Computational design of novel Cas9 PAM-interacting domains using evolution-based modelling and structural quality assessment

We present here an approach to protein design that combines (i) scarce functional information such as experimental data (ii) evolutionary information learned from a natural sequence variants and (iii) physics-grounded modeling. Using a Restricted Boltzmann Machine (RBM), we learn a sequence model of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PLoS computational biology Ročník 19; číslo 11; s. e1011621
Hlavní autoři: Malbranke, Cyril, Rostain, William, Depardieu, Florence, Cocco, Simona, Monasson, Rémi, Bikard, David
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 01.11.2023
PLOS
Public Library of Science (PLoS)
Témata:
ISSN:1553-7358, 1553-734X, 1553-7358
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We present here an approach to protein design that combines (i) scarce functional information such as experimental data (ii) evolutionary information learned from a natural sequence variants and (iii) physics-grounded modeling. Using a Restricted Boltzmann Machine (RBM), we learn a sequence model of a protein family. We use semi-supervision to leverage available functional information during the RBM training. We then propose a strategy to explore the protein representation space that can be informed by external models such as an empirical force-field method (FoldX). Our approach is applied to a domain of the Cas9 protein responsible for recognition of a short DNA motif. We experimentally assess the functionality of 71 variants generated to explore a range of RBM and FoldX energies. Sequences with as many as 50 differences (20% of the protein domain) to the wild-type retained functionality. Overall, 21/71 sequences designed with our method were functional. Interestingly, 6/71 sequences showed an improved activity in comparison with the original wild-type protein sequence. These results demonstrate the interest in further exploring the synergies between machine-learning of protein sequence representations and physics grounded modeling strategies informed by structural information.
AbstractList We present here an approach to protein design that combines (i) scarce functional information such as experimental data (ii) evolutionary information learned from a natural sequence variants and (iii) physics-grounded modeling. Using a Restricted Boltzmann Machine (RBM), we learn a sequence model of a protein family. We use semi-supervision to leverage available functional information during the RBM training. We then propose a strategy to explore the protein representation space that can be informed by external models such as an empirical force-field method (FoldX). Our approach is applied to a domain of the Cas9 protein responsible for recognition of a short DNA motif. We experimentally assess the functionality of 71 variants generated to explore a range of RBM and FoldX energies. Sequences with as many as 50 differences (20% of the protein domain) to the wild-type retained functionality. Overall, 21/71 sequences designed with our method were functional. Interestingly, 6/71 sequences showed an improved activity in comparison with the original wild-type protein sequence. These results demonstrate the interest in further exploring the synergies between machine-learning of protein sequence representations and physics grounded modeling strategies informed by structural information. Proteins are essential molecules in all living organisms, with their function largely determined by their sequence. Modifying a protein’s sequence to achieve a desired function remains a challenging endeavor, requiring careful consideration of factors such as the stability of the structure and interactions with molecular partners. In this study, we devised a protein design method that combines insights from experimental data, natural variation in protein sequences, and physics-based predictions. This approach provides a reliable and interpretable means of altering a protein’s sequence while maintaining its functionality. We applied our technique to a domain of the Cas9 protein, a key component in the CRISPR gene editing system. Our results demonstrate the possibility of generating functional protein domains with over 20% of their sequence modified. These findings underscore how the integration of diverse sources of information in a unified design process enhances the quality of engineered proteins. This advancement holds promise for creating valuable protein variants for applications in drug development and various industries.
We present here an approach to protein design that combines (i) scarce functional information such as experimental data (ii) evolutionary information learned from a natural sequence variants and (iii) physics-grounded modeling. Using a Restricted Boltzmann Machine (RBM), we learn a sequence model of a protein family. We use semi-supervision to leverage available functional information during the RBM training. We then propose a strategy to explore the protein representation space that can be informed by external models such as an empirical force-field method (FoldX). Our approach is applied to a domain of the Cas9 protein responsible for recognition of a short DNA motif. We experimentally assess the functionality of 71 variants generated to explore a range of RBM and FoldX energies. Sequences with as many as 50 differences (20% of the protein domain) to the wild-type retained functionality. Overall, 21/71 sequences designed with our method were functional. Interestingly, 6/71 sequences showed an improved activity in comparison with the original wild-type protein sequence. These results demonstrate the interest in further exploring the synergies between machine-learning of protein sequence representations and physics grounded modeling strategies informed by structural information.We present here an approach to protein design that combines (i) scarce functional information such as experimental data (ii) evolutionary information learned from a natural sequence variants and (iii) physics-grounded modeling. Using a Restricted Boltzmann Machine (RBM), we learn a sequence model of a protein family. We use semi-supervision to leverage available functional information during the RBM training. We then propose a strategy to explore the protein representation space that can be informed by external models such as an empirical force-field method (FoldX). Our approach is applied to a domain of the Cas9 protein responsible for recognition of a short DNA motif. We experimentally assess the functionality of 71 variants generated to explore a range of RBM and FoldX energies. Sequences with as many as 50 differences (20% of the protein domain) to the wild-type retained functionality. Overall, 21/71 sequences designed with our method were functional. Interestingly, 6/71 sequences showed an improved activity in comparison with the original wild-type protein sequence. These results demonstrate the interest in further exploring the synergies between machine-learning of protein sequence representations and physics grounded modeling strategies informed by structural information.
We present here an approach to protein design that combines (i) scarce functional information such as experimental data (ii) evolutionary information learned from a natural sequence variants and (iii) physics-grounded modeling. Using a Restricted Boltzmann Machine (RBM), we learn a sequence model of a protein family. We use semi-supervision to leverage available functional information during the RBM training. We then propose a strategy to explore the protein representation space that can be informed by external models such as an empirical force-field method (FoldX). Our approach is applied to a domain of the Cas9 protein responsible for recognition of a short DNA motif. We experimentally assess the functionality of 71 variants generated to explore a range of RBM and FoldX energies. Sequences with as many as 50 differences (20% of the protein domain) to the wild-type retained functionality. Overall, 21/71 sequences designed with our method were functional. Interestingly, 6/71 sequences showed an improved activity in comparison with the original wild-type protein sequence. These results demonstrate the interest in further exploring the synergies between machine-learning of protein sequence representations and physics grounded modeling strategies informed by structural information.
Audience Academic
Author Malbranke, Cyril
Depardieu, Florence
Monasson, Rémi
Bikard, David
Rostain, William
Cocco, Simona
AuthorAffiliation University of Kansas, UNITED STATES
1 Laboratory of Physics of the Ecole Normale Superieure, PSL Research, CNRS UMR 8023, Sorbonne Université, Paris, France
2 Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Synthetic Biology, Paris, France
AuthorAffiliation_xml – name: University of Kansas, UNITED STATES
– name: 2 Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Synthetic Biology, Paris, France
– name: 1 Laboratory of Physics of the Ecole Normale Superieure, PSL Research, CNRS UMR 8023, Sorbonne Université, Paris, France
Author_xml – sequence: 1
  givenname: Cyril
  orcidid: 0000-0002-4545-0801
  surname: Malbranke
  fullname: Malbranke, Cyril
– sequence: 2
  givenname: William
  orcidid: 0000-0002-9960-4669
  surname: Rostain
  fullname: Rostain, William
– sequence: 3
  givenname: Florence
  orcidid: 0000-0002-2680-0589
  surname: Depardieu
  fullname: Depardieu, Florence
– sequence: 4
  givenname: Simona
  orcidid: 0000-0002-4459-0204
  surname: Cocco
  fullname: Cocco, Simona
– sequence: 5
  givenname: Rémi
  orcidid: 0000-0002-1852-7789
  surname: Monasson
  fullname: Monasson, Rémi
– sequence: 6
  givenname: David
  orcidid: 0000-0002-5729-1211
  surname: Bikard
  fullname: Bikard, David
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37976326$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04783838$$DView record in HAL
BookMark eNqVk1uL1DAUx4usuBf9BqIFX_ShYy5t2uyLDIO6A-MFL88ht3aztMlskw4u-OFNbXfdGUSQPDQ5-f3_yTnNOU2OrLM6SZ5CsIC4hK-v3NBb3i62UpgFBBASBB8kJ7AocFbiojq6Nz9OTr2_AiBOKXmUHOOSlgQjcpL8XLluOwQejItmqdLeNDZ1dWrdTrfpinuafl5-yIwNuucyGNukynXcWJ8OflzpnWuHUZ4J7rVKO6d024473KrUh36QYeij9_XAWxNuUu699r7TNjxOHta89frJ_D1Lvr97-211kW0-vV-vlptMElKFTNWFxlWudcFVQTlCBUaiEkirskIcQpzXGEqAKeK0JkTlmESkkoIiipQU-Cx5PvluW-fZXDjPMCAUxkoAGon1RCjHr9i2Nx3vb5jjhv0OuL5hvA9GtpqBQtAcixqoXOdCUaErXWGiKkQKIXEZvd7Mpw2i00rGRGP6e6b7O9ZcssbtGAQlopTi6PBqcrg80F0sN2yMgbyscBw7GNmX82m9ux60D6wzXsY_wK12g2eoijkWkFIQ0RcH6N9LsZiohsdsja1dvKSMQ-nOyPgGaxPjy7IsEKQgB39uOwsiE_SP0PDBe7b--uU_2I_77LP7dbwrxO3jjUA-AbJ33ve6vkMgYGOP3ObHxh5hc49E2fmBTJqpAWKipv23-BdEQBn3
CitedBy_id crossref_primary_10_1209_0295_5075_ada636
crossref_primary_10_1016_j_cels_2025_101236
crossref_primary_10_1016_j_cell_2024_01_042
crossref_primary_10_1038_s41586_025_09021_y
crossref_primary_10_1038_s41587_024_02127_0
crossref_primary_10_1093_nar_gkaf782
Cites_doi 10.1093/molbev/msab120
10.1016/j.molcel.2018.12.003
10.1038/s41467-020-20633-y
10.1093/nar/gkx272
10.1002/wcms.1121
10.1093/bioinformatics/btab442
10.1016/j.cell.2014.02.001
10.1073/pnas.2016239118
10.1093/bioinformatics/btz184
10.1016/j.jcp.2014.07.024
10.1002/jmv.26626
10.1038/s41586-021-04184-w
10.7554/eLife.39397
10.1016/j.cels.2023.10.002
10.1038/s41467-021-26529-9
10.1038/s41592-021-01100-y
10.1038/s41467-019-08395-8
10.1038/s41586-021-03819-2
10.1186/s13059-021-02495-9
10.1002/prot.20264
10.1093/nar/gky439
10.1145/1390156.1390290
10.1038/nbt.3769
10.1371/journal.pcbi.1008736
10.1093/bioinformatics/btaa714
10.1126/science.1258096
10.1016/j.ijbiomac.2020.05.243
10.1021/acs.jcim.1c00063
10.1103/PhysRevE.104.034109
10.1016/j.bbrc.2020.05.028
10.7554/eLife.77825
10.1126/science.aba3304
10.1073/pnas.0805923106
10.1038/s41592-020-0848-2
10.1126/science.abj8754
10.1073/pnas.1111471108
10.1093/nar/gky1004
10.1016/j.cels.2020.11.005
10.1093/nar/gky228
10.1038/s41564-020-00839-y
10.1093/bioinformatics/btw006
10.1016/j.sbi.2023.102571
10.1038/s41467-021-25756-4
ContentType Journal Article
Copyright Copyright: © 2023 Malbranke et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2023 Public Library of Science
2023 Malbranke et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
licence_http://creativecommons.org/publicdomain/zero
2023 Malbranke et al 2023 Malbranke et al
Copyright_xml – notice: Copyright: © 2023 Malbranke et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Malbranke et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: licence_http://creativecommons.org/publicdomain/zero
– notice: 2023 Malbranke et al 2023 Malbranke et al
DBID AAYXX
CITATION
NPM
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
RC3
7X8
1XC
VOOES
5PM
DOA
DOI 10.1371/journal.pcbi.1011621
DatabaseName CrossRef
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
Publicly Available Content Database


PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
DocumentTitleAlternate Design of Cas9 enzyme using evolution-based and structural modelling
EISSN 1553-7358
ExternalDocumentID 3069179709
oai_doaj_org_article_05b943bf0d4e4bd9be8e836d8265bc37
PMC10729993
oai:HAL:hal-04783838v1
A775219040
37976326
10_1371_journal_pcbi_1011621
Genre Journal Article
GeographicLocations France
GeographicLocations_xml – name: France
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: ANR-10-LABX-62-IBEID
– fundername: ;
  grantid: ANR-17-CE30-0021 RBMPro, ANR-19-CE30-0021 Decrypted
– fundername: ;
  grantid: 677823, 101044479
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
ADRAZ
ALIPV
C1A
H13
IPNFZ
M0N
M~E
NPM
PGMZT
RIG
WOQ
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
P64
PKEHL
PQEST
PQUKI
Q9U
RC3
7X8
PUEGO
1XC
VOOES
5PM
ID FETCH-LOGICAL-c668t-df5e384ee5ad59a22532b8b2ed782a1134f31c0392a9f66d4362538cb9292dcb3
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001122731400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7358
1553-734X
IngestDate Tue Aug 12 00:50:52 EDT 2025
Fri Oct 03 12:52:26 EDT 2025
Tue Nov 04 02:06:13 EST 2025
Fri Nov 07 06:41:33 EST 2025
Fri Sep 05 07:23:10 EDT 2025
Sat Nov 29 14:44:03 EST 2025
Tue Nov 04 18:34:26 EST 2025
Wed Nov 26 11:07:54 EST 2025
Thu Nov 13 16:35:54 EST 2025
Wed Feb 19 02:08:01 EST 2025
Sat Nov 29 03:00:18 EST 2025
Tue Nov 18 22:32:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Copyright: © 2023 Malbranke et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c668t-df5e384ee5ad59a22532b8b2ed782a1134f31c0392a9f66d4362538cb9292dcb3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC10729993
The authors have declared that no competing interests exist.
ORCID 0000-0002-9960-4669
0000-0002-4459-0204
0000-0002-5729-1211
0000-0002-4545-0801
0000-0002-1852-7789
0000-0002-2680-0589
OpenAccessLink https://doaj.org/article/05b943bf0d4e4bd9be8e836d8265bc37
PMID 37976326
PQID 3069179709
PQPubID 1436340
PageCount e1011621
ParticipantIDs plos_journals_3069179709
doaj_primary_oai_doaj_org_article_05b943bf0d4e4bd9be8e836d8265bc37
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10729993
hal_primary_oai_HAL_hal_04783838v1
proquest_miscellaneous_2891751990
proquest_journals_3069179709
gale_infotracacademiconefile_A775219040
gale_incontextgauss_ISR_A775219040
gale_incontextgauss_ISN_A775219040
pubmed_primary_37976326
crossref_primary_10_1371_journal_pcbi_1011621
crossref_citationtrail_10_1371_journal_pcbi_1011621
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2023
Publisher Public Library of Science
PLOS
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: PLOS
– name: Public Library of Science (PLoS)
References MS Rahman (pcbi.1011621.ref029) 2021; 93
SK Burley (pcbi.1011621.ref001) 2019; 47
pcbi.1011621.ref052
F Baldassarre (pcbi.1011621.ref015) 2021; 37
S Kumar (pcbi.1011621.ref043) 2022
M Mirdita (pcbi.1011621.ref044) 2022
D Ma (pcbi.1011621.ref034) 2019; 10
A Hawkins-Hooker (pcbi.1011621.ref006) 2021; 17
T Hopf (pcbi.1011621.ref004) 2017; 35
M Baek (pcbi.1011621.ref022) 2021; 373
S Biswas (pcbi.1011621.ref040) 2021; 18
A Elnaggar (pcbi.1011621.ref054) 2023
A Madani (pcbi.1011621.ref057) 2023
H Othman (pcbi.1011621.ref030) 2020; 527
JK Leman (pcbi.1011621.ref020) 2020; 17
D Collias (pcbi.1011621.ref037) 2021; 12
K Tamura (pcbi.1011621.ref063) 2021; 38
C Malbranke (pcbi.1011621.ref017) 2021; 37
M Jendrusch (pcbi.1011621.ref024) 2021
J Jumper (pcbi.1011621.ref021) 2021; 596
RM Rao (pcbi.1011621.ref053) 2021
H Larochelle (pcbi.1011621.ref026) 2012; 13
Q Wu (pcbi.1011621.ref048) 2018; 46
V Gligorijević (pcbi.1011621.ref055) 2021
Z Lin (pcbi.1011621.ref050) 2022
A Chan (pcbi.1011621.ref056) 2021; 34
JD Blanco (pcbi.1011621.ref018) 2018; 46
I Loshchilov (pcbi.1011621.ref061) 2018
B Jing (pcbi.1011621.ref016) 2021
JM Sagendorf (pcbi.1011621.ref002) 2017; 45
A Edraki (pcbi.1011621.ref035) 2019; 73
J Wei (pcbi.1011621.ref036) 2022; 11
J Tubiana (pcbi.1011621.ref010) 2019; 8
JA Doudna (pcbi.1011621.ref032) 2014; 346
JNA Vink (pcbi.1011621.ref041) 2021; 22
R Salomon-Ferrer (pcbi.1011621.ref051) 2013; 3
F Rousset (pcbi.1011621.ref062) 2021; 6
ML Hekkelman (pcbi.1011621.ref049) 2021
L Moffat (pcbi.1011621.ref023) 2021
pcbi.1011621.ref039
A Elnaggar (pcbi.1011621.ref013) 2021
Z Gao (pcbi.1011621.ref025) 2022
A Rives (pcbi.1011621.ref012) 2021; 118
F McGee (pcbi.1011621.ref011) 2021; 12
J Trinquier (pcbi.1011621.ref009) 2021; 12
J Delgado (pcbi.1011621.ref019) 2019; 35
R Wang (pcbi.1011621.ref031) 2020; 160
H Nishimasu (pcbi.1011621.ref033) 2014; 156
M Hauser (pcbi.1011621.ref059) 2016; 32
pcbi.1011621.ref060
R Salakhutdinov (pcbi.1011621.ref038) 2008; 2
C Malbranke (pcbi.1011621.ref058) 2023; 80
M Weigt (pcbi.1011621.ref008) 2009; 106
D Shorthouse (pcbi.1011621.ref028) 2021; 61
C Roussel (pcbi.1011621.ref042) 2021; 104
E Asgari (pcbi.1011621.ref047) 2019
B Bravi (pcbi.1011621.ref027) 2021; 12
F Morcos (pcbi.1011621.ref003) 2011; 108
M Ekeberg (pcbi.1011621.ref007) 2014; 276
MS Klausen (pcbi.1011621.ref046) 2018
I Anishchenko (pcbi.1011621.ref014) 2021; 600
Y Zhang (pcbi.1011621.ref045) 2004; 57
WP Russ (pcbi.1011621.ref005) 2020; 369
References_xml – year: 2021
  ident: pcbi.1011621.ref049
  publication-title: AlphaFill: Enriching the AlphaFold Models with Ligands and Co-Factors
– start-page: 2021
  year: 2021
  ident: pcbi.1011621.ref055
  article-title: Function-guided protein design by deep manifold sampling
  publication-title: bioRxiv
– start-page: 2023
  year: 2023
  ident: pcbi.1011621.ref054
  article-title: Ankh: Optimized Protein Language Model Unlocks General-Purpose Modelling
  publication-title: bioRxiv
– volume: 38
  start-page: 3022
  issue: 7
  year: 2021
  ident: pcbi.1011621.ref063
  article-title: MEGA11: Molecular Evolutionary Genetics Analysis Version 11
  publication-title: Molecular biology and evolution
  doi: 10.1093/molbev/msab120
– volume: 73
  start-page: 714
  issue: 4
  year: 2019
  ident: pcbi.1011621.ref035
  article-title: A compact, high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing
  publication-title: Molecular cell
  doi: 10.1016/j.molcel.2018.12.003
– volume: 12
  start-page: 555
  issue: 1
  year: 2021
  ident: pcbi.1011621.ref037
  article-title: CRISPR Technologies and the Search for the PAM-free Nuclease
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-20633-y
– volume: 45
  start-page: W89
  issue: W1
  year: 2017
  ident: pcbi.1011621.ref002
  article-title: DNAproDB: An Interactive Tool for Structural Analysis of DNA–Protein Complexes
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkx272
– volume: 3
  start-page: 198
  issue: 2
  year: 2013
  ident: pcbi.1011621.ref051
  article-title: An Overview of the Amber Biomolecular Simulation Package
  publication-title: WIREs Computational Molecular Science
  doi: 10.1002/wcms.1121
– year: 2018
  ident: pcbi.1011621.ref061
  article-title: Fixing Weight Decay Regularization in Adam
  publication-title: open review
– volume: 37
  start-page: 4083
  issue: 22
  year: 2021
  ident: pcbi.1011621.ref017
  article-title: Improving Sequence-Based Modeling of Protein Families Using Secondary-Structure Quality Assessment
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab442
– volume: 156
  start-page: 935
  issue: 5
  year: 2014
  ident: pcbi.1011621.ref033
  article-title: Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA
  publication-title: Cell
  doi: 10.1016/j.cell.2014.02.001
– volume: 118
  issue: 15
  year: 2021
  ident: pcbi.1011621.ref012
  article-title: Biological Structure and Function Emerge from Scaling Unsupervised Learning to 250 Million Protein Sequences
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.2016239118
– volume: 35
  start-page: 4168
  issue: 20
  year: 2019
  ident: pcbi.1011621.ref019
  article-title: FoldX 5.0: Working with RNA, Small Molecules and a New Graphical Interface
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz184
– year: 2022
  ident: pcbi.1011621.ref043
  publication-title: Constrained Sampling from Language Models via Langevin Dynamics in Embedding Spaces
– volume: 276
  start-page: 341
  year: 2014
  ident: pcbi.1011621.ref007
  article-title: Fast Pseudolikelihood Maximization for Direct-Coupling Analysis of Protein Structure from Many Homologous Amino-Acid Sequences
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2014.07.024
– volume: 13
  start-page: 643
  year: 2012
  ident: pcbi.1011621.ref026
  article-title: Learning Algorithms for the Classification Restricted Boltzmann Machine
  publication-title: The Journal of Machine Learning Research
– volume: 93
  start-page: 2177
  issue: 4
  year: 2021
  ident: pcbi.1011621.ref029
  article-title: Evolutionary Dynamics of SARS-CoV-2 Nucleocapsid Protein and Its Consequences
  publication-title: Journal of Medical Virology
  doi: 10.1002/jmv.26626
– start-page: 8844
  year: 2021
  ident: pcbi.1011621.ref053
  article-title: MSA transformer. In: International Conference on Machine Learning
  publication-title: PMLR
– volume: 600
  start-page: 547
  issue: 7889
  year: 2021
  ident: pcbi.1011621.ref014
  article-title: De Novo Protein Design by Deep Network Hallucination
  publication-title: Nature
  doi: 10.1038/s41586-021-04184-w
– volume: 8
  start-page: e39397
  year: 2019
  ident: pcbi.1011621.ref010
  article-title: Learning protein constitutive motifs from sequence data
  publication-title: Elife
  doi: 10.7554/eLife.39397
– start-page: 1
  year: 2023
  ident: pcbi.1011621.ref057
  article-title: Large language models generate functional protein sequences across diverse families
  publication-title: Nature Biotechnology
– ident: pcbi.1011621.ref052
  doi: 10.1016/j.cels.2023.10.002
– volume: 12
  start-page: 6302
  issue: 1
  year: 2021
  ident: pcbi.1011621.ref011
  article-title: The Generative Capacity of Probabilistic Protein Sequence Models
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-26529-9
– volume: 18
  start-page: 389
  issue: 4
  year: 2021
  ident: pcbi.1011621.ref040
  article-title: Low-N protein engineering with data-efficient deep learning
  publication-title: Nature methods
  doi: 10.1038/s41592-021-01100-y
– volume: 10
  start-page: 560
  issue: 1
  year: 2019
  ident: pcbi.1011621.ref034
  article-title: Engineer Chimeric Cas9 to Expand PAM Recognition Based on Evolutionary Information
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-08395-8
– start-page: 1
  year: 2021
  ident: pcbi.1011621.ref013
  article-title: ProtTrans: Towards Cracking the Language of Lifes Code Through Self-Supervised Deep Learning and High Performance Computing
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 596
  start-page: 583
  issue: 7873
  year: 2021
  ident: pcbi.1011621.ref021
  article-title: Highly Accurate Protein Structure Prediction with AlphaFold
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume: 22
  start-page: 281
  issue: 1
  year: 2021
  ident: pcbi.1011621.ref041
  article-title: PAM-repeat Associations and Spacer Selection Preferences in Single and Co-Occurring CRISPR-Cas Systems
  publication-title: Genome Biology
  doi: 10.1186/s13059-021-02495-9
– volume: 2
  start-page: 21
  year: 2008
  ident: pcbi.1011621.ref038
  article-title: Learning and Evaluating Boltzmann Machines
  publication-title: Utml Tr
– volume: 57
  start-page: 702
  issue: 4
  year: 2004
  ident: pcbi.1011621.ref045
  article-title: Scoring function for automated assessment of protein structure template quality
  publication-title: Proteins: Structure, Function, and Bioinformatics
  doi: 10.1002/prot.20264
– volume: 46
  start-page: W438
  issue: W1
  year: 2018
  ident: pcbi.1011621.ref048
  article-title: COACH-D: Improved Protein–Ligand Binding Sites Prediction with Refined Ligand-Binding Poses through Molecular Docking
  publication-title: Nucleic acids research
  doi: 10.1093/nar/gky439
– ident: pcbi.1011621.ref039
  doi: 10.1145/1390156.1390290
– volume: 34
  start-page: 14084
  year: 2021
  ident: pcbi.1011621.ref056
  article-title: Deep extrapolation for attribute-enhanced generation
  publication-title: Advances in Neural Information Processing Systems
– volume: 35
  year: 2017
  ident: pcbi.1011621.ref004
  article-title: Mutation Effects Predicted from Sequence Co-Variation
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt.3769
– start-page: 1
  year: 2022
  ident: pcbi.1011621.ref044
  article-title: ColabFold: Making Protein Folding Accessible to All
  publication-title: Nature Methods
– volume: 17
  start-page: e1008736
  issue: 2
  year: 2021
  ident: pcbi.1011621.ref006
  article-title: Generating Functional Protein Variants with Variational Autoencoders
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1008736
– volume: 37
  start-page: 360
  issue: 3
  year: 2021
  ident: pcbi.1011621.ref015
  article-title: GraphQA: protein model quality assessment using graph convolutional networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa714
– year: 2018
  ident: pcbi.1011621.ref046
  article-title: NetSurfP-2.0: Improved Prediction of Protein Structural Features by Integrated Deep Learning
  publication-title: Bioinformatics
– year: 2021
  ident: pcbi.1011621.ref016
  publication-title: Equivariant Graph Neural Networks for 3D Macromolecular Structure
– volume: 346
  start-page: 1258096
  issue: 6213
  year: 2014
  ident: pcbi.1011621.ref032
  article-title: The New Frontier of Genome Engineering with CRISPR-Cas9
  publication-title: Science
  doi: 10.1126/science.1258096
– year: 2021
  ident: pcbi.1011621.ref024
  publication-title: AlphaDesign: A de Novo Protein Design Framework Based on AlphaFold
– volume: 160
  start-page: 1189
  year: 2020
  ident: pcbi.1011621.ref031
  article-title: Enhancing the Thermostability of Rhizopus Chinensis Lipase by Rational Design and MD Simulations
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/j.ijbiomac.2020.05.243
– volume: 61
  start-page: 1970
  issue: 4
  year: 2021
  ident: pcbi.1011621.ref028
  article-title: Computational Saturation Screen Reveals the Landscape of Mutations in Human Fumarate Hydratase
  publication-title: Journal of Chemical Information and Modeling
  doi: 10.1021/acs.jcim.1c00063
– year: 2022
  ident: pcbi.1011621.ref050
  article-title: Language models of protein sequences at the scale of evolution enable accurate structure prediction
  publication-title: BioRxiv
– year: 2021
  ident: pcbi.1011621.ref023
  publication-title: Using AlphaFold for Rapid and Accurate Fixed Backbone Protein Design
– volume: 104
  start-page: 034109
  issue: 3
  year: 2021
  ident: pcbi.1011621.ref042
  article-title: Barriers and Dynamical Paths in Alternating Gibbs Sampling of Restricted Boltzmann Machines
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.104.034109
– volume: 527
  start-page: 702
  issue: 3
  year: 2020
  ident: pcbi.1011621.ref030
  article-title: Interaction of the Spike Protein RBD from SARS-CoV-2 with ACE2: Similarity with SARS-CoV, Hot-Spot Analysis and Effect of the Receptor Polymorphism
  publication-title: Biochemical and Biophysical Research Communications
  doi: 10.1016/j.bbrc.2020.05.028
– year: 2022
  ident: pcbi.1011621.ref025
  publication-title: AlphaDesign: A Graph Protein Design Method and Benchmark on AlphaFoldDB
– volume: 11
  start-page: e77825
  year: 2022
  ident: pcbi.1011621.ref036
  article-title: Closely related type II-C Cas9 orthologs recognize diverse PAMs
  publication-title: eLife
  doi: 10.7554/eLife.77825
– volume: 369
  start-page: 440
  issue: 6502
  year: 2020
  ident: pcbi.1011621.ref005
  article-title: An Evolution-Based Model for Designing Chorismate Mutase Enzymes
  publication-title: Science
  doi: 10.1126/science.aba3304
– volume: 106
  start-page: 67
  issue: 1
  year: 2009
  ident: pcbi.1011621.ref008
  article-title: Identification of Direct Residue Contacts in Protein–Protein Interaction by Message Passing
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0805923106
– volume: 17
  start-page: 665
  issue: 7
  year: 2020
  ident: pcbi.1011621.ref020
  article-title: Macromolecular Modeling and Design in Rosetta: Recent Methods and Frameworks
  publication-title: Nature Methods
  doi: 10.1038/s41592-020-0848-2
– volume: 373
  start-page: 871
  issue: 6557
  year: 2021
  ident: pcbi.1011621.ref022
  article-title: Accurate prediction of protein structures and interactions using a three-track neural network
  publication-title: Science
  doi: 10.1126/science.abj8754
– year: 2019
  ident: pcbi.1011621.ref047
  publication-title: DeepPrime2Sec: Deep Learning for Protein Secondary Structure Prediction from the Primary Sequences
– volume: 108
  start-page: E1293
  issue: 49
  year: 2011
  ident: pcbi.1011621.ref003
  article-title: Direct-Coupling Analysis of Residue Coevolution Captures Native Contacts across Many Protein Families
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1111471108
– volume: 47
  start-page: D464
  issue: D1
  year: 2019
  ident: pcbi.1011621.ref001
  article-title: RCSB Protein Data Bank: Biological Macromolecular Structures Enabling Research and Education in Fundamental Biology, Biomedicine, Biotechnology and Energy
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gky1004
– volume: 12
  start-page: 195
  issue: 2
  year: 2021
  ident: pcbi.1011621.ref027
  article-title: RBM-MHC: a semi-supervised machine-learning method for sample-specific prediction of antigen presentation by HLA-I alleles
  publication-title: Cell systems
  doi: 10.1016/j.cels.2020.11.005
– volume: 46
  start-page: 3852
  issue: 8
  year: 2018
  ident: pcbi.1011621.ref018
  article-title: FoldX accurate structural protein–DNA binding prediction using PADA1 (Protein Assisted DNA Assembly 1)
  publication-title: Nucleic acids research
  doi: 10.1093/nar/gky228
– volume: 6
  start-page: 301
  issue: 3
  year: 2021
  ident: pcbi.1011621.ref062
  article-title: The impact of genetic diversity on gene essentiality within the Escherichia coli species
  publication-title: Nature microbiology
  doi: 10.1038/s41564-020-00839-y
– ident: pcbi.1011621.ref060
– volume: 32
  start-page: 1323
  issue: 9
  year: 2016
  ident: pcbi.1011621.ref059
  article-title: MMseqs Software Suite for Fast and Deep Clustering and Searching of Large Protein Sequence Sets
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw006
– volume: 80
  start-page: 102571
  year: 2023
  ident: pcbi.1011621.ref058
  article-title: Machine learning for evolutionary-based and physics-inspired protein design: Current and future synergies
  publication-title: Current Opinion in Structural Biology
  doi: 10.1016/j.sbi.2023.102571
– volume: 12
  start-page: 5800
  issue: 1
  year: 2021
  ident: pcbi.1011621.ref009
  article-title: Efficient Generative Modeling of Protein Sequences Using Simple Autoregressive Models
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-25756-4
SSID ssj0035896
Score 2.482151
Snippet We present here an approach to protein design that combines (i) scarce functional information such as experimental data (ii) evolutionary information learned...
SourceID plos
doaj
pubmedcentral
hal
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1011621
SubjectTerms Amino acid sequence
Amino acids
Analysis
Biochemistry, Molecular Biology
Biology and Life Sciences
Boltzmann constant
Information sources
Life Sciences
Ligands
Machine learning
Methods
Modelling
Mutation
Physics
Proteins
Quality assessment
Quality control
Quantitative Methods
Representations
Research and Analysis Methods
Structural Biology
Sucrose
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELboAhIX3tCFggxC4mSaxHn5hJaKqghYVTykvVl-ZXelJVmadqVK_HhmHG9oUIEDyiWKnciOx-Nv7JlvCHmhhXCiMBFTOuIs1Vox7YRlldax1ZFJMl75ZBPFdFrOZuI4bLi1wa1yqxO9oraNwT3yfYC2YFmIIhKv198ZZo3C09WQQmOHXI2TJEY5f1-wrSbmWenzc2FqHFbwdBZC53gR74eRerU2eokWbJwn8WBp8gz-vZ7eWaCb5Gi9atrLoOjvHpUXlqjDW__budvkZgCndNJJ0x1yxdV3yfUuXeU53Hl3UdPeIz-6ZBBhI5Fa7wZCm4rWzcat6IFqBT2efGRIRuHDsOo5tc03taxbip72c-o2QeYZrqOW-ow8GBpPVW1px2qLjCC0i_o8p6qnEL1Pvh6-_XJwxEIeB2byvDxltsocL1PnMmUzoUCD8ESXOnEW4ImKY55WPDYRIDUlqjy3KSyqoIeNBuiWWKP5AzKqm9rtEppZwIeJyyuhVFpGRkWZTW2huIuqvIzTMeHbIZQmkJxjro2V9Cd3BRg73a-UOPAyDPyYsP6tdUfy8Y_6b1A6-rpI0e0fNCdzGWa8jDItUq6ryKYu1VZoV7qS5xbsuUwbXozJc5QtiSQcNXr5zNVZ28p3n6dyUhSAqgTo1z9W-jSo9DJUqhrorFEhsgJ-GZJ7DT-3wL5caPfR5IPEZ8jSxOHaQO92Uc63PW_lL-kck72t_F5e_KwvBi2FR0-qds1ZK8GsB5waA_QZk4fdVOlbweHdHKyIMSkHk2jQzGFJvVx4JvQYee8BYT_6e7sekxsJYNMuhHSPjECG3RNyzWxOl-3JU68zfgIDh3cL
  priority: 102
  providerName: ProQuest
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdbtsFe1n3Xaze0MdiTN9uyZesxKw0ddCHsA_om9OUkkNlhbgOF_fG7sxWvLg1l5CVYUpDOp9PvorvfEfJeC-FEbqJQ6YiFqdYq1E7YsNQ6tjoyScbKtthEPp0WZ2di9s9RvHaDz_L4k5fpx7XRS_Q1Y4554_cSxjmGcE1mp1vLy7JCcJ8et2vk4PhpWfp7W3x3gaGQo_Wqbm6Cm9ejJq8cQ5O9_13AY_LIA0467jTkCbnjqqfkQVeC8hK-tSGgpnlG_nQFHvyfg9S2oR20LmlVb9yKHqlG0Nn4a4gEE21qVTWntv6lllVDMXp-Tt3G63GIZ6OlbZUdTHenqrK0Y6pFlg_aZXJeUtXTgj4nPyfHP45OQl-bITQg9_PQlpljRepcpmwmFFgFluhCJ84C5FBxzNKSxSYC9KVEyblN4aAE22o0wLHEGs1ekFFVV26f0MwC5kscL4VSaREZFWU2tbliLip5EacBYdtXJo0nLsf6GSvZ3sbl4MB0opQoYeklHJCwH7XuiDtu6f8ZtaHvi7Tb7QN4ldLvYhllWqRMl5FNXaqt0K5wBeMWfLRMG5YH5B3qkkRijQojd-bqomnkl-9TOc5zQEoCbObOTt8GnT74TmUNizXKZ0uAyJCwa_hzC1zLlXmfjE8lPkPmJQafDaxuH_V6u_JGgqcIjrrIIxGQw62u39z8tm8Gy4PXSapy9UUjwVUH7BkDnAnIy25r9LNgMJaDZxCQYrBpBtMctlTLRctuHiOXPaDmV7unfEAeJoA1u5TQQzIC_XWvyX2zOV82v9-0NuEvSKFjVg
  priority: 102
  providerName: Public Library of Science
Title Computational design of novel Cas9 PAM-interacting domains using evolution-based modelling and structural quality assessment
URI https://www.ncbi.nlm.nih.gov/pubmed/37976326
https://www.proquest.com/docview/3069179709
https://www.proquest.com/docview/2891751990
https://hal.science/hal-04783838
https://pubmed.ncbi.nlm.nih.gov/PMC10729993
https://doaj.org/article/05b943bf0d4e4bd9be8e836d8265bc37
http://dx.doi.org/10.1371/journal.pcbi.1011621
Volume 19
WOSCitedRecordID wos001122731400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: P5Z
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M7P
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: K7-
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest_Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: PIMPY
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: FPL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdrtsFexr7rrQvaGOxJq23ZlvWYloaWtcF0G2R7MfpyEsjsMLeBwv74nSTHJKOjLyOgB-sc9HE-_c6--x1CHyTnhjMVEiFDShIpBZGGa1JJGWkZqjillSs2wSaTfDrlxVapLxsT5umB_cIdhqnkCZVVqBOTSM2lyU1OMw2wOJWKujxyQD0bZ8rbYJrmrjKXLYpDGE2mXdIcZdFht0efVkourO8aZXG0cyg57v7eQu_NbYDkYLVs2ttA6N-xlFuH0_gJetyhSjzys3mK7pn6GXro60zePEe_fe2G7r0f1i5qAzcVrpu1WeJj0XJcjC6I5Y5wWVP1DOvmp1jULbaB8TNs1p2KEnvsaewK6NhMdixqjT0JrSXwwD5J8waLnvHzBfo2Pvl6fEq6sgtEZVl-RXSVGponxqRCp1zAA09jmcvYaEATIopoUtFIhQCsBK-yTCdwBoLZVBKQVqyVpC_RoG5qs49wqgHOxSaruBBJHioRpjrRTFATVlkeJQGim3UvVcdJbktjLEv3oY2Bb-IXsLS7VXa7FSDS37XynBx3yB_ZLe1lLaO2uwB6VnZ6Vt6lZwF6bxWitJwZtQ3KmYnrti3PvkzKEWMAgjiYw38KXe4IfeyEqgYmq0SXCAFLZrm4dv9ubueyNe7T0Xlpr1lSJQq_Ncxu3yrnZuZtCU4g-OCchTxABxuFvb37Xd8NRsV-KRK1aa7bErxwgJURIJUAvfL63Y-Cwr0ZgP4A5TuavzPM3Z56MXfE5ZGlqQdA_Pp_bMgb9CgGwOnzQg_QADTdvEUP1Ppq0f4aoj02Za7Nh-j-0cmkuBw6EwHtuDiH9jMjQxvpW0BbpD9Aqji7KL7_AXmub5Y
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF61AQQX3tBAgQWBOC21vX7tAaFQqBq1jSooUm7LvpxECnao26BI_CZ-IzN-hAYVOPWAcom8Y2t2PTM74535hpDnWggnEuMxpT3OQq0V005YlmntW-2ZIOJZ1WwiGQzS4VAcrpEfbS0MplW2NrEy1LYw-I18C1xbiCxE4ok3s68Mu0bh6WrbQqMWiz23-AYhW_m6_w7e74sg2Hl_tL3Lmq4CzMRxesJsFjmehs5FykZCgTzzQKc6cBY2S-X7PMy4bzzwG5TI4tiGYOLBKhgNjkRgjebw3HVyKeRpglj9ewlrLT-P0qofGLbiYQkPh02pHk_8rUYyXs2MnmDE7MeBv7IVVh0DlvvC-hjTMjuzaVGe5_r-nsF5ZkvcufG_LeZNcr1xvmmv1pZbZM3lt8mVuh3nAv5V6bCmvEO-180umg-l1FZpLrTIaF7M3ZRuq1LQw94BQ7CNqswsH1FbfFGTvKRYSTCibt7oNEM_wdKq4xCW_lOVW1qj9iLiCa2rWhdULSFS75JPF7II90gnL3K3QWhkwf8NXJwJpcLUM8qLbGgTxZ2XxakfdglvRUaaBsQde4lMZXUymUAwVy-lREGTjaB1CVveNatBTP5B_xalcUmLEOTVheJ4JBuLJr1Ii5DrzLOhC7UV2qUu5bGFeDXShidd8gxlWSLISI5ZTCN1Wpay_3Ege0kCXqOA_eOPRB9WiF42RFkBkzWqqRyBJUPwstXHjXEuZ_je7e1LvIYoVBx-c5jdBupVO_NS_tKGLtls9eX84afLYbDCeLSmclecljJIgQSCIQEs3K9Vc8kFh3tjiJK6JF1R2hU2V0fyybhCevcR1x8iiAd_5-sJubp7dLAv9_uDvYfkWgB-eF0uu0k6IM_uEbls5ieT8vhxZa8o-XzROv0TsfLTOg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF614SEuvKGBAgsCcVpie_3aA0KhJWrVEkVApdyWfTmNVOxQt0GR-GX8Omb8CA0qcOoB5RJ5x9buep7emW8Iea6FcCIxHlPa4yzUWjHthGWZ1r7VngkinlXNJpLhMB2PxWiN_GhrYTCtstWJlaK2hcFv5D1wbSGyEIknelmTFjHaHryZfWXYQQpPWtt2GjWL7LnFNwjfyte72_CuXwTB4N2nrR3WdBhgJo7TE2azyPE0dC5SNhIKeJsHOtWBs2A4le_zMOO-8cCHUCKLYxuCugcNYTQ4FYE1msNz18klsMIRythewlorwKO06g2GbXlYwsNxU7bHE7_XcMmrmdFTjJ79OPBXzGLVPWBpI9YPMUWzMzsqyvPc4N-zOc-Yx8GN_3ljb5LrjVNO-7UU3SJrLr9NrtRtOhfwr0qTNeUd8r1ugtF8QKW2Sn-hRUbzYu6O6JYqBR313zME4ajKz_IJtcUXNc1LihUGE-rmjawz9B8srToRISQAVbmlNZovIqHQutp1QdUSOvUuObiQTbhHOnmRuw1CIwt-ceDiTCgVpp5RXmRDmyjuvCxO_bBLeMs-0jTg7thj5EhWJ5YJBHn1VkpkOtkwXZew5V2zGtzkH_RvkTOXtAhNXl0ojiey0XTSi7QIuc48G7pQW6Fd6lIeW4hjI2140iXPkK8lgo_kyG0TdVqWcvfjUPaTBLxJAXblj0QfVoheNkRZAYs1qqkogS1DULPVxx3iWs7Me6e_L_EaolNx-M1hdRsoY-3KS_lLMrpks5Wd84efLodBO-ORm8pdcVrKIAUSCJIETOF-LabLWXC4N4boqUvSFQFemebqSD49rBDgfcT7h8jiwd_n9YRcBVGW-7vDvYfkWgDueV1Fu0k6wM7uEbls5ifT8vhxpboo-XzRIv0TlfPb9A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+design+of+novel+Cas9+PAM-interacting+domains+using+evolution-based+modelling+and+structural+quality+assessment&rft.jtitle=PLoS+computational+biology&rft.au=Cyril+Malbranke&rft.au=William+Rostain&rft.au=Florence+Depardieu&rft.au=Simona+Cocco&rft.date=2023-11-01&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=19&rft.issue=11&rft.spage=e1011621&rft_id=info:doi/10.1371%2Fjournal.pcbi.1011621&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_05b943bf0d4e4bd9be8e836d8265bc37
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon