Comparing performance between log-binomial and robust Poisson regression models for estimating risk ratios under model misspecification

Background Log-binomial and robust (modified) Poisson regression models are popular approaches to estimate risk ratios for binary response variables. Previous studies have shown that comparatively they produce similar point estimates and standard errors. However, their performance under model misspe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BMC medical research methodology Ročník 18; číslo 1; s. 63 - 12
Hlavní autori: Chen, Wansu, Qian, Lei, Shi, Jiaxiao, Franklin, Meredith
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 22.06.2018
BioMed Central Ltd
Springer Nature B.V
BMC
Predmet:
ISSN:1471-2288, 1471-2288
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background Log-binomial and robust (modified) Poisson regression models are popular approaches to estimate risk ratios for binary response variables. Previous studies have shown that comparatively they produce similar point estimates and standard errors. However, their performance under model misspecification is poorly understood. Methods In this simulation study, the statistical performance of the two models was compared when the log link function was misspecified or the response depended on predictors through a non-linear relationship (i.e. truncated response). Results Point estimates from log-binomial models were biased when the link function was misspecified or when the probability distribution of the response variable was truncated at the right tail. The percentage of truncated observations was positively associated with the presence of bias, and the bias was larger if the observations came from a population with a lower response rate given that the other parameters being examined were fixed. In contrast, point estimates from the robust Poisson models were unbiased. Conclusion Under model misspecification, the robust Poisson model was generally preferable because it provided unbiased estimates of risk ratios.
AbstractList Log-binomial and robust (modified) Poisson regression models are popular approaches to estimate risk ratios for binary response variables. Previous studies have shown that comparatively they produce similar point estimates and standard errors. However, their performance under model misspecification is poorly understood.BACKGROUNDLog-binomial and robust (modified) Poisson regression models are popular approaches to estimate risk ratios for binary response variables. Previous studies have shown that comparatively they produce similar point estimates and standard errors. However, their performance under model misspecification is poorly understood.In this simulation study, the statistical performance of the two models was compared when the log link function was misspecified or the response depended on predictors through a non-linear relationship (i.e. truncated response).METHODSIn this simulation study, the statistical performance of the two models was compared when the log link function was misspecified or the response depended on predictors through a non-linear relationship (i.e. truncated response).Point estimates from log-binomial models were biased when the link function was misspecified or when the probability distribution of the response variable was truncated at the right tail. The percentage of truncated observations was positively associated with the presence of bias, and the bias was larger if the observations came from a population with a lower response rate given that the other parameters being examined were fixed. In contrast, point estimates from the robust Poisson models were unbiased.RESULTSPoint estimates from log-binomial models were biased when the link function was misspecified or when the probability distribution of the response variable was truncated at the right tail. The percentage of truncated observations was positively associated with the presence of bias, and the bias was larger if the observations came from a population with a lower response rate given that the other parameters being examined were fixed. In contrast, point estimates from the robust Poisson models were unbiased.Under model misspecification, the robust Poisson model was generally preferable because it provided unbiased estimates of risk ratios.CONCLUSIONUnder model misspecification, the robust Poisson model was generally preferable because it provided unbiased estimates of risk ratios.
[...]we summarize the findings and provide recommendations for the use of these models in future studies in the “Discussion” section. The MSE was calculated by taking the sum of the squared bias in log scale and the variances, in which the bias was specified as \( \frac{1}{1,000}\sum \limits_{m=1}^{1,000}{\hat{\theta}}_m-\log (trueRR) \). Because both SE and MSE depended on the sample size, the process described above was repeated for sample of size 500 for all scenarios with RR = 3. The intercepts and the thresholds were generated using the same approach as described in the previous section. Because Z2 follows the uniform distribution, the thresholds increase proportionally with the beta coefficients. [...]in a previous examination (Additional file 3), we found when an important explanatory variable was omitted, a higher order term of non-linear explanatory variable was ignored, or an interaction term was overlooked, the two models produced comparable results regardless of the outcome rate, risk ratio or the strength of association between the exposure and the confounder or between the outcome and the confounder.
Background Log-binomial and robust (modified) Poisson regression models are popular approaches to estimate risk ratios for binary response variables. Previous studies have shown that comparatively they produce similar point estimates and standard errors. However, their performance under model misspecification is poorly understood. Methods In this simulation study, the statistical performance of the two models was compared when the log link function was misspecified or the response depended on predictors through a non-linear relationship (i.e. truncated response). Results Point estimates from log-binomial models were biased when the link function was misspecified or when the probability distribution of the response variable was truncated at the right tail. The percentage of truncated observations was positively associated with the presence of bias, and the bias was larger if the observations came from a population with a lower response rate given that the other parameters being examined were fixed. In contrast, point estimates from the robust Poisson models were unbiased. Conclusion Under model misspecification, the robust Poisson model was generally preferable because it provided unbiased estimates of risk ratios. Keywords: Log-binomial regression, Robust (modified) Poisson regression, Model misspecification, Risk ratio, Link function misspecification
Log-binomial and robust (modified) Poisson regression models are popular approaches to estimate risk ratios for binary response variables. Previous studies have shown that comparatively they produce similar point estimates and standard errors. However, their performance under model misspecification is poorly understood. In this simulation study, the statistical performance of the two models was compared when the log link function was misspecified or the response depended on predictors through a non-linear relationship (i.e. truncated response). Point estimates from log-binomial models were biased when the link function was misspecified or when the probability distribution of the response variable was truncated at the right tail. The percentage of truncated observations was positively associated with the presence of bias, and the bias was larger if the observations came from a population with a lower response rate given that the other parameters being examined were fixed. In contrast, point estimates from the robust Poisson models were unbiased. Under model misspecification, the robust Poisson model was generally preferable because it provided unbiased estimates of risk ratios.
Abstract Background Log-binomial and robust (modified) Poisson regression models are popular approaches to estimate risk ratios for binary response variables. Previous studies have shown that comparatively they produce similar point estimates and standard errors. However, their performance under model misspecification is poorly understood. Methods In this simulation study, the statistical performance of the two models was compared when the log link function was misspecified or the response depended on predictors through a non-linear relationship (i.e. truncated response). Results Point estimates from log-binomial models were biased when the link function was misspecified or when the probability distribution of the response variable was truncated at the right tail. The percentage of truncated observations was positively associated with the presence of bias, and the bias was larger if the observations came from a population with a lower response rate given that the other parameters being examined were fixed. In contrast, point estimates from the robust Poisson models were unbiased. Conclusion Under model misspecification, the robust Poisson model was generally preferable because it provided unbiased estimates of risk ratios.
Log-binomial and robust (modified) Poisson regression models are popular approaches to estimate risk ratios for binary response variables. Previous studies have shown that comparatively they produce similar point estimates and standard errors. However, their performance under model misspecification is poorly understood. In this simulation study, the statistical performance of the two models was compared when the log link function was misspecified or the response depended on predictors through a non-linear relationship (i.e. truncated response). Point estimates from log-binomial models were biased when the link function was misspecified or when the probability distribution of the response variable was truncated at the right tail. The percentage of truncated observations was positively associated with the presence of bias, and the bias was larger if the observations came from a population with a lower response rate given that the other parameters being examined were fixed. In contrast, point estimates from the robust Poisson models were unbiased. Under model misspecification, the robust Poisson model was generally preferable because it provided unbiased estimates of risk ratios.
Background Log-binomial and robust (modified) Poisson regression models are popular approaches to estimate risk ratios for binary response variables. Previous studies have shown that comparatively they produce similar point estimates and standard errors. However, their performance under model misspecification is poorly understood. Methods In this simulation study, the statistical performance of the two models was compared when the log link function was misspecified or the response depended on predictors through a non-linear relationship (i.e. truncated response). Results Point estimates from log-binomial models were biased when the link function was misspecified or when the probability distribution of the response variable was truncated at the right tail. The percentage of truncated observations was positively associated with the presence of bias, and the bias was larger if the observations came from a population with a lower response rate given that the other parameters being examined were fixed. In contrast, point estimates from the robust Poisson models were unbiased. Conclusion Under model misspecification, the robust Poisson model was generally preferable because it provided unbiased estimates of risk ratios.
ArticleNumber 63
Audience Academic
Author Qian, Lei
Chen, Wansu
Franklin, Meredith
Shi, Jiaxiao
Author_xml – sequence: 1
  givenname: Wansu
  surname: Chen
  fullname: Chen, Wansu
  email: Wansu.Chen@KP.org
  organization: Kaiser Permanente Southern California, Department of Research and Evaluation
– sequence: 2
  givenname: Lei
  surname: Qian
  fullname: Qian, Lei
  organization: Kaiser Permanente Southern California, Department of Research and Evaluation
– sequence: 3
  givenname: Jiaxiao
  surname: Shi
  fullname: Shi, Jiaxiao
  organization: Kaiser Permanente Southern California, Department of Research and Evaluation
– sequence: 4
  givenname: Meredith
  surname: Franklin
  fullname: Franklin, Meredith
  organization: Department of Preventive Medicine, Keck School of Medicine, University of Southern California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29929477$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1TAUjFARbS98ABtkiQ2bFNuJ89ggVVc8KlWCBawtxz4OviT2xU6K-AJ-m5OmtL0VIC98ZM_M8RnPaXbkg4cse87oGWNN9Tox3tRlTlmTU8HaXDzKTlhZs5zzpjm6Vx9npyntKGV1U1RPsmPetrwt6_ok-7UN415F53uyh2hDHJXXQDqYfgB4MoQ-75wPo1MDUd6QGLo5TeRTcCkFTyL0EVJyWI7BwJAIShBIkxvVtIhGl76RiHVIZPYG4oojI_L3oJ11ern0T7PHVg0Jnt3sm-zLu7eftx_yy4_vL7bnl7muqnbKTatFIZS2jJu2EEyJBrhRShttKeUWrC14pRpblpRqwaHqCm5K9IHakuu62GQXq64Jaif3Ed8Zf8qgnLw-CLGXKk5ODyAL7NhRKIuiVaUoTGM574B1nWh0XYJGrTer1n7uRjAa_BTVcCB6eOPdV9mHK1lRVrSUo8CrG4EYvs_omkRbNAyD8hDmJDkVjaCsxV_bZC8fQHdhjh6tQlTNKsEZp3eoXuEAztuAffUiKs9FWWFPxltEnf0FhcvA6DRGzDo8PyC8uD_o7YR_YoQAtgJ0DClFsLcQRuUSVblGVWJU5RJVKZBTP-BoN11nAV_jhv8y-cpM-yW4EO-8-DfpN_hp_zY
CitedBy_id crossref_primary_10_1017_S0021932022000451
crossref_primary_10_1093_bjsopen_zraa031
crossref_primary_10_3390_educsci15091247
crossref_primary_10_1016_j_lansea_2023_100187
crossref_primary_10_1002_art_42035
crossref_primary_10_1192_bjp_2023_128
crossref_primary_10_1038_s41598_024_74086_0
crossref_primary_10_1186_s12916_022_02275_7
crossref_primary_10_1136_bmjophth_2020_000492
crossref_primary_10_1371_journal_pone_0309322
crossref_primary_10_1164_rccm_202310_1800OC
crossref_primary_10_1097_MLR_0000000000001708
crossref_primary_10_3390_diagnostics12112851
crossref_primary_10_1371_journal_pntd_0007617
crossref_primary_10_1016_j_amjsurg_2023_05_032
crossref_primary_10_1371_journal_pone_0233274
crossref_primary_10_1016_j_drugalcdep_2025_112591
crossref_primary_10_1038_s41408_023_00964_x
crossref_primary_10_1016_j_jaac_2025_05_011
crossref_primary_10_1016_j_sleep_2022_07_003
crossref_primary_10_3102_0013189X221120262
crossref_primary_10_1016_j_fertnstert_2022_05_010
crossref_primary_10_1186_s12884_023_06119_x
crossref_primary_10_2105_AJPH_2020_305745
crossref_primary_10_1097_EDE_0000000000001544
crossref_primary_10_1002_ppul_26930
crossref_primary_10_1016_j_injury_2020_12_031
crossref_primary_10_1016_j_amepre_2023_11_015
crossref_primary_10_3389_fpubh_2025_1542024
crossref_primary_10_1007_s00737_023_01369_2
crossref_primary_10_1161_ATVBAHA_125_322347
crossref_primary_10_1016_j_socscimed_2021_114541
crossref_primary_10_1136_bmj_2023_077190
crossref_primary_10_1016_j_neuro_2025_02_002
crossref_primary_10_1136_spcare_2023_004412
crossref_primary_10_1136_tsaco_2021_000689
crossref_primary_10_2147_RRN_S296534
crossref_primary_10_1016_j_bodyim_2023_02_007
crossref_primary_10_1007_s00520_022_06864_3
crossref_primary_10_1093_ntr_ntab135
crossref_primary_10_1001_jamanetworkopen_2024_27604
crossref_primary_10_1089_jwh_2020_8706
crossref_primary_10_1002_ppul_25165
crossref_primary_10_3934_publichealth_2021033
crossref_primary_10_1016_j_annepidem_2024_10_004
crossref_primary_10_1186_s12992_021_00792_3
crossref_primary_10_1371_journal_pone_0271567
crossref_primary_10_1371_journal_pmed_1003150
crossref_primary_10_1017_S0033291721004980
crossref_primary_10_3389_fped_2023_1308770
crossref_primary_10_1007_s00420_021_01804_w
crossref_primary_10_1007_s10865_021_00265_3
crossref_primary_10_1097_JOM_0000000000003330
crossref_primary_10_5694_mja2_52551
crossref_primary_10_1001_jamaophthalmol_2023_0167
crossref_primary_10_1016_j_socscimed_2023_115841
crossref_primary_10_1093_heapro_daac107
crossref_primary_10_1093_ofid_ofac688
crossref_primary_10_1038_s41598_021_93701_y
crossref_primary_10_1136_rapm_2020_102441
crossref_primary_10_1016_j_vaccine_2023_11_012
crossref_primary_10_32388_RTCT47_2
crossref_primary_10_1186_s12909_024_06207_2
crossref_primary_10_1093_ageing_afac022
crossref_primary_10_1093_aje_kwab020
crossref_primary_10_1186_s13034_024_00734_y
crossref_primary_10_1093_sleep_zsac100
crossref_primary_10_1136_bmjdrc_2021_002714
crossref_primary_10_1016_j_envpol_2021_118632
crossref_primary_10_1186_s12877_025_06078_2
crossref_primary_10_3390_brainsci13091292
crossref_primary_10_1016_j_envres_2024_118522
crossref_primary_10_1001_jamanetworkopen_2024_39727
crossref_primary_10_1097_AOG_0000000000004960
crossref_primary_10_2196_51574
crossref_primary_10_1016_j_appet_2025_108308
crossref_primary_10_3233_JAD_220892
crossref_primary_10_1161_JAHA_118_010345
crossref_primary_10_1002_oby_23038
crossref_primary_10_1542_peds_2022_057034
crossref_primary_10_1111_jebm_12609
crossref_primary_10_1016_j_amepre_2020_12_004
crossref_primary_10_1177_2055102920967244
crossref_primary_10_1016_j_jss_2020_11_031
crossref_primary_10_1016_j_contraception_2023_110307
crossref_primary_10_1016_j_ssci_2022_105805
crossref_primary_10_1186_s12889_024_20977_w
crossref_primary_10_1002_dad2_12409
crossref_primary_10_1111_1753_6405_13162
crossref_primary_10_1186_s13690_024_01398_y
crossref_primary_10_1080_00220973_2019_1699769
crossref_primary_10_1016_j_jad_2021_02_024
crossref_primary_10_1016_j_jth_2021_101112
crossref_primary_10_1001_jamanetworkopen_2023_37909
crossref_primary_10_1097_AOG_0000000000003862
crossref_primary_10_1186_s12889_023_17433_6
crossref_primary_10_1097_XCS_0000000000000708
crossref_primary_10_1016_j_psychres_2025_116605
crossref_primary_10_1089_jwh_2023_1042
crossref_primary_10_1371_journal_pone_0251581
crossref_primary_10_1186_s12879_024_09190_7
crossref_primary_10_1186_s13033_023_00605_7
crossref_primary_10_1016_j_imu_2022_101103
crossref_primary_10_1038_s41390_023_02650_x
crossref_primary_10_1017_S0007114520002846
crossref_primary_10_2337_dc19_0963
crossref_primary_10_2989_17280583_2025_2504586
crossref_primary_10_1016_j_envres_2023_115969
crossref_primary_10_1080_00207411_2020_1816114
crossref_primary_10_1097_CORR_0000000000002950
crossref_primary_10_1097_MD_0000000000033559
crossref_primary_10_1080_10543406_2023_2297789
crossref_primary_10_1007_s11606_022_07870_1
crossref_primary_10_1186_s12939_023_01945_z
crossref_primary_10_1093_ofid_ofad219
crossref_primary_10_1016_j_injury_2021_03_045
crossref_primary_10_1080_08870446_2022_2105842
crossref_primary_10_1080_14767058_2023_2199343
crossref_primary_10_1016_j_scitotenv_2025_180014
crossref_primary_10_1542_hpeds_2024_007986
crossref_primary_10_1016_j_heha_2025_100126
crossref_primary_10_1016_j_injury_2019_11_006
crossref_primary_10_1016_j_lanepe_2025_101278
crossref_primary_10_1016_j_amjsurg_2022_12_017
crossref_primary_10_1089_chi_2024_0396
crossref_primary_10_1093_ageing_afaa277
crossref_primary_10_1016_j_socscimed_2025_117905
crossref_primary_10_1097_CCM_0000000000005969
crossref_primary_10_1016_S2215_0366_22_00110_9
crossref_primary_10_1002_ajim_23433
crossref_primary_10_1016_j_drugalcdep_2021_109003
crossref_primary_10_1016_j_jaip_2024_08_014
crossref_primary_10_1371_journal_pone_0282536
crossref_primary_10_5888_pcd21_240137
crossref_primary_10_1016_j_ijmedinf_2023_105156
crossref_primary_10_1016_j_jacadv_2024_100916
crossref_primary_10_1093_eurpub_ckab197
crossref_primary_10_1001_jamanetworkopen_2024_15220
crossref_primary_10_1016_j_lanwpc_2023_100859
crossref_primary_10_1186_s12885_024_11974_8
crossref_primary_10_1097_j_pain_0000000000002264
crossref_primary_10_1016_j_jpsychires_2025_02_016
crossref_primary_10_1371_journal_pone_0330777
crossref_primary_10_3390_ijerph181910177
crossref_primary_10_1007_s12508_021_00323_w
crossref_primary_10_1016_j_jcrc_2023_154510
crossref_primary_10_1111_1471_0528_17081
crossref_primary_10_1016_j_drugalcdep_2024_111318
crossref_primary_10_1016_j_ajoint_2025_100156
crossref_primary_10_1016_j_numecd_2023_10_002
crossref_primary_10_1016_j_placenta_2025_04_022
crossref_primary_10_1371_journal_pone_0278702
crossref_primary_10_1080_17457300_2021_1996397
crossref_primary_10_1186_s40621_020_00284_9
crossref_primary_10_1186_s41043_022_00334_6
crossref_primary_10_3389_fped_2023_1155852
crossref_primary_10_1186_s12967_022_03578_2
crossref_primary_10_1186_s13012_024_01373_9
crossref_primary_10_1177_0361198121989727
crossref_primary_10_1186_s12889_023_17319_7
crossref_primary_10_1210_clinem_dgad660
crossref_primary_10_1016_j_socscimed_2021_114494
crossref_primary_10_1177_08982643211013696
crossref_primary_10_1016_j_ijcard_2025_133458
crossref_primary_10_1016_j_lana_2023_100569
crossref_primary_10_1016_S2352_4642_21_00022_5
crossref_primary_10_1093_biomtc_ujae037
crossref_primary_10_1093_cid_ciaa1787
crossref_primary_10_1016_j_injury_2021_07_001
crossref_primary_10_1136_bmjph_2024_001298
crossref_primary_10_1161_JAHA_122_027433
crossref_primary_10_1186_s12888_021_03501_x
crossref_primary_10_1016_j_ogla_2025_05_001
crossref_primary_10_3390_ijerph17155328
crossref_primary_10_1016_j_injury_2021_12_042
crossref_primary_10_1186_s12884_024_07026_5
crossref_primary_10_1002_puh2_70108
crossref_primary_10_1038_s41440_025_02284_y
crossref_primary_10_1371_journal_pone_0269740
crossref_primary_10_1016_j_healthplace_2025_103481
crossref_primary_10_1016_j_jpsychires_2025_07_042
crossref_primary_10_1093_ije_dyae135
crossref_primary_10_1017_S0950268823001826
crossref_primary_10_1186_s12954_024_01097_5
crossref_primary_10_1001_jamanetworkopen_2024_2309
crossref_primary_10_7196_SAMJ_2023_v113i4_16753
crossref_primary_10_1016_j_socscimed_2023_116443
crossref_primary_10_1093_ije_dyad045
crossref_primary_10_3390_ijerph19106105
crossref_primary_10_1016_j_clnu_2025_01_010
crossref_primary_10_1136_bmjpo_2024_003236
crossref_primary_10_1186_s12889_023_17341_9
crossref_primary_10_1111_1471_0528_17038
crossref_primary_10_1007_s00127_025_02951_y
crossref_primary_10_1016_j_focus_2024_100192
crossref_primary_10_1200_GO_24_00543
crossref_primary_10_1016_j_parkreldis_2024_107194
crossref_primary_10_1016_j_jaip_2025_07_036
crossref_primary_10_1038_s41598_024_68027_0
crossref_primary_10_1016_j_drugalcdep_2024_111377
crossref_primary_10_1016_j_cegh_2021_100768
crossref_primary_10_1002_bjs5_50152
crossref_primary_10_1136_bmjopen_2019_033658
crossref_primary_10_1016_j_envint_2020_106104
crossref_primary_10_1016_j_vaccine_2025_127033
crossref_primary_10_1097_HJH_0000000000002706
crossref_primary_10_1016_j_jss_2021_06_031
crossref_primary_10_3390_healthcare13070798
crossref_primary_10_3390_axioms11110612
crossref_primary_10_3390_healthcare9050539
crossref_primary_10_1111_birt_12875
crossref_primary_10_7189_jogh_12_05046
crossref_primary_10_1016_S2468_2667_22_00042_1
crossref_primary_10_1017_S1368980020005200
crossref_primary_10_1038_s41598_024_76609_1
crossref_primary_10_1210_jendso_bvac072
crossref_primary_10_1007_s40520_023_02522_8
crossref_primary_10_1097_HJH_0000000000002175
crossref_primary_10_1016_j_surg_2021_08_056
crossref_primary_10_1016_j_jad_2022_10_044
crossref_primary_10_1186_s12889_024_18467_0
crossref_primary_10_1016_j_archger_2021_104615
crossref_primary_10_1093_haschl_qxaf174
crossref_primary_10_1161_JAHA_120_020408
crossref_primary_10_1111_add_16581
crossref_primary_10_1016_j_cdnut_2022_100008
crossref_primary_10_1016_j_drugalcdep_2022_109644
crossref_primary_10_1016_j_jaip_2022_02_032
crossref_primary_10_1111_nhs_12836
crossref_primary_10_1186_s12879_019_4523_0
crossref_primary_10_1016_j_psychres_2025_116555
crossref_primary_10_1001_jamanetworkopen_2022_49930
crossref_primary_10_1007_s10461_021_03377_8
crossref_primary_10_3389_ijph_2022_1604710
crossref_primary_10_1016_j_psc_2021_11_013
crossref_primary_10_1016_j_burns_2020_12_007
crossref_primary_10_1007_s00701_023_05852_8
crossref_primary_10_1017_S0950268824001262
crossref_primary_10_1016_j_midw_2024_104079
crossref_primary_10_1164_rccm_202310_1926OC
crossref_primary_10_1186_s12889_024_20236_y
crossref_primary_10_1371_journal_pone_0221432
crossref_primary_10_1016_j_amepre_2022_03_034
crossref_primary_10_1371_journal_pone_0268325
crossref_primary_10_1016_j_puhe_2024_09_004
crossref_primary_10_1371_journal_pone_0272006
crossref_primary_10_1136_bmjopen_2020_044246
crossref_primary_10_3171_2022_7_SPINE22592
crossref_primary_10_1007_s12519_025_00912_8
crossref_primary_10_1093_ejcts_ezab337
crossref_primary_10_1186_s13690_025_01658_5
crossref_primary_10_1164_rccm_202104_0845OC
crossref_primary_10_3390_healthcare8040401
crossref_primary_10_1007_s10461_020_03046_2
crossref_primary_10_1016_j_jpeds_2022_05_026
crossref_primary_10_1001_jamanetworkopen_2024_18808
crossref_primary_10_1136_bmjopen_2021_049154
crossref_primary_10_1016_j_whi_2024_06_002
crossref_primary_10_1016_j_socscimed_2023_116430
crossref_primary_10_1097_QAD_0000000000003506
crossref_primary_10_1016_j_alcohol_2023_01_005
crossref_primary_10_1001_jamanetworkopen_2024_16504
crossref_primary_10_1016_j_buildenv_2024_111596
crossref_primary_10_1001_jamanetworkopen_2021_43296
crossref_primary_10_1007_s00467_025_06764_8
crossref_primary_10_1016_j_jaip_2024_05_034
crossref_primary_10_3389_fpubh_2023_1117822
crossref_primary_10_1016_j_rcim_2025_103016
crossref_primary_10_1093_cdn_nzab079
crossref_primary_10_1093_jamia_ocac056
crossref_primary_10_1590_s1678_9946202365016
crossref_primary_10_1007_s11121_021_01228_5
crossref_primary_10_1080_16549716_2025_2484870
crossref_primary_10_1080_19371918_2020_1871461
crossref_primary_10_1186_s12882_025_04333_7
crossref_primary_10_1016_j_jaip_2025_04_022
crossref_primary_10_7189_jogh_15_04251
crossref_primary_10_1136_ip_2023_044845
crossref_primary_10_1016_j_tjnut_2024_05_006
crossref_primary_10_1002_cpe_6979
crossref_primary_10_2147_IJGM_S400420
crossref_primary_10_1093_sleep_zsaa185
crossref_primary_10_1097_AUD_0000000000001222
crossref_primary_10_1002_puh2_148
crossref_primary_10_3390_nu14153114
crossref_primary_10_1111_jphd_12529
crossref_primary_10_1177_00469580211067479
crossref_primary_10_1016_j_ypmed_2022_107225
crossref_primary_10_1002_ppul_26336
crossref_primary_10_1016_j_hrthm_2025_02_024
crossref_primary_10_1002_jhm_13320
crossref_primary_10_1016_j_burns_2022_08_004
crossref_primary_10_1111_dom_14648
crossref_primary_10_1038_s41598_025_97575_2
crossref_primary_10_1016_j_jaip_2025_04_031
crossref_primary_10_1016_j_surg_2021_05_034
crossref_primary_10_1136_tsaco_2023_001178
crossref_primary_10_1080_07853890_2022_2148733
crossref_primary_10_1080_14787210_2024_2334059
crossref_primary_10_1016_j_jvoice_2024_04_030
crossref_primary_10_1007_s12126_022_09489_3
crossref_primary_10_1080_14767058_2024_2345852
crossref_primary_10_1093_abm_kaad012
crossref_primary_10_1186_s12903_024_04426_z
crossref_primary_10_1186_s12879_023_08949_8
crossref_primary_10_1016_j_injury_2022_07_048
crossref_primary_10_1080_00949655_2025_2495716
crossref_primary_10_1016_j_chiabu_2022_105918
crossref_primary_10_1071_SH24041
crossref_primary_10_1007_s12508_022_00368_5
crossref_primary_10_1186_s12909_025_07368_4
crossref_primary_10_1186_s12982_021_00107_2
crossref_primary_10_1371_journal_pone_0224736
crossref_primary_10_1371_journal_pone_0297956
crossref_primary_10_1016_j_envres_2023_117844
crossref_primary_10_9778_cmajo_20190085
crossref_primary_10_1016_j_eclinm_2024_102503
crossref_primary_10_1089_jayao_2023_0174
crossref_primary_10_1097_HJH_0000000000003464
crossref_primary_10_1186_s12889_025_23736_7
crossref_primary_10_1371_journal_pone_0265124
crossref_primary_10_1001_jamanetworkopen_2021_31683
crossref_primary_10_1097_MD_0000000000043172
crossref_primary_10_1097_SLA_0000000000004683
crossref_primary_10_1016_j_envint_2020_106328
crossref_primary_10_1002_bimj_202000170
crossref_primary_10_1136_archdischild_2024_327096
crossref_primary_10_1177_20552076241277650
crossref_primary_10_1016_j_jacadv_2022_100157
crossref_primary_10_1016_j_jcjd_2024_09_003
crossref_primary_10_1186_s12884_023_05487_8
crossref_primary_10_1186_s12889_022_12834_5
crossref_primary_10_1186_s13104_023_06539_0
crossref_primary_10_1186_s12877_022_03193_2
crossref_primary_10_1016_j_injury_2022_02_007
crossref_primary_10_2106_JBJS_23_00581
crossref_primary_10_1016_j_envpol_2022_120087
crossref_primary_10_1016_j_psychres_2025_116585
crossref_primary_10_1515_ijb_2023_0116
crossref_primary_10_1080_03630242_2025_2457641
crossref_primary_10_3390_ijerph18062915
crossref_primary_10_1136_bmjopen_2023_081252
crossref_primary_10_1186_s13690_022_00899_y
crossref_primary_10_1002_ejp_2013
crossref_primary_10_1016_j_fertnstert_2023_03_017
crossref_primary_10_2196_53837
crossref_primary_10_1093_ije_dyac220
crossref_primary_10_1177_21582440231182352
crossref_primary_10_1155_2022_6864015
crossref_primary_10_1093_eurpub_ckae079
crossref_primary_10_1158_1055_9965_EPI_24_0037
crossref_primary_10_2188_jea_JE20240065
crossref_primary_10_1016_j_burns_2023_01_001
Cites_doi 10.2307/1912526
10.1198/016214501753382309
10.1186/1471-2288-8-9
10.1093/biostatistics/kxh016
10.1001/jama.280.19.1690
10.2307/2531248
10.1503/cmaj.101715
10.1093/oxfordjournals.aje.a114212
10.1093/oxfordjournals.aje.a114593
10.1186/1471-2288-3-21
10.1002/sim.4780121808
10.1093/ije/27.1.91
10.1111/j.2517-6161.1984.tb01288.x
10.1002/sim.3049
10.1136/oem.2008.043018
10.1198/016214504000000214
10.1186/1471-2288-14-82
10.1080/01621459.2016.1192546
10.1093/aje/kwh221
10.1093/aje/kwh090
10.1214/aos/1176346056
10.1007/978-1-4899-3242-6
10.1378/chest.128.4.1968
10.1002/bimj.200410165
10.1093/aje/kwg074
ContentType Journal Article
Copyright The Author(s). 2018
COPYRIGHT 2018 BioMed Central Ltd.
Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2018
– notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12874-018-0519-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

PubMed



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2288
EndPage 12
ExternalDocumentID oai_doaj_org_article_3669b0e4339a453d8f22be1bb58c74ec
PMC6013902
A546902129
29929477
10_1186_s12874_018_0519_5
Genre Journal Article
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: P30 ES007048
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
MK0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
AFFHD
CITATION
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c669t-d9c535acf12d9351a58e2daacdcf002feff326a8f4400c52e6b32d44710f42c73
IEDL.DBID RSV
ISICitedReferencesCount 411
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435937200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2288
IngestDate Fri Oct 03 12:38:49 EDT 2025
Tue Nov 04 01:44:12 EST 2025
Fri Sep 05 07:47:47 EDT 2025
Tue Oct 07 05:35:27 EDT 2025
Tue Nov 11 10:02:29 EST 2025
Tue Nov 04 17:30:25 EST 2025
Mon Jul 21 06:18:09 EDT 2025
Sat Nov 29 06:38:56 EST 2025
Tue Nov 18 22:31:07 EST 2025
Sat Sep 06 07:35:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Robust (modified) Poisson regression
Risk ratio
Model misspecification
Link function misspecification
Log-binomial regression
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c669t-d9c535acf12d9351a58e2daacdcf002feff326a8f4400c52e6b32d44710f42c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s12874-018-0519-5
PMID 29929477
PQID 2071652120
PQPubID 42579
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_3669b0e4339a453d8f22be1bb58c74ec
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6013902
proquest_miscellaneous_2058501978
proquest_journals_2071652120
gale_infotracmisc_A546902129
gale_infotracacademiconefile_A546902129
pubmed_primary_29929477
crossref_primary_10_1186_s12874_018_0519_5
crossref_citationtrail_10_1186_s12874_018_0519_5
springer_journals_10_1186_s12874_018_0519_5
PublicationCentury 2000
PublicationDate 2018-06-22
PublicationDateYYYYMMDD 2018-06-22
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-22
  day: 22
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medical research methodology
PublicationTitleAbbrev BMC Med Res Methodol
PublicationTitleAlternate BMC Med Res Methodol
PublicationYear 2018
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References 519_CR20
L Blizzard (519_CR10) 2006; 48
SL Zeger (519_CR21) 1986; 42
MR Petersen (519_CR11) 2008; 8
SAS (519_CR23) 2011
LA McNutt (519_CR3) 2003; 157
S Greenland (519_CR6) 2004; 160
M Schatz (519_CR13) 2005; 128
G Zou (519_CR9) 2004; 159
P McCullagh (519_CR17) 1983; 1
RE Carter (519_CR22) 2005; 6
J Zhang (519_CR2) 1998; 280
W Chen (519_CR27) 2014; 14
519_CR26
M Capanu (519_CR30) 2008; 27
S Greenland (519_CR1) 1987; 125
PJ Green (519_CR15) 1984; 46
JA Deddens (519_CR24) 2003; 30
T Skov (519_CR5) 1998; 27
G Kauermann (519_CR28) 2001; 96
RW Wedderburn (519_CR18) 1974; 61
AJ Barros (519_CR7) 2003; 3
EG Schouten (519_CR4) 1993; 12
MJ Knol (519_CR12) 2012; 184
S Wacholder (519_CR8) 1986; 123
519_CR19
519_CR16
519_CR14
B Presnell (519_CR29) 2004; 99
519_CR32
M Petersen (519_CR25) 2009; 66
TS Richardson (519_CR31) 2017; 112
3719049 - Biometrics. 1986 Mar;42(1):121-30
15286014 - Am J Epidemiol. 2004 Aug 15;160(4):301-5
24965498 - BMC Med Res Methodol. 2014 Jun 26;14:82
3509965 - Am J Epidemiol. 1986 Jan;123(1):174-84
9832001 - JAMA. 1998 Nov 18;280(19):1690-1
12746247 - Am J Epidemiol. 2003 May 15;157(10):940-3
15033648 - Am J Epidemiol. 2004 Apr 1;159(7):702-6
15618526 - Biostatistics. 2005 Jan;6(1):39-44
16236843 - Chest. 2005 Oct;128(4):1968-73
3551588 - Am J Epidemiol. 1987 May;125(5):761-8
17914713 - Stat Med. 2008 Jun 30;27(14):2536-54
18307814 - BMC Med Res Methodol. 2008 Feb 28;8:9
8248665 - Stat Med. 1993 Sep 30;12(18):1733-45
16544809 - Biom J. 2006 Feb;48(1):5-22
14567763 - BMC Med Res Methodol. 2003 Oct 20;3:21
22158397 - CMAJ. 2012 May 15;184(8):895-9
9563700 - Int J Epidemiol. 1998 Feb;27(1):91-5
19690158 - Occup Environ Med. 2009 Sep;66(9):639
References_xml – ident: 519_CR20
  doi: 10.2307/1912526
– volume: 96
  start-page: 1387
  issue: 456
  year: 2001
  ident: 519_CR28
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214501753382309
– volume: 8
  start-page: 9
  year: 2008
  ident: 519_CR11
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-8-9
– volume: 6
  start-page: 39
  issue: 1
  year: 2005
  ident: 519_CR22
  publication-title: Biostatistics (Oxford, England)
  doi: 10.1093/biostatistics/kxh016
– volume: 280
  start-page: 1690
  issue: 19
  year: 1998
  ident: 519_CR2
  publication-title: JAMA
  doi: 10.1001/jama.280.19.1690
– volume: 42
  start-page: 121
  issue: 1
  year: 1986
  ident: 519_CR21
  publication-title: Biometrics
  doi: 10.2307/2531248
– volume: 184
  start-page: 895
  issue: 8
  year: 2012
  ident: 519_CR12
  publication-title: CMAJ
  doi: 10.1503/cmaj.101715
– volume: 30
  start-page: 270
  year: 2003
  ident: 519_CR24
  publication-title: Proceedings of the 28th annual SAS users group international conference
– volume: 61
  start-page: 439
  issue: 3
  year: 1974
  ident: 519_CR18
  publication-title: Biometrika
– ident: 519_CR16
– volume: 123
  start-page: 174
  issue: 1
  year: 1986
  ident: 519_CR8
  publication-title: Am J Epidemiol
  doi: 10.1093/oxfordjournals.aje.a114212
– volume: 125
  start-page: 761
  issue: 5
  year: 1987
  ident: 519_CR1
  publication-title: Am J Epidemiol
  doi: 10.1093/oxfordjournals.aje.a114593
– volume: 3
  start-page: 21
  year: 2003
  ident: 519_CR7
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-3-21
– volume: 12
  start-page: 1733
  issue: 18
  year: 1993
  ident: 519_CR4
  publication-title: Stat Med
  doi: 10.1002/sim.4780121808
– volume: 27
  start-page: 91
  issue: 1
  year: 1998
  ident: 519_CR5
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/27.1.91
– volume: 46
  start-page: 149
  issue: 2
  year: 1984
  ident: 519_CR15
  publication-title: J R Stat Soc Series B Stat Methodol
  doi: 10.1111/j.2517-6161.1984.tb01288.x
– volume: 27
  start-page: 2536
  issue: 14
  year: 2008
  ident: 519_CR30
  publication-title: Stat Med
  doi: 10.1002/sim.3049
– volume: 66
  start-page: 639
  issue: 9
  year: 2009
  ident: 519_CR25
  publication-title: Occup Environ Med
  doi: 10.1136/oem.2008.043018
– volume: 99
  start-page: 216
  issue: 465
  year: 2004
  ident: 519_CR29
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214504000000214
– volume: 14
  start-page: 82
  year: 2014
  ident: 519_CR27
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-14-82
– volume: 112
  start-page: 1121
  issue: 519
  year: 2017
  ident: 519_CR31
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2016.1192546
– volume: 160
  start-page: 301
  issue: 4
  year: 2004
  ident: 519_CR6
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwh221
– ident: 519_CR19
– ident: 519_CR32
– volume-title: Software Version 9.3 of the SAS System for Unix
  year: 2011
  ident: 519_CR23
– volume: 159
  start-page: 702
  issue: 7
  year: 2004
  ident: 519_CR9
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwh090
– volume: 1
  start-page: 59
  year: 1983
  ident: 519_CR17
  publication-title: Ann Stat
  doi: 10.1214/aos/1176346056
– ident: 519_CR14
  doi: 10.1007/978-1-4899-3242-6
– volume: 128
  start-page: 1968
  issue: 4
  year: 2005
  ident: 519_CR13
  publication-title: Chest
  doi: 10.1378/chest.128.4.1968
– volume: 48
  start-page: 5
  issue: 1
  year: 2006
  ident: 519_CR10
  publication-title: Biom J
  doi: 10.1002/bimj.200410165
– volume: 157
  start-page: 940
  issue: 10
  year: 2003
  ident: 519_CR3
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwg074
– ident: 519_CR26
– reference: 12746247 - Am J Epidemiol. 2003 May 15;157(10):940-3
– reference: 16236843 - Chest. 2005 Oct;128(4):1968-73
– reference: 14567763 - BMC Med Res Methodol. 2003 Oct 20;3:21
– reference: 8248665 - Stat Med. 1993 Sep 30;12(18):1733-45
– reference: 3509965 - Am J Epidemiol. 1986 Jan;123(1):174-84
– reference: 17914713 - Stat Med. 2008 Jun 30;27(14):2536-54
– reference: 3719049 - Biometrics. 1986 Mar;42(1):121-30
– reference: 18307814 - BMC Med Res Methodol. 2008 Feb 28;8:9
– reference: 24965498 - BMC Med Res Methodol. 2014 Jun 26;14:82
– reference: 19690158 - Occup Environ Med. 2009 Sep;66(9):639
– reference: 3551588 - Am J Epidemiol. 1987 May;125(5):761-8
– reference: 22158397 - CMAJ. 2012 May 15;184(8):895-9
– reference: 15286014 - Am J Epidemiol. 2004 Aug 15;160(4):301-5
– reference: 15033648 - Am J Epidemiol. 2004 Apr 1;159(7):702-6
– reference: 16544809 - Biom J. 2006 Feb;48(1):5-22
– reference: 9563700 - Int J Epidemiol. 1998 Feb;27(1):91-5
– reference: 9832001 - JAMA. 1998 Nov 18;280(19):1690-1
– reference: 15618526 - Biostatistics. 2005 Jan;6(1):39-44
SSID ssj0017836
Score 2.6525865
Snippet Background Log-binomial and robust (modified) Poisson regression models are popular approaches to estimate risk ratios for binary response variables. Previous...
Log-binomial and robust (modified) Poisson regression models are popular approaches to estimate risk ratios for binary response variables. Previous studies...
Background Log-binomial and robust (modified) Poisson regression models are popular approaches to estimate risk ratios for binary response variables. Previous...
[...]we summarize the findings and provide recommendations for the use of these models in future studies in the “Discussion” section. The MSE was calculated by...
Abstract Background Log-binomial and robust (modified) Poisson regression models are popular approaches to estimate risk ratios for binary response variables....
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 63
SubjectTerms Asthma
Bias
Data analysis
Economic models
Estimates
Health Sciences
Link function misspecification
Log-binomial regression
Medicine
Medicine & Public Health
Methods
Model misspecification
Parameter estimation
Patients
Ratios
Regression analysis
Research Article
Risk ratio
Robust (modified) Poisson regression
Statistical Theory and Methods
statistics and modelling
Statistics for Life Sciences
Theory of Medicine/Bioethics
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQhRAXxJtAQUZCQgJFTfyMj6Wi4gBVD4B6s-JHSqWSVMkuf4G_zYzj3TZFwIXremLZM5_nsZ4ZE_KKgxcPZrcqvQP3TQQXSnCOYgmH0jHTqbZO9RVfP-qjo-bkxBxfeeoLc8Lm9sAz4_a4UsZVUXBuWiF5aDrGXKydk43XInrUvpU2m2Aq3x9gbUK-w6wbtTfV2NYdwuamRJellAsrlJr1_66Sr9ik6_mS1y5Nky06vEvuZCeS7s-Lv0duxP4-ufUpX5M_ID8P5tcF-1N6cVkYQHNOFgV1hwHx8B2wR9s-0HFw62lFjweQwtDTMZ7O2bE9TQ_lTBSmoNiOA91bmBTz0WmCzkSxCG2c6ShgBis3MfsoCfwh-XL4_vPBhzK_uFB6YPOqDMZLLlvf1SwYLutWNpGFtvXBd6A6u9h14O61TSfg6HvJonKcBQEGruoE85o_Ijv90McnhEYRIe7WJjJdC1lx5wNMoFB6gqtYF6TaSMD63I4cX8U4tyksaZSdhWZBaBaFZmVB3mw_uZh7cfyN-B2KdUuIbbTTDwAum8Fl_wWugrxGUFg87LA43-aaBdgits2y-xL_XQDrbwqyu6AEhvvl8AZWNiuJyQJua4W101VBXm6H8UtMfOvjsEYaiOfADddNQR7PKNxuCTwJZoTWBdELfC72vBzpz76lFuIKPf-KFeTtBsmXy_ojS5_-D5Y-I7dZOoeqZGyX7KzGdXxObvofq7NpfJFO8S821EwU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQYgL70egICMhIYEiEr-SnFCpqDhA1QOg3qzEdpZKkCzJLn-Bv82M490lRfTCNXYsj-fzeMaeB8BzgVo8HrtZahtU36RrXIrKkU9xUza8anWdh_iKLx-K4-Py9LQ6iRduY3Sr3MjEIKhdb-mOnG5Cck2Bptmb5Y-UqkbR62osoXEZrlDZbMJ5cbo1uHKKUIgvmXmpX485JXdH47lMSXFJ1ewsCin7_xbMf5xM570mzz2dhhPp6Ob_0nILbkRdlB1M4LkNl3x3B659jK_td-HX4VSksFuw5S6-gEXXLoZSk-zq_jtCmNWdY0PfrMcVO-mRmX3HBr-YnGw7FurtjAyHYJTVg7RkHJTc2llA4Mgolm2Y-jGEHgWAkhNTwM09-Hz07tPh-zQWbkit1tUqdZVVQtW2zbmrhMprVXru6to626IEbn3botZYl61ECWIV97oR3Ek8J7NWcluI-7DX9Z1_CMxLj-Z7UXle5FJlorEOB9At540U2ucJZBsWGhuzmlNxjW8mWDelNhPXDXLdENeNSuDl9pfllNLjos5vCRfbjpSNO3zoh4WJm9sIpLrJvBSiqqUSrqTp-bxpVGkL6W0CLwhVhmQGTs7WMfQBSaTsW-ZA0SUF4qFKYH_WExfczps3gDJR1oxmh6YEnm2b6U_yn-t8v6Y-aBaiNl-UCTyYYLwlCRUSXsmiSKCYAXxG87ylO_saMpFrMiAynsCrzVbYTeufS_roYiIew3UetqhOOd-HvdWw9k_gqv25OhuHp2GD_waUjFnF
  priority: 102
  providerName: ProQuest
Title Comparing performance between log-binomial and robust Poisson regression models for estimating risk ratios under model misspecification
URI https://link.springer.com/article/10.1186/s12874-018-0519-5
https://www.ncbi.nlm.nih.gov/pubmed/29929477
https://www.proquest.com/docview/2071652120
https://www.proquest.com/docview/2058501978
https://pubmed.ncbi.nlm.nih.gov/PMC6013902
https://doaj.org/article/3669b0e4339a453d8f22be1bb58c74ec
Volume 18
WOSCitedRecordID wos000435937200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: RSV
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9QwDLfYhhAvfH8UxilISEigam2aNOnjNm0CiZ1OA6bjKWrT9JgE7dTe8S_wb2OnvRsdHxK8nNSLE8WpY__c2A7AiwRRPJrdKLQFwjdRFmWI4MiFuCkLnlVpHvv8irN3ajrV83k2G_K4u3W0-_pI0mtqv611utfFVJodXV8dEuwI5RbsoLXTdF_D6fuzzdEBpSUMx5e_7TYyQL5O_6_a-CdzdDVU8sp5qTdDx7f_i4E7cGtAnWy_F5O7cM3V9-DGyXCufh--H_bXEdYLdnGZScCGIC6G-pE86OYrCivL65K1TbHqlmzW4Gtrata6RR9OWzN_s07HcAhG9TsID-OgFMDOvKx1jLLW2p6OoZBRqieFK3kJeQAfj48-HL4JhysaQpum2TIsMysTmdsq5mWWyDiX2vEyz21pK9S1lasqxIe5rgTqCiu5S4uElwItYlQJblXyELbrpnaPgTnh0FFXmeMqFjJKClviAGnFeSGS1MUBROv3ZuxQv5yu0fhivB-jU9MvsMEFNrTARgbwatPloi_e8TfiAxKGDSHV3fZ_NO3CDNvYJMh1ETmRJFkuZFJqmp6Li0Jqq4SzAbwkUTKkHXByNh-SHJBFqrNl9iV9jkC4kAWwO6LEBbfj5rUwmkGrdIYjHkwp2ToK4PmmmXpSpFztmhXRoAOIuF3pAB71srthCaEHz4RSAaiRVI94HrfU5599zfGUXIWIB_B6LduX0_rjkj75J-qncJP7zZGGnO_C9rJduWdw3X5bnnftBLbUXPlfPYGdg6Pp7HTiP6Dg0-ztyezTxKuBH-MAVa0
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgigX3o9AASOBkEARiePEyQGhUqhadbvqoaC9mcRxtpUgWZJdEL-Af8NvZMZJdkkRvfXAdT2xbO83L3seAE8DtOJR7XquztB8E3mWu2gcGReZMuNJEaW-za_4OJLjcTyZJIdr8KvPhaGwyl4mWkGdV5ruyOkmxI8o0dR7M_vqUtcoel3tW2i0sNg3P76jy9a83nuH_-8zznfeH23vul1XAVdHUTJ380SHQZjqwud5EoR-GsaG52mqc12geChMUaBJk8aFQHjrkJsoC3guUIh7heBaBjjvBbiIclySsycnSwfPp4yI7uXUj6NXjU_F5NFZj10ylNxwoPtsi4C_FcEfmvB0lOapp1qrAXeu_W9ndx2udrY222qZ4wasmfImXD7oogluwc_ttgljOWWzVf4E60LXGGoFujeoviCLsrTMWV1li2bODisEa1Wy2kzbIOKS2X5CDcMpGFUtIS8AJ6WwfWY5rGGUq1e3dAxZixJcKUjL8sVt-HAux3AH1suqNPeAGWEST8rEcOmL0AsyneMEUcF5JoLI-A54PWSU7qq2U_OQz8p6b3GkWpQpRJkilKnQgRfLT2ZtyZKziN8SDpeEVG3c_lDVU9UJLxXgrjPPiCBIUhEGeUzLM36WhbGWwmgHnhOKFclEXJxOu9QO3CJVF1NbIV3CIP4SBzYHlHjgejjcA1h1srRRK_Q68GQ5TF9SfGBpqgXRoNuL3oqMHbjbss1yS2hw8URI6YAcMNRgz8OR8uTYVlqPyEHyuAMve9ZbLeufR3r_7E08ho3do4ORGu2N9x_AFW7FQ-Ryvgnr83phHsIl_W1-0tSPrHBh8Om8OfI3je-35w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ti9QwEB70lMMvvr9UT40gCEq5Nk3S9uN5uiiey4J63LfQJul6oO3Sdv0L_m1n0u6ePV9A_LqZhGT6ZPLMZmYC8DRBFo_HbhSaEumbsKUNkRy5EDdlyfNKFbHPrzg-Sufz7OQkX4zvnHabaPfNleSQ00BVmup-f2WrYYtnar-LqUw7usFZSBQklBfhkqA4enLXPxxvrxEoRWG8yvxtt8lh5Gv2_2qZfzqazodNnrs79UfS7Np_L-Y6XB3ZKDsY4HMDLrj6Juy-H-_bb8H3w-GZwnrJVmcZBmwM7mJoN8mzbr4iiFlRW9Y25brr2aLBz9nUrHXLIcy2Zv7FnY7hEIzqehBPxkEpsJ15DHaMstnaQY4h-CgFlMKYPHJuw6fZ64-Hb8Lx6YbQKJX3oc2NTGRhqpjbPJFxITPHbVEYayq0wZWrKuSNRVYJtCFGcqfKhFuBJ2VUCW7S5A7s1E3t7gFzwqEDn-aOp7GQUVIaiwOoivNSJMrFAUSbb6jNWNecntf4or1_kyk9KFijgjUpWMsAnm-7rIaiHn8TfknA2ApSPW7_Q9Mu9bi9dYKrLiMnkiQvhExsRtNzcVnKzKTCmQCeEaw0WQ2cnCnG5AdcItXf0geS_qZAGpEHsDeRRIWbafMGmHq0Np3myBMVJWFHATzZNlNPiqCrXbMmGXQMkc-nWQB3Bxxvl4SUhOciTQNIJwifrHnaUp9-9rXIFbkQEQ_gxQbnZ9P6o0rv_5P0Y9hdvJrpo7fzdw_gCvf7RIWc78FO367dQ7hsvvWnXfvI7_0ffRtbZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+performance+between+log-binomial+and+robust+Poisson+regression+models+for+estimating+risk+ratios+under+model+misspecification&rft.jtitle=BMC+medical+research+methodology&rft.au=Chen%2C+Wansu&rft.au=Qian%2C+Lei&rft.au=Shi%2C+Jiaxiao&rft.au=Franklin%2C+Meredith&rft.date=2018-06-22&rft.issn=1471-2288&rft.eissn=1471-2288&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs12874-018-0519-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12874_018_0519_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2288&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2288&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2288&client=summon