Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential

Pluripotency can be induced in somatic cells by overexpressing transcription factors, including POU class 5 homeobox 1 (OCT3/4), sex determining region Y-box 2 (SOX2), Krüppel-like factor 4 (KLF4), and myelocytomatosis oncogene (c-MYC). However, some induced pluripotent stem cells (iPSCs) exhibit de...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the National Academy of Sciences - PNAS Ročník 111; číslo 34; s. 12426
Hlavní autoři: Ohnuki, Mari, Tanabe, Koji, Sutou, Kenta, Teramoto, Ito, Sawamura, Yuka, Narita, Megumi, Nakamura, Michiko, Tokunaga, Yumie, Nakamura, Masahiro, Watanabe, Akira, Yamanaka, Shinya, Takahashi, Kazutoshi
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 26.08.2014
Témata:
ISSN:1091-6490, 1091-6490
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Pluripotency can be induced in somatic cells by overexpressing transcription factors, including POU class 5 homeobox 1 (OCT3/4), sex determining region Y-box 2 (SOX2), Krüppel-like factor 4 (KLF4), and myelocytomatosis oncogene (c-MYC). However, some induced pluripotent stem cells (iPSCs) exhibit defective differentiation and inappropriate maintenance of pluripotency features. Here we show that dynamic regulation of human endogenous retroviruses (HERVs) is important in the reprogramming process toward iPSCs, and in re-establishment of differentiation potential. During reprogramming, OCT3/4, SOX2, and KLF4 transiently hyperactivated LTR7s--the long-terminal repeats of HERV type-H (HERV-H)--to levels much higher than in embryonic stem cells by direct occupation of LTR7 sites genome-wide. Knocking down LTR7s or long intergenic non-protein coding RNA, regulator of reprogramming (lincRNA-RoR), a HERV-H-driven long noncoding RNA, early in reprogramming markedly reduced the efficiency of iPSC generation. KLF4 and LTR7 expression decreased to levels comparable with embryonic stem cells once reprogramming was complete, but failure to resuppress KLF4 and LTR7s resulted in defective differentiation. We also observed defective differentiation and LTR7 activation when iPSCs had forced expression of KLF4. However, when aberrantly expressed KLF4 or LTR7s were suppressed in defective iPSCs, normal differentiation was restored. Thus, a major mechanism by which OCT3/4, SOX2, and KLF4 promote human iPSC generation and reestablish potential for differentiation is by dynamically regulating HERV-H LTR7s.
AbstractList Pluripotency can be induced in somatic cells by overexpressing transcription factors, including POU class 5 homeobox 1 (OCT3/4), sex determining region Y-box 2 (SOX2), Krüppel-like factor 4 (KLF4), and myelocytomatosis oncogene (c-MYC). However, some induced pluripotent stem cells (iPSCs) exhibit defective differentiation and inappropriate maintenance of pluripotency features. Here we show that dynamic regulation of human endogenous retroviruses (HERVs) is important in the reprogramming process toward iPSCs, and in re-establishment of differentiation potential. During reprogramming, OCT3/4, SOX2, and KLF4 transiently hyperactivated LTR7s--the long-terminal repeats of HERV type-H (HERV-H)--to levels much higher than in embryonic stem cells by direct occupation of LTR7 sites genome-wide. Knocking down LTR7s or long intergenic non-protein coding RNA, regulator of reprogramming (lincRNA-RoR), a HERV-H-driven long noncoding RNA, early in reprogramming markedly reduced the efficiency of iPSC generation. KLF4 and LTR7 expression decreased to levels comparable with embryonic stem cells once reprogramming was complete, but failure to resuppress KLF4 and LTR7s resulted in defective differentiation. We also observed defective differentiation and LTR7 activation when iPSCs had forced expression of KLF4. However, when aberrantly expressed KLF4 or LTR7s were suppressed in defective iPSCs, normal differentiation was restored. Thus, a major mechanism by which OCT3/4, SOX2, and KLF4 promote human iPSC generation and reestablish potential for differentiation is by dynamically regulating HERV-H LTR7s.Pluripotency can be induced in somatic cells by overexpressing transcription factors, including POU class 5 homeobox 1 (OCT3/4), sex determining region Y-box 2 (SOX2), Krüppel-like factor 4 (KLF4), and myelocytomatosis oncogene (c-MYC). However, some induced pluripotent stem cells (iPSCs) exhibit defective differentiation and inappropriate maintenance of pluripotency features. Here we show that dynamic regulation of human endogenous retroviruses (HERVs) is important in the reprogramming process toward iPSCs, and in re-establishment of differentiation potential. During reprogramming, OCT3/4, SOX2, and KLF4 transiently hyperactivated LTR7s--the long-terminal repeats of HERV type-H (HERV-H)--to levels much higher than in embryonic stem cells by direct occupation of LTR7 sites genome-wide. Knocking down LTR7s or long intergenic non-protein coding RNA, regulator of reprogramming (lincRNA-RoR), a HERV-H-driven long noncoding RNA, early in reprogramming markedly reduced the efficiency of iPSC generation. KLF4 and LTR7 expression decreased to levels comparable with embryonic stem cells once reprogramming was complete, but failure to resuppress KLF4 and LTR7s resulted in defective differentiation. We also observed defective differentiation and LTR7 activation when iPSCs had forced expression of KLF4. However, when aberrantly expressed KLF4 or LTR7s were suppressed in defective iPSCs, normal differentiation was restored. Thus, a major mechanism by which OCT3/4, SOX2, and KLF4 promote human iPSC generation and reestablish potential for differentiation is by dynamically regulating HERV-H LTR7s.
Pluripotency can be induced in somatic cells by overexpressing transcription factors, including POU class 5 homeobox 1 (OCT3/4), sex determining region Y-box 2 (SOX2), Krüppel-like factor 4 (KLF4), and myelocytomatosis oncogene (c-MYC). However, some induced pluripotent stem cells (iPSCs) exhibit defective differentiation and inappropriate maintenance of pluripotency features. Here we show that dynamic regulation of human endogenous retroviruses (HERVs) is important in the reprogramming process toward iPSCs, and in re-establishment of differentiation potential. During reprogramming, OCT3/4, SOX2, and KLF4 transiently hyperactivated LTR7s--the long-terminal repeats of HERV type-H (HERV-H)--to levels much higher than in embryonic stem cells by direct occupation of LTR7 sites genome-wide. Knocking down LTR7s or long intergenic non-protein coding RNA, regulator of reprogramming (lincRNA-RoR), a HERV-H-driven long noncoding RNA, early in reprogramming markedly reduced the efficiency of iPSC generation. KLF4 and LTR7 expression decreased to levels comparable with embryonic stem cells once reprogramming was complete, but failure to resuppress KLF4 and LTR7s resulted in defective differentiation. We also observed defective differentiation and LTR7 activation when iPSCs had forced expression of KLF4. However, when aberrantly expressed KLF4 or LTR7s were suppressed in defective iPSCs, normal differentiation was restored. Thus, a major mechanism by which OCT3/4, SOX2, and KLF4 promote human iPSC generation and reestablish potential for differentiation is by dynamically regulating HERV-H LTR7s.
Author Watanabe, Akira
Takahashi, Kazutoshi
Ohnuki, Mari
Yamanaka, Shinya
Tanabe, Koji
Narita, Megumi
Nakamura, Michiko
Tokunaga, Yumie
Nakamura, Masahiro
Sutou, Kenta
Teramoto, Ito
Sawamura, Yuka
Author_xml – sequence: 1
  givenname: Mari
  surname: Ohnuki
  fullname: Ohnuki, Mari
  organization: Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; and
– sequence: 2
  givenname: Koji
  surname: Tanabe
  fullname: Tanabe, Koji
  organization: Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; and
– sequence: 3
  givenname: Kenta
  surname: Sutou
  fullname: Sutou, Kenta
  organization: Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; and
– sequence: 4
  givenname: Ito
  surname: Teramoto
  fullname: Teramoto, Ito
  organization: Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; and
– sequence: 5
  givenname: Yuka
  surname: Sawamura
  fullname: Sawamura, Yuka
  organization: Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; and
– sequence: 6
  givenname: Megumi
  surname: Narita
  fullname: Narita, Megumi
  organization: Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; and
– sequence: 7
  givenname: Michiko
  surname: Nakamura
  fullname: Nakamura, Michiko
  organization: Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; and
– sequence: 8
  givenname: Yumie
  surname: Tokunaga
  fullname: Tokunaga, Yumie
  organization: Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; and
– sequence: 9
  givenname: Masahiro
  surname: Nakamura
  fullname: Nakamura, Masahiro
  organization: Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; and
– sequence: 10
  givenname: Akira
  surname: Watanabe
  fullname: Watanabe, Akira
  organization: Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; and
– sequence: 11
  givenname: Shinya
  surname: Yamanaka
  fullname: Yamanaka, Shinya
  email: yamanaka@cira.kyoto-u.ac.jp, takahash@cira.kyoto-u.ac.jp
  organization: Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; and Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158 yamanaka@cira.kyoto-u.ac.jp takahash@cira.kyoto-u.ac.jp
– sequence: 12
  givenname: Kazutoshi
  surname: Takahashi
  fullname: Takahashi, Kazutoshi
  email: yamanaka@cira.kyoto-u.ac.jp, takahash@cira.kyoto-u.ac.jp
  organization: Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; and yamanaka@cira.kyoto-u.ac.jp takahash@cira.kyoto-u.ac.jp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25097266$$D View this record in MEDLINE/PubMed
BookMark eNpNkElPwzAQhS1URBc4c0M5cknxks1HVFapEhc4R5N4HIwSu9gJqP8eixaJ07zRfHqa95ZkZp1FQi4ZXTNaipudhbBmGRNcSsbYCVkwKllaZJLO_uk5WYbwQSmVeUXPyJznVJa8KBbk-25vYTBt4rGbehiNs4nTyfs0gE3QKtehdVOI59G7L-OngCEZUBkYo9DQjs6nxqqpRRWhnXedh2EwtkvAqkQZrdGjHc3BeufG36U_J6ca-oAXx7kibw_3r5undPvy-Ly53aZtUVRj2mCR80rojJVlW-mG6UxUwJAiAoUGGy4azCXDQjNZSq4YQJGpCtpGx0oUX5Hrg2_87HPCMNaDCS32PViMuWqW51XOhRAyoldHdGpiwnrnzQB-X_-VxX8AcxVycQ
CitedBy_id crossref_primary_10_1038_s41586_023_06424_7
crossref_primary_10_1038_s41588_023_01452_5
crossref_primary_10_1016_j_canlet_2016_04_014
crossref_primary_10_1038_s43856_025_00739_4
crossref_primary_10_1080_15592294_2017_1289300
crossref_primary_10_15252_embr_201642743
crossref_primary_10_1002_pros_23095
crossref_primary_10_1016_j_coviro_2017_07_001
crossref_primary_10_1038_srep32532
crossref_primary_10_3389_fcell_2025_1536947
crossref_primary_10_1101_gr_191031_115
crossref_primary_10_1038_s41514_022_00085_y
crossref_primary_10_26508_lsa_202101127
crossref_primary_10_18699_vjgb_25_73
crossref_primary_10_1016_j_yexmp_2016_05_006
crossref_primary_10_1161_CIRCULATIONAHA_117_027589
crossref_primary_10_1038_s42003_024_06609_4
crossref_primary_10_1007_s00018_021_03883_x
crossref_primary_10_1038_s43587_023_00557_0
crossref_primary_10_1371_journal_pone_0220742
crossref_primary_10_1093_jmcb_mjae061
crossref_primary_10_1111_gtc_12736
crossref_primary_10_1016_j_molcel_2016_03_029
crossref_primary_10_3390_biom14030280
crossref_primary_10_1186_s13148_021_01158_7
crossref_primary_10_1016_j_scr_2019_101456
crossref_primary_10_1038_nrg_2016_139
crossref_primary_10_1038_s43587_023_00462_6
crossref_primary_10_3390_cells10102710
crossref_primary_10_1016_j_semcancer_2018_09_009
crossref_primary_10_1111_acel_12877
crossref_primary_10_15252_embr_201642051
crossref_primary_10_1002_advs_202307505
crossref_primary_10_1007_s00210_025_04289_3
crossref_primary_10_1186_s13100_016_0082_8
crossref_primary_10_1101_gad_327312_119
crossref_primary_10_1111_1759_7714_14118
crossref_primary_10_3390_ijms20030790
crossref_primary_10_1186_s12977_015_0173_5
crossref_primary_10_1186_s13148_020_00893_7
crossref_primary_10_2217_epi_15_109
crossref_primary_10_3390_genes14071410
crossref_primary_10_1002_jmv_28350
crossref_primary_10_3390_microorganisms12122435
crossref_primary_10_1002_stem_2453
crossref_primary_10_1007_s00438_022_01954_7
crossref_primary_10_1038_mp_2017_66
crossref_primary_10_1186_s12864_017_4389_8
crossref_primary_10_3390_biomedicines11030936
crossref_primary_10_1007_s12038_019_9923_1
crossref_primary_10_1186_s12977_018_0441_2
crossref_primary_10_1186_s13059_016_0965_5
crossref_primary_10_1038_s41467_023_36097_9
crossref_primary_10_3389_fmicb_2022_946296
crossref_primary_10_1002_bies_201600125
crossref_primary_10_1089_aid_2018_0173
crossref_primary_10_1016_j_mib_2016_03_002
crossref_primary_10_1016_j_envpol_2018_11_014
crossref_primary_10_1186_s13100_015_0050_8
crossref_primary_10_3389_fonc_2021_638363
crossref_primary_10_7554_eLife_71624
crossref_primary_10_1038_s41467_024_49335_5
crossref_primary_10_1038_s41467_022_34800_w
crossref_primary_10_1101_gr_265173_120
crossref_primary_10_1002_bies_201500096
crossref_primary_10_1111_dgd_12715
crossref_primary_10_1186_s13100_025_00361_0
crossref_primary_10_1186_s13059_023_03085_7
crossref_primary_10_1038_s41588_019_0558_9
crossref_primary_10_1016_j_scr_2015_12_025
crossref_primary_10_1002_mrd_23257
crossref_primary_10_1016_j_bbcan_2019_04_005
crossref_primary_10_4161_15384101_2014_988031
crossref_primary_10_1016_j_semcancer_2018_10_001
crossref_primary_10_1155_2021_5549381
crossref_primary_10_1016_j_canlet_2016_08_001
crossref_primary_10_1038_s41598_024_73752_7
crossref_primary_10_1242_dev_191957
crossref_primary_10_3390_ijms21051564
crossref_primary_10_1002_hep_30805
crossref_primary_10_1016_j_tig_2014_08_004
crossref_primary_10_3389_fnagi_2023_1186470
crossref_primary_10_1158_0008_5472_CAN_17_1861
crossref_primary_10_1038_s41588_019_0479_7
crossref_primary_10_1186_s13100_016_0080_x
crossref_primary_10_1093_brain_awaa268
crossref_primary_10_3390_cells9112517
crossref_primary_10_3389_fmicb_2018_01448
crossref_primary_10_1016_j_tig_2021_07_007
crossref_primary_10_3389_fgene_2024_1358078
crossref_primary_10_1111_apm_12476
crossref_primary_10_7554_eLife_76257
crossref_primary_10_1007_s11427_016_5066_x
crossref_primary_10_1242_dev_114249
crossref_primary_10_1186_s13287_020_01907_0
crossref_primary_10_1038_s41580_022_00457_y
crossref_primary_10_3389_fcimb_2024_1379962
crossref_primary_10_1080_15384101_2015_1022696
crossref_primary_10_1111_acel_14288
crossref_primary_10_1186_s13072_018_0244_7
crossref_primary_10_1111_rda_13269
crossref_primary_10_3390_cells8050403
crossref_primary_10_1002_bies_201700155
crossref_primary_10_1002_dvdy_24405
crossref_primary_10_1089_rej_2019_2271
crossref_primary_10_1371_journal_ppat_1011222
crossref_primary_10_3390_ijms19113286
crossref_primary_10_1007_s00018_015_1947_6
crossref_primary_10_1111_acel_70149
crossref_primary_10_1002_bies_202400059
crossref_primary_10_1038_nrm_2016_6
crossref_primary_10_1038_nrm_2016_8
crossref_primary_10_1073_pnas_2002427117
crossref_primary_10_1093_nar_gkaf197
crossref_primary_10_1101_gr_279001_124
crossref_primary_10_20935_AcadMolBioGen7754
crossref_primary_10_1016_j_stem_2019_03_012
crossref_primary_10_1093_nar_gkx884
crossref_primary_10_1101_gr_233585_117
crossref_primary_10_2217_epi_2018_0126
crossref_primary_10_1016_j_tcb_2015_08_006
crossref_primary_10_1155_2015_164529
crossref_primary_10_1016_j_gene_2022_146229
crossref_primary_10_1016_j_bbrc_2015_09_176
crossref_primary_10_1038_s43587_024_00619_x
crossref_primary_10_1038_s41580_025_00867_8
crossref_primary_10_3389_fchem_2017_00035
crossref_primary_10_1016_j_semcdb_2024_05_001
crossref_primary_10_1080_10409238_2016_1226748
crossref_primary_10_3390_cimb46080505
crossref_primary_10_1016_j_ebiom_2025_105727
crossref_primary_10_1038_nprot_2016_016
crossref_primary_10_1128_spectrum_02254_21
crossref_primary_10_1038_s42003_021_02116_y
crossref_primary_10_1101_gad_344473_120
crossref_primary_10_1371_journal_pone_0183229
crossref_primary_10_1016_j_coviro_2017_07_021
crossref_primary_10_1073_pnas_2005237117
crossref_primary_10_1016_j_drudis_2021_09_012
crossref_primary_10_1016_j_gde_2022_101911
crossref_primary_10_1158_2159_8290_CD_23_0331
crossref_primary_10_1186_s13046_015_0199_5
crossref_primary_10_1371_journal_pgen_1006883
crossref_primary_10_1038_s41588_021_00859_2
crossref_primary_10_1093_nar_gkx055
crossref_primary_10_3390_v16081312
crossref_primary_10_1186_s12864_017_3566_0
crossref_primary_10_1002_stem_2899
crossref_primary_10_1016_j_stem_2016_06_019
crossref_primary_10_1016_j_joca_2024_06_009
crossref_primary_10_1038_s41467_023_36178_9
crossref_primary_10_1038_s43587_023_00539_2
crossref_primary_10_3389_fmicb_2025_1604022
crossref_primary_10_3389_fgene_2022_1035380
crossref_primary_10_1016_j_crmeth_2021_100155
crossref_primary_10_1093_hmg_ddab063
crossref_primary_10_1111_acel_14283
crossref_primary_10_4993_acrt_32_17
crossref_primary_10_1038_s41467_020_19350_3
crossref_primary_10_1159_000499185
crossref_primary_10_3389_fonc_2021_687631
crossref_primary_10_1186_s12864_021_07717_9
crossref_primary_10_1038_s41467_019_13551_1
crossref_primary_10_1080_15384101_2017_1403690
crossref_primary_10_1371_journal_pbio_3002162
crossref_primary_10_1016_j_coviro_2017_06_007
crossref_primary_10_1186_s13048_019_0574_5
crossref_primary_10_1111_imr_13042
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1413299111
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 25097266
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ADXHL
ID FETCH-LOGICAL-c668t-be65283f4177c8fb1f438a1e0eea0abeb23be591e6f19792d1aa64d8acbf299d2
IEDL.DBID 7X8
ISICitedReferencesCount 197
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340780300042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Thu Sep 04 19:46:54 EDT 2025
Thu Apr 03 07:02:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 34
Keywords retrotransposon
epigenetics
evolution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c668t-be65283f4177c8fb1f438a1e0eea0abeb23be591e6f19792d1aa64d8acbf299d2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://orbi.uliege.be/handle/2268/235759
PMID 25097266
PQID 1558523339
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1558523339
pubmed_primary_25097266
PublicationCentury 2000
PublicationDate 2014-08-26
PublicationDateYYYYMMDD 2014-08-26
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
References 21624813 - Cell Stem Cell. 2011 Jun 3;8(6):695-706
23181609 - Genome Biol. 2012;13(11):R107
21098095 - J Exp Med. 2010 Dec 20;207(13):2817-30
21162120 - J Neurosci Res. 2011 Feb;89(2):117-26
19668186 - Nature. 2009 Aug 27;460(7259):1140-4
23208419 - Cell Res. 2013 Mar;23(3):340-50
24259714 - Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20569-74
9804556 - Science. 1998 Nov 6;282(5391):1145-7
18035408 - Cell. 2007 Nov 30;131(5):861-72
21289626 - Nature. 2011 Mar 3;471(7336):68-73
22238681 - PLoS One. 2012;7(1):e29950
21460823 - Nat Methods. 2011 May;8(5):409-12
19668189 - Nature. 2009 Aug 27;460(7259):1149-53
21057500 - Nat Genet. 2010 Dec;42(12):1113-7
16501172 - Development. 2006 Mar;133(6):1193-201
19668191 - Nature. 2009 Aug 27;460(7259):1132-5
23293284 - Development. 2013 Feb 1;140(3):519-29
15858016 - J Virol. 2005 May;79(10):6325-37
19696146 - Genes Dev. 2009 Sep 15;23(18):2134-9
19252478 - Nature. 2009 Apr 9;458(7239):766-70
24759836 - Nat Commun. 2014;5:3678
23541921 - Dev Cell. 2013 Apr 15;25(1):69-80
23812749 - Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12172-9
23253934 - Retrovirology. 2012;9:111
11237011 - Nature. 2001 Feb 15;409(6822):860-921
22055183 - Mol Cell. 2011 Nov 4;44(3):361-72
24879558 - Genome Res. 2014 Aug;24(8):1251-9
19668190 - Nature. 2009 Aug 27;460(7259):1145-8
24681886 - Nat Struct Mol Biol. 2014 Apr;21(4):423-5
22722858 - Nature. 2012 Jul 5;487(7405):57-63
20526341 - Nat Genet. 2010 Jul;42(7):631-4
References_xml – reference: 19252478 - Nature. 2009 Apr 9;458(7239):766-70
– reference: 15858016 - J Virol. 2005 May;79(10):6325-37
– reference: 9804556 - Science. 1998 Nov 6;282(5391):1145-7
– reference: 11237011 - Nature. 2001 Feb 15;409(6822):860-921
– reference: 19668189 - Nature. 2009 Aug 27;460(7259):1149-53
– reference: 22238681 - PLoS One. 2012;7(1):e29950
– reference: 21162120 - J Neurosci Res. 2011 Feb;89(2):117-26
– reference: 23541921 - Dev Cell. 2013 Apr 15;25(1):69-80
– reference: 23181609 - Genome Biol. 2012;13(11):R107
– reference: 24879558 - Genome Res. 2014 Aug;24(8):1251-9
– reference: 21057500 - Nat Genet. 2010 Dec;42(12):1113-7
– reference: 16501172 - Development. 2006 Mar;133(6):1193-201
– reference: 24681886 - Nat Struct Mol Biol. 2014 Apr;21(4):423-5
– reference: 24759836 - Nat Commun. 2014;5:3678
– reference: 21289626 - Nature. 2011 Mar 3;471(7336):68-73
– reference: 23293284 - Development. 2013 Feb 1;140(3):519-29
– reference: 23812749 - Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12172-9
– reference: 21624813 - Cell Stem Cell. 2011 Jun 3;8(6):695-706
– reference: 24259714 - Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20569-74
– reference: 22055183 - Mol Cell. 2011 Nov 4;44(3):361-72
– reference: 19668190 - Nature. 2009 Aug 27;460(7259):1145-8
– reference: 21098095 - J Exp Med. 2010 Dec 20;207(13):2817-30
– reference: 19696146 - Genes Dev. 2009 Sep 15;23(18):2134-9
– reference: 21460823 - Nat Methods. 2011 May;8(5):409-12
– reference: 23253934 - Retrovirology. 2012;9:111
– reference: 20526341 - Nat Genet. 2010 Jul;42(7):631-4
– reference: 19668186 - Nature. 2009 Aug 27;460(7259):1140-4
– reference: 18035408 - Cell. 2007 Nov 30;131(5):861-72
– reference: 19668191 - Nature. 2009 Aug 27;460(7259):1132-5
– reference: 23208419 - Cell Res. 2013 Mar;23(3):340-50
– reference: 22722858 - Nature. 2012 Jul 5;487(7405):57-63
SSID ssj0009580
Score 2.5607796
Snippet Pluripotency can be induced in somatic cells by overexpressing transcription factors, including POU class 5 homeobox 1 (OCT3/4), sex determining region Y-box 2...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 12426
SubjectTerms Cell Differentiation - genetics
Cell Differentiation - physiology
Cellular Reprogramming - genetics
Cellular Reprogramming - physiology
Embryonic Stem Cells - cytology
Embryonic Stem Cells - physiology
Embryonic Stem Cells - virology
Endogenous Retroviruses - genetics
Endogenous Retroviruses - physiology
Epigenesis, Genetic
Gene Expression
Gene Knockdown Techniques
Humans
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - physiology
Induced Pluripotent Stem Cells - virology
Kruppel-Like Transcription Factors - genetics
Kruppel-Like Transcription Factors - physiology
Octamer Transcription Factor-3 - genetics
Octamer Transcription Factor-3 - physiology
Pluripotent Stem Cells - cytology
Pluripotent Stem Cells - physiology
Pluripotent Stem Cells - virology
RNA, Long Noncoding - antagonists & inhibitors
RNA, Long Noncoding - genetics
RNA, Viral - antagonists & inhibitors
RNA, Viral - genetics
SOXB1 Transcription Factors - genetics
SOXB1 Transcription Factors - physiology
Title Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential
URI https://www.ncbi.nlm.nih.gov/pubmed/25097266
https://www.proquest.com/docview/1558523339
Volume 111
WOSCitedRecordID wos000340780300042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevCirs_1RQQPegjbNN08TiLq4kGXPSjsbUnzAEHbdVv17ztpuuhFELwUSklpk8nkm0nm-xA6MzoPZQeOpI4ykpmMkhwiMCLdIE2YB8BhmkLhezEayclEjduEW9Ueq1z4xMZR29KEHHkf1j0JQRNj6nL2RoJqVNhdbSU0llGHAZQJR7rERP4g3ZWRjUBRwjOVLKh9BOvPCl2Blwgy62G6_44vm3VmuPHfL9xE6y3CxFfRJLpoyRVbqNvO4Qqft0TTF9vo8ybK0eN5FKSHIcKlx41sH3aFLSOBKzyuQ-Jh_l5B-6bUBPApjko9BGJ6sA6LAztmc9TrFRZDrAuLF9ordRx9PCvr5uZlBz0Nbx-v70grxEAM57ImueOBA8ZnVAgjfU59xqSmLnFOJzqH4JzlbqCo454qoVJLteaZldrkHvrXprtopSgLt49wmoJbG6RW5vA6wbj0BmI2a5zQSiY86aHTRedOwdDD7oUuHPzr9Lt7e2gvjtB0Fhk5poDjlACocfCH1odoDUBPFvLCKT9CHQ_T3B2jVfNRP1fzk8aC4DoaP3wBZz7ULA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+regulation+of+human+endogenous+retroviruses+mediates+factor-induced+reprogramming+and+differentiation+potential&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ohnuki%2C+Mari&rft.au=Tanabe%2C+Koji&rft.au=Sutou%2C+Kenta&rft.au=Teramoto%2C+Ito&rft.date=2014-08-26&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=111&rft.issue=34&rft.spage=12426&rft_id=info:doi/10.1073%2Fpnas.1413299111&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon