Mitochondrial DNA as a marker of molecular diversity: a reappraisal

Over the last three decades, mitochondrial DNA has been the most popular marker of molecular diversity, for a combination of technical ease-of-use considerations, and supposed biological and evolutionary properties of clonality, near-neutrality and clock-like nature of its substitution rate. Reviewi...

Full description

Saved in:
Bibliographic Details
Published in:Molecular ecology Vol. 18; no. 22; pp. 4541 - 4550
Main Authors: Galtier, N, Nabholz, B, Glemin, S, Hurst, G.D.D
Format: Journal Article
Language:English
Published: Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.11.2009
Blackwell Publishing Ltd
Subjects:
ISSN:0962-1083, 1365-294X, 1365-294X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Over the last three decades, mitochondrial DNA has been the most popular marker of molecular diversity, for a combination of technical ease-of-use considerations, and supposed biological and evolutionary properties of clonality, near-neutrality and clock-like nature of its substitution rate. Reviewing recent literature on the subject, we argue that mitochondrial DNA is not always clonal, far from neutrally evolving and certainly not clock-like, questioning its relevance as a witness of recent species and population history. We critically evaluate the usage of mitochondrial DNA for species delineation and identification. Finally, we note the great potential of accumulating mtDNA data for evolutionary and functional analysis of the mitochondrial genome.
AbstractList Over the last three decades, mitochondrial DNA has been the most popular marker of molecular diversity, for a combination of technical ease-of-use considerations, and supposed biological and evolutionary properties of clonality, near-neutrality and clock-like nature of its substitution rate. Reviewing recent literature on the subject, we argue that mitochondrial DNA is not always clonal, far from neutrally evolving and certainly not clock-like, questioning its relevance as a witness of recent species and population history. We critically evaluate the usage of mitochondrial DNA for species delineation and identification. Finally, we note the great potential of accumulating mtDNA data for evolutionary and functional analysis of the mitochondrial genome.Over the last three decades, mitochondrial DNA has been the most popular marker of molecular diversity, for a combination of technical ease-of-use considerations, and supposed biological and evolutionary properties of clonality, near-neutrality and clock-like nature of its substitution rate. Reviewing recent literature on the subject, we argue that mitochondrial DNA is not always clonal, far from neutrally evolving and certainly not clock-like, questioning its relevance as a witness of recent species and population history. We critically evaluate the usage of mitochondrial DNA for species delineation and identification. Finally, we note the great potential of accumulating mtDNA data for evolutionary and functional analysis of the mitochondrial genome.
Over the last three decades, mitochondrial DNA has been the most popular marker of molecular diversity, for a combination of technical ease-of-use considerations, and supposed biological and evolutionary properties of clonality, near-neutrality and clock-like nature of its substitution rate. Reviewing recent literature on the subject, we argue that mitochondrial DNA is not always clonal, far from neutrally evolving and certainly not clock-like, questioning its relevance as a witness of recent species and population history. We critically evaluate the usage of mitochondrial DNA for species delineation and identification. Finally, we note the great potential of accumulating mtDNA data for evolutionary and functional analysis of the mitochondrial genome. [PUBLICATION ABSTRACT]
Over the last three decades, mitochondrial DNA has been the most popular marker of molecular diversity, for a combination of technical ease‐of‐use considerations, and supposed biological and evolutionary properties of clonality, near‐neutrality and clock‐like nature of its substitution rate. Reviewing recent literature on the subject, we argue that mitochondrial DNA is not always clonal, far from neutrally evolving and certainly not clock‐like, questioning its relevance as a witness of recent species and population history. We critically evaluate the usage of mitochondrial DNA for species delineation and identification. Finally, we note the great potential of accumulating mtDNA data for evolutionary and functional analysis of the mitochondrial genome.
Author GLÉMIN, S.
HURST, G. D. D.
GALTIER, N.
NABHOLZ, B.
Author_xml – sequence: 1
  fullname: Galtier, N
– sequence: 2
  fullname: Nabholz, B
– sequence: 3
  fullname: Glemin, S
– sequence: 4
  fullname: Hurst, G.D.D
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19821901$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-142175$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNqNkl1v0zAUhi00xLrCX4CIG7ggxcfOl5FA6tqxIm1DCAbcHTmJPVzSuLMT1v57XDJ6sQuGb2zJz3s-3yNy0NpWERIBnUA4r5cT4FkaM5F8nzBKxYQmvKCTzQMy2n8ckBEVGYuBFvyQHHm_pBQ4S9NH5BBEwUBQGJHZuels9cO2tTOyieYX00j6SEYr6X4qF1kdrWyjqr6RLqrNL-W86bZvAuCUXK-dNF42j8lDLRuvntzeY3L5_uTLbBGffTz9MJuexVWWUxqXqta1VEVWc5noWiVQJ1XOSqVTKnjCmRJS5JkEXWugJYVES6YrKnMmMygLPiavhrj-Rq37EtfOhDK3aKXBufk6ReuusO8REgZ5GvAXA7529rpXvsOV8ZVqGtkq23vMecJ4SAiBfPlPEoCLNM8SoAF9fgdd2t61oW1kQHMKRZbfDyUh85g8vYX6cqXqfTd_dxOAdwNQOeu9Uxor08nO2LYLc28QKO7MgEvc7Rx3O8edGfCPGXATAhR3Auxz3C99O0hvTKO2_63D85PZ7hX08aA3vlObvT6YCsN88hS_XZxiKhbHi_mnHGeBfzbwWlqUV854vPzMwhAoZCJLgfHfKMThsg
CitedBy_id crossref_primary_10_1371_journal_pone_0245138
crossref_primary_10_1007_s10750_022_04840_w
crossref_primary_10_3109_19401736_2015_1118085
crossref_primary_10_1111_j_1558_5646_2012_01657_x
crossref_primary_10_3109_19401736_2015_1126827
crossref_primary_10_1093_jhered_esr090
crossref_primary_10_1038_srep24875
crossref_primary_10_1007_s00227_021_03970_4
crossref_primary_10_1007_s13127_015_0217_7
crossref_primary_10_1016_j_mito_2011_06_012
crossref_primary_10_1007_s11033_023_08272_0
crossref_primary_10_1371_journal_pone_0122407
crossref_primary_10_1002_ece3_434
crossref_primary_10_1080_23802359_2020_1842262
crossref_primary_10_1093_zoolinnean_zlae110
crossref_primary_10_1002_ece3_1366
crossref_primary_10_1007_s00294_016_0572_8
crossref_primary_10_7717_peerj_19952
crossref_primary_10_1007_s10530_016_1134_1
crossref_primary_10_3390_life15010052
crossref_primary_10_1016_j_ympev_2013_09_019
crossref_primary_10_1111_1744_7917_12798
crossref_primary_10_3109_19401736_2012_690747
crossref_primary_10_3390_genes14051018
crossref_primary_10_3109_19401736_2010_532212
crossref_primary_10_1002_ece3_4516
crossref_primary_10_1016_j_gene_2010_08_001
crossref_primary_10_1088_1755_1315_1001_1_012041
crossref_primary_10_1111_jbi_12137
crossref_primary_10_1007_s12686_017_0803_4
crossref_primary_10_1016_j_ygeno_2022_110297
crossref_primary_10_1002_ece3_9093
crossref_primary_10_1017_S0022149X21000146
crossref_primary_10_1111_ibi_12511
crossref_primary_10_1111_evo_14407
crossref_primary_10_3389_fpls_2024_1449606
crossref_primary_10_1038_s41598_024_77913_6
crossref_primary_10_1111_j_1755_0998_2011_03056_x
crossref_primary_10_1007_s10592_021_01333_6
crossref_primary_10_1111_jeb_14080
crossref_primary_10_1186_1756_3305_7_9
crossref_primary_10_1016_j_gene_2024_148728
crossref_primary_10_1016_j_rsma_2023_102833
crossref_primary_10_1016_j_ijbiomac_2019_08_064
crossref_primary_10_1093_jme_tjab112
crossref_primary_10_1111_jzs_12078
crossref_primary_10_3389_fevo_2025_1295369
crossref_primary_10_1525_auk_2013_12241
crossref_primary_10_1371_journal_pone_0020722
crossref_primary_10_1007_s00217_025_04847_2
crossref_primary_10_1016_j_aspen_2018_07_012
crossref_primary_10_1093_aesa_saab020
crossref_primary_10_1111_rec_14068
crossref_primary_10_3389_fpls_2024_1347945
crossref_primary_10_1111_evo_12230
crossref_primary_10_1111_j_1558_5646_2010_01071_x
crossref_primary_10_1371_journal_pntd_0003364
crossref_primary_10_4102_ojvr_v86i1_1768
crossref_primary_10_1111_evo_12118
crossref_primary_10_1111_j_1365_2699_2010_02401_x
crossref_primary_10_1016_j_gene_2013_07_059
crossref_primary_10_3389_ffunb_2021_802511
crossref_primary_10_1186_1475_2875_11_76
crossref_primary_10_1016_j_margen_2014_11_007
crossref_primary_10_1094_PHYTO_12_21_0532_R
crossref_primary_10_1111_mec_13959
crossref_primary_10_1371_journal_pone_0235430
crossref_primary_10_1111_1755_0998_14034
crossref_primary_10_1186_s12863_015_0221_0
crossref_primary_10_1007_s12686_018_1003_6
crossref_primary_10_1038_hdy_2012_114
crossref_primary_10_1080_24750263_2022_2036256
crossref_primary_10_1002_ece3_5621
crossref_primary_10_1371_journal_pone_0100755
crossref_primary_10_1007_s10750_011_0879_x
crossref_primary_10_1088_1755_1315_591_1_012037
crossref_primary_10_3109_19401736_2010_533765
crossref_primary_10_1093_jhered_est133
crossref_primary_10_1111_j_1365_294X_2011_05213_x
crossref_primary_10_1007_s00227_011_1647_1
crossref_primary_10_1080_14772000_2011_627953
crossref_primary_10_1093_sysbio_sys051
crossref_primary_10_1111_jzs_12095
crossref_primary_10_1080_24750263_2018_1540669
crossref_primary_10_1371_journal_pone_0165105
crossref_primary_10_1007_s11250_024_04229_y
crossref_primary_10_1371_journal_pone_0169944
crossref_primary_10_1002_arch_21920
crossref_primary_10_1002_ece3_644
crossref_primary_10_1002_ece3_886
crossref_primary_10_1016_j_actatropica_2022_106778
crossref_primary_10_1007_s12161_018_1239_5
crossref_primary_10_1038_s41598_017_07419_x
crossref_primary_10_1038_s41598_025_85507_z
crossref_primary_10_1111_j_1365_3113_2011_00597_x
crossref_primary_10_1038_s41598_018_25138_9
crossref_primary_10_3897_zookeys_1081_77043
crossref_primary_10_3390_biology11050654
crossref_primary_10_1007_s00227_021_03918_8
crossref_primary_10_1073_pnas_1409328111
crossref_primary_10_1080_24701394_2019_1580270
crossref_primary_10_1111_j_1095_8312_2011_01728_x
crossref_primary_10_1111_bij_12289
crossref_primary_10_1111_syen_12089
crossref_primary_10_1186_s12862_025_02414_7
crossref_primary_10_1007_s13127_016_0275_5
crossref_primary_10_1371_journal_pone_0051263
crossref_primary_10_1111_j_1365_294X_2011_05101_x
crossref_primary_10_1186_1471_2148_10_392
crossref_primary_10_1111_bij_12259
crossref_primary_10_1186_s12862_019_1430_3
crossref_primary_10_1016_j_ijpara_2014_04_003
crossref_primary_10_3390_ani12060681
crossref_primary_10_1016_j_aqrep_2025_102748
crossref_primary_10_1080_17451000_2017_1312005
crossref_primary_10_1080_24701394_2023_2276749
crossref_primary_10_1016_j_cub_2017_04_060
crossref_primary_10_1017_pao_2018_2
crossref_primary_10_1134_S1022795421010038
crossref_primary_10_1186_s43008_023_00118_5
crossref_primary_10_1111_evo_12788
crossref_primary_10_1186_s12915_019_0724_7
crossref_primary_10_1371_journal_pone_0030239
crossref_primary_10_1101_gr_102954_109
crossref_primary_10_1371_journal_pone_0026357
crossref_primary_10_1007_s10592_017_1012_0
crossref_primary_10_1093_femsre_fuab047
crossref_primary_10_3390_d2040450
crossref_primary_10_3897_zookeys_705_13001
crossref_primary_10_1111_ele_12195
crossref_primary_10_1111_j_1365_294X_2010_04965_x
crossref_primary_10_1111_ecog_04951
crossref_primary_10_3390_ani13132191
crossref_primary_10_1093_biolinnean_blw013
crossref_primary_10_1093_jisesa_ieaf064
crossref_primary_10_1111_mec_17282
crossref_primary_10_1111_jeb_12822
crossref_primary_10_1016_j_aspen_2016_09_005
crossref_primary_10_3389_fgene_2018_00651
crossref_primary_10_1007_s12686_016_0629_5
crossref_primary_10_3390_genes13010125
crossref_primary_10_1007_s10059_012_2151_2
crossref_primary_10_1016_j_jembe_2014_06_008
crossref_primary_10_1016_j_ympev_2015_07_023
crossref_primary_10_1093_molbev_msr226
crossref_primary_10_3106_ms2022_0013
crossref_primary_10_3897_zookeys_1221_129136
crossref_primary_10_1016_j_biocon_2016_03_029
crossref_primary_10_1017_S0043933915000318
crossref_primary_10_1007_s10750_015_2216_2
crossref_primary_10_1038_s41437_021_00455_4
crossref_primary_10_1111_nph_18219
crossref_primary_10_1111_syen_12299
crossref_primary_10_3390_ani14050721
crossref_primary_10_1371_journal_ppat_1012811
crossref_primary_10_1093_carcin_bgy133
crossref_primary_10_1016_j_ympev_2019_05_018
crossref_primary_10_1093_molbev_msad082
crossref_primary_10_1007_s13364_019_00461_2
crossref_primary_10_1016_j_ympev_2012_07_033
crossref_primary_10_1080_23802359_2018_1495114
crossref_primary_10_1093_jmammal_gyaf010
crossref_primary_10_1007_s13127_020_00430_7
crossref_primary_10_1007_s10750_020_04203_3
crossref_primary_10_1111_j_1095_8312_2011_01703_x
crossref_primary_10_3109_19401736_2013_830289
crossref_primary_10_1007_s10493_015_9944_x
crossref_primary_10_3389_fmicb_2021_707281
crossref_primary_10_1186_s12864_022_08743_x
crossref_primary_10_1186_s13071_016_1909_3
crossref_primary_10_1007_s10641_017_0581_6
crossref_primary_10_1093_mollus_eyy035
crossref_primary_10_1016_j_ygeno_2018_04_013
crossref_primary_10_1111_1755_0998_12904
crossref_primary_10_1525_auk_2010_10151
crossref_primary_10_1016_j_fsigen_2019_102197
crossref_primary_10_1093_jmammal_gyz093
crossref_primary_10_3897_zookeys_1135_94628
crossref_primary_10_1093_jcbiol_ruy100
crossref_primary_10_1371_journal_pone_0084080
crossref_primary_10_1016_j_mito_2017_02_001
crossref_primary_10_1371_journal_pone_0224336
crossref_primary_10_1371_journal_pone_0097268
crossref_primary_10_21425_fob_18_139911
crossref_primary_10_1111_j_1558_5646_2012_01830_x
crossref_primary_10_1371_journal_pone_0255291
crossref_primary_10_1016_j_ympev_2023_107781
crossref_primary_10_1371_journal_pone_0057745
crossref_primary_10_1186_s12864_020_07292_5
crossref_primary_10_1016_j_ympev_2018_10_029
crossref_primary_10_1038_srep30355
crossref_primary_10_1016_j_ympev_2013_07_003
crossref_primary_10_1111_j_1365_294X_2011_05107_x
crossref_primary_10_3109_19401736_2011_653798
crossref_primary_10_1016_j_rvsc_2025_105863
crossref_primary_10_1080_24701394_2024_2427841
crossref_primary_10_3390_fishes6040044
crossref_primary_10_1007_s10530_016_1130_5
crossref_primary_10_1111_icad_12129
crossref_primary_10_1111_jfb_15848
crossref_primary_10_1016_j_ympev_2010_09_015
crossref_primary_10_1016_j_ympev_2010_09_018
crossref_primary_10_1111_zsc_12615
crossref_primary_10_1111_mec_13203
crossref_primary_10_1111_mec_13324
crossref_primary_10_1080_23802359_2019_1574643
crossref_primary_10_1080_24701394_2018_1467410
crossref_primary_10_1093_zoolinnean_zlaf059
crossref_primary_10_1007_s10336_013_0980_1
crossref_primary_10_1007_s12041_021_01341_y
crossref_primary_10_1080_23802359_2024_2368206
crossref_primary_10_1111_mec_15981
crossref_primary_10_1371_journal_pone_0047710
crossref_primary_10_7717_peerj_10850
crossref_primary_10_7717_peerj_18699
crossref_primary_10_1093_jcbiol_ruac007
crossref_primary_10_2983_035_044_0201
crossref_primary_10_1111_zoj_12380
crossref_primary_10_1371_journal_pone_0066324
crossref_primary_10_3390_d14121089
crossref_primary_10_1002_ece3_2989
crossref_primary_10_1016_j_bse_2013_02_004
crossref_primary_10_1007_s11802_014_2139_y
crossref_primary_10_1016_j_ympev_2010_09_009
crossref_primary_10_1186_1471_2148_12_196
crossref_primary_10_1093_biolinnean_blz166
crossref_primary_10_1016_j_ympev_2011_03_006
crossref_primary_10_1080_23802359_2019_1689859
crossref_primary_10_1007_s12041_024_01469_7
crossref_primary_10_1093_molbev_msq336
crossref_primary_10_1016_j_jia_2024_12_008
crossref_primary_10_1016_j_ympev_2021_107082
crossref_primary_10_1038_s41598_018_33806_z
crossref_primary_10_1186_s40851_021_00169_9
crossref_primary_10_1371_journal_pone_0024127
crossref_primary_10_1007_s00414_010_0524_7
crossref_primary_10_1186_s13071_016_1730_z
crossref_primary_10_3390_jof7030226
crossref_primary_10_1093_zoolinnean_zlae099
crossref_primary_10_1186_s13059_021_02336_9
crossref_primary_10_1038_s41437_024_00713_1
crossref_primary_10_1111_j_1365_294X_2010_04594_x
crossref_primary_10_1007_s00343_020_0332_y
crossref_primary_10_1080_13235818_2024_2333723
crossref_primary_10_1007_s12686_011_9474_8
crossref_primary_10_3897_zookeys_1179_100006
crossref_primary_10_1002_aqc_3684
crossref_primary_10_1371_journal_pone_0329906
crossref_primary_10_1007_s12526_018_0877_6
crossref_primary_10_1038_nrg_2016_58
crossref_primary_10_1371_journal_pone_0052089
crossref_primary_10_1007_s00227_015_2676_y
crossref_primary_10_1603_AN12033
crossref_primary_10_3109_19401736_2015_1089501
crossref_primary_10_1016_j_genrep_2016_08_003
crossref_primary_10_1134_S0013873819040055
crossref_primary_10_1016_j_biocon_2024_110828
crossref_primary_10_1093_mutage_gex004
crossref_primary_10_1007_s00436_025_08516_x
crossref_primary_10_1007_s10750_018_3633_9
crossref_primary_10_1371_journal_pone_0184529
crossref_primary_10_1111_j_1365_294X_2010_04790_x
crossref_primary_10_1007_s00438_024_02099_5
crossref_primary_10_1111_mec_13425
crossref_primary_10_1007_s13127_013_0141_7
crossref_primary_10_1080_23802359_2023_2262692
crossref_primary_10_1007_s10841_013_9605_5
crossref_primary_10_1007_s11033_023_08700_1
crossref_primary_10_1016_j_fishres_2011_04_013
crossref_primary_10_1093_molbev_msy184
crossref_primary_10_1371_journal_pone_0054373
crossref_primary_10_1016_j_gene_2012_12_093
crossref_primary_10_1007_s10592_022_01464_4
crossref_primary_10_1007_s12686_017_0835_9
crossref_primary_10_1016_j_ympev_2023_107798
crossref_primary_10_1080_24701394_2016_1214727
crossref_primary_10_3897_zookeys_1078_64116
crossref_primary_10_1007_s10493_016_0062_1
crossref_primary_10_1002_ece3_71084
crossref_primary_10_1111_zoj_12443
crossref_primary_10_1111_jeb_13186
crossref_primary_10_1016_j_ympev_2017_11_023
crossref_primary_10_1111_mec_12689
crossref_primary_10_1016_j_mito_2016_03_005
crossref_primary_10_1016_j_margen_2015_08_005
crossref_primary_10_1016_j_plgene_2025_100530
crossref_primary_10_1111_icad_12289
crossref_primary_10_1007_s10592_024_01658_y
crossref_primary_10_1002_evl3_221
crossref_primary_10_1186_1471_2148_11_369
crossref_primary_10_1186_1471_2148_12_161
crossref_primary_10_1007_s00436_015_4726_2
crossref_primary_10_1093_biolinnean_bly166
crossref_primary_10_1016_j_hal_2010_08_004
crossref_primary_10_1002_jemt_23484
crossref_primary_10_1038_s41598_020_61389_1
crossref_primary_10_1038_s41598_023_30570_7
crossref_primary_10_1111_jfb_13572
crossref_primary_10_1186_1471_2148_10_325
crossref_primary_10_1111_1755_0998_13178
crossref_primary_10_1146_annurev_marine_120308_080950
crossref_primary_10_1016_j_meegid_2023_105504
crossref_primary_10_1038_s41576_021_00394_0
crossref_primary_10_1111_j_1365_2699_2012_02782_x
crossref_primary_10_1111_mec_12558
crossref_primary_10_1111_1755_0998_13059
crossref_primary_10_1002_1438_390X_12203
crossref_primary_10_1002_ece3_3514
crossref_primary_10_1016_j_ympev_2018_11_014
crossref_primary_10_1016_j_vetpar_2015_02_032
crossref_primary_10_1111_1744_7917_12881
crossref_primary_10_1371_journal_pone_0276475
crossref_primary_10_1093_jmedent_47_4_565
crossref_primary_10_1111_aen_12395
crossref_primary_10_2478_s11756_019_00402_z
crossref_primary_10_1080_23802359_2019_1678422
crossref_primary_10_1093_biolinnean_blx064
crossref_primary_10_1093_molbev_msx074
crossref_primary_10_3390_d15030367
crossref_primary_10_1007_s11033_012_1455_9
crossref_primary_10_1016_j_gene_2014_01_064
crossref_primary_10_1093_molbev_msx197
crossref_primary_10_3109_19401736_2010_494727
crossref_primary_10_1016_j_crvi_2013_11_007
crossref_primary_10_1016_j_ympev_2016_01_003
crossref_primary_10_1038_s41598_019_55764_w
crossref_primary_10_1016_j_jnc_2013_12_001
crossref_primary_10_1371_journal_pone_0078107
crossref_primary_10_1016_j_scitotenv_2020_141729
crossref_primary_10_1007_s12041_019_1096_z
crossref_primary_10_1111_1755_0998_12173
crossref_primary_10_3109_19401736_2014_880890
crossref_primary_10_3389_fevo_2023_1142810
crossref_primary_10_1111_mec_13639
crossref_primary_10_1007_s11692_017_9423_x
crossref_primary_10_1080_23802359_2021_1927875
crossref_primary_10_1007_s13592_025_01210_y
crossref_primary_10_1016_j_ympev_2018_06_028
crossref_primary_10_3390_insects12080757
crossref_primary_10_3390_insects15030174
crossref_primary_10_1007_s13127_017_0337_3
crossref_primary_10_1017_S0007485314000169
crossref_primary_10_1016_j_mad_2010_01_005
crossref_primary_10_1111_jeb_14138
crossref_primary_10_1080_23802359_2020_1748542
crossref_primary_10_1111_j_1463_6409_2012_00556_x
crossref_primary_10_1016_j_ympev_2021_107168
crossref_primary_10_4039_tce_2023_13
crossref_primary_10_3390_genes14081591
crossref_primary_10_1163_15685381_00003123
crossref_primary_10_1080_23802359_2025_2552811
crossref_primary_10_1016_j_meegid_2015_03_014
crossref_primary_10_1016_j_ijpara_2017_06_008
crossref_primary_10_1186_s13059_018_1588_9
crossref_primary_10_1371_journal_pone_0066034
crossref_primary_10_1007_s11756_024_01729_y
crossref_primary_10_1186_s12864_022_08482_z
crossref_primary_10_1111_ens_12361
crossref_primary_10_1016_j_aquaculture_2019_734823
crossref_primary_10_1111_jse_12806
crossref_primary_10_1186_s12870_024_05974_w
crossref_primary_10_3390_ani12233403
crossref_primary_10_1016_j_ympev_2012_10_009
crossref_primary_10_1007_s00227_023_04254_9
crossref_primary_10_1016_j_ympev_2011_03_031
crossref_primary_10_1093_genetics_iyad036
crossref_primary_10_1007_s10228_021_00824_3
crossref_primary_10_1371_journal_pone_0077156
crossref_primary_10_3390_genes14071433
crossref_primary_10_1007_s12686_016_0592_1
crossref_primary_10_1038_srep08045
crossref_primary_10_1111_j_1558_5646_2011_01243_x
crossref_primary_10_3389_fgene_2018_00593
crossref_primary_10_1038_s41598_018_27805_3
crossref_primary_10_1080_24701394_2016_1233533
crossref_primary_10_3161_00034541ANZ2023_73_2_010
crossref_primary_10_3389_fmicb_2025_1605218
crossref_primary_10_1186_s12870_025_06516_8
crossref_primary_10_1016_j_jgg_2012_02_003
crossref_primary_10_1007_s10592_023_01550_1
crossref_primary_10_1038_s41598_022_07369_z
crossref_primary_10_1002_ece3_70587
crossref_primary_10_1007_s13127_022_00571_x
crossref_primary_10_1111_1755_0998_12557
crossref_primary_10_1038_hdy_2011_68
crossref_primary_10_1186_1471_2148_12_248
crossref_primary_10_1655_HERPMONOGRAPHS_D_10_00003_1
crossref_primary_10_5598_imafungus_2012_03_01_10
crossref_primary_10_1007_s11692_015_9340_9
crossref_primary_10_1016_j_ympev_2018_07_003
crossref_primary_10_1016_j_smallrumres_2025_107527
crossref_primary_10_1016_j_ympev_2014_07_007
crossref_primary_10_1186_s12864_024_10896_w
crossref_primary_10_1016_j_ympev_2013_05_002
crossref_primary_10_1016_j_ympev_2014_07_014
crossref_primary_10_1371_journal_pone_0047670
crossref_primary_10_2478_s11686_019_00053_9
crossref_primary_10_1111_j_1365_2699_2011_02514_x
crossref_primary_10_1071_PC14934
crossref_primary_10_1080_14772000_2013_764507
crossref_primary_10_1111_1749_4877_12380
crossref_primary_10_1186_s40850_017_0020_3
crossref_primary_10_1515_mammalia_2024_0105
crossref_primary_10_1186_1471_2229_12_108
crossref_primary_10_3897_BDJ_10_e95935
crossref_primary_10_1016_j_ympev_2016_04_025
crossref_primary_10_3389_fmicb_2022_928464
crossref_primary_10_1111_j_1365_294X_2011_05175_x
crossref_primary_10_1371_journal_pone_0134183
crossref_primary_10_1111_zoj_12417
crossref_primary_10_3390_microorganisms12102053
crossref_primary_10_1093_biolinnean_blad013
crossref_primary_10_1002_ece3_1811
crossref_primary_10_1186_s12862_015_0463_5
crossref_primary_10_1007_s10493_022_00741_8
crossref_primary_10_1093_biolinnean_blad015
crossref_primary_10_1371_journal_pone_0073935
crossref_primary_10_1111_jeb_12468
crossref_primary_10_1080_23802359_2020_1748537
crossref_primary_10_1016_j_ijbiomac_2023_124568
crossref_primary_10_1038_s41598_024_77525_0
crossref_primary_10_1093_evolut_qpac043
crossref_primary_10_1111_mve_12665
crossref_primary_10_1016_j_polar_2011_02_002
crossref_primary_10_1016_j_ijpara_2023_03_006
crossref_primary_10_1111_j_1439_0426_2011_01834_x
crossref_primary_10_3390_ani14142020
crossref_primary_10_1016_j_dsr2_2017_10_005
crossref_primary_10_1371_journal_pone_0170392
crossref_primary_10_1002_ece3_8219
crossref_primary_10_1093_biolinnean_blaa195
crossref_primary_10_1016_j_vetpar_2010_10_042
crossref_primary_10_1111_ens_12051
crossref_primary_10_1371_journal_pone_0198754
crossref_primary_10_1038_srep41422
crossref_primary_10_1080_23802359_2018_1456372
crossref_primary_10_1111_1758_2229_70054
crossref_primary_10_1111_nph_12431
crossref_primary_10_1186_1471_2164_15_468
crossref_primary_10_1007_s10750_010_0236_5
crossref_primary_10_4137_EBO_S8532
crossref_primary_10_1186_1471_2148_12_57
crossref_primary_10_1038_srep23192
crossref_primary_10_1656_045_022_0314
crossref_primary_10_3897_natureconservation_19_12877
crossref_primary_10_1371_journal_pone_0216361
crossref_primary_10_1017_S0022149X17000189
crossref_primary_10_3109_19401736_2015_1106526
crossref_primary_10_1002_ar_24956
crossref_primary_10_1016_j_tree_2019_12_003
crossref_primary_10_1093_jisesa_ieab038
crossref_primary_10_1016_j_vetpar_2025_110607
crossref_primary_10_1111_mec_14235
crossref_primary_10_1371_journal_pone_0061970
crossref_primary_10_1134_S0032945223050119
crossref_primary_10_1111_mec_14237
crossref_primary_10_1371_journal_pone_0067048
crossref_primary_10_1007_s00436_015_4847_7
crossref_primary_10_1016_j_meegid_2011_10_010
crossref_primary_10_1093_biolinnean_blad115
crossref_primary_10_1016_j_ympev_2020_106924
crossref_primary_10_1111_mms_12894
crossref_primary_10_1186_1471_2148_12_130
crossref_primary_10_1038_s41467_023_40936_0
crossref_primary_10_1093_zoolinnean_zlaa107
crossref_primary_10_1016_j_ympev_2011_01_005
crossref_primary_10_1111_j_1365_294X_2012_05642_x
crossref_primary_10_1016_j_ympev_2019_106568
crossref_primary_10_1038_s41598_018_31535_x
crossref_primary_10_3897_zookeys_1239_143837
crossref_primary_10_1371_journal_pone_0116602
crossref_primary_10_3390_ani14020209
crossref_primary_10_1186_1471_2164_15_691
crossref_primary_10_1111_mec_13011
crossref_primary_10_3390_insects10090275
crossref_primary_10_1111_jeb_12491
crossref_primary_10_1371_journal_pone_0104982
crossref_primary_10_1002_ece3_7148
crossref_primary_10_1111_1440_1703_12190
crossref_primary_10_1038_s41598_023_37425_1
crossref_primary_10_1111_j_1558_5646_2011_01554_x
crossref_primary_10_1016_j_funbio_2012_04_013
crossref_primary_10_3109_19401736_2013_873895
crossref_primary_10_1186_s40168_025_02169_9
crossref_primary_10_1016_j_ympev_2018_08_001
crossref_primary_10_1111_j_1744_7917_2010_01367_x
crossref_primary_10_2108_zs200017
crossref_primary_10_1080_24750263_2025_2513385
crossref_primary_10_1093_jhered_esad001
crossref_primary_10_1186_s12915_017_0351_0
crossref_primary_10_1093_jhered_esab063
crossref_primary_10_1016_j_mito_2021_08_006
crossref_primary_10_1111_gcb_16460
crossref_primary_10_1016_j_ympev_2016_05_039
crossref_primary_10_1016_j_mito_2020_06_007
crossref_primary_10_1186_s12862_018_1170_9
crossref_primary_10_1016_j_bse_2016_05_013
crossref_primary_10_1111_1365_2656_13196
crossref_primary_10_1515_mammalia_2024_0149
crossref_primary_10_1134_S1022795413100025
crossref_primary_10_1007_s10592_012_0436_9
crossref_primary_10_1111_mec_15663
crossref_primary_10_1007_s10530_014_0699_9
crossref_primary_10_1371_journal_pone_0038521
crossref_primary_10_3390_life12050661
crossref_primary_10_7554_eLife_63167
crossref_primary_10_1111_geb_13344
crossref_primary_10_1093_jhered_esr104
crossref_primary_10_1016_j_jembe_2011_05_011
crossref_primary_10_1016_j_fsigen_2017_11_001
crossref_primary_10_1080_23802359_2018_1467232
crossref_primary_10_1098_rspb_2014_2476
crossref_primary_10_1371_journal_pone_0137325
crossref_primary_10_1007_s11515_018_1487_1
crossref_primary_10_1111_mec_13475
crossref_primary_10_1530_REP_17_0600
crossref_primary_10_1111_eea_13369
crossref_primary_10_1186_1471_2148_13_74
crossref_primary_10_3390_genes14010128
crossref_primary_10_1007_s10530_015_0854_y
crossref_primary_10_1016_j_ympev_2013_04_014
crossref_primary_10_1007_s41063_015_0019_3
crossref_primary_10_1111_jzs_12440
crossref_primary_10_1111_1755_0998_12335
crossref_primary_10_1371_journal_pone_0158582
crossref_primary_10_1038_hdy_2014_9
crossref_primary_10_1080_23802359_2019_1627924
crossref_primary_10_1093_biolinnean_blae111
crossref_primary_10_1080_23802359_2020_1848474
crossref_primary_10_1016_j_jtbi_2015_08_007
crossref_primary_10_1134_S1062359014090052
crossref_primary_10_1016_j_japb_2025_01_006
crossref_primary_10_1038_s41598_024_82054_x
crossref_primary_10_1080_23802359_2019_1711224
crossref_primary_10_1038_s41598_020_79620_4
crossref_primary_10_1007_s10592_015_0718_0
crossref_primary_10_1016_j_aspen_2019_12_009
crossref_primary_10_1111_mec_12373
crossref_primary_10_1371_journal_pone_0159325
crossref_primary_10_1016_j_mito_2010_10_004
crossref_primary_10_1016_j_ygeno_2018_08_003
crossref_primary_10_1080_07060661_2017_1357661
crossref_primary_10_3390_genes14010018
crossref_primary_10_1007_s10592_012_0437_8
crossref_primary_10_3390_insects5010001
crossref_primary_10_1016_j_meegid_2014_10_027
crossref_primary_10_1534_genetics_113_157776
crossref_primary_10_1007_s10452_025_10196_9
crossref_primary_10_1111_mec_12379
crossref_primary_10_1155_2013_783925
crossref_primary_10_1007_s10682_019_09968_1
crossref_primary_10_7717_peerj_2381
crossref_primary_10_1007_s11756_022_01234_0
crossref_primary_10_1016_j_ympev_2020_106843
crossref_primary_10_1093_cz_zoy074
crossref_primary_10_1111_j_1463_6409_2012_00563_x
crossref_primary_10_1186_1756_3305_4_101
crossref_primary_10_4103_JVBD_JVBD_13_24
crossref_primary_10_1111_j_1744_7917_2010_01357_x
crossref_primary_10_1007_s13744_018_0637_0
crossref_primary_10_1038_s41598_018_35760_2
crossref_primary_10_3390_cells8050433
crossref_primary_10_1016_j_ympev_2017_07_002
crossref_primary_10_1002_ece3_6775
crossref_primary_10_3109_19401736_2012_668894
crossref_primary_10_1111_mec_12920
crossref_primary_10_4039_tce_2016_14
crossref_primary_10_1038_srep19318
crossref_primary_10_1002_ece3_6539
crossref_primary_10_1016_j_ympev_2014_10_016
crossref_primary_10_1111_eea_12613
crossref_primary_10_3897_BDJ_9_e69196
crossref_primary_10_1186_s13071_023_05902_1
crossref_primary_10_1016_j_ympev_2014_10_012
crossref_primary_10_1007_s11033_013_2747_4
crossref_primary_10_1016_j_heliyon_2024_e38765
crossref_primary_10_1007_s10592_020_01263_9
crossref_primary_10_1038_s41598_020_70957_4
crossref_primary_10_1016_S2095_3119_18_62019_2
crossref_primary_10_1186_s12862_016_0836_4
crossref_primary_10_1038_hdy_2013_4
crossref_primary_10_1139_gen_2015_0090
crossref_primary_10_1111_cobi_14064
crossref_primary_10_2478_s11756_019_00273_4
crossref_primary_10_1002_ece3_6667
crossref_primary_10_1016_j_ympev_2012_09_006
crossref_primary_10_1111_jen_12047
crossref_primary_10_1007_s00227_010_1577_3
crossref_primary_10_3389_fmars_2014_00047
crossref_primary_10_1093_biosci_biu219
crossref_primary_10_1093_jcbiol_ruy084
crossref_primary_10_1111_syen_12226
crossref_primary_10_1080_23802359_2018_1542981
crossref_primary_10_1038_s41437_025_00772_y
crossref_primary_10_1371_journal_pone_0296305
crossref_primary_10_1371_journal_pone_0047284
crossref_primary_10_1007_s10592_015_0744_y
crossref_primary_10_1371_journal_pone_0248102
crossref_primary_10_1007_s10750_014_1900_y
crossref_primary_10_1590_0074_02760160463
crossref_primary_10_1016_j_ympev_2010_06_013
crossref_primary_10_1111_j_1365_294X_2012_05525_x
crossref_primary_10_1002_ece3_2199
crossref_primary_10_1016_j_bse_2013_06_003
crossref_primary_10_1016_j_ympev_2010_06_015
crossref_primary_10_1086_709109
crossref_primary_10_1093_sysbio_syaa044
crossref_primary_10_1016_j_dci_2023_104704
crossref_primary_10_1002_arch_21750
crossref_primary_10_1007_s10493_022_00750_7
crossref_primary_10_1134_S0032945213050044
crossref_primary_10_1093_molbev_msv104
crossref_primary_10_3390_d14110948
crossref_primary_10_1111_evo_13296
crossref_primary_10_1111_jzs_12248
crossref_primary_10_1007_s11756_025_01887_7
crossref_primary_10_1016_j_jaridenv_2021_104607
crossref_primary_10_3390_ani15010075
crossref_primary_10_1016_j_ympev_2016_05_009
crossref_primary_10_1111_j_1365_294X_2011_05157_x
crossref_primary_10_25225_fozo_v64_i3_a7_2015
crossref_primary_10_1016_j_ijpara_2016_01_009
crossref_primary_10_1016_j_mito_2020_12_015
crossref_primary_10_3390_life12010061
crossref_primary_10_1016_j_gene_2015_06_074
crossref_primary_10_1007_s13364_024_00747_0
crossref_primary_10_1016_j_bse_2017_06_001
crossref_primary_10_1111_j_1365_294X_2010_04775_x
crossref_primary_10_1016_j_ympev_2010_06_006
crossref_primary_10_1038_srep35275
crossref_primary_10_3390_life15091446
crossref_primary_10_3389_fevo_2022_1000493
crossref_primary_10_1093_fsr_owae018
crossref_primary_10_1007_s00253_018_9350_5
crossref_primary_10_1515_bot_2017_0040
crossref_primary_10_1080_14772000_2024_2404829
crossref_primary_10_3390_pathogens12070878
crossref_primary_10_1016_j_ympev_2024_108146
crossref_primary_10_3390_genes14051088
crossref_primary_10_3109_19401736_2011_588213
crossref_primary_10_1016_j_gene_2022_146230
crossref_primary_10_1016_j_meegid_2020_104303
crossref_primary_10_1016_j_ympev_2010_11_028
crossref_primary_10_1016_j_ecss_2024_108974
crossref_primary_10_1371_journal_pone_0028381
crossref_primary_10_1111_mec_16126
crossref_primary_10_1093_biolinnean_blab022
crossref_primary_10_3390_ani15152254
crossref_primary_10_1016_j_meegid_2013_10_016
crossref_primary_10_1016_j_ympev_2010_11_023
crossref_primary_10_1080_24701394_2018_1482284
crossref_primary_10_1080_12298093_2018_1561238
crossref_primary_10_1080_14772000_2020_1729892
crossref_primary_10_1080_23802359_2020_1742220
crossref_primary_10_3390_d14070548
crossref_primary_10_1111_zsc_12254
crossref_primary_10_1007_s11274_018_2490_z
crossref_primary_10_1017_S0031182013000528
crossref_primary_10_1016_j_ympev_2014_03_021
crossref_primary_10_1111_mec_15030
crossref_primary_10_1007_s10201_019_00597_9
crossref_primary_10_1111_j_1365_294X_2011_05309_x
crossref_primary_10_1111_mec_15153
crossref_primary_10_1016_j_sjbs_2022_103388
crossref_primary_10_1111_zsc_12139
crossref_primary_10_1111_j_1365_294X_2012_05612_x
crossref_primary_10_3390_insects10100317
crossref_primary_10_1111_j_1365_294X_2011_05275_x
crossref_primary_10_1007_s12686_017_0776_3
crossref_primary_10_1016_j_ympev_2012_08_015
crossref_primary_10_1111_cla_12166
crossref_primary_10_1080_00379271_2013_774741
crossref_primary_10_1186_s13071_022_05488_0
crossref_primary_10_1371_journal_pone_0091907
crossref_primary_10_1016_j_domaniend_2016_03_005
crossref_primary_10_4039_tce_2018_12
crossref_primary_10_1080_23802359_2019_1616623
crossref_primary_10_1186_s12862_017_1012_1
crossref_primary_10_1111_jbi_12043
crossref_primary_10_1016_j_aspen_2019_10_006
crossref_primary_10_1007_s10530_013_0472_5
crossref_primary_10_1080_14772001003756751
crossref_primary_10_1111_1462_2920_15944
crossref_primary_10_1093_molbev_mst155
crossref_primary_10_1007_s10228_022_00883_0
crossref_primary_10_1016_j_aqrep_2022_101144
crossref_primary_10_1093_jhered_esy016
crossref_primary_10_1002_edn3_448
crossref_primary_10_1007_s10709_015_9847_0
crossref_primary_10_1186_s13071_016_1811_z
crossref_primary_10_1016_j_ympev_2015_11_008
crossref_primary_10_1093_sysbio_syaa085
crossref_primary_10_3109_19401736_2015_1110816
crossref_primary_10_1093_sysbio_syab053
crossref_primary_10_1016_j_vetpar_2015_12_012
crossref_primary_10_1093_jisesa_ieac055
crossref_primary_10_1111_j_1365_3113_2010_00549_x
crossref_primary_10_3390_d15010088
crossref_primary_10_1111_j_1755_0998_2012_03169_x
crossref_primary_10_1016_j_margen_2014_01_001
crossref_primary_10_1186_s12862_014_0262_4
crossref_primary_10_3390_ani10101785
crossref_primary_10_1002_ps_3834
crossref_primary_10_1017_S0025315422000029
crossref_primary_10_1111_j_1752_4571_2011_00220_x
crossref_primary_10_1186_s13071_016_1603_5
crossref_primary_10_1111_j_1095_8649_2010_02821_x
crossref_primary_10_1111_jzs_12291
crossref_primary_10_1016_j_quascirev_2014_05_026
crossref_primary_10_1111_j_1365_294X_2011_05178_x
crossref_primary_10_1111_j_1558_5646_2011_01228_x
crossref_primary_10_1111_mec_12097
crossref_primary_10_1007_s10340_019_01121_9
crossref_primary_10_1007_s10592_023_01542_1
crossref_primary_10_1007_s13127_016_0307_1
crossref_primary_10_1002_ece3_11365
crossref_primary_10_1007_s12686_024_01364_4
crossref_primary_10_1016_j_tree_2017_12_002
crossref_primary_10_3390_ijms24010889
crossref_primary_10_1007_s11033_013_2755_4
crossref_primary_10_1093_molbev_msr072
crossref_primary_10_1111_jeb_12520
crossref_primary_10_1111_j_1365_2699_2010_02408_x
crossref_primary_10_3390_biology11060807
crossref_primary_10_3390_plants10030435
crossref_primary_10_1111_mec_12094
crossref_primary_10_1656_058_011_0211
crossref_primary_10_3390_insects16050535
crossref_primary_10_1111_syen_12201
crossref_primary_10_1016_j_tig_2023_08_002
Cites_doi 10.1016/S0169-5347(01)02151-6
10.1016/0169-5347(94)90126-0
10.1093/oxfordjournals.molbev.a004014
10.1098/rspb.2007.1035
10.1073/pnas.0900233106
10.1111/j.1471-8286.2007.01678.x
10.1111/j.1365-294X.2008.03982.x
10.1146/annurev.ecolsys.32.081501.114109
10.1093/hmg/ddm180
10.1093/molbev/msh244
10.1098/rspb.2007.1290
10.1534/genetics.106.060202
10.1186/1742-9994-4-8
10.1093/emboj/20.7.1807
10.1016/j.tree.2006.11.013
10.1038/nature01743
10.1073/pnas.92.14.6389
10.1098/rspb.2007.0062
10.1016/S0169-5347(00)01856-5
10.1126/science.1096342
10.1534/genetics.107.073346
10.1186/1471-2148-9-64
10.1016/S0764-4469(01)01324-5
10.1080/10635150701258795
10.1146/annurev.es.18.110187.002421
10.1098/rsbl.2007.0290
10.1101/gr.4305906
10.1073/pnas.0408302101
10.1093/oxfordjournals.molbev.a004170
10.1046/j.1365-294X.2003.02063.x
10.1038/35047064
10.1038/hdy.1994.19
10.1038/hdy.2008.6
10.1046/j.1469-1809.2001.6510043.x
10.1146/annurev.genet.35.102401.090231
10.1073/pnas.76.4.1967
10.1086/286149
10.1093/molbev/msi084
10.1126/science.1088434
10.1046/j.1365-294x.1998.00318.x
10.1007/s00239-005-0246-5
10.1146/annurev.ecolsys.36.091704.175513
10.1186/1741-7007-6-27
10.1098/rspb.2005.3056
10.1186/1471-2148-7-135
10.1098/rspb.2000.1183
10.1093/molbev/msi145
10.1111/j.1558-5646.2007.00305.x
10.1016/j.tree.2008.05.011
10.1098/rspb.2002.2100
10.1098/rsbl.2006.0587
10.1086/303092
10.1080/10635150701435401
10.1038/383224a0
10.1080/10635150802032982
10.1098/rspb.1999.0663
10.1371/journal.pone.0004396
10.1016/S0070-2153(06)77004-1
10.1002/jez.1401590310
10.1093/molbev/msp073
10.1093/oxfordjournals.molbev.a003825
10.1093/oxfordjournals.molbev.a026383
10.1093/molbev/msm106
10.1016/j.ympev.2006.05.033
10.1016/j.tig.2007.05.011
10.1371/journal.pone.0002201
10.1038/nature05388
10.1098/rspb.1992.0027
10.1038/sj.hdy.6800413
10.1111/j.1574-6968.2008.01110.x
10.1111/j.1755-0998.2009.02631.x
10.1111/j.1474-9726.2007.00331.x
10.1093/genetics/160.3.1075
10.1098/rspb.2004.3017
10.1093/genetics/156.1.385
10.1016/j.ympev.2006.12.005
10.1093/oxfordjournals.molbev.a026394
10.1016/j.tig.2004.09.002
10.1186/1471-2148-9-54
10.1111/j.0014-3820.2003.tb00265.x
10.1111/j.1365-2583.1995.tb00029.x
10.1371/journal.pbio.0020354
10.1083/jcb.10.3.301
10.1534/genetics.104.91769
10.1098/rstb.2008.0053
10.1038/sj.hdy.6801014
10.1126/science.1122033
10.1126/science.286.5449.2524
10.1177/117693430700300008
10.1111/j.1365-3113.2008.00433.x
10.1016/j.tig.2005.03.006
10.1111/j.1755-0998.2009.02650.x
10.1038/353440a0
10.1093/genetics/155.2.909
10.1371/journal.pbio.0030422
10.1073/pnas.172318099
10.1111/j.1365-294X.2005.02773.x
10.1086/285179
10.1093/genetics/164.1.5
10.1017/CBO9780511623486
10.1038/46466
10.1093/oxfordjournals.molbev.a003755
10.1046/j.1365-294X.2003.01864.x
10.1093/genetics/132.3.713
10.1186/1471-2148-8-53
10.1098/rspb.1999.0662
10.1038/hdy.2008.62
10.1139/g05-082
10.1093/oxfordjournals.molbev.a004049
10.1111/j.1755-0998.2009.02652.x
10.1098/rsbl.2008.0662
10.1093/molbev/msm248
ContentType Journal Article
Copyright 2009 Blackwell Publishing Ltd
Copyright_xml – notice: 2009 Blackwell Publishing Ltd
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7S9
L.6
7X8
ADTPV
AOWAS
DF2
DOI 10.1111/j.1365-294X.2009.04380.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Entomology Abstracts
CrossRef
Entomology Abstracts

AGRICOLA


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1365-294X
EndPage 4550
ExternalDocumentID oai_DiVA_org_uu_142175
1893972501
1893972361
19821901
10_1111_j_1365_294X_2009_04380_x
MEC4380
ark_67375_WNG_59HBHDQ7_C
US201301696512
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
Feature
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
ALVPJ
BSCLL
HGLYW
OIG
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7S9
L.6
7X8
ADTPV
AOWAS
DF2
ID FETCH-LOGICAL-c6700-bedfdae86d3a4fde41d4c72bef5093432e9a976a1fdf10b014fa2fc0a72a61b83
IEDL.DBID DRFUL
ISICitedReferencesCount 879
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000271468800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0962-1083
1365-294X
IngestDate Tue Nov 04 16:26:08 EST 2025
Fri Sep 05 10:57:39 EDT 2025
Sun Nov 09 13:42:18 EST 2025
Mon Nov 10 02:49:33 EST 2025
Mon Nov 10 02:51:54 EST 2025
Mon Jul 21 05:37:05 EDT 2025
Sat Nov 29 02:38:26 EST 2025
Tue Nov 18 20:03:59 EST 2025
Wed Jan 22 16:39:37 EST 2025
Sun Sep 21 06:25:39 EDT 2025
Wed Dec 27 19:11:09 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6700-bedfdae86d3a4fde41d4c72bef5093432e9a976a1fdf10b014fa2fc0a72a61b83
Notes http://dx.doi.org/10.1111/j.1365-294X.2009.04380.x
ark:/67375/WNG-59HBHDQ7-C
istex:B0F84AFE7F61BE3D6503D947EA498CE6D77B5D34
ArticleID:MEC4380
N.G. is interested in various aspects of molecular evolution, and especially the relationship between species biology and genome evolutionary trends in animals. B.N. studies the evolutionary genomics of vertebrates, with a preference for birds and interests in phylogeny, molecular dating, polymorphism, influence of population size, and of mutation rate. S.G. combines theoretical and empirical population genomic approaches to analyse the influence of mating systems and other life‐history traits on genome evolution, with some focus on plants. G.H. is an evolutionary geneticist interested in genomic conflicts, and especially the interaction between maternally‐transmitted symbiotic microbes and their arthropod hosts.
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Review-3
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-294X.2009.04380.x
PMID 19821901
PQID 210701442
PQPubID 31465
PageCount 10
ParticipantIDs swepub_primary_oai_DiVA_org_uu_142175
proquest_miscellaneous_734239761
proquest_miscellaneous_1139576410
proquest_journals_210701867
proquest_journals_210701442
pubmed_primary_19821901
crossref_citationtrail_10_1111_j_1365_294X_2009_04380_x
crossref_primary_10_1111_j_1365_294X_2009_04380_x
wiley_primary_10_1111_j_1365_294X_2009_04380_x_MEC4380
istex_primary_ark_67375_WNG_59HBHDQ7_C
fao_agris_US201301696512
PublicationCentury 2000
PublicationDate November 2009
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: November 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Oxford
PublicationTitle Molecular ecology
PublicationTitleAlternate Mol Ecol
PublicationYear 2009
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
References Ujvari B, Dowton M, Madsen T (2007) Mitochondrial DNA recombination in a free-ranging Australian lizard. Biology Letters, 3, 189-192.
Nabholz B, Mauffrey JF, Bazin E, Galtier N, Glémin S (2008a) Determination of mitochondrial genetic diversity in mammals. Genetics, 178, 352-361.
Hoshizaki S, Shimada T (1995) PCR-based detection of Wolbachia, cytoplasmic microorganisms, infected in natural populations of Laodelphax striatellus (Homoptera: Delphacidae) in central Japan: has the distribution of Wolbachia spread recently? Insect Molecular Biology, 4, 237-243.
Brown WM, George M, Wilson A (1979) Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the USA, 76, 1967-1971.
Gillespie JH (2000) Genetic drift in a infinite population: the pseudohitchhiking model. Genetics, 155, 909-919.
Ursprung H, Schabtach E (1965) Fertilization in tunicates: loss of the paternal mitochondrion prior to sperm entry. Journal of Experimental Zoology, 159, 379-383.
Shoubridge EA, Wai T (2007) Mitochondrial DNA and the mammalian oocyte. Current Topics in Developmental Biology, 77, 87-111.
Avise JC, Arnold J, Ball RM et al. (1987) Intraspecific phylogeography - the mitochondrial-DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18, 489-522.
Castoe TA, De Koning AP, Kim HM et al. (2009) From the Cover: evidence for an ancient adaptive episode of convergent molecular evolution. Proceedings of the National Academy of Sciences of the USA, 106, 8986-8991.
Birky Jr CW (2001) The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annual Review of Genetics, 35, 125-1248.
Hurst LD, Hamilton WD (1992) Cytoplasmic inheritance and the nature of sexes. Proceedings of the Royal Society of London Series B-Biological Sciences, 247, 189-194.
Bazin E, Glémin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science, 312, 570-571.
Andolfatto P, Scriber JM, Charlesworth B (2003) No association between mitochondrial DNA haplotypes and a female-limited mimicry phenotype in Papilio glaucus. Evolution, 57, 305-316.
Gissi C, Iannelli F, Pesole G (2008) Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity, 101, 301-320.
Kimura M (1983) The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.
Breton S, Beaupré HD, Stewart DT, Hoeh WR, Blier PU (2007) The unusual system of doubly uniparental inheritance of mtDNA: isn't one enough? Trends in Genetics, 23, 465-474.
Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia? - a statistical analysis of current data. FEMS Microbiology Letters, 281, 215-220.
Rousset F, Solignac M (1995) Evolution of single and double Wolbachia symbioses during speciation in the Drosophila simulans complex. Proceedings of the National Academy of Sciences of the USA, 92, 6389-6393.
Ellison CK, Burton RS (2008) Interpopulation hybrid breakdown maps to the mitochondrial genome. Evolution, 62, 631-638.
Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G (1999) Ubiquitin tag for sperm mitochondria. Nature, 402, 371-372.
Schmidt BC, Sperling FAH (2008) Widespread decoupling of mtDNA variation and species integrity in Grammia tiger moths (Lepidoptera: Noctuidae). Systematic Entomology, 33, 613-634.
Piganeau G, Eyre-Walker A (2009) Evidence for variation in the effective population size of animal mitochondrial DNA. PLoS ONE, 4, e4396.
Fazekas AJ, Kesanakurti P, Burgess KS et al. (2009) Are plant species inherently harder to discriminate than animal species using DNA barcoding markers? Molecular Ecology Resources, 9, 130-139.
Turelli M, Hoffmann AA, McKechnie SW (1992) Dynamics of cytoplasmic incompatibility and mtDNA variation in natural Drosophila simulans populations. Genetics, 132, 713-723.
Gissi C, Reyes A, Pesole G, Saccone C (2000) Lineage-specific evolutionary rate in mammalian mtDNA. Molecular Biology and Evolution, 17, 1022-1031.
Couvet D, Ronce O, Gliddon C (1998) The maintenance of nucleocytoplasmic polymorphism in a metapopulation: the case of gynodioecy. American Naturalist, 152, 59-70.
Hickey AJR (2008) An alternate explanation for low mtDNA diversity in birds: an age-old solution? Heredity, 100, 443-443.
Baker AJ, Tavares ES, Elbourne RF (2009) Countering criticisms of single mitochondrial DNA gene barcoding in birds. Molecular Ecology Resources, 9, 257-268.
Hagelberg E, Goldman N, Lió P et al. (2000) Evidence for mitochondrial DNA recombination in a human population of island Melanesia: correction. Proceedings of the Royal Society B-Biological Sciences, 267, 1595-1596.
Shoemaker DD, Keller G, Ross KG (2003) Effects of Wolbachia on mtDNA variation in two fire ant species. Molecular Ecology, 12, 1757-1771.
Rand D (2001) The units of selection on mitochondrial DNA. Annual Review of Ecology and Systematics, 32, 415-448.
Ingman M, Kaessmann H, Pääbo S, Gyllensten U (2000) Mitochondrial genome variation and the origin of modern humans. Nature, 408, 708-713.
Moses MJ (1961) Spermiogenesis in the crayfish (Procambarus clarkii) II. Description of stages. Journal of Biophysical and Biochemical Cytology, 10, 301-333.
Ballard JWO (2000) When one is not enough: introgression of mitochondrial DNA in Drosophila. Molecular Biology and Evolution, 17, 1126-1130.
White DJ, Gemmell NJ (2009) Can indirect tests detect a known recombination event in human mtDNA? Molecular Biology and Evolution, 26, 1435-1439.
Ratnasingham S, Hebert PD (2007) bold: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes, 7, 355-364.
Galtier N, Jobson RW, Nabholz B, Glémin S, Blier P (2009) Mitochondrial whims: metabolic rate, longevity, and the rate of molecular evolution. Biology Letters, 5, 413-416.
Moritz C, Dowlin TE, Brown WM (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annual Review of Ecology and Systematics, 18, 269-292.
Welch JJ, Bininda-Emonds OR, Bromham L (2008) Correlates of substitution rate variation in mammalian protein-coding sequences. BMC Evolutionary Biology, 8, 53.
Rach J, DeSalle R, Sarkar IN, Schierwater B, Hadrys H (2008) Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata. Proceedings of the Royal Society B-Biological Sciences, 275, 237-247.
Castresana J (2001) Cytochrome b phylogeny and the taxonomy of great apes and mammals. Molecular Biology and Evolution, 18, 465-471.
Elias M, Hill RI, Willmott KR et al. (2007) Limited performance of DNA barcoding in a diverse community of tropical butterflies. Proceedings of the Royal Society B-Biological Sciences, 274, 2881-2889.
Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. Plos Biology, 3, 2229-2238.
Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC (2004) Effects of purifying and adaptive selection on regional variation in human mtDNA. Science, 303, 223-226.
Pulquério MJ, Nichols RA (2007) Dates from the molecular clock: how wrong can we be? Trends in Ecology and Evolution, 22, 180-184.
Ballard JWO, Melvin RG, Miller JT, Katewa SD (2007) Sex differences in survival and mitochondrial bioenergetics during aging in Drosophila. Aging Cell, 6, 699-708.
Awadalla P, Eyre-Walker A, Maynard-Smith J (1999) Linkage disequilibrium and recombination in hominid mitochondrial DNA. Science, 286, 2524-2525.
McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature, 351, 652-654.
Piganeau G, Eyre-Walker A (2004) A reanalysis of the indirect evidence for recombination in human mitochondrial DNA. Heredity, 92, 282-288.
Innan H, Nordborg M (2002) Recombination or mutational hot spots in human mtDNA? Molecular Biology and Evolution, 19, 1122-1127.
Saumitou-Laprade P, Cuguen J, Vernet P (1994) Cytoplasmic male-sterility in plants - molecular evidence and the nucleocytoplasmic conflict. Trends in Ecology & Evolution, 9, 431-435.
Lane N (2005) Power, Sex, Suicide. Mitochondria and the Meaning of Life. Oxford University Press, Oxford.
Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Molecular Ecology, 13, 729-744.
Stoneking M (2000) Hypervariable sites in the mtDNA control region are mutational hotspots. American Journal of Human Genetics, 67, 1029-1032.
Reboud X, Zeyl C (1994) Organelle inheritance in plants. Heredity, 72, 132-140.
Doiron S, Bernatchez L, Blier PU (2002) A comparative mitogenomic analysis of the potential adaptive value of Arctic charr mtDNA introgression in brook charr populations (Salvelinus fontinalis Mitchill). Molecular Biology and Evolution, 19, 1902-1909.
Hurst GDD, Jiggins FM (2005) Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proceedings of the Royal Society B-Biological Sciences, 272, 1525-1534.
Tsaousis AD, Martin DP, Ladoukakis ED, Posada D, Zouros E (2005) Widespread recombination in published animal mtDNA sequences. Molecular Biology and Evolution, 22, 925-933.
Ciborowski KL, Consuegra S, García de Leániz C, Beaumont MA, Wang J, Jordan WC (2007) Rare and fleeting: an example of interspecific recombination in animal mitochondrial DNA. Biology Letters, 3, 554-557.
Bensasson D, Zhang DX, Hartl DL, Hewitt GM (2001) Mitochondrial pseudogenes: evolution's misplaced witnesses. Trends in Ecology and Evolution, 16, 314-321.
Wiemers M, Fiedler K (2007) Does the DNA barcoding gap exist? - a case study in blue butterflies (Lepidoptera: Lycaenidae) Frontiers in Zoology, 4, 8.
Budar F, Pelletier G (2001) Male sterility in plants: occurrence, determinism, significance and use. Comptes Rendus de l'Academie des Sciences Série II-Sciences De La Vie-Life Sciences, 324, 543-550.
Turelli M, Hoffmann AA (1991) Rapid spread of an inherited incompatibility in California Drosophila. Nature, 353, 440-442.
Duron O, Bo
2004; 21
1991; 351
2004; 20
2002; 19
1991; 353
1992; 247
2002; 99
2003; 57
2006; 174
1999; 286
2008; 33
2004; 2
1996; 383
2008; 101
2008; 100
2007; 77
1998; 152
2000; 408
1965; 159
2000; 17
2000; 15
2007; 6
2008; 23
2002; 269
2007; 7
1983
2007; 4
2007; 3
1994; 72
2003; 164
2007; 445
2004; 303
2000; 67
2006; 55
2008; 57
2008; 363
2007; 99
1995; 4
2004; 304
2001; 324
2001; 20
2007; 16
2006; 41
2008a; 178
1992; 132
2007; 274
2008b; 25
2005; 3
2001; 35
2009; 106
2001; 32
2008; 8
2005; 21
2008; 6
2008; 3
1979; 76
1999; 402
2005; 22
2003; 12
2006; 63
2001; 16
2001; 18
2008; 62
2007; 22
2008; 275
2007; 23
2007; 24
2005; 36
2004; 101
2005; 272
1995; 92
2006; 16
1995; 12
2008; 17
2005
2000; 155
1999; 266
1961; 10
2000; 156
2005; 48
2007; 56
1991; 137
1987; 18
2009; 26
2006; 312
2008; 281
1994; 9
2002; 160
2004; 92
2003; 424
2000; 267
2004; 13
2009; 9
2009; 5
2009; 4
2008; 179
2007; 44
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
Martin AP (e_1_2_7_69_1) 1995; 12
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_90_1
e_1_2_7_112_1
Lane N (e_1_2_7_67_1) 2005
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_109_1
e_1_2_7_105_1
e_1_2_7_8_1
Avise JC (e_1_2_7_4_1) 1987; 18
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
Schulenburg JHGvd (e_1_2_7_94_1) 2002; 160
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_27_1
Gillespie JH (e_1_2_7_40_1) 2000; 155
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
References_xml – reference: Berlin S, Tomaras D, Charlesworth B (2007) Low mitochondrial variability in birds may indicate Hill-Robertson effects on the W chromosome. Heredity, 99, 389-396.
– reference: Hurst GDD, Jiggins FM (2005) Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proceedings of the Royal Society B-Biological Sciences, 272, 1525-1534.
– reference: Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Molecular Ecology, 13, 729-744.
– reference: Packer L, Gibbs J, Sheffield C, Hanner R (2009) DNA barcoding and the mediocrity of morphology. Molecular Ecology Resources, 9, 42-50.
– reference: Duron O, Bouchon D, Boutin S et al. (2008) The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biology, 6, 27.
– reference: Couvet D, Ronce O, Gliddon C (1998) The maintenance of nucleocytoplasmic polymorphism in a metapopulation: the case of gynodioecy. American Naturalist, 152, 59-70.
– reference: Hurst LD, Hamilton WD (1992) Cytoplasmic inheritance and the nature of sexes. Proceedings of the Royal Society of London Series B-Biological Sciences, 247, 189-194.
– reference: Ballard JWO (2000) When one is not enough: introgression of mitochondrial DNA in Drosophila. Molecular Biology and Evolution, 17, 1126-1130.
– reference: Kraytsberg Y, Schwartz M, Brown TA et al. (2004) Recombination of human mitochondrial DNA. Science, 304, 981.
– reference: Xu W, Jameson D, Tang B, Higgs PG (2006) The relationship between the rate of molecular evolution and the rate of genome rearrangement in animal mitochondrial genomes. Journal of Molecular Evolution, 63, 375-392.
– reference: Fazekas AJ, Kesanakurti P, Burgess KS et al. (2009) Are plant species inherently harder to discriminate than animal species using DNA barcoding markers? Molecular Ecology Resources, 9, 130-139.
– reference: Piganeau G, Eyre-Walker A (2009) Evidence for variation in the effective population size of animal mitochondrial DNA. PLoS ONE, 4, e4396.
– reference: Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC (2004) Effects of purifying and adaptive selection on regional variation in human mtDNA. Science, 303, 223-226.
– reference: Ursprung H, Schabtach E (1965) Fertilization in tunicates: loss of the paternal mitochondrion prior to sperm entry. Journal of Experimental Zoology, 159, 379-383.
– reference: Andolfatto P, Scriber JM, Charlesworth B (2003) No association between mitochondrial DNA haplotypes and a female-limited mimicry phenotype in Papilio glaucus. Evolution, 57, 305-316.
– reference: Castresana J (2001) Cytochrome b phylogeny and the taxonomy of great apes and mammals. Molecular Biology and Evolution, 18, 465-471.
– reference: Nabholz B, Glémin S, Galtier N (2008b) Strong variations of mitochondrial mutation rate across mammals - the longevity hypothesis. Molecular Biology and Evolution, 25, 120-130.
– reference: Ropiquet A, Hassanin A (2006) Hybrid origin of the Pliocene ancestor of wild goats. Molecular Phylogenetics and Evolution, 41, 395-404.
– reference: Shoubridge EA, Wai T (2007) Mitochondrial DNA and the mammalian oocyte. Current Topics in Developmental Biology, 77, 87-111.
– reference: Shoemaker DD, Machado CA, Molbo D et al. (2002) The distribution of Wolbachia in fig wasps: correlations with host phylogeny, ecology and population structure. Proceedings of the Royal Society of London Series B-Biological Sciences, 269, 2257-2267.
– reference: Cho Y, Mower JP, Qiu YL, Palmer JD (2004) Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proceedings of the National Academy of Sciences of the USA, 101, 17741-17746.
– reference: Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia? - a statistical analysis of current data. FEMS Microbiology Letters, 281, 215-220.
– reference: Ingman M, Gyllensten U (2007) Rate variation between mitochondrial domains and adaptive evolution in humans. Human Molecular Genetics, 16, 2281-2287.
– reference: Galtier N, Jobson RW, Nabholz B, Glémin S, Blier P (2009) Mitochondrial whims: metabolic rate, longevity, and the rate of molecular evolution. Biology Letters, 5, 413-416.
– reference: Elias M, Hill RI, Willmott KR et al. (2007) Limited performance of DNA barcoding in a diverse community of tropical butterflies. Proceedings of the Royal Society B-Biological Sciences, 274, 2881-2889.
– reference: Ballard JWO, Melvin RG, Miller JT, Katewa SD (2007) Sex differences in survival and mitochondrial bioenergetics during aging in Drosophila. Aging Cell, 6, 699-708.
– reference: Eyre-Walker A, Smith NH, Maynard-Smith J (1999) How clonal are human mitochondria? Proceedings of the Royal Society B-Biological Sciences, 266, 477-483.
– reference: Welch JJ, Bininda-Emonds OR, Bromham L (2008) Correlates of substitution rate variation in mammalian protein-coding sequences. BMC Evolutionary Biology, 8, 53.
– reference: Rand D (2001) The units of selection on mitochondrial DNA. Annual Review of Ecology and Systematics, 32, 415-448.
– reference: Dowling DK, Friberg U, Lindell J (2008) Evolutionary implications of non-neutral mitochondrial genetic variation. Trends in Ecology & Evolution, 23, 546-554.
– reference: Grossman LI, Wildman DE, Schmidt TR, Goodman M (2004) Accelerated evolution of the electron transport chain in anthropoid primates. Trends in Genetics, 20, 578-585.
– reference: Budar F, Pelletier G (2001) Male sterility in plants: occurrence, determinism, significance and use. Comptes Rendus de l'Academie des Sciences Série II-Sciences De La Vie-Life Sciences, 324, 543-550.
– reference: Haag-Liautard C, Dorris M, Maside X et al. (2007) Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature, 445, 82-85.
– reference: Ladoukakis ED, Zouros E (2001) Direct evidence for homologous recombination in mussel (Mytilus galloprovincialis) mitochondrial DNA. Molecular Biology and Evolution, 18, 2127-2131.
– reference: Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G (1999) Ubiquitin tag for sperm mitochondria. Nature, 402, 371-372.
– reference: Gissi C, Iannelli F, Pesole G (2008) Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity, 101, 301-320.
– reference: Birky Jr CW (2001) The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annual Review of Genetics, 35, 125-1248.
– reference: Mower JP, Touzet P, Gummow JS, Delph LF, Palmer JD (2007) Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants. BMC Evolutionary Biology, 7, 135.
– reference: Weinreich DM, Rand DM (2000) Contrasting patterns of nonneutral evolution in proteins encoded in nuclear and mitochondrial genomes. Genetics, 156, 385-399.
– reference: Pulquério MJ, Nichols RA (2007) Dates from the molecular clock: how wrong can we be? Trends in Ecology and Evolution, 22, 180-184.
– reference: Shoemaker DD, Keller G, Ross KG (2003) Effects of Wolbachia on mtDNA variation in two fire ant species. Molecular Ecology, 12, 1757-1771.
– reference: Castoe TA, De Koning AP, Kim HM et al. (2009) From the Cover: evidence for an ancient adaptive episode of convergent molecular evolution. Proceedings of the National Academy of Sciences of the USA, 106, 8986-8991.
– reference: Ujvari B, Dowton M, Madsen T (2007) Mitochondrial DNA recombination in a free-ranging Australian lizard. Biology Letters, 3, 189-192.
– reference: Doiron S, Bernatchez L, Blier PU (2002) A comparative mitogenomic analysis of the potential adaptive value of Arctic charr mtDNA introgression in brook charr populations (Salvelinus fontinalis Mitchill). Molecular Biology and Evolution, 19, 1902-1909.
– reference: Ingvarsson PK, Taylor DR (2002) Genealogical evidence for epidemics of selfish genes. Proceedings of the National Academy of Sciences of the USA, 99, 11265-11269.
– reference: Piganeau G, Eyre-Walker A (2004) A reanalysis of the indirect evidence for recombination in human mitochondrial DNA. Heredity, 92, 282-288.
– reference: Reboud X, Zeyl C (1994) Organelle inheritance in plants. Heredity, 72, 132-140.
– reference: Gantenbein B, Fet V, Gantenbein-Ritter IA, Balloux F (2005) Evidence for recombination in scorpion mitochondrial DNA (Scorpiones: Buthidae). Proceedings of the Royal Society B-Biological Sciences, 272, 697-704.
– reference: Hickerson MJ, Meyer CP, Moritz C (2006) DNA barcoding will often fail to discover new animal species over broad parameter space. Systematic Biology, 55, 729-739.
– reference: Martin AP (1995) Metabolic rate and directional nucleotide substitution in animal mitochondrial DNA. Molecular Biology and Evolution, 12, 1124-1131.
– reference: White DJ, Gemmell NJ (2009) Can indirect tests detect a known recombination event in human mtDNA? Molecular Biology and Evolution, 26, 1435-1439.
– reference: Saumitou-Laprade P, Cuguen J, Vernet P (1994) Cytoplasmic male-sterility in plants - molecular evidence and the nucleocytoplasmic conflict. Trends in Ecology & Evolution, 9, 431-435.
– reference: Baker AJ, Tavares ES, Elbourne RF (2009) Countering criticisms of single mitochondrial DNA gene barcoding in birds. Molecular Ecology Resources, 9, 257-268.
– reference: Breton S, Beaupré HD, Stewart DT, Hoeh WR, Blier PU (2007) The unusual system of doubly uniparental inheritance of mtDNA: isn't one enough? Trends in Genetics, 23, 465-474.
– reference: Hickey AJR (2008) An alternate explanation for low mtDNA diversity in birds: an age-old solution? Heredity, 100, 443-443.
– reference: McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature, 351, 652-654.
– reference: White DJ, Wolff JN, Pierson M, Gemmell NJ (2008) Revealing the hidden complexities of mtDNA inheritance. Molecular Ecology, 17, 4925-4942.
– reference: Bensasson D, Zhang DX, Hartl DL, Hewitt GM (2001) Mitochondrial pseudogenes: evolution's misplaced witnesses. Trends in Ecology and Evolution, 16, 314-321.
– reference: Galtier N, Enard D, Radondy Y, Bazin E, Belkhir K (2006) Mutation hotspots in mammalian mitochondrial DNA. Genome Research, 16, 215-222.
– reference: Ho SY, Phillips MJ, Cooper A, Drummond AJ (2005) Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Molecular Biology and Evolution, 22, 1561-1568.
– reference: Brown WM, George M, Wilson A (1979) Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the USA, 76, 1967-1971.
– reference: Hagelberg E, Goldman N, Lió P et al. (2000) Evidence for mitochondrial DNA recombination in a human population of island Melanesia: correction. Proceedings of the Royal Society B-Biological Sciences, 267, 1595-1596.
– reference: Houliston GJ, Olson MS (2006) Nonneutral evolution of organelle genes in Silene vulgaris. Genetics, 174, 1983-1994.
– reference: Moritz C, Dowlin TE, Brown WM (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annual Review of Ecology and Systematics, 18, 269-292.
– reference: Schulenburg JHGvd, Hurst GDD, Tetzlaff D, Booth GE, Zakharov IA, Majerus ME (2002) History of infection with different male-killing bacteria in the two spot ladybid beetle Adalia bipunctata revealed through mitochondrial DNA sequence analysis. Genetics, 160, 1075-1086.
– reference: Turelli M, Hoffmann AA (1991) Rapid spread of an inherited incompatibility in California Drosophila. Nature, 353, 440-442.
– reference: Moritz C, Cicero C (2004) DNA barcoding: promise and pitfalls. Plos Biology, 2, 1529-1531.
– reference: Nabholz B, Glémin S, Galtier N (2009) The erratic mitochondrial clock: variations of mutation rate, not population size, affect mtDNA diversity across mammals and birds. BMC Evolutionary Biology, 9, 54.
– reference: Barr CM, Keller SR, Ingvarsson PK, Sloan DB, Taylor DR (2007) Variation in mutation rate and polymorphism among mitochondrial genes of Silene vulgaris. Molecular Biology and Evolution, 24, 1783-1791.
– reference: Castoe TA, Jiang ZJ, Gu W, Wang ZO, Pollock DD (2008) Adaptive evolution and functional redesign of core metabolic proteins in snakes. PLoS ONE, 3, e2201.
– reference: Ingman M, Kaessmann H, Pääbo S, Gyllensten U (2000) Mitochondrial genome variation and the origin of modern humans. Nature, 408, 708-713.
– reference: Rach J, DeSalle R, Sarkar IN, Schierwater B, Hadrys H (2008) Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata. Proceedings of the Royal Society B-Biological Sciences, 275, 237-247.
– reference: Bininda-Emonds ORP (2007) Fast genes and slow clades: comparative rates of molecular evolution in mammals. Evolutionary Bioinformatics, 3, 59-85.
– reference: Gissi C, Reyes A, Pesole G, Saccone C (2000) Lineage-specific evolutionary rate in mammalian mtDNA. Molecular Biology and Evolution, 17, 1022-1031.
– reference: Wiemers M, Fiedler K (2007) Does the DNA barcoding gap exist? - a case study in blue butterflies (Lepidoptera: Lycaenidae) Frontiers in Zoology, 4, 8.
– reference: Turelli M, Hoffmann AA, McKechnie SW (1992) Dynamics of cytoplasmic incompatibility and mtDNA variation in natural Drosophila simulans populations. Genetics, 132, 713-723.
– reference: Hagelberg E, Goldman N, Lió P et al. (1999) Evidence for mitochondrial DNA recombination in a human population of island Melanesia. Proceedings of the Royal Society B-Biological Sciences, 266, 485-492.
– reference: Ciborowski KL, Consuegra S, García de Leániz C, Beaumont MA, Wang J, Jordan WC (2007) Rare and fleeting: an example of interspecific recombination in animal mitochondrial DNA. Biology Letters, 3, 554-557.
– reference: Roe AD, Sperling FAH (2007) Patterns of evolution of mitochondrial cytochrome c oxidase I and II DNA and implications for DNA barcoding. Molecular Phylogenetics and Evolution, 44, 325-345.
– reference: Gillespie JH (2000) Genetic drift in a infinite population: the pseudohitchhiking model. Genetics, 155, 909-919.
– reference: Stoneking M (2000) Hypervariable sites in the mtDNA control region are mutational hotspots. American Journal of Human Genetics, 67, 1029-1032.
– reference: Innan H, Nordborg M (2002) Recombination or mutational hot spots in human mtDNA? Molecular Biology and Evolution, 19, 1122-1127.
– reference: Ellison CK, Burton RS (2008) Interpopulation hybrid breakdown maps to the mitochondrial genome. Evolution, 62, 631-638.
– reference: Whitworth TL, Dawson RD, Magalon H, Baudry E (2007) DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera : Calliphoridae). Proceedings of the Royal Society B-Biological Sciences, 274, 1731-1739.
– reference: Bazin E, Glémin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science, 312, 570-571.
– reference: Ratnasingham S, Hebert PD (2007) bold: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes, 7, 355-364.
– reference: Frank SA, Hurst LD (1996) Mitochondria and male disease. Nature, 383, 224.
– reference: Schmidt BC, Sperling FAH (2008) Widespread decoupling of mtDNA variation and species integrity in Grammia tiger moths (Lepidoptera: Noctuidae). Systematic Entomology, 33, 613-634.
– reference: Jiggins FM (2003) Male-killing Wolbachia and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics. Genetics, 164, 5-12.
– reference: Wallace DC (2008) Mitochondria as chi. Genetics, 179, 727-735.
– reference: Emerson BC (2007) Alarm bells for the molecular clock? No support for Ho et al.'s model of time-dependent molecular rate estimates. Systematic Biology, 56, 337-345.
– reference: Hoshizaki S, Shimada T (1995) PCR-based detection of Wolbachia, cytoplasmic microorganisms, infected in natural populations of Laodelphax striatellus (Homoptera: Delphacidae) in central Japan: has the distribution of Wolbachia spread recently? Insect Molecular Biology, 4, 237-243.
– reference: Hoarau G, Holla S, Lescasse R, Stam WT, Olsen JL (2002) Heteroplasmy and evidence for recombination in the mitochondrial control region of the flatfish Platichthys flesus. Molecular Biology and Evolution, 19, 2261-2264.
– reference: Lane N (2005) Power, Sex, Suicide. Mitochondria and the Meaning of Life. Oxford University Press, Oxford.
– reference: Rousset F, Solignac M (1995) Evolution of single and double Wolbachia symbioses during speciation in the Drosophila simulans complex. Proceedings of the National Academy of Sciences of the USA, 92, 6389-6393.
– reference: Charlat S, Duplouy A, Hornett EA et al. (2009) The joint evolutionary histories of Wolbachia and mitochondria in Hypolimnas bolina. BMC Evolutionary Biology, 9, 64.
– reference: Zhang AB, Sikes DS, Muster C, Li SQ (2008) Inferring species membership using DNA sequences with back-propagation neural networks. Systematic Biology, 57, 202-215.
– reference: Ballard JWO, Rand DM (2005) The population biology of mitochondrial DNA and its phylogenetic implications. Annual Review Of Ecology Evolution And Systematics, 36, 621-642.
– reference: Hey J (2000) Human mitochondrial DNA recombination: can it be true? Trends in Ecology and Evolution, 15, 181-182.
– reference: Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. Plos Biology, 3, 2229-2238.
– reference: Bergthorsson U, Adams KL, Thomason B, Palmer JD (2003) Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature, 424, 197-201.
– reference: Moses MJ (1961) Spermiogenesis in the crayfish (Procambarus clarkii) II. Description of stages. Journal of Biophysical and Biochemical Cytology, 10, 301-333.
– reference: Xu J (2005) The inheritance of organelle genes and genomes: patterns and mechanisms. Genome, 48, 951-958.
– reference: Alves PC, Melo-Ferreira J, Freitas H, Boursot P (2008) The ubiquitous mountain hare mitochondria: multiple introgressive hybridization in hares, genus Lepus. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363, 2831-2839.
– reference: Ho SY, Shapiro B, Phillips MJ, Cooper A, Drummond AJ (2007) Evidence for time dependency of molecular rate estimates. Systematic Biology, 56, 515-522.
– reference: Avise JC, Arnold J, Ball RM et al. (1987) Intraspecific phylogeography - the mitochondrial-DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18, 489-522.
– reference: Awadalla P, Eyre-Walker A, Maynard-Smith J (1999) Linkage disequilibrium and recombination in hominid mitochondrial DNA. Science, 286, 2524-2525.
– reference: MacAlpine DM, Kolesar J, Okamoto K, Butow RA, Perlman PS (2001) Replication and preferential inheritance of hypersuppressive petite mitochondrial DNA. Embo Journal, 20, 1807-1817.
– reference: Tsaousis AD, Martin DP, Ladoukakis ED, Posada D, Zouros E (2005) Widespread recombination in published animal mtDNA sequences. Molecular Biology and Evolution, 22, 925-933.
– reference: Piganeau G, Gardner M, Eyre-Walker A (2004) A broad survey of recombination in animal mitochondria. Molecular Biology and Evolution, 21, 2319-2325.
– reference: Gouyon PH, Vichot F, Vandamme JMM (1991) Nuclear-cytoplasmic male-sterility - single-point equilibria versus limit-cycles. American Naturalist, 137, 498-514.
– reference: Zeh JA, Zeh DW (2005) Maternal inheritance, sexual conflict and the maladapted male. Trends in Genetics, 21, 281-286.
– reference: Kimura M (1983) The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.
– reference: Nabholz B, Mauffrey JF, Bazin E, Galtier N, Glémin S (2008a) Determination of mitochondrial genetic diversity in mammals. Genetics, 178, 352-361.
– volume: 4
  start-page: 237
  year: 1995
  end-page: 243
  article-title: PCR‐based detection of , cytoplasmic microorganisms, infected in natural populations of (Homoptera: Delphacidae) in central Japan: has the distribution of spread recently?
  publication-title: Insect Molecular Biology
– volume: 12
  start-page: 1757
  year: 2003
  end-page: 1771
  article-title: Effects of on mtDNA variation in two fire ant species
  publication-title: Molecular Ecology
– volume: 266
  start-page: 477
  year: 1999
  end-page: 483
  article-title: How clonal are human mitochondria?
  publication-title: Proceedings of the Royal Society B-Biological Sciences
– year: 2005
– volume: 18
  start-page: 465
  year: 2001
  end-page: 471
  article-title: Cytochrome b phylogeny and the taxonomy of great apes and mammals
  publication-title: Molecular Biology and Evolution
– volume: 3
  start-page: 2229
  year: 2005
  end-page: 2238
  article-title: DNA barcoding: error rates based on comprehensive sampling
  publication-title: Plos Biology
– volume: 179
  start-page: 727
  year: 2008
  end-page: 735
  article-title: Mitochondria as chi
  publication-title: Genetics
– volume: 21
  start-page: 281
  year: 2005
  end-page: 286
  article-title: Maternal inheritance, sexual conflict and the maladapted male
  publication-title: Trends in Genetics
– volume: 9
  start-page: 130
  year: 2009
  end-page: 139
  article-title: Are plant species inherently harder to discriminate than animal species using DNA barcoding markers?
  publication-title: Molecular Ecology Resources
– volume: 445
  start-page: 82
  year: 2007
  end-page: 85
  article-title: Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila
  publication-title: Nature
– volume: 164
  start-page: 5
  year: 2003
  end-page: 12
  article-title: Male‐killing and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics
  publication-title: Genetics
– volume: 6
  start-page: 699
  year: 2007
  end-page: 708
  article-title: Sex differences in survival and mitochondrial bioenergetics during aging in
  publication-title: Aging Cell
– volume: 56
  start-page: 515
  year: 2007
  end-page: 522
  article-title: Evidence for time dependency of molecular rate estimates
  publication-title: Systematic Biology
– volume: 25
  start-page: 120
  year: 2008b
  end-page: 130
  article-title: Strong variations of mitochondrial mutation rate across mammals – the longevity hypothesis
  publication-title: Molecular Biology and Evolution
– volume: 5
  start-page: 413
  year: 2009
  end-page: 416
  article-title: Mitochondrial whims: metabolic rate, longevity, and the rate of molecular evolution
  publication-title: Biology Letters
– volume: 18
  start-page: 269
  year: 1987
  end-page: 292
  article-title: Evolution of animal mitochondrial DNA: relevance for population biology and systematics
  publication-title: Annual Review of Ecology and Systematics
– volume: 72
  start-page: 132
  year: 1994
  end-page: 140
  article-title: Organelle inheritance in plants
  publication-title: Heredity
– volume: 41
  start-page: 395
  year: 2006
  end-page: 404
  article-title: Hybrid origin of the Pliocene ancestor of wild goats
  publication-title: Molecular Phylogenetics and Evolution
– volume: 35
  start-page: 125
  year: 2001
  end-page: 1248
  article-title: The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models
  publication-title: Annual Review of Genetics
– volume: 281
  start-page: 215
  year: 2008
  end-page: 220
  article-title: How many species are infected with ? – a statistical analysis of current data
  publication-title: FEMS Microbiology Letters
– volume: 16
  start-page: 215
  year: 2006
  end-page: 222
  article-title: Mutation hotspots in mammalian mitochondrial DNA
  publication-title: Genome Research
– volume: 17
  start-page: 1126
  year: 2000
  end-page: 1130
  article-title: When one is not enough: introgression of mitochondrial DNA in
  publication-title: Molecular Biology and Evolution
– volume: 16
  start-page: 314
  year: 2001
  end-page: 321
  article-title: Mitochondrial pseudogenes: evolution’s misplaced witnesses
  publication-title: Trends in Ecology and Evolution
– volume: 10
  start-page: 301
  year: 1961
  end-page: 333
  article-title: Spermiogenesis in the crayfish ( ) II. Description of stages
  publication-title: Journal of Biophysical and Biochemical Cytology
– volume: 4
  start-page: 8
  year: 2007
  article-title: Does the DNA barcoding gap exist? – a case study in blue butterflies (Lepidoptera: Lycaenidae)
  publication-title: Frontiers in Zoology
– volume: 3
  start-page: 189
  year: 2007
  end-page: 192
  article-title: Mitochondrial DNA recombination in a free‐ranging Australian lizard
  publication-title: Biology Letters
– volume: 152
  start-page: 59
  year: 1998
  end-page: 70
  article-title: The maintenance of nucleocytoplasmic polymorphism in a metapopulation: the case of gynodioecy
  publication-title: American Naturalist
– volume: 9
  start-page: 431
  year: 1994
  end-page: 435
  article-title: Cytoplasmic male‐sterility in plants – molecular evidence and the nucleocytoplasmic conflict
  publication-title: Trends in Ecology & Evolution
– volume: 19
  start-page: 1902
  year: 2002
  end-page: 1909
  article-title: A comparative mitogenomic analysis of the potential adaptive value of Arctic charr mtDNA introgression in brook charr populations ( )
  publication-title: Molecular Biology and Evolution
– volume: 266
  start-page: 485
  year: 1999
  end-page: 492
  article-title: Evidence for mitochondrial DNA recombination in a human population of island Melanesia
  publication-title: Proceedings of the Royal Society B-Biological Sciences
– volume: 33
  start-page: 613
  year: 2008
  end-page: 634
  article-title: Widespread decoupling of mtDNA variation and species integrity in tiger moths (Lepidoptera: Noctuidae)
  publication-title: Systematic Entomology
– volume: 19
  start-page: 1122
  year: 2002
  end-page: 1127
  article-title: Recombination or mutational hot spots in human mtDNA?
  publication-title: Molecular Biology and Evolution
– volume: 9
  start-page: 42
  year: 2009
  end-page: 50
  article-title: DNA barcoding and the mediocrity of morphology
  publication-title: Molecular Ecology Resources
– volume: 106
  start-page: 8986
  year: 2009
  end-page: 8991
  article-title: From the Cover: evidence for an ancient adaptive episode of convergent molecular evolution
  publication-title: Proceedings of the National Academy of Sciences of the USA
– volume: 267
  start-page: 1595
  year: 2000
  end-page: 1596
  article-title: Evidence for mitochondrial DNA recombination in a human population of island Melanesia: correction
  publication-title: Proceedings of the Royal Society B-Biological Sciences
– volume: 274
  start-page: 1731
  year: 2007
  end-page: 1739
  article-title: DNA barcoding cannot reliably identify species of the blowfly genus (Diptera : Calliphoridae)
  publication-title: Proceedings of the Royal Society B-Biological Sciences
– volume: 62
  start-page: 631
  year: 2008
  end-page: 638
  article-title: Interpopulation hybrid breakdown maps to the mitochondrial genome
  publication-title: Evolution
– volume: 351
  start-page: 652
  year: 1991
  end-page: 654
  article-title: Adaptive protein evolution at the locus in
  publication-title: Nature
– volume: 3
  start-page: 554
  year: 2007
  end-page: 557
  article-title: Rare and fleeting: an example of interspecific recombination in animal mitochondrial DNA
  publication-title: Biology Letters
– volume: 286
  start-page: 2524
  year: 1999
  end-page: 2525
  article-title: Linkage disequilibrium and recombination in hominid mitochondrial DNA
  publication-title: Science
– volume: 57
  start-page: 305
  year: 2003
  end-page: 316
  article-title: No association between mitochondrial DNA haplotypes and a female‐limited mimicry phenotype in
  publication-title: Evolution
– volume: 3
  start-page: 59
  year: 2007
  end-page: 85
  article-title: Fast genes and slow clades: comparative rates of molecular evolution in mammals
  publication-title: Evolutionary Bioinformatics
– volume: 56
  start-page: 337
  year: 2007
  end-page: 345
  article-title: Alarm bells for the molecular clock? No support for Ho ’s model of time‐dependent molecular rate estimates
  publication-title: Systematic Biology
– volume: 9
  start-page: 257
  year: 2009
  end-page: 268
  article-title: Countering criticisms of single mitochondrial DNA gene barcoding in birds
  publication-title: Molecular Ecology Resources
– volume: 178
  start-page: 352
  year: 2008a
  end-page: 361
  article-title: Determination of mitochondrial genetic diversity in mammals
  publication-title: Genetics
– volume: 363
  start-page: 2831
  year: 2008
  end-page: 2839
  article-title: The ubiquitous mountain hare mitochondria: multiple introgressive hybridization in hares, genus
  publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
– volume: 3
  start-page: e2201
  year: 2008
  article-title: Adaptive evolution and functional redesign of core metabolic proteins in snakes
  publication-title: PLoS ONE
– volume: 137
  start-page: 498
  year: 1991
  end-page: 514
  article-title: Nuclear‐cytoplasmic male‐sterility – single‐point equilibria versus limit‐cycles
  publication-title: American Naturalist
– volume: 272
  start-page: 697
  year: 2005
  end-page: 704
  article-title: Evidence for recombination in scorpion mitochondrial DNA (Scorpiones: Buthidae)
  publication-title: Proceedings of the Royal Society B-Biological Sciences
– volume: 274
  start-page: 2881
  year: 2007
  end-page: 2889
  article-title: Limited performance of DNA barcoding in a diverse community of tropical butterflies
  publication-title: Proceedings of the Royal Society B-Biological Sciences
– volume: 408
  start-page: 708
  year: 2000
  end-page: 713
  article-title: Mitochondrial genome variation and the origin of modern humans
  publication-title: Nature
– volume: 23
  start-page: 546
  year: 2008
  end-page: 554
  article-title: Evolutionary implications of non‐neutral mitochondrial genetic variation
  publication-title: Trends in Ecology & Evolution
– volume: 26
  start-page: 1435
  year: 2009
  end-page: 1439
  article-title: Can indirect tests detect a known recombination event in human mtDNA?
  publication-title: Molecular Biology and Evolution
– volume: 4
  start-page: e4396
  year: 2009
  article-title: Evidence for variation in the effective population size of animal mitochondrial DNA
  publication-title: PLoS ONE
– volume: 24
  start-page: 1783
  year: 2007
  end-page: 1791
  article-title: Variation in mutation rate and polymorphism among mitochondrial genes of
  publication-title: Molecular Biology and Evolution
– volume: 159
  start-page: 379
  year: 1965
  end-page: 383
  article-title: Fertilization in tunicates: loss of the paternal mitochondrion prior to sperm entry
  publication-title: Journal of Experimental Zoology
– volume: 15
  start-page: 181
  year: 2000
  end-page: 182
  article-title: Human mitochondrial DNA recombination: can it be true?
  publication-title: Trends in Ecology and Evolution
– volume: 18
  start-page: 2127
  year: 2001
  end-page: 2131
  article-title: Direct evidence for homologous recombination in mussel ( ) mitochondrial DNA
  publication-title: Molecular Biology and Evolution
– volume: 6
  start-page: 27
  year: 2008
  article-title: The diversity of reproductive parasites among arthropods: do not walk alone
  publication-title: BMC Biology
– volume: 44
  start-page: 325
  year: 2007
  end-page: 345
  article-title: Patterns of evolution of mitochondrial cytochrome oxidase I and II DNA and implications for DNA barcoding
  publication-title: Molecular Phylogenetics and Evolution
– volume: 21
  start-page: 2319
  year: 2004
  end-page: 2325
  article-title: A broad survey of recombination in animal mitochondria
  publication-title: Molecular Biology and Evolution
– volume: 100
  start-page: 443
  year: 2008
  end-page: 443
  article-title: An alternate explanation for low mtDNA diversity in birds: an age‐old solution?
  publication-title: Heredity
– volume: 9
  start-page: 64
  year: 2009
  article-title: The joint evolutionary histories of and mitochondria in
  publication-title: BMC Evolutionary Biology
– volume: 312
  start-page: 570
  year: 2006
  end-page: 571
  article-title: Population size does not influence mitochondrial genetic diversity in animals
  publication-title: Science
– volume: 17
  start-page: 1022
  year: 2000
  end-page: 1031
  article-title: Lineage‐specific evolutionary rate in mammalian mtDNA
  publication-title: Molecular Biology and Evolution
– volume: 424
  start-page: 197
  year: 2003
  end-page: 201
  article-title: Widespread horizontal transfer of mitochondrial genes in flowering plants
  publication-title: Nature
– volume: 174
  start-page: 1983
  year: 2006
  end-page: 1994
  article-title: Nonneutral evolution of organelle genes in
  publication-title: Genetics
– volume: 19
  start-page: 2261
  year: 2002
  end-page: 2264
  article-title: Heteroplasmy and evidence for recombination in the mitochondrial control region of the flatfish
  publication-title: Molecular Biology and Evolution
– volume: 36
  start-page: 621
  year: 2005
  end-page: 642
  article-title: The population biology of mitochondrial DNA and its phylogenetic implications
  publication-title: Annual Review Of Ecology Evolution And Systematics
– volume: 2
  start-page: 1529
  year: 2004
  end-page: 1531
  article-title: DNA barcoding: promise and pitfalls
  publication-title: Plos Biology
– volume: 12
  start-page: 1124
  year: 1995
  end-page: 1131
  article-title: Metabolic rate and directional nucleotide substitution in animal mitochondrial DNA
  publication-title: Molecular Biology and Evolution
– volume: 22
  start-page: 1561
  year: 2005
  end-page: 1568
  article-title: Time dependency of molecular rate estimates and systematic overestimation of recent divergence times
  publication-title: Molecular Biology and Evolution
– volume: 9
  start-page: 54
  year: 2009
  article-title: The erratic mitochondrial clock: variations of mutation rate, not population size, affect mtDNA diversity across mammals and birds
  publication-title: BMC Evolutionary Biology
– volume: 16
  start-page: 2281
  year: 2007
  end-page: 2287
  article-title: Rate variation between mitochondrial domains and adaptive evolution in humans
  publication-title: Human Molecular Genetics
– volume: 92
  start-page: 282
  year: 2004
  end-page: 288
  article-title: A reanalysis of the indirect evidence for recombination in human mitochondrial DNA
  publication-title: Heredity
– volume: 275
  start-page: 237
  year: 2008
  end-page: 247
  article-title: Character‐based DNA barcoding allows discrimination of genera, species and populations in Odonata
  publication-title: Proceedings of the Royal Society B-Biological Sciences
– volume: 22
  start-page: 925
  year: 2005
  end-page: 933
  article-title: Widespread recombination in published animal mtDNA sequences
  publication-title: Molecular Biology and Evolution
– volume: 155
  start-page: 909
  year: 2000
  end-page: 919
  article-title: Genetic drift in a infinite population: the pseudohitchhiking model
  publication-title: Genetics
– volume: 383
  start-page: 224
  year: 1996
  article-title: Mitochondria and male disease
  publication-title: Nature
– volume: 48
  start-page: 951
  year: 2005
  end-page: 958
  article-title: The inheritance of organelle genes and genomes: patterns and mechanisms
  publication-title: Genome
– volume: 272
  start-page: 1525
  year: 2005
  end-page: 1534
  article-title: Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts
  publication-title: Proceedings of the Royal Society B-Biological Sciences
– volume: 402
  start-page: 371
  year: 1999
  end-page: 372
  article-title: Ubiquitin tag for sperm mitochondria
  publication-title: Nature
– volume: 32
  start-page: 415
  year: 2001
  end-page: 448
  article-title: The units of selection on mitochondrial DNA
  publication-title: Annual Review of Ecology and Systematics
– volume: 55
  start-page: 729
  year: 2006
  end-page: 739
  article-title: DNA barcoding will often fail to discover new animal species over broad parameter space
  publication-title: Systematic Biology
– volume: 76
  start-page: 1967
  year: 1979
  end-page: 1971
  article-title: Rapid evolution of animal mitochondrial DNA
  publication-title: Proceedings of the National Academy of Sciences of the USA
– volume: 20
  start-page: 1807
  year: 2001
  end-page: 1817
  article-title: Replication and preferential inheritance of hypersuppressive petite mitochondrial DNA
  publication-title: Embo Journal
– volume: 101
  start-page: 17741
  year: 2004
  end-page: 17746
  article-title: Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants
  publication-title: Proceedings of the National Academy of Sciences of the USA
– volume: 101
  start-page: 301
  year: 2008
  end-page: 320
  article-title: Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species
  publication-title: Heredity
– volume: 92
  start-page: 6389
  year: 1995
  end-page: 6393
  article-title: Evolution of single and double symbioses during speciation in the complex
  publication-title: Proceedings of the National Academy of Sciences of the USA
– volume: 23
  start-page: 465
  year: 2007
  end-page: 474
  article-title: The unusual system of doubly uniparental inheritance of mtDNA: isn’t one enough?
  publication-title: Trends in Genetics
– volume: 304
  start-page: 981
  year: 2004
  article-title: Recombination of human mitochondrial DNA
  publication-title: Science
– volume: 18
  start-page: 489
  year: 1987
  end-page: 522
  article-title: Intraspecific phylogeography – the mitochondrial‐DNA bridge between population genetics and systematics
  publication-title: Annual Review of Ecology and Systematics
– year: 1983
– volume: 99
  start-page: 11265
  year: 2002
  end-page: 11269
  article-title: Genealogical evidence for epidemics of selfish genes
  publication-title: Proceedings of the National Academy of Sciences of the USA
– volume: 20
  start-page: 578
  year: 2004
  end-page: 585
  article-title: Accelerated evolution of the electron transport chain in anthropoid primates
  publication-title: Trends in Genetics
– volume: 353
  start-page: 440
  year: 1991
  end-page: 442
  article-title: Rapid spread of an inherited incompatibility in California
  publication-title: Nature
– volume: 22
  start-page: 180
  year: 2007
  end-page: 184
  article-title: Dates from the molecular clock: how wrong can we be?
  publication-title: Trends in Ecology and Evolution
– volume: 63
  start-page: 375
  year: 2006
  end-page: 392
  article-title: The relationship between the rate of molecular evolution and the rate of genome rearrangement in animal mitochondrial genomes
  publication-title: Journal of Molecular Evolution
– volume: 156
  start-page: 385
  year: 2000
  end-page: 399
  article-title: Contrasting patterns of nonneutral evolution in proteins encoded in nuclear and mitochondrial genomes
  publication-title: Genetics
– volume: 324
  start-page: 543
  year: 2001
  end-page: 550
  article-title: Male sterility in plants: occurrence, determinism, significance and use
  publication-title: Comptes Rendus de l’Academie des Sciences Série II-Sciences De La Vie-Life Sciences
– volume: 7
  start-page: 135
  year: 2007
  article-title: Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants
  publication-title: BMC Evolutionary Biology
– volume: 160
  start-page: 1075
  year: 2002
  end-page: 1086
  article-title: History of infection with different male‐killing bacteria in the two spot ladybid beetle revealed through mitochondrial DNA sequence analysis
  publication-title: Genetics
– volume: 67
  start-page: 1029
  year: 2000
  end-page: 1032
  article-title: Hypervariable sites in the mtDNA control region are mutational hotspots
  publication-title: American Journal of Human Genetics
– volume: 7
  start-page: 355
  year: 2007
  end-page: 364
  article-title: bold: The Barcode of Life Data System ( )
  publication-title: Molecular Ecology Notes
– volume: 8
  start-page: 53
  year: 2008
  article-title: Correlates of substitution rate variation in mammalian protein‐coding sequences
  publication-title: BMC Evolutionary Biology
– volume: 132
  start-page: 713
  year: 1992
  end-page: 723
  article-title: Dynamics of cytoplasmic incompatibility and mtDNA variation in natural populations
  publication-title: Genetics
– volume: 269
  start-page: 2257
  year: 2002
  end-page: 2267
  article-title: The distribution of in fig wasps: correlations with host phylogeny, ecology and population structure
  publication-title: Proceedings of the Royal Society of London Series B-Biological Sciences
– volume: 303
  start-page: 223
  year: 2004
  end-page: 226
  article-title: Effects of purifying and adaptive selection on regional variation in human mtDNA
  publication-title: Science
– volume: 247
  start-page: 189
  year: 1992
  end-page: 194
  article-title: Cytoplasmic inheritance and the nature of sexes
  publication-title: Proceedings of the Royal Society of London Series B-Biological Sciences
– volume: 13
  start-page: 729
  year: 2004
  end-page: 744
  article-title: The incomplete natural history of mitochondria
  publication-title: Molecular Ecology
– volume: 77
  start-page: 87
  year: 2007
  end-page: 111
  article-title: Mitochondrial DNA and the mammalian oocyte
  publication-title: Current Topics in Developmental Biology
– volume: 57
  start-page: 202
  year: 2008
  end-page: 215
  article-title: Inferring species membership using DNA sequences with back‐propagation neural networks
  publication-title: Systematic Biology
– volume: 99
  start-page: 389
  year: 2007
  end-page: 396
  article-title: Low mitochondrial variability in birds may indicate Hill‐Robertson effects on the W chromosome
  publication-title: Heredity
– volume: 17
  start-page: 4925
  year: 2008
  end-page: 4942
  article-title: Revealing the hidden complexities of mtDNA inheritance
  publication-title: Molecular Ecology
– ident: e_1_2_7_13_1
  doi: 10.1016/S0169-5347(01)02151-6
– ident: e_1_2_7_92_1
  doi: 10.1016/0169-5347(94)90126-0
– ident: e_1_2_7_28_1
  doi: 10.1093/oxfordjournals.molbev.a004014
– ident: e_1_2_7_31_1
  doi: 10.1098/rspb.2007.1035
– ident: e_1_2_7_22_1
  doi: 10.1073/pnas.0900233106
– ident: e_1_2_7_86_1
  doi: 10.1111/j.1471-8286.2007.01678.x
– ident: e_1_2_7_109_1
  doi: 10.1111/j.1365-294X.2008.03982.x
– ident: e_1_2_7_85_1
  doi: 10.1146/annurev.ecolsys.32.081501.114109
– ident: e_1_2_7_59_1
  doi: 10.1093/hmg/ddm180
– ident: e_1_2_7_82_1
  doi: 10.1093/molbev/msh244
– ident: e_1_2_7_84_1
  doi: 10.1098/rspb.2007.1290
– ident: e_1_2_7_56_1
  doi: 10.1534/genetics.106.060202
– ident: e_1_2_7_111_1
  doi: 10.1186/1742-9994-4-8
– ident: e_1_2_7_68_1
  doi: 10.1093/emboj/20.7.1807
– ident: e_1_2_7_83_1
  doi: 10.1016/j.tree.2006.11.013
– ident: e_1_2_7_14_1
  doi: 10.1038/nature01743
– ident: e_1_2_7_90_1
  doi: 10.1073/pnas.92.14.6389
– ident: e_1_2_7_110_1
  doi: 10.1098/rspb.2007.0062
– ident: e_1_2_7_48_1
  doi: 10.1016/S0169-5347(00)01856-5
– ident: e_1_2_7_65_1
  doi: 10.1126/science.1096342
– ident: e_1_2_7_76_1
  doi: 10.1534/genetics.107.073346
– ident: e_1_2_7_24_1
  doi: 10.1186/1471-2148-9-64
– ident: e_1_2_7_20_1
  doi: 10.1016/S0764-4469(01)01324-5
– ident: e_1_2_7_33_1
  doi: 10.1080/10635150701258795
– volume: 18
  start-page: 489
  year: 1987
  ident: e_1_2_7_4_1
  article-title: Intraspecific phylogeography – the mitochondrial‐DNA bridge between population genetics and systematics
  publication-title: Annual Review of Ecology and Systematics
  doi: 10.1146/annurev.es.18.110187.002421
– ident: e_1_2_7_26_1
  doi: 10.1098/rsbl.2007.0290
– ident: e_1_2_7_37_1
  doi: 10.1101/gr.4305906
– ident: e_1_2_7_25_1
  doi: 10.1073/pnas.0408302101
– ident: e_1_2_7_62_1
  doi: 10.1093/oxfordjournals.molbev.a004170
– ident: e_1_2_7_9_1
  doi: 10.1046/j.1365-294X.2003.02063.x
– ident: e_1_2_7_60_1
  doi: 10.1038/35047064
– ident: e_1_2_7_87_1
  doi: 10.1038/hdy.1994.19
– ident: e_1_2_7_50_1
  doi: 10.1038/hdy.2008.6
– ident: e_1_2_7_49_1
  doi: 10.1046/j.1469-1809.2001.6510043.x
– ident: e_1_2_7_17_1
  doi: 10.1146/annurev.genet.35.102401.090231
– ident: e_1_2_7_19_1
  doi: 10.1073/pnas.76.4.1967
– ident: e_1_2_7_27_1
  doi: 10.1086/286149
– ident: e_1_2_7_100_1
  doi: 10.1093/molbev/msi084
– ident: e_1_2_7_91_1
  doi: 10.1126/science.1088434
– ident: e_1_2_7_70_1
  doi: 10.1046/j.1365-294x.1998.00318.x
– ident: e_1_2_7_113_1
  doi: 10.1007/s00239-005-0246-5
– ident: e_1_2_7_8_1
  doi: 10.1146/annurev.ecolsys.36.091704.175513
– ident: e_1_2_7_30_1
  doi: 10.1186/1741-7007-6-27
– ident: e_1_2_7_58_1
  doi: 10.1098/rspb.2005.3056
– ident: e_1_2_7_75_1
  doi: 10.1186/1471-2148-7-135
– ident: e_1_2_7_47_1
  doi: 10.1098/rspb.2000.1183
– ident: e_1_2_7_52_1
  doi: 10.1093/molbev/msi145
– ident: e_1_2_7_32_1
  doi: 10.1111/j.1558-5646.2007.00305.x
– ident: e_1_2_7_29_1
  doi: 10.1016/j.tree.2008.05.011
– ident: e_1_2_7_95_1
  doi: 10.1098/rspb.2002.2100
– ident: e_1_2_7_103_1
  doi: 10.1098/rsbl.2006.0587
– ident: e_1_2_7_98_1
  doi: 10.1086/303092
– ident: e_1_2_7_53_1
  doi: 10.1080/10635150701435401
– ident: e_1_2_7_36_1
  doi: 10.1038/383224a0
– ident: e_1_2_7_115_1
  doi: 10.1080/10635150802032982
– ident: e_1_2_7_46_1
  doi: 10.1098/rspb.1999.0663
– ident: e_1_2_7_81_1
  doi: 10.1371/journal.pone.0004396
– ident: e_1_2_7_97_1
  doi: 10.1016/S0070-2153(06)77004-1
– ident: e_1_2_7_104_1
  doi: 10.1002/jez.1401590310
– ident: e_1_2_7_108_1
  doi: 10.1093/molbev/msp073
– ident: e_1_2_7_23_1
  doi: 10.1093/oxfordjournals.molbev.a003825
– ident: e_1_2_7_41_1
  doi: 10.1093/oxfordjournals.molbev.a026383
– ident: e_1_2_7_11_1
  doi: 10.1093/molbev/msm106
– ident: e_1_2_7_89_1
  doi: 10.1016/j.ympev.2006.05.033
– ident: e_1_2_7_18_1
  doi: 10.1016/j.tig.2007.05.011
– ident: e_1_2_7_21_1
  doi: 10.1371/journal.pone.0002201
– ident: e_1_2_7_45_1
  doi: 10.1038/nature05388
– ident: e_1_2_7_57_1
  doi: 10.1098/rspb.1992.0027
– ident: e_1_2_7_80_1
  doi: 10.1038/sj.hdy.6800413
– ident: e_1_2_7_51_1
  doi: 10.1111/j.1574-6968.2008.01110.x
– ident: e_1_2_7_79_1
  doi: 10.1111/j.1755-0998.2009.02631.x
– ident: e_1_2_7_10_1
  doi: 10.1111/j.1474-9726.2007.00331.x
– volume: 160
  start-page: 1075
  year: 2002
  ident: e_1_2_7_94_1
  article-title: History of infection with different male‐killing bacteria in the two spot ladybid beetle Adalia bipunctata revealed through mitochondrial DNA sequence analysis
  publication-title: Genetics
  doi: 10.1093/genetics/160.3.1075
– ident: e_1_2_7_39_1
  doi: 10.1098/rspb.2004.3017
– ident: e_1_2_7_106_1
  doi: 10.1093/genetics/156.1.385
– ident: e_1_2_7_88_1
  doi: 10.1016/j.ympev.2006.12.005
– ident: e_1_2_7_7_1
  doi: 10.1093/oxfordjournals.molbev.a026394
– ident: e_1_2_7_44_1
  doi: 10.1016/j.tig.2004.09.002
– ident: e_1_2_7_78_1
  doi: 10.1186/1471-2148-9-54
– ident: e_1_2_7_3_1
  doi: 10.1111/j.0014-3820.2003.tb00265.x
– ident: e_1_2_7_55_1
  doi: 10.1111/j.1365-2583.1995.tb00029.x
– ident: e_1_2_7_72_1
  doi: 10.1371/journal.pbio.0020354
– ident: e_1_2_7_74_1
  doi: 10.1083/jcb.10.3.301
– ident: e_1_2_7_105_1
  doi: 10.1534/genetics.104.91769
– ident: e_1_2_7_2_1
  doi: 10.1098/rstb.2008.0053
– ident: e_1_2_7_15_1
  doi: 10.1038/sj.hdy.6801014
– ident: e_1_2_7_12_1
  doi: 10.1126/science.1122033
– ident: e_1_2_7_5_1
  doi: 10.1126/science.286.5449.2524
– ident: e_1_2_7_16_1
  doi: 10.1177/117693430700300008
– ident: e_1_2_7_93_1
  doi: 10.1111/j.1365-3113.2008.00433.x
– ident: e_1_2_7_114_1
  doi: 10.1016/j.tig.2005.03.006
– ident: e_1_2_7_6_1
  doi: 10.1111/j.1755-0998.2009.02650.x
– ident: e_1_2_7_101_1
  doi: 10.1038/353440a0
– volume: 155
  start-page: 909
  year: 2000
  ident: e_1_2_7_40_1
  article-title: Genetic drift in a infinite population: the pseudohitchhiking model
  publication-title: Genetics
  doi: 10.1093/genetics/155.2.909
– ident: e_1_2_7_71_1
  doi: 10.1371/journal.pbio.0030422
– ident: e_1_2_7_61_1
  doi: 10.1073/pnas.172318099
– volume-title: Power, Sex, Suicide. Mitochondria and the Meaning of Life
  year: 2005
  ident: e_1_2_7_67_1
– ident: e_1_2_7_73_1
  doi: 10.1111/j.1365-294X.2005.02773.x
– ident: e_1_2_7_43_1
  doi: 10.1086/285179
– ident: e_1_2_7_63_1
  doi: 10.1093/genetics/164.1.5
– ident: e_1_2_7_64_1
  doi: 10.1017/CBO9780511623486
– ident: e_1_2_7_99_1
  doi: 10.1038/46466
– ident: e_1_2_7_66_1
  doi: 10.1093/oxfordjournals.molbev.a003755
– ident: e_1_2_7_96_1
  doi: 10.1046/j.1365-294X.2003.01864.x
– ident: e_1_2_7_102_1
  doi: 10.1093/genetics/132.3.713
– ident: e_1_2_7_107_1
  doi: 10.1186/1471-2148-8-53
– ident: e_1_2_7_34_1
  doi: 10.1098/rspb.1999.0662
– ident: e_1_2_7_42_1
  doi: 10.1038/hdy.2008.62
– ident: e_1_2_7_112_1
  doi: 10.1139/g05-082
– ident: e_1_2_7_54_1
  doi: 10.1093/oxfordjournals.molbev.a004049
– ident: e_1_2_7_35_1
  doi: 10.1111/j.1755-0998.2009.02652.x
– ident: e_1_2_7_38_1
  doi: 10.1098/rsbl.2008.0662
– volume: 12
  start-page: 1124
  year: 1995
  ident: e_1_2_7_69_1
  article-title: Metabolic rate and directional nucleotide substitution in animal mitochondrial DNA
  publication-title: Molecular Biology and Evolution
– ident: e_1_2_7_77_1
  doi: 10.1093/molbev/msm248
SSID ssj0013255
Score 2.5427241
SecondaryResourceType review_article
Snippet Over the last three decades, mitochondrial DNA has been the most popular marker of molecular diversity, for a combination of technical ease-of-use...
Over the last three decades, mitochondrial DNA has been the most popular marker of molecular diversity, for a combination of technical ease‐of‐use...
SourceID swepub
proquest
pubmed
crossref
wiley
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4541
SubjectTerms adaptation
Biodiversity
Biologi
Biology
Biomarkers
DNA, Mitochondrial
DNA, Mitochondrial - genetics
Evolution, Molecular
Genetic Markers
Genetic Speciation
Genetic Variation
genetics
Genetics, Population
Genome, Mitochondrial
Genomics
Inheritance Patterns
Mitochondrial DNA
mitochondrial genome
Molecular biology
molecular clock
Mutation
mutation hotspots
NATURAL SCIENCES
NATURVETENSKAP
population
recombination
Selection, Genetic
Wolbachio
Title Mitochondrial DNA as a marker of molecular diversity: a reappraisal
URI https://api.istex.fr/ark:/67375/WNG-59HBHDQ7-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-294X.2009.04380.x
https://www.ncbi.nlm.nih.gov/pubmed/19821901
https://www.proquest.com/docview/210701442
https://www.proquest.com/docview/210701867
https://www.proquest.com/docview/1139576410
https://www.proquest.com/docview/734239761
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-142175
Volume 18
WOSCitedRecordID wos000271468800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-294X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013255
  issn: 0962-1083
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-xDiRe-B4LgylIwFtQ47hxzFvpB33YKr46-mY5sT1V2tqqWdH233PnpGGVBpoQb5EcR8nl7vw73_l3AG-4oVXQikgjFog4NyyS1sioYxPhYlYw63m2T47EeJxNp_JzXf9EZ2Eqfohmw40sw_trMnCdl9tG7iu0JJ_WtJNEnv4e8eQuQzXmLdjtfx1Ojq7lFHwPVMTsDJ1PlmzX9dz4rK3FasfpBUJYkv7lTXi0IRvdxrl-oRo-_J-f-Age1HA17Fb69Rju2PkTuFc1sLzCq4Envb56Cr1jdA3oSueGNDrsj7uhLkMdnlP5zypcuPB804g3NJtakA94A4LW5XKlZ6U-ewaT4eB7bxTVDRqigk73RLk1zmibpSbR3BnLY8MLwXLrEIbQiVUrNcIdHTvjYtpx5U4zV7S1YDqN8yzZg9Z8Mbf7EKYIc3guZNtSyR3LcZC7xHSkNA7VJQlAbP6EKmr2cmqicaauRTEoLEXCot6aUnlhqcsA4mbmsmLwuMWcffzZSp-io1WTb4zSu3EqU0RHAbzzGtA8C8VIxXGio36MP6mOHH0c9b8I1QvgYKMiqvYLpcIAW1AMy_4ymqUigNfNKJo75XD03C7WJb42JVZTHrcDCP9wj_CsjiKNA3heqebvD5cZIwgYwNtKV5sRohnvz066arE6Ves1hoQYrHYCSL2C3lpy6njQo6sX_zrxAO77hJ0_7vkSWhertX0Fd4ufF7NydQg7Ypod1pb9C_byREo
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9BB4IXvmFhfAQJeAtqHCeOeSv9oIi24mMbfbPc2J4qbW3Vrmj777lz0rBKA02It0iOo-Ryd_6d7_w7gNfc0CpoRaQRC0ScGxZJa2SU2kS4mBXMep7tw4EYjfLxWH6p2gHRWZiSH6LecCPL8P6aDJw2pLet3JdoST6ueCeJPf0dAsodjlqVNmCn8613MLiQVPBNUBG0M_Q-ebJd2HPps7ZWq-tOzxHDkvjPLgOkNdvoNtD1K1Xv7n_9xntwpwKsYavUsPtwzc4ewM2yheU5XnU97fX5Q2gP0TmgM50Z0umwM2qFehXq8IQKgJbh3IUnm1a8odlUg7zHGxC2LhZLPV3p40dw0Ovut_tR1aIhKuh8TzSxxhlt88wkmjtjeWx4IdjEOgQidGbVSo2AR8fOuJj2XLnTzBVNLZjO4kmePIbGbD6zuxBmCHT4RMimpaI7NsFB7hKTSmkcKkwSgNj8ClVU_OXURuNYXYhjUFiKhEXdNaXywlJnAcT1zEXJ4XGFObv4t5U-QlerDr4zSvDGmcwQHwXw1qtA_SwUI5XHiVT9GH1Uqex_6He-CtUOYG-jI6ryDCuFIbagKJb9ZTTPRACv6lE0eMri6Jmdr1f42pRazXjcDCD8wz3C8zqKLA7gSambvz9c5oxAYABvSmWtR4hovDM9bKn58kit1xgUYriaBpB5Db2y5NSw26arp_868SXc6u8PB2rwafR5D2779J0__PkMGqfLtX0ON4qfp9PV8kVl4L8AzoNHUg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BBhMvfLOF8REk4C2ocZw45q30gyK6anx09M1yY3uqtLVVu6Ltv-fOScMqDTQh3iI5jpLL3fl3vvPvAF5zQ6ugFZFGLBBxblgkrZFRahPhYlYw63m2j_piMMhHI3lYtQOiszAlP0S94UaW4f01GbidG7dp5b5ES_JRxTtJ7OnvEFBu81RmaKXb7a_dYf9SUsE3QUXQztD75MlmYc-Vz9pYrW46PUMMS-I_vwqQ1myjm0DXr1Tde__1G-_D3Qqwhs1Swx7ADTt9CLfLFpYXeNXxtNcXj6B1gM4BnenUkE6H7UEz1MtQh6dUALQIZy48XbfiDc26GuQ93oCwdT5f6MlSnzyGYbfzvdWLqhYNUUHne6KxNc5om2cm0dwZy2PDC8HG1iEQoTOrVmoEPDp2xsW058qdZq5oaMF0Fo_z5AlsTWdTuwdhhkCHj4VsWCq6Y2Mc5C4xqZTGocIkAYj1r1BFxV9ObTRO1KU4BoWlSFjUXVMqLyx1HkBcz5yXHB7XmLOHf1vpY3S1aviNUYI3zmSG-CiAt14F6mehGKk8TqTqx-CjSmXvQ6_9RahWAPtrHVGVZ1gqDLEFRbHsL6N5JgJ4VY-iwVMWR0_tbLXE16bUasbjRgDhH-4RntdRZHEAu6Vu_v5wmTMCgQG8KZW1HiGi8fbkqKlmi2O1WmFQiOFqGkDmNfTaklMHnRZdPf3XiS9h57DdVf1Pg8_7cMdn7_zZz2ewdbZY2edwq_h5NlkuXlT2_Qvsc0bN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+DNA+as+a+marker+of+molecular+diversity&rft.jtitle=Molecular+ecology&rft.au=Galtier%2C+N.&rft.au=Nabholz%2C+Benoit&rft.au=Glemin%2C+S.&rft.au=Hurst%2C+G.+D.+D.&rft.date=2009-11-01&rft.issn=0962-1083&rft.volume=18&rft.issue=22&rft.spage=4541&rft_id=info:doi/10.1111%2Fj.1365-294X.2009.04380.x&rft.externalDocID=oai_DiVA_org_uu_142175
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon