Analysis of epidemiological association patterns of serum thyrotropin by combining random forests and Bayesian networks

Approaching epidemiological data with flexible machine learning algorithms is of great value for understanding disease-specific association patterns. However, it can be difficult to correctly extract and understand those patterns due to the lack of model interpretability. We here propose a machine l...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PloS one Ročník 17; číslo 7; s. e0271610
Hlavní autoři: Becker, Ann-Kristin, Ittermann, Till, Dörr, Markus, Felix, Stephan B., Nauck, Matthias, Teumer, Alexander, Völker, Uwe, Völzke, Henry, Kaderali, Lars, Nath, Neetika
Médium: Journal Article
Jazyk:angličtina
Vydáno: San Francisco Public Library of Science 21.07.2022
Public Library of Science (PLoS)
Témata:
ISSN:1932-6203, 1932-6203
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Approaching epidemiological data with flexible machine learning algorithms is of great value for understanding disease-specific association patterns. However, it can be difficult to correctly extract and understand those patterns due to the lack of model interpretability. We here propose a machine learning workflow that combines random forests with Bayesian network surrogate models to allow for a deeper level of interpretation of complex association patterns. We first evaluate the proposed workflow on synthetic data. We then apply it to data from the large population-based Study of Health in Pomerania (SHIP). Based on this combination, we discover and interpret broad patterns of individual serum TSH concentrations, an important marker of thyroid functionality. We demonstrate that the combination of random forest and Bayesian network analysis is helpful to reveal and interpret broad association patterns of individual TSH concentrations. The discovered patterns are in line with state-of-the-art literature. They may be useful for future thyroid research and improved dosing of therapeutics.
AbstractList Background Approaching epidemiological data with flexible machine learning algorithms is of great value for understanding disease-specific association patterns. However, it can be difficult to correctly extract and understand those patterns due to the lack of model interpretability. Method We here propose a machine learning workflow that combines random forests with Bayesian network surrogate models to allow for a deeper level of interpretation of complex association patterns. We first evaluate the proposed workflow on synthetic data. We then apply it to data from the large population-based Study of Health in Pomerania (SHIP). Based on this combination, we discover and interpret broad patterns of individual serum TSH concentrations, an important marker of thyroid functionality. Results Evaluations using simulated data show that feature associations can be correctly recovered by combining random forests and Bayesian networks. The presented model achieves predictive accuracy that is similar to state-of-the-art models (root mean square error of 0.66, mean absolute error of 0.55, coefficient of determination of R.sup.2 = 0.15). We identify 62 relevant features from the final random forest model, ranging from general health variables over dietary and genetic factors to physiological, hematological and hemostasis parameters. The Bayesian network model is used to put these features into context and make the black-box random forest model more understandable. Conclusion We demonstrate that the combination of random forest and Bayesian network analysis is helpful to reveal and interpret broad association patterns of individual TSH concentrations. The discovered patterns are in line with state-of-the-art literature. They may be useful for future thyroid research and improved dosing of therapeutics.
Approaching epidemiological data with flexible machine learning algorithms is of great value for understanding disease-specific association patterns. However, it can be difficult to correctly extract and understand those patterns due to the lack of model interpretability.BACKGROUNDApproaching epidemiological data with flexible machine learning algorithms is of great value for understanding disease-specific association patterns. However, it can be difficult to correctly extract and understand those patterns due to the lack of model interpretability.We here propose a machine learning workflow that combines random forests with Bayesian network surrogate models to allow for a deeper level of interpretation of complex association patterns. We first evaluate the proposed workflow on synthetic data. We then apply it to data from the large population-based Study of Health in Pomerania (SHIP). Based on this combination, we discover and interpret broad patterns of individual serum TSH concentrations, an important marker of thyroid functionality.METHODWe here propose a machine learning workflow that combines random forests with Bayesian network surrogate models to allow for a deeper level of interpretation of complex association patterns. We first evaluate the proposed workflow on synthetic data. We then apply it to data from the large population-based Study of Health in Pomerania (SHIP). Based on this combination, we discover and interpret broad patterns of individual serum TSH concentrations, an important marker of thyroid functionality.Evaluations using simulated data show that feature associations can be correctly recovered by combining random forests and Bayesian networks. The presented model achieves predictive accuracy that is similar to state-of-the-art models (root mean square error of 0.66, mean absolute error of 0.55, coefficient of determination of R2 = 0.15). We identify 62 relevant features from the final random forest model, ranging from general health variables over dietary and genetic factors to physiological, hematological and hemostasis parameters. The Bayesian network model is used to put these features into context and make the black-box random forest model more understandable.RESULTSEvaluations using simulated data show that feature associations can be correctly recovered by combining random forests and Bayesian networks. The presented model achieves predictive accuracy that is similar to state-of-the-art models (root mean square error of 0.66, mean absolute error of 0.55, coefficient of determination of R2 = 0.15). We identify 62 relevant features from the final random forest model, ranging from general health variables over dietary and genetic factors to physiological, hematological and hemostasis parameters. The Bayesian network model is used to put these features into context and make the black-box random forest model more understandable.We demonstrate that the combination of random forest and Bayesian network analysis is helpful to reveal and interpret broad association patterns of individual TSH concentrations. The discovered patterns are in line with state-of-the-art literature. They may be useful for future thyroid research and improved dosing of therapeutics.CONCLUSIONWe demonstrate that the combination of random forest and Bayesian network analysis is helpful to reveal and interpret broad association patterns of individual TSH concentrations. The discovered patterns are in line with state-of-the-art literature. They may be useful for future thyroid research and improved dosing of therapeutics.
Background Approaching epidemiological data with flexible machine learning algorithms is of great value for understanding disease-specific association patterns. However, it can be difficult to correctly extract and understand those patterns due to the lack of model interpretability. Method We here propose a machine learning workflow that combines random forests with Bayesian network surrogate models to allow for a deeper level of interpretation of complex association patterns. We first evaluate the proposed workflow on synthetic data. We then apply it to data from the large population-based Study of Health in Pomerania (SHIP). Based on this combination, we discover and interpret broad patterns of individual serum TSH concentrations, an important marker of thyroid functionality. Results Evaluations using simulated data show that feature associations can be correctly recovered by combining random forests and Bayesian networks. The presented model achieves predictive accuracy that is similar to state-of-the-art models (root mean square error of 0.66, mean absolute error of 0.55, coefficient of determination of R 2 = 0.15). We identify 62 relevant features from the final random forest model, ranging from general health variables over dietary and genetic factors to physiological, hematological and hemostasis parameters. The Bayesian network model is used to put these features into context and make the black-box random forest model more understandable. Conclusion We demonstrate that the combination of random forest and Bayesian network analysis is helpful to reveal and interpret broad association patterns of individual TSH concentrations. The discovered patterns are in line with state-of-the-art literature. They may be useful for future thyroid research and improved dosing of therapeutics.
BackgroundApproaching epidemiological data with flexible machine learning algorithms is of great value for understanding disease-specific association patterns. However, it can be difficult to correctly extract and understand those patterns due to the lack of model interpretability.MethodWe here propose a machine learning workflow that combines random forests with Bayesian network surrogate models to allow for a deeper level of interpretation of complex association patterns. We first evaluate the proposed workflow on synthetic data. We then apply it to data from the large population-based Study of Health in Pomerania (SHIP). Based on this combination, we discover and interpret broad patterns of individual serum TSH concentrations, an important marker of thyroid functionality.ResultsEvaluations using simulated data show that feature associations can be correctly recovered by combining random forests and Bayesian networks. The presented model achieves predictive accuracy that is similar to state-of-the-art models (root mean square error of 0.66, mean absolute error of 0.55, coefficient of determination of R2 = 0.15). We identify 62 relevant features from the final random forest model, ranging from general health variables over dietary and genetic factors to physiological, hematological and hemostasis parameters. The Bayesian network model is used to put these features into context and make the black-box random forest model more understandable.ConclusionWe demonstrate that the combination of random forest and Bayesian network analysis is helpful to reveal and interpret broad association patterns of individual TSH concentrations. The discovered patterns are in line with state-of-the-art literature. They may be useful for future thyroid research and improved dosing of therapeutics.
Background Approaching epidemiological data with flexible machine learning algorithms is of great value for understanding disease-specific association patterns. However, it can be difficult to correctly extract and understand those patterns due to the lack of model interpretability. Method We here propose a machine learning workflow that combines random forests with Bayesian network surrogate models to allow for a deeper level of interpretation of complex association patterns. We first evaluate the proposed workflow on synthetic data. We then apply it to data from the large population-based Study of Health in Pomerania (SHIP). Based on this combination, we discover and interpret broad patterns of individual serum TSH concentrations, an important marker of thyroid functionality. Results Evaluations using simulated data show that feature associations can be correctly recovered by combining random forests and Bayesian networks. The presented model achieves predictive accuracy that is similar to state-of-the-art models (root mean square error of 0.66, mean absolute error of 0.55, coefficient of determination of R2 = 0.15). We identify 62 relevant features from the final random forest model, ranging from general health variables over dietary and genetic factors to physiological, hematological and hemostasis parameters. The Bayesian network model is used to put these features into context and make the black-box random forest model more understandable. Conclusion We demonstrate that the combination of random forest and Bayesian network analysis is helpful to reveal and interpret broad association patterns of individual TSH concentrations. The discovered patterns are in line with state-of-the-art literature. They may be useful for future thyroid research and improved dosing of therapeutics.
Approaching epidemiological data with flexible machine learning algorithms is of great value for understanding disease-specific association patterns. However, it can be difficult to correctly extract and understand those patterns due to the lack of model interpretability. We here propose a machine learning workflow that combines random forests with Bayesian network surrogate models to allow for a deeper level of interpretation of complex association patterns. We first evaluate the proposed workflow on synthetic data. We then apply it to data from the large population-based Study of Health in Pomerania (SHIP). Based on this combination, we discover and interpret broad patterns of individual serum TSH concentrations, an important marker of thyroid functionality. We demonstrate that the combination of random forest and Bayesian network analysis is helpful to reveal and interpret broad association patterns of individual TSH concentrations. The discovered patterns are in line with state-of-the-art literature. They may be useful for future thyroid research and improved dosing of therapeutics.
Audience Academic
Author Teumer, Alexander
Völzke, Henry
Felix, Stephan B.
Kaderali, Lars
Becker, Ann-Kristin
Ittermann, Till
Nauck, Matthias
Völker, Uwe
Nath, Neetika
Dörr, Markus
AuthorAffiliation 2 DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
1 Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
5 Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
4 Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
6 Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
University of Bonn, Bonn-Aachen International Center for IT, GERMANY
3 Institute for Community Medicine, SHIP/Clinical-Epidemiological Research, University Medicine Greifswald, Greifswald, Germany
AuthorAffiliation_xml – name: 1 Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
– name: 3 Institute for Community Medicine, SHIP/Clinical-Epidemiological Research, University Medicine Greifswald, Greifswald, Germany
– name: 2 DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
– name: 4 Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
– name: 6 Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
– name: 5 Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
– name: University of Bonn, Bonn-Aachen International Center for IT, GERMANY
Author_xml – sequence: 1
  givenname: Ann-Kristin
  orcidid: 0000-0003-1906-0583
  surname: Becker
  fullname: Becker, Ann-Kristin
– sequence: 2
  givenname: Till
  orcidid: 0000-0002-0154-7353
  surname: Ittermann
  fullname: Ittermann, Till
– sequence: 3
  givenname: Markus
  orcidid: 0000-0001-7471-475X
  surname: Dörr
  fullname: Dörr, Markus
– sequence: 4
  givenname: Stephan B.
  surname: Felix
  fullname: Felix, Stephan B.
– sequence: 5
  givenname: Matthias
  orcidid: 0000-0002-6678-7964
  surname: Nauck
  fullname: Nauck, Matthias
– sequence: 6
  givenname: Alexander
  orcidid: 0000-0002-8309-094X
  surname: Teumer
  fullname: Teumer, Alexander
– sequence: 7
  givenname: Uwe
  orcidid: 0000-0002-5689-3448
  surname: Völker
  fullname: Völker, Uwe
– sequence: 8
  givenname: Henry
  surname: Völzke
  fullname: Völzke, Henry
– sequence: 9
  givenname: Lars
  orcidid: 0000-0002-2359-2294
  surname: Kaderali
  fullname: Kaderali, Lars
– sequence: 10
  givenname: Neetika
  orcidid: 0000-0002-2156-9576
  surname: Nath
  fullname: Nath, Neetika
BookMark eNqNk1uL1DAYhousuAf9B4IFQfRixiZp03YvhHHxMLCw4Ok2fE2TmaxpUpPUdf696UwXtssi0ou0X573bfIdTpMjY41IkucoWyJSorfXdnAG9LKP4WWGS0RR9ig5QTXBC4ozcnTn_Tg59f46ywpSUfokOSZFRXGO0Ulys4oeO698amUqetWKTlltN4qDTsF7yxUEZU3aQwjCmT3nhRu6NGx3zgZne2XSZpdy2zXKKLNJHZjWdqm0Tvjg0_iVvoed8ApMakS4se6nf5o8lqC9eDatZ8n3jx--XXxeXF59Wl-sLhec0josUFNSiQi0Rd1AXlWiwlC0JeVN3eaEcEkpwZmkWU1aoBTxsqJ1gSUpm7qQQMlZ8uLg22vr2ZQzzzCtMS0qXOSRWB-I1sI1653qwO2YBcX2Aes2DFxQXAuGcplhUqBCyDyvMQJCK1TmQEiOK0Aker2b_jY0nWi5MMGBnpnOd4zaso39zWqS4YoU0eD1ZODsryGmj3XKc6E1GGGHw7nLooyljujLe-jDt5uoDcQLKCNjxYCPpmxVomhTomz0Wj5AxWdsBx4bTKoYnwnezASRCeJP2MDgPVt__fL_7NWPOfvqDrsVoMPWWz2MLejn4PkB5M5674RkXIV9p8aTK81QxsYpuc0JG6eETVMSxfk98W2F_in7C6mbF3Q
CitedBy_id crossref_primary_10_1371_journal_pone_0294489
crossref_primary_10_3390_microorganisms12112249
Cites_doi 10.1016/j.beem.2017.04.002
10.1515/jpem-2020-0031
10.1007/978-981-13-9939-8_13
10.1023/A:1010933404324
10.1371/journal.pcbi.1008735
10.1038/nrendo.2018.18
10.1007/BF01324255
10.1530/EJE-14-0898
ContentType Journal Article
Copyright COPYRIGHT 2022 Public Library of Science
2022 Becker et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Becker et al 2022 Becker et al
Copyright_xml – notice: COPYRIGHT 2022 Public Library of Science
– notice: 2022 Becker et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Becker et al 2022 Becker et al
DBID AAYXX
CITATION
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0271610
DatabaseName CrossRef
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


Agricultural Science Database




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Discovering association patterns of serum TSH concentrations using machine learning
EISSN 1932-6203
ExternalDocumentID 2692658254
oai_doaj_org_article_14f023515ef44921a368174a33428a13
PMC9302835
A711037100
10_1371_journal_pone_0271610
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: ;
  grantid: 031L0032
– fundername: ;
  grantid: 825903
– fundername: ;
  grantid: ZN3437
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ALIPV
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c669t-1b76f13ad59ba488e82a5d76cb9d433cf66320f6093da661c786952f37b95fa63
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000911392100208&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Sun Jul 31 00:47:52 EDT 2022
Sun Nov 30 04:03:41 EST 2025
Tue Nov 04 01:57:31 EST 2025
Fri Sep 05 10:09:16 EDT 2025
Tue Oct 07 08:06:28 EDT 2025
Sat Nov 29 12:59:56 EST 2025
Sat Nov 29 09:59:18 EST 2025
Wed Nov 26 10:35:17 EST 2025
Wed Nov 26 10:37:28 EST 2025
Thu May 22 21:18:48 EDT 2025
Sat Nov 29 03:36:40 EST 2025
Tue Nov 18 21:29:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c669t-1b76f13ad59ba488e82a5d76cb9d433cf66320f6093da661c786952f37b95fa63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-2156-9576
0000-0002-0154-7353
0000-0002-8309-094X
0000-0002-2359-2294
0000-0003-1906-0583
0000-0001-7471-475X
0000-0002-6678-7964
0000-0002-5689-3448
OpenAccessLink https://doaj.org/article/14f023515ef44921a368174a33428a13
PMID 35862421
PQID 2692658254
PQPubID 1436336
PageCount e0271610
ParticipantIDs plos_journals_2692658254
doaj_primary_oai_doaj_org_article_14f023515ef44921a368174a33428a13
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9302835
proquest_miscellaneous_2692757610
proquest_journals_2692658254
gale_infotracmisc_A711037100
gale_infotracacademiconefile_A711037100
gale_incontextgauss_ISR_A711037100
gale_incontextgauss_IOV_A711037100
gale_healthsolutions_A711037100
crossref_citationtrail_10_1371_journal_pone_0271610
crossref_primary_10_1371_journal_pone_0271610
PublicationCentury 2000
PublicationDate 2022-07-21
PublicationDateYYYYMMDD 2022-07-21
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-21
  day: 21
PublicationDecade 2020
PublicationPlace San Francisco
PublicationPlace_xml – name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationYear 2022
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References A Bahar (pone.0271610.ref043) 2011
A Bano (pone.0271610.ref039) 2019
PM Clark (pone.0271610.ref015) 2012
A Liaw (pone.0271610.ref047) 2002; 2
JG Den Hollander (pone.0271610.ref032) 2005
U John (pone.0271610.ref045) 2001; 46
D Koller (pone.0271610.ref024) 1996
J Jang (pone.0271610.ref037) 2018
DC Yadav (pone.0271610.ref020) 2020
DJ Stekhoven (pone.0271610.ref046) 2012
M Medici (pone.0271610.ref010) 2017; 31
M Chavent (pone.0271610.ref051) 2012
FY Tseng (pone.0271610.ref042) 2019
M. Scutari (pone.0271610.ref048) 2010
J Jonklaas (pone.0271610.ref013) 2019
D Kim (pone.0271610.ref035) 2018
AK Becker (pone.0271610.ref028) 2021; 17
S Raisinghani (pone.0271610.ref017) 2019
Y Shapira (pone.0271610.ref041) 2012
A-K Becker (pone.0271610.ref049) 2020
SJ Brown (pone.0271610.ref014) 2016
A Fisher (pone.0271610.ref022) 2018; 20
J Shen (pone.0271610.ref025) 2008
PN Taylor (pone.0271610.ref004) 2018; 14
Q Pan (pone.0271610.ref021) 2017
L Boucai (pone.0271610.ref008) 2011
D Koller (pone.0271610.ref026) 2009
P Santhanam (pone.0271610.ref016) 2020
M Scutari (pone.0271610.ref050) 2013
S Razvi (pone.0271610.ref011) 2019
B Biondi (pone.0271610.ref005) 2008
A Teumer (pone.0271610.ref027) 2018
DM Selva (pone.0271610.ref044) 2009
AG Madariaga (pone.0271610.ref003) 2014
YK Lee (pone.0271610.ref009) 2018
R Malik (pone.0271610.ref036) 2002
S Razvi (pone.0271610.ref012) 2019
T Ittermann (pone.0271610.ref019) 2015; 172
LPB Elbers (pone.0271610.ref038) 2018
M Kimmel (pone.0271610.ref033) 2012
H Wang (pone.0271610.ref023) 2020
HJ Kim (pone.0271610.ref034) 2020; 33
M Pietzner (pone.0271610.ref030) 2019
EG Aoun (pone.0271610.ref029) 2015
MA Han (pone.0271610.ref031) 2017
YI Mir (pone.0271610.ref018) 2020
C Alvarado-Esquivel (pone.0271610.ref040) 2019
L. Breiman (pone.0271610.ref001) 2001; 45
H Völzke (pone.0271610.ref002) 2011
M Peppa (pone.0271610.ref006) 2011
K Ikegami (pone.0271610.ref007) 2019
References_xml – year: 2020
  ident: pone.0271610.ref023
  article-title: Towards efficient and effective discovery of Markov blankets for feature selection
  publication-title: Inf Sci (Ny)
– year: 2018
  ident: pone.0271610.ref038
  article-title: The influence of thyroid function on the coagulation system and its clinical consequences
  publication-title: Journal of Thrombosis and Haemostasis
– year: 2012
  ident: pone.0271610.ref046
  article-title: Missforest-Non-parametric missing value imputation for mixed-type data
  publication-title: Bioinformatics
– year: 2008
  ident: pone.0271610.ref025
  article-title: Markov blanket feature selection for support vector machines
  publication-title: Proceedings of the National Conference on Artificial Intelligence
– year: 2012
  ident: pone.0271610.ref033
  article-title: Influence of thyroid function on different kidney function tests
  publication-title: Kidney Blood Press Res
– year: 2020
  ident: pone.0271610.ref020
  article-title: Prediction of thyroid disease using decision tree ensemble method
  publication-title: Human-Intelligent Syst Integr
– year: 2017
  ident: pone.0271610.ref021
  article-title: Improved ensemble classification method of thyroid disease based on random forest
  publication-title: Proceedings—2016 8th International Conference on Information Technology in Medicine and Education, ITME 2016
– volume: 20
  year: 2018
  ident: pone.0271610.ref022
  article-title: Model Class Reliance: Variable Importance Measures for any Machine Learning Model Class, from the “Rashomon” Perspective
  publication-title: J Mach Learn Res
– year: 2009
  ident: pone.0271610.ref026
  article-title: Probabilistic Graphical Models: Principles and Techniques (Adaptive Computation and Machine Learning series)
  publication-title: Foundations
– year: 2019
  ident: pone.0271610.ref011
  article-title: Therapeutic challenges in the application of serum thyroid stimulating hormone testing in the management of patients with hypothyroidism on replacement thyroid hormone therapy: a review
  publication-title: Current Medical Research and Opinion
– year: 2013
  ident: pone.0271610.ref050
  article-title: Identifying significant edges in graphical models of molecular networks
  publication-title: Artif Intell Med
– year: 2020
  ident: pone.0271610.ref016
  article-title: Artificial intelligence may offer insight into factors determining individual TSH level
  publication-title: PLoS One
– year: 2019
  ident: pone.0271610.ref040
  article-title: Association between Toxoplasma gondii infection and thyroid dysfunction: A case-control seroprevalence study
  publication-title: BMC Infect Dis
– volume: 31
  start-page: 129
  year: 2017
  ident: pone.0271610.ref010
  article-title: Genetics of thyroid function
  publication-title: Best Pract Res Clin Endocrinol Metab
  doi: 10.1016/j.beem.2017.04.002
– year: 2011
  ident: pone.0271610.ref006
  article-title: Lipid Abnormalities and Cardiometabolic Risk in Patients with Overt and Subclinical Thyroid Disease
  publication-title: J Lipids
– year: 2005
  ident: pone.0271610.ref032
  article-title: Correlation between severity of thyroid dysfunction and renal function
  publication-title: Clin Endocrinol (Oxf)
– year: 2018
  ident: pone.0271610.ref009
  article-title: Sex-specific genetic influence on thyroidstimulating hormone and free thyroxine levels, and interactions between measurements: KNHANES 2013 2015
  publication-title: PLoS ONE
– year: 2019
  ident: pone.0271610.ref007
  article-title: Interconnection between circadian clocks and thyroid function
  publication-title: Nature Reviews Endocrinology
– year: 2019
  ident: pone.0271610.ref039
  article-title: Thyroid Function and Cardiovascular Disease: The Mediating Role of Coagulation Factors
  publication-title: J Clin Endocrinol Metab
– year: 2020
  ident: pone.0271610.ref049
  publication-title: GroupBN: Inferring Group Bayesian Networks using Hierarchical Feature Clustering
– year: 1996
  ident: pone.0271610.ref024
  article-title: Toward Optimal Feature Selection
  publication-title: International Conference on Machine Learning
– volume: 33
  start-page: 1133
  year: 2020
  ident: pone.0271610.ref034
  article-title: Importance of thyroid-stimulating hormone levels in liver disease
  publication-title: J Pediatr Endocrinol Metab
  doi: 10.1515/jpem-2020-0031
– year: 2012
  ident: pone.0271610.ref015
  article-title: The relationship between serum TSH and free T4 in older people
  publication-title: J Clin Pathol
– year: 2012
  ident: pone.0271610.ref041
  article-title: Prevalence of anti-toxoplasma antibodies in patients with autoimmune diseases
  publication-title: J Autoimmun
– year: 2011
  ident: pone.0271610.ref043
  article-title: Hyperprolactinemia in association with subclinical hypothyroidism
  publication-title: Casp J Intern Med
– year: 2019
  ident: pone.0271610.ref012
  article-title: Challenges in interpreting thyroid stimulating hormone results in the diagnosis of thyroid dysfunction
  publication-title: Journal of Thyroid Research
– year: 2019
  ident: pone.0271610.ref017
  article-title: Thyroid prediction using machine learning techniques
  publication-title: Communications in Computer and Information Science
  doi: 10.1007/978-981-13-9939-8_13
– year: 2017
  ident: pone.0271610.ref031
  article-title: Coffee consumption and the risk of thyroid cancer: A systematic review and meta-analysis
  publication-title: International Journal of Environmental Research and Public Health
– volume: 45
  start-page: 5
  year: 2001
  ident: pone.0271610.ref001
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– year: 2012
  ident: pone.0271610.ref051
  article-title: ClustOfVar: An R package for the clustering of variables
  publication-title: J Stat Softw
– volume: 17
  year: 2021
  ident: pone.0271610.ref028
  article-title: From heterogeneous healthcare data to disease-specific biomarker networks: A hierarchical Bayesian network approach
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1008735
– year: 2020
  ident: pone.0271610.ref018
  article-title: Thyroid disease prediction using hybrid machine learning techniques: An effective framework
  publication-title: Int J Sci Technol Res
– year: 2016
  ident: pone.0271610.ref014
  article-title: The log TSH–free T4 relationship in a community-based cohort is nonlinear and is influenced by age, smoking and thyroid peroxidase antibody status
  publication-title: Clin Endocrinol (Oxf)
– volume: 14
  start-page: 301
  year: 2018
  ident: pone.0271610.ref004
  article-title: Global epidemiology of hyperthyroidism and hypothyroidism
  publication-title: Nat Rev Endocrinol
  doi: 10.1038/nrendo.2018.18
– year: 2009
  ident: pone.0271610.ref044
  article-title: Thyroid hormones act indirectly to increase sex hormone-binding globulin production by liver via hepatocyte nuclear factor-4α
  publication-title: J Mol Endocrinol
– volume: 46
  start-page: 186
  year: 2001
  ident: pone.0271610.ref045
  article-title: Study of Health in Pomerania (SHIP): A health examination survey in an east German region: Objectives and design
  publication-title: Sozial- und Präventivmedizin SPM
  doi: 10.1007/BF01324255
– volume: 2
  start-page: 18
  year: 2002
  ident: pone.0271610.ref047
  article-title: Classification and Regression by randomForest
  publication-title: R News
– year: 2018
  ident: pone.0271610.ref037
  article-title: Association between thyroid hormones and the components of metabolic syndrome
  publication-title: BMC Endocr Disord
– year: 2002
  ident: pone.0271610.ref036
  article-title: The relationship between the thyroid gland and the liver
  publication-title: QJM—Monthly Journal of the Association of Physicians
– year: 2019
  ident: pone.0271610.ref013
  article-title: Reference intervals in the diagnosis of thyroid dysfunction: treating patients not numbers
  publication-title: The Lancet Diabetes and Endocrinology
– year: 2015
  ident: pone.0271610.ref029
  article-title: Relationship between the thyroid axis and alcohol craving
  publication-title: Alcohol Alcohol
– year: 2011
  ident: pone.0271610.ref002
  article-title: Cohort profile: The study of health in Pomerania
  publication-title: Int J Epidemiol
– year: 2019
  ident: pone.0271610.ref030
  article-title: A thyroid hormone-independent molecular fingerprint of 3,5-diiodothyronine suggests a strong relationship with coffee metabolism in humans
  publication-title: Thyroid
– year: 2011
  ident: pone.0271610.ref008
  article-title: An approach for development of age-, gender-, and ethnicity-specific thyrotropin reference limits
  publication-title: Thyroid
– year: 2018
  ident: pone.0271610.ref027
  article-title: Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation
  publication-title: Nat Commun
– year: 2008
  ident: pone.0271610.ref005
  article-title: The clinical significance of subclinical thyroid dysfunction
  publication-title: Endocrine Reviews
– volume: 172
  start-page: 261
  year: 2015
  ident: pone.0271610.ref019
  article-title: Shift of the TSH reference range with improved iodine supply in Northeast Germany
  publication-title: Eur J Endocrinol
  doi: 10.1530/EJE-14-0898
– year: 2010
  ident: pone.0271610.ref048
  article-title: bnlearn: Bayesian network structure learning
  publication-title: R Packag
– year: 2014
  ident: pone.0271610.ref003
  article-title: The incidence and prevalence of thyroid dysfunction in Europe: A meta-analysis
  publication-title: J Clin Endocrinol Metab
– year: 2019
  ident: pone.0271610.ref042
  article-title: Serum levels of insulin-like growth factor 1 are negatively associated with log transformation of thyroid-stimulating hormone in Graves’ disease patients with hyperthyroidism or subjects with euthyroidism: A prospective observational study
  publication-title: Medicine (Baltimore)
– year: 2018
  ident: pone.0271610.ref035
  article-title: Subclinical Hypothyroidism and Low-Normal Thyroid Function Are Associated With Nonalcoholic Steatohepatitis and Fibrosis
  publication-title: Clin Gastroenterol Hepatol
SSID ssj0053866
Score 2.4066222
Snippet Background Approaching epidemiological data with flexible machine learning algorithms is of great value for understanding disease-specific association...
Approaching epidemiological data with flexible machine learning algorithms is of great value for understanding disease-specific association patterns. However,...
BackgroundApproaching epidemiological data with flexible machine learning algorithms is of great value for understanding disease-specific association patterns....
Background Approaching epidemiological data with flexible machine learning algorithms is of great value for understanding disease-specific association...
SourceID plos
doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage e0271610
SubjectTerms Algorithms
Analysis
Bayesian analysis
Bayesian statistical decision theory
Biology and Life Sciences
Computer and Information Sciences
Decision making
Decision trees
Diet
Epidemiology
Evaluation
Genetic factors
Hemostasis
Hemostatics
Learning algorithms
Machine learning
Mathematical models
Medicine and Health Sciences
Model accuracy
Modelling
Network analysis
Physiological effects
Pituitary gland
Population studies
Properties
Random variables
Research and Analysis Methods
Ships
Thyroid
Thyroid gland
Thyroid-stimulating hormone
Thyrotropin
Workflow
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZg4cAFKA91oYBBSMAhbWKv7fiEWkQFl1LxUsUlcvwoldpk2eyC-u-ZcZwtkRAgcUw8SRzPwzPJzDeEPNV5cBDtsAzdzwysZJ3VwonM10YzH4Rx2sZmE-rgoDw60ofpg1uX0ioHmxgNtWstfiPfYVIz2C0hnnk5_5Zh1yj8u5paaFwmVxAlARXzUHwZLDHospSpXI6rYidxZ3veNn4bJgjOTj7ajiJq_9o2T-anbTdyPMdpk7_sQ_s3_vcNbpLryQOlu73IbJBLvrlFNpKOd_R5AqJ-cZv8GBBLaBuov2gli3yl5oKvdB5BOptIByK9OqPA_kW7XGA1Fq3PKUywjp0oKGyNrj2j4CrDxDsKR3TPnHss5aRNn5Le3SGf9l9_fPUmS40aMiulXmZFrWQouHFC1wYsgi-ZEU5JW2s349wGcGtYHmSuuTPgEFhVSi1Y4KrWIhjJ75JJA0zZJJQzWzpnfHBlPgPpKq0oHFjlmS3zMmg3JXzgV2UTijk20zit4q85BdFMv4wVcrlKXJ6SbH3VvEfx-Av9HorCmhYxuOOJdnFcJZWGoCkgWFAhfJjNNCsMlyXEd4ZzCOlMwafkEQpS1Re0ri1JtasKLM4scnjMk0iBOBwNJvocm1XXVW_fff4Hog_vR0TPElEA5hprUnEFvBPie40ot0aUYE3saHgTxX5Yla66kFq4cpDr3w8_Xg_jTTF5r_HtqqdRENfiuqqRCo0WeDzSnHyNYOeaowcs7v354ffJNYZ1KbnKWLFFJsvFyj8gV-335Um3eBitwk9MvG-D
  priority: 102
  providerName: ProQuest
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQwoELUB7q0gIGIQGHtIkd2_GxRaxAQqXipd4ixw-o1CarzW5R_z0zibNLEBVw3HicTeblGWXmG0Ke6zQ4yHZYguFnAl6ySirhROIro5kPwjhtu2ET6uioODnRx5tE8bcv-Fxl-5Gne_Om9ntwWwhRIEW_zriUWMI1O34_eF6wXSlje9xVO0fHT4fSv_bFk_lZ044CzXGZ5C_nzuz2_z7xHXIrRpj0oFeJLXLN13fJVrThlr6MQNOv7pEfAyIJbQL1m1GxKDdqNnKj8w6Es-7oQGVX5xTEu2iWC-y2otUlBbWtukkTFI4-15xTCIXh3VoKv-ihufTYqknrvuS8vU--zN58fv02iYMYEiulXiZZpWTIuHFCVwYs3hfMCKekrbTLObcBwhaWBplq7gwc-FYVUgsWuKq0CEbyB2RSAzO2CeXMFs4ZH1yR5qA9hRWZA6-b2yItgnZTwgf5lDailOOwjLOy-_SmIFvp2Vgid8vI3SlJ1rvmPUrHX-gPUfRrWsTY7i6AGMtospAUBQQDyoQPea5ZZrgsIH8znEPKZjI-JU9Qccq-YXXtKcoDlWHzZZbC3zzrKBBno8ZCnm9m1bbluw9f_4Ho08cR0YtIFEC4xprYPAHvhPhdI8rdESV4Czta3kY1H7jSlkxqBlEoEznsHFT_z8tP18t4UyzOq32z6mkU5K3IVzUymRGDxyv16fcOzFxzjHDFw6ufa4fcZNhzkqqEZbtkslys_CNyw14sT9vF484D_ATTzV2j
  priority: 102
  providerName: Public Library of Science
Title Analysis of epidemiological association patterns of serum thyrotropin by combining random forests and Bayesian networks
URI https://www.proquest.com/docview/2692658254
https://www.proquest.com/docview/2692757610
https://pubmed.ncbi.nlm.nih.gov/PMC9302835
https://doaj.org/article/14f023515ef44921a368174a33428a13
http://dx.doi.org/10.1371/journal.pone.0271610
Volume 17
WOSCitedRecordID wos000911392100208&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (WRLC)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELag8MALYvzQCqMYhAQ8ZEvsOI4f12kV01iJOpgKL5FjxzBpS6umBe2_585Ju0VCGg-8nNT60rp35_Nn1fcdIW9V6CycdliA8DOALFkEhbAiKAutWOmEtsr4ZhNyPE6nU5XdaPWFd8IaeuDGcHtR7JCSJRKli2PFIs2TFFC05hyAs_b9ahmgnvVhqsnBsIqTpC2U4zLaa_2yO59V5S5MDWBO2NmIPF__Jiv35hezugM5uxcmb-xAo0fkYQsd6X4z5S1yp6wek612cdb0fcsg_eEJ-b2mGqEzR8vrHrDoEKqvHULnnl2z8noQi6tLCn5bzJYLLKOixRWFeCx8CwkKe5qdXVLAuDDVmsIrOtRXJdZg0qq5S14_JV9Hh18OPgZth4XAJIlaBlEhExdxbYUqNCzlMmVaWJmYQtmYc-MAj7DQJaHiVsNObmSaKMEcl4USTif8GelVYNNtQjkzqbW6dDYNYwiL1IjIQjqNTRqmTtk-4Wtz56alH8cuGBe5_09NwjGkMWOOTspbJ_VJsHlq3tBv3KI_RE9udJE8278BIZW3IZXfFlJ98grjIG8qUTcpIN-XEVZVRiF8zRuvgQQaFd7Q-aFXdZ0ffT77B6XTSUfpXavkwLna6LYqAn4TEnN1NHc6mpAGTGd4G6N2bZU6Z4liAC-ZiOHJdST_ffj1Zhg_FG_dVeVs1ehIOJCiXWVnBXQM3B2pzn96lnLFEbqK5__DIy_IA4ZlJ6EMWLRDesvFqnxJ7ptfy_N6MSB35eQM5VR6mYJMD6IBuTc8HGeTgU8NIEfZJ5DHw12QJ-ExSpl5eQoyE9_hiezoJPv2B7fHa5Y
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgAQXoDzUQKELAgEHt_Zu7PUeEGqBqlFLQNCi3Mx6H6VSa4c4ocqf4jcy41ewhIBLDxztHdvK-JuZ_eJ5EPJE-s4A22Eebj898JKpl4Ym9GyqJLMuVEbqctiEGI3i8Vh-WCE_mloYTKtsfGLpqE2u8T_yLRZJBtES-MyryTcPp0bh19VmhEYFi327OAfKVrwcvoH3-5Sx3beHr_e8eqqAp6NIzrwgFZELuDKhTBXA18ZMhUZEOpVmwLl2EIOZ7yKg-kZB9NIijmTIHBepDJ2KONz3ErkMflxgCpkYtwQPfEcU1eV5XARbNRo2J3lmN0EhsLnyO-GvnBLQxoLe5DQvOhvdbprmL3Fv98b_prGb5Hq9w6bblUmskhWb3SKrtQ8r6PO60faL2-S86chCc0ftclQu4paqJW7ppGxCmpVyYLLzMwrwnuazKVab0XRBQSFpOWmDQug3-RkFKgCKKigc0R21sFiqSrMq5b64Q44uRAF3SS8DEKwRypmOjVHWmdgfgPXEOgwMRJ2Bjv3YSdMnvMFHousu7Tgs5DQpPz0KYGuVGhNEVVKjqk-89qpJ1aXkL_I7CL1WFnuMlyfy6XFSuywghQ6bIQWhdYOBZIHiUQz8VXEOlFUFvE82ELhJVbDbespkWwRYfBr48JjHpQT2GckwkelYzYsiGb7__A9Cnz52hJ7VQg5ertKqLh6B34T9yzqS6x1J8Ja6s7yGZtZopUiWVgJXNnb0--VH7TLeFJMTM5vPKxkBvB31Kjom21FwdyU7-Vo2c5ccd_jhvT8_fINc3Tt8d5AcDEf798k1hjU4vvBYsE56s-ncPiBX9PfZSTF9WHokSr5ctEH_BCdqy0c
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgBAXoDzUQKELAgEHN_Zu7PUeEGopFVFRqXip4mLW-yiVWjvECVX-Gr-OGXudYAkBlx442ju2lfE3jy_emSHkkQydAbbDAkw_A_CSeZDHJg5sriSzLlZG6nrYhNjfTw8P5cEK-dHWwuC2ytYn1o7alBr_Ix-wRDKIlsBnBs5vizjY2X0x_hbgBCn80tqO02ggsmfnZ0DfquejHXjXjxnbffXh5evATxgIdJLIaRDlInERVyaWuQIo25Sp2IhE59IMOdcO4jELXQK03yiIZFqkiYyZ4yKXsVMJh_teIBcFcEwkfgfx5zYKgB9JEl-qx0U08MjYHJeF3QTlQKIVdkJhPTFgERd645Oy6iS93S2bv8TA3Wv_s_auk6s-86ZbjamskhVb3CCr3rdV9KlvwP3sJjlrO7XQ0lG7HKGLeKZqiWc6rpuTFrUcmPLslALsJ-V0glVoNJ9TUE5eT-CgkBKY8pQCRQClVRSO6LaaWyxhpUWzFb-6RT6eiwJuk14BgFgjlDOdGqOsM2k4BKtKdRwZiEZDnYapk6ZPeIuVTPvu7ThE5CSrP0kKYHGNGjNEWOYR1ifB4qpx073kL_LbCMOFLPYer0-Uk6PMuzIgiw6bJEWxdcOhZJHiSQq8VnEOVFZFvE82EMRZU8i78KDZloiwKDUK4TEPawnsP1IgFo_UrKqy0dtP_yD0_l1H6IkXcvBylVa-qAR-E_Y160iudyTBi-rO8hqaXKuVKltaDFzZ2tTvlx8slvGmuGmxsOWskRHA51GvomO-HQV3V4rjr3WTd8kx84_v_PnhG-Qy2HH2ZrS_d5dcYViaE4qAReukN53M7D1ySX-fHleT-7VzouTLedvzT80y1Do
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+epidemiological+association+patterns+of+serum+thyrotropin+by+combining+random+forests+and+Bayesian+networks&rft.jtitle=PloS+one&rft.au=Becker%2C+Ann-Kristin&rft.au=Ittermann%2C+Till&rft.au=D%C3%B6rr%2C+Markus&rft.au=Felix%2C+Stephan+B&rft.date=2022-07-21&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=17&rft.issue=7&rft.spage=e0271610&rft_id=info:doi/10.1371%2Fjournal.pone.0271610&rft.externalDocID=A711037100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon