-title: Limited performance of DNA barcoding in a diverse community of tropical butterflies publication-title: Proceedings of the Royal Society B-Biological Sciences – volume: 408 start-page: 708 year: 2000 end-page: 713 article-title: Mitochondrial genome variation and the origin of modern humans publication-title: Nature – volume: 23 start-page: 546 year: 2008 end-page: 554 article-title: Evolutionary implications of non‐neutral mitochondrial genetic variation publication-title: Trends in Ecology & Evolution – volume: 26 start-page: 1435 year: 2009 end-page: 1439 article-title: Can indirect tests detect a known recombination event in human mtDNA? publication-title: Molecular Biology and Evolution – volume: 4 start-page: e4396 year: 2009 article-title: Evidence for variation in the effective population size of animal mitochondrial DNA publication-title: PLoS ONE – volume: 24 start-page: 1783 year: 2007 end-page: 1791 article-title: Variation in mutation rate and polymorphism among mitochondrial genes of publication-title: Molecular Biology and Evolution – volume: 159 start-page: 379 year: 1965 end-page: 383 article-title: Fertilization in tunicates: loss of the paternal mitochondrion prior to sperm entry publication-title: Journal of Experimental Zoology – volume: 15 start-page: 181 year: 2000 end-page: 182 article-title: Human mitochondrial DNA recombination: can it be true? publication-title: Trends in Ecology and Evolution – volume: 18 start-page: 2127 year: 2001 end-page: 2131 article-title: Direct evidence for homologous recombination in mussel ( ) mitochondrial DNA publication-title: Molecular Biology and Evolution – volume: 6 start-page: 27 year: 2008 article-title: The diversity of reproductive parasites among arthropods: do not walk alone publication-title: BMC Biology – volume: 44 start-page: 325 year: 2007 end-page: 345 article-title: Patterns of evolution of mitochondrial cytochrome oxidase I and II DNA and implications for DNA barcoding publication-title: Molecular Phylogenetics and Evolution – volume: 21 start-page: 2319 year: 2004 end-page: 2325 article-title: A broad survey of recombination in animal mitochondria publication-title: Molecular Biology and Evolution – volume: 100 start-page: 443 year: 2008 end-page: 443 article-title: An alternate explanation for low mtDNA diversity in birds: an age‐old solution? publication-title: Heredity – volume: 9 start-page: 64 year: 2009 article-title: The joint evolutionary histories of and mitochondria in publication-title: BMC Evolutionary Biology – volume: 312 start-page: 570 year: 2006 end-page: 571 article-title: Population size does not influence mitochondrial genetic diversity in animals publication-title: Science – volume: 17 start-page: 1022 year: 2000 end-page: 1031 article-title: Lineage‐specific evolutionary rate in mammalian mtDNA publication-title: Molecular Biology and Evolution – volume: 424 start-page: 197 year: 2003 end-page: 201 article-title: Widespread horizontal transfer of mitochondrial genes in flowering plants publication-title: Nature – volume: 174 start-page: 1983 year: 2006 end-page: 1994 article-title: Nonneutral evolution of organelle genes in publication-title: Genetics – volume: 19 start-page: 2261 year: 2002 end-page: 2264 article-title: Heteroplasmy and evidence for recombination in the mitochondrial control region of the flatfish publication-title: Molecular Biology and Evolution – volume: 36 start-page: 621 year: 2005 end-page: 642 article-title: The population biology of mitochondrial DNA and its phylogenetic implications publication-title: Annual Review Of Ecology Evolution And Systematics – volume: 2 start-page: 1529 year: 2004 end-page: 1531 article-title: DNA barcoding: promise and pitfalls publication-title: Plos Biology – volume: 12 start-page: 1124 year: 1995 end-page: 1131 article-title: Metabolic rate and directional nucleotide substitution in animal mitochondrial DNA publication-title: Molecular Biology and Evolution – volume: 22 start-page: 1561 year: 2005 end-page: 1568 article-title: Time dependency of molecular rate estimates and systematic overestimation of recent divergence times publication-title: Molecular Biology and Evolution – volume: 9 start-page: 54 year: 2009 article-title: The erratic mitochondrial clock: variations of mutation rate, not population size, affect mtDNA diversity across mammals and birds publication-title: BMC Evolutionary Biology – volume: 16 start-page: 2281 year: 2007 end-page: 2287 article-title: Rate variation between mitochondrial domains and adaptive evolution in humans publication-title: Human Molecular Genetics – volume: 92 start-page: 282 year: 2004 end-page: 288 article-title: A reanalysis of the indirect evidence for recombination in human mitochondrial DNA publication-title: Heredity – volume: 275 start-page: 237 year: 2008 end-page: 247 article-title: Character‐based DNA barcoding allows discrimination of genera, species and populations in Odonata publication-title: Proceedings of the Royal Society B-Biological Sciences – volume: 22 start-page: 925 year: 2005 end-page: 933 article-title: Widespread recombination in published animal mtDNA sequences publication-title: Molecular Biology and Evolution – volume: 155 start-page: 909 year: 2000 end-page: 919 article-title: Genetic drift in a infinite population: the pseudohitchhiking model publication-title: Genetics – volume: 383 start-page: 224 year: 1996 article-title: Mitochondria and male disease publication-title: Nature – volume: 48 start-page: 951 year: 2005 end-page: 958 article-title: The inheritance of organelle genes and genomes: patterns and mechanisms publication-title: Genome – volume: 272 start-page: 1525 year: 2005 end-page: 1534 article-title: Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts publication-title: Proceedings of the Royal Society B-Biological Sciences – volume: 402 start-page: 371 year: 1999 end-page: 372 article-title: Ubiquitin tag for sperm mitochondria publication-title: Nature – volume: 32 start-page: 415 year: 2001 end-page: 448 article-title: The units of selection on mitochondrial DNA publication-title: Annual Review of Ecology and Systematics – volume: 55 start-page: 729 year: 2006 end-page: 739 article-title: DNA barcoding will often fail to discover new animal species over broad parameter space publication-title: Systematic Biology – volume: 76 start-page: 1967 year: 1979 end-page: 1971 article-title: Rapid evolution of animal mitochondrial DNA publication-title: Proceedings of the National Academy of Sciences of the USA – volume: 20 start-page: 1807 year: 2001 end-page: 1817 article-title: Replication and preferential inheritance of hypersuppressive petite mitochondrial DNA publication-title: Embo Journal – volume: 101 start-page: 17741 year: 2004 end-page: 17746 article-title: Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants publication-title: Proceedings of the National Academy of Sciences of the USA – volume: 101 start-page: 301 year: 2008 end-page: 320 article-title: Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species publication-title: Heredity – volume: 92 start-page: 6389 year: 1995 end-page: 6393 article-title: Evolution of single and double symbioses during speciation in the complex publication-title: Proceedings of the National Academy of Sciences of the USA – volume: 23 start-page: 465 year: 2007 end-page: 474 article-title: The unusual system of doubly uniparental inheritance of mtDNA: isn’t one enough? publication-title: Trends in Genetics – volume: 304 start-page: 981 year: 2004 article-title: Recombination of human mitochondrial DNA publication-title: Science – volume: 18 start-page: 489 year: 1987 end-page: 522 article-title: Intraspecific phylogeography – the mitochondrial‐DNA bridge between population genetics and systematics publication-title: Annual Review of Ecology and Systematics – year: 1983 – volume: 99 start-page: 11265 year: 2002 end-page: 11269 article-title: Genealogical evidence for epidemics of selfish genes publication-title: Proceedings of the National Academy of Sciences of the USA – volume: 20 start-page: 578 year: 2004 end-page: 585 article-title: Accelerated evolution of the electron transport chain in anthropoid primates publication-title: Trends in Genetics – volume: 353 start-page: 440 year: 1991 end-page: 442 article-title: Rapid spread of an inherited incompatibility in California publication-title: Nature – volume: 22 start-page: 180 year: 2007 end-page: 184 article-title: Dates from the molecular clock: how wrong can we be? publication-title: Trends in Ecology and Evolution – volume: 63 start-page: 375 year: 2006 end-page: 392 article-title: The relationship between the rate of molecular evolution and the rate of genome rearrangement in animal mitochondrial genomes publication-title: Journal of Molecular Evolution – volume: 156 start-page: 385 year: 2000 end-page: 399 article-title: Contrasting patterns of nonneutral evolution in proteins encoded in nuclear and mitochondrial genomes publication-title: Genetics – volume: 324 start-page: 543 year: 2001 end-page: 550 article-title: Male sterility in plants: occurrence, determinism, significance and use publication-title: Comptes Rendus de l’Academie des Sciences Série II-Sciences De La Vie-Life Sciences – volume: 7 start-page: 135 year: 2007 article-title: Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants publication-title: BMC Evolutionary Biology – volume: 160 start-page: 1075 year: 2002 end-page: 1086 article-title: History of infection with different male‐killing bacteria in the two spot ladybid beetle revealed through mitochondrial DNA sequence analysis publication-title: Genetics – volume: 67 start-page: 1029 year: 2000 end-page: 1032 article-title: Hypervariable sites in the mtDNA control region are mutational hotspots publication-title: American Journal of Human Genetics – volume: 7 start-page: 355 year: 2007 end-page: 364 article-title: bold: The Barcode of Life Data System ( ) publication-title: Molecular Ecology Notes – volume: 8 start-page: 53 year: 2008 article-title: Correlates of substitution rate variation in mammalian protein‐coding sequences publication-title: BMC Evolutionary Biology – volume: 132 start-page: 713 year: 1992 end-page: 723 article-title: Dynamics of cytoplasmic incompatibility and mtDNA variation in natural populations publication-title: Genetics – volume: 269 start-page: 2257 year: 2002 end-page: 2267 article-title: The distribution of in fig wasps: correlations with host phylogeny, ecology and population structure publication-title: Proceedings of the Royal Society of London Series B-Biological Sciences – volume: 303 start-page: 223 year: 2004 end-page: 226 article-title: Effects of purifying and adaptive selection on regional variation in human mtDNA publication-title: Science – volume: 247 start-page: 189 year: 1992 end-page: 194 article-title: Cytoplasmic inheritance and the nature of sexes publication-title: Proceedings of the Royal Society of London Series B-Biological Sciences – volume: 13 start-page: 729 year: 2004 end-page: 744 article-title: The incomplete natural history of mitochondria publication-title: Molecular Ecology – volume: 77 start-page: 87 year: 2007 end-page: 111 article-title: Mitochondrial DNA and the mammalian oocyte publication-title: Current Topics in Developmental Biology – volume: 57 start-page: 202 year: 2008 end-page: 215 article-title: Inferring species membership using DNA sequences with back‐propagation neural networks publication-title: Systematic Biology – volume: 99 start-page: 389 year: 2007 end-page: 396 article-title: Low mitochondrial variability in birds may indicate Hill‐Robertson effects on the W chromosome publication-title: Heredity – volume: 17 start-page: 4925 year: 2008 end-page: 4942 article-title: Revealing the hidden complexities of mtDNA inheritance publication-title: Molecular Ecology – ident: e_1_2_7_13_1 doi: 10.1016/S0169-5347(01)02151-6 – ident: e_1_2_7_92_1 doi: 10.1016/0169-5347(94)90126-0 – ident: e_1_2_7_28_1 doi: 10.1093/oxfordjournals.molbev.a004014 – ident: e_1_2_7_31_1 doi: 10.1098/rspb.2007.1035 – ident: e_1_2_7_22_1 doi: 10.1073/pnas.0900233106 – ident: e_1_2_7_86_1 doi: 10.1111/j.1471-8286.2007.01678.x – ident: e_1_2_7_109_1 doi: 10.1111/j.1365-294X.2008.03982.x – ident: e_1_2_7_85_1 doi: 10.1146/annurev.ecolsys.32.081501.114109 – ident: e_1_2_7_59_1 doi: 10.1093/hmg/ddm180 – ident: e_1_2_7_82_1 doi: 10.1093/molbev/msh244 – ident: e_1_2_7_84_1 doi: 10.1098/rspb.2007.1290 – ident: e_1_2_7_56_1 doi: 10.1534/genetics.106.060202 – ident: e_1_2_7_111_1 doi: 10.1186/1742-9994-4-8 – ident: e_1_2_7_68_1 doi: 10.1093/emboj/20.7.1807 – ident: e_1_2_7_83_1 doi: 10.1016/j.tree.2006.11.013 – ident: e_1_2_7_14_1 doi: 10.1038/nature01743 – ident: e_1_2_7_90_1 doi: 10.1073/pnas.92.14.6389 – ident: e_1_2_7_110_1 doi: 10.1098/rspb.2007.0062 – ident: e_1_2_7_48_1 doi: 10.1016/S0169-5347(00)01856-5 – ident: e_1_2_7_65_1 doi: 10.1126/science.1096342 – ident: e_1_2_7_76_1 doi: 10.1534/genetics.107.073346 – ident: e_1_2_7_24_1 doi: 10.1186/1471-2148-9-64 – ident: e_1_2_7_20_1 doi: 10.1016/S0764-4469(01)01324-5 – ident: e_1_2_7_33_1 doi: 10.1080/10635150701258795 – volume: 18 start-page: 489 year: 1987 ident: e_1_2_7_4_1 article-title: Intraspecific phylogeography – the mitochondrial‐DNA bridge between population genetics and systematics publication-title: Annual Review of Ecology and Systematics doi: 10.1146/annurev.es.18.110187.002421 – ident: e_1_2_7_26_1 doi: 10.1098/rsbl.2007.0290 – ident: e_1_2_7_37_1 doi: 10.1101/gr.4305906 – ident: e_1_2_7_25_1 doi: 10.1073/pnas.0408302101 – ident: e_1_2_7_62_1 doi: 10.1093/oxfordjournals.molbev.a004170 – ident: e_1_2_7_9_1 doi: 10.1046/j.1365-294X.2003.02063.x – ident: e_1_2_7_60_1 doi: 10.1038/35047064 – ident: e_1_2_7_87_1 doi: 10.1038/hdy.1994.19 – ident: e_1_2_7_50_1 doi: 10.1038/hdy.2008.6 – ident: e_1_2_7_49_1 doi: 10.1046/j.1469-1809.2001.6510043.x – ident: e_1_2_7_17_1 doi: 10.1146/annurev.genet.35.102401.090231 – ident: e_1_2_7_19_1 doi: 10.1073/pnas.76.4.1967 – ident: e_1_2_7_27_1 doi: 10.1086/286149 – ident: e_1_2_7_100_1 doi: 10.1093/molbev/msi084 – ident: e_1_2_7_91_1 doi: 10.1126/science.1088434 – ident: e_1_2_7_70_1 doi: 10.1046/j.1365-294x.1998.00318.x – ident: e_1_2_7_113_1 doi: 10.1007/s00239-005-0246-5 – ident: e_1_2_7_8_1 doi: 10.1146/annurev.ecolsys.36.091704.175513 – ident: e_1_2_7_30_1 doi: 10.1186/1741-7007-6-27 – ident: e_1_2_7_58_1 doi: 10.1098/rspb.2005.3056 – ident: e_1_2_7_75_1 doi: 10.1186/1471-2148-7-135 – ident: e_1_2_7_47_1 doi: 10.1098/rspb.2000.1183 – ident: e_1_2_7_52_1 doi: 10.1093/molbev/msi145 – ident: e_1_2_7_32_1 doi: 10.1111/j.1558-5646.2007.00305.x – ident: e_1_2_7_29_1 doi: 10.1016/j.tree.2008.05.011 – ident: e_1_2_7_95_1 doi: 10.1098/rspb.2002.2100 – ident: e_1_2_7_103_1 doi: 10.1098/rsbl.2006.0587 – ident: e_1_2_7_98_1 doi: 10.1086/303092 – ident: e_1_2_7_53_1 doi: 10.1080/10635150701435401 – ident: e_1_2_7_36_1 doi: 10.1038/383224a0 – ident: e_1_2_7_115_1 doi: 10.1080/10635150802032982 – ident: e_1_2_7_46_1 doi: 10.1098/rspb.1999.0663 – ident: e_1_2_7_81_1 doi: 10.1371/journal.pone.0004396 – ident: e_1_2_7_97_1 doi: 10.1016/S0070-2153(06)77004-1 – ident: e_1_2_7_104_1 doi: 10.1002/jez.1401590310 – ident: e_1_2_7_108_1 doi: 10.1093/molbev/msp073 – ident: e_1_2_7_23_1 doi: 10.1093/oxfordjournals.molbev.a003825 – ident: e_1_2_7_41_1 doi: 10.1093/oxfordjournals.molbev.a026383 – ident: e_1_2_7_11_1 doi: 10.1093/molbev/msm106 – ident: e_1_2_7_89_1 doi: 10.1016/j.ympev.2006.05.033 – ident: e_1_2_7_18_1 doi: 10.1016/j.tig.2007.05.011 – ident: e_1_2_7_21_1 doi: 10.1371/journal.pone.0002201 – ident: e_1_2_7_45_1 doi: 10.1038/nature05388 – ident: e_1_2_7_57_1 doi: 10.1098/rspb.1992.0027 – ident: e_1_2_7_80_1 doi: 10.1038/sj.hdy.6800413 – ident: e_1_2_7_51_1 doi: 10.1111/j.1574-6968.2008.01110.x – ident: e_1_2_7_79_1 doi: 10.1111/j.1755-0998.2009.02631.x – ident: e_1_2_7_10_1 doi: 10.1111/j.1474-9726.2007.00331.x – volume: 160 start-page: 1075 year: 2002 ident: e_1_2_7_94_1 article-title: History of infection with different male‐killing bacteria in the two spot ladybid beetle Adalia bipunctata revealed through mitochondrial DNA sequence analysis publication-title: Genetics doi: 10.1093/genetics/160.3.1075 – ident: e_1_2_7_39_1 doi: 10.1098/rspb.2004.3017 – ident: e_1_2_7_106_1 doi: 10.1093/genetics/156.1.385 – ident: e_1_2_7_88_1 doi: 10.1016/j.ympev.2006.12.005 – ident: e_1_2_7_7_1 doi: 10.1093/oxfordjournals.molbev.a026394 – ident: e_1_2_7_44_1 doi: 10.1016/j.tig.2004.09.002 – ident: e_1_2_7_78_1 doi: 10.1186/1471-2148-9-54 – ident: e_1_2_7_3_1 doi: 10.1111/j.0014-3820.2003.tb00265.x – ident: e_1_2_7_55_1 doi: 10.1111/j.1365-2583.1995.tb00029.x – ident: e_1_2_7_72_1 doi: 10.1371/journal.pbio.0020354 – ident: e_1_2_7_74_1 doi: 10.1083/jcb.10.3.301 – ident: e_1_2_7_105_1 doi: 10.1534/genetics.104.91769 – ident: e_1_2_7_2_1 doi: 10.1098/rstb.2008.0053 – ident: e_1_2_7_15_1 doi: 10.1038/sj.hdy.6801014 – ident: e_1_2_7_12_1 doi: 10.1126/science.1122033 – ident: e_1_2_7_5_1 doi: 10.1126/science.286.5449.2524 – ident: e_1_2_7_16_1 doi: 10.1177/117693430700300008 – ident: e_1_2_7_93_1 doi: 10.1111/j.1365-3113.2008.00433.x – ident: e_1_2_7_114_1 doi: 10.1016/j.tig.2005.03.006 – ident: e_1_2_7_6_1 doi: 10.1111/j.1755-0998.2009.02650.x – ident: e_1_2_7_101_1 doi: 10.1038/353440a0 – volume: 155 start-page: 909 year: 2000 ident: e_1_2_7_40_1 article-title: Genetic drift in a infinite population: the pseudohitchhiking model publication-title: Genetics doi: 10.1093/genetics/155.2.909 – ident: e_1_2_7_71_1 doi: 10.1371/journal.pbio.0030422 – ident: e_1_2_7_61_1 doi: 10.1073/pnas.172318099 – volume-title: Power, Sex, Suicide. Mitochondria and the Meaning of Life year: 2005 ident: e_1_2_7_67_1 – ident: e_1_2_7_73_1 doi: 10.1111/j.1365-294X.2005.02773.x – ident: e_1_2_7_43_1 doi: 10.1086/285179 – ident: e_1_2_7_63_1 doi: 10.1093/genetics/164.1.5 – ident: e_1_2_7_64_1 doi: 10.1017/CBO9780511623486 – ident: e_1_2_7_99_1 doi: 10.1038/46466 – ident: e_1_2_7_66_1 doi: 10.1093/oxfordjournals.molbev.a003755 – ident: e_1_2_7_96_1 doi: 10.1046/j.1365-294X.2003.01864.x – ident: e_1_2_7_102_1 doi: 10.1093/genetics/132.3.713 – ident: e_1_2_7_107_1 doi: 10.1186/1471-2148-8-53 – ident: e_1_2_7_34_1 doi: 10.1098/rspb.1999.0662 – ident: e_1_2_7_42_1 doi: 10.1038/hdy.2008.62 – ident: e_1_2_7_112_1 doi: 10.1139/g05-082 – ident: e_1_2_7_54_1 doi: 10.1093/oxfordjournals.molbev.a004049 – ident: e_1_2_7_35_1 doi: 10.1111/j.1755-0998.2009.02652.x – ident: e_1_2_7_38_1 doi: 10.1098/rsbl.2008.0662 – volume: 12 start-page: 1124 year: 1995 ident: e_1_2_7_69_1 article-title: Metabolic rate and directional nucleotide substitution in animal mitochondrial DNA publication-title: Molecular Biology and Evolution – ident: e_1_2_7_77_1 doi: 10.1093/molbev/msm248 |
| SSID | ssj0013255 |
| Score | 2.542659 |
| SecondaryResourceType | review_article |
| Snippet | Over the last three decades, mitochondrial DNA has been the most popular marker of molecular diversity, for a combination of technical ease-of-use... Over the last three decades, mitochondrial DNA has been the most popular marker of molecular diversity, for a combination of technical ease‐of‐use... |
| SourceID | swepub proquest pubmed crossref wiley istex fao |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4541 |
| SubjectTerms | adaptation Biodiversity Biologi Biology Biomarkers DNA, Mitochondrial DNA, Mitochondrial - genetics Evolution, Molecular Genetic Markers Genetic Speciation Genetic Variation genetics Genetics, Population Genome, Mitochondrial Genomics Inheritance Patterns Mitochondrial DNA mitochondrial genome Molecular biology molecular clock Mutation mutation hotspots NATURAL SCIENCES NATURVETENSKAP population recombination Selection, Genetic Wolbachio |
| Title | Mitochondrial DNA as a marker of molecular diversity: a reappraisal |
| URI | https://api.istex.fr/ark:/67375/WNG-59HBHDQ7-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-294X.2009.04380.x https://www.ncbi.nlm.nih.gov/pubmed/19821901 https://www.proquest.com/docview/210701442 https://www.proquest.com/docview/210701867 https://www.proquest.com/docview/1139576410 https://www.proquest.com/docview/734239761 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-142175 |
| Volume | 18 |
| WOSCitedRecordID | wos000271468800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-294X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013255 issn: 0962-1083 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-xDiRe-B7LBlOQgLeg5suOeSv9oA-s4qvQN8uJ7anS1lbJirb_fndOGlZpoAnxFslxlFzuzr_znX8H8FrkQtuMqSDG9TVItDCBQiARGNtNVWGJwTxzzSb4ZJLNZuJzU_9EZ2Fqfoh2w40sw_lrMnCVV9tG7iq0RDJraCeJPP0d4sndCNU46cDu4Oto-ulaTsH1QEXMHqHzyeLtup4bn7W1WO1YtUQIS9K_uAmPtmSj2zjXLVSjh__zEx_Bgwau-r1avx7DHbN4AvfqBpaXeDV0pNeXT6F_jK4BXelCk0b7g0nPV5Wv_DMq_yn9pfXPNo14fb2pBXmPNyBoXa1KNa_U6TOYjobf--OgadAQFHS6J8iNtlqZjOlYJVabJNRJwaPcWIQhdGLVCIVwR4VW25B2XBOrIlt0FY8UC_Ms3oPOYrkw--DnrMgjqxFfaZaoIlcYZ4nYpirR3TSymQd88ydk0bCXUxONU3ktikFhSRIW9dYU0glLXngQtjNXNYPHLebs48-W6gQdrZx-iyi9GzLBEB158NZpQPssFCMVx_FU_px8lKkYfxgPvnDZ9-BwoyKy8QuVxACbUwwb_WU0Y9yDV-0omjvlcNTCLNcVvjYlVlkSdj3w_3APd6yOnIUePK9V8_eHiywiCOjBm1pX2xGiGR_Mf_TksjyR6zWGhBisph4wp6C3lpw8Hvbp6uBfJx7CfZewc8c9X0DnvFybl3C3-HU-r8oj2OGz7Kix7CtmN0V7 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEB5BCiov3LSmHEYC3ozia-3lLeQgiCTiaEreVmvvbhWpdSKnQe2_Z2btmEYqqEK8WVqvZY9nZr_Zmf0G4DXPuDIpk16I66sXKa49iUDC06Ydy9wQg3lqm00kk0k6m_EvdTsgOgtT8UM0G25kGdZfk4HThvS2ldsSLR7Nat5JYk9_h4ByJ0Ktiluw0_s2mI4uJRVsE1QE7QF6nzTcLuy58llbq9VNIxeIYUn851cB0oZtdBvo2pVqcO-_fuN9uFsDVrdTadgDuKGLh3C7amF5gVd9S3t98Qi6Y3QO6EwLRTrt9iYdV65c6Z5SAVDpLox7umnF66pNNch7vAFh63JZyvlKnjyG6aB_2B16dYsGL6fzPV6mlVFSp0yFMjJKR76K8iTItEEgQmdWNZcIeKRvlPFpzzUyMjB5WyaBZH6Whk-gVSwKvQ9uxvIsMAoRlmKRzDOJkRYPTSwj1Y4DkzqQbH6FyGv-cmqjcSIuxTEoLEHCou6aXFhhiXMH_GbmsuLwuMacffzbQh6jqxXT7wEleH3GGeIjB95aFWiehWKk8rgkFj8mH0XMhx-Gva-J6DpwsNERUXuGlcAQO6EoNvjLaMoSB141o2jwlMWRhV6sV_jalFplkd92wP3DPYnldUyY78BepZu_P5ynAYFAB95UytqMENF4b37UEYvyWKzXGBRiuBo7wKyGXltyYtzv0tXTf534EnaHh-ORGH2afD6AOzZ9Zw9_PoPWWbnWz-FW_vNsvipf1Ab-C0WuSIM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb9MwED_BBogvvGFhPIIEfAtqXnbMt9IHRWzReHT0m-XE9lRpS6t2Rdt_z52ThlUaaEJ8i-Q4Si5359_5zr8DeC0KoW3GVBDj-hokWphAIZAIjO2kqrTEYJ65ZhM8z7PJRBw07YDoLEzND9FuuJFlOH9NBm7m2m5auSvREsmk4Z0k9vR3CCi3k1QwtNLt_tfheO9CUsE1QUXQHqH3yeLNwp5Ln7WxWl23aoYYlsR_dhkgbdlGN4GuW6mGd__rN96DOw1g9bu1ht2Ha6Z6ADfrFpbneDVwtNfnD6G3j84BnWmlSaf9ft711dJX_gkVAC38mfVP1q14fb2uBnmPNyBsnc8XarpUx49gPBx8742CpkVDUNL5nqAw2mplMqZjlVhtklAnJY8KYxGI0JlVIxQCHhVabUPac02simzZUTxSLCyy-DFsVbPK7IBfsLKIrEaEpVmiykJhpCVim6pEd9LIZh7w9a-QZcNfTm00juWFOAaFJUlY1F1TSCcseeZB2M6c1xweV5izg39bqiN0tXL8LaIEb8gEQ3zkwVunAu2zUIxUHsdT-SP_KFMx-jDqf-Gy58HuWkdk4xmWEkNsTlFs9JfRjHEPXrWjaPCUxVGVma2W-NqUWmVJ2PHA_8M93PE6chZ68KTWzd8fLrKIQKAHb2plbUeIaLw_PezK2eJIrlYYFGK4mnrAnIZeWXJyf9Cjq6f_OvEl3DroD-Xep_zzLtx22Tt39vMZbJ0uVuY53Ch_nk6XixeNff8CYm1H_g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+DNA+as+a+marker+of+molecular+diversity%3A+a+reappraisal&rft.jtitle=Molecular+ecology&rft.au=Galtier%2C+N&rft.au=Nabholz%2C+B&rft.au=Glemin%2C+S&rft.au=Hurst%2C+G.D.D&rft.date=2009-11-01&rft.pub=Oxford%2C+UK+%3A+Blackwell+Publishing+Ltd&rft.issn=0962-1083&rft.eissn=1365-294X&rft.volume=18&rft.issue=22&rft.spage=4541&rft.epage=4550&rft_id=info:doi/10.1111%2Fj.1365-294X.2009.04380.x&rft.externalDocID=US201301696512 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon |