Predicting Metabolic Syndrome With Machine Learning Models Using a Decision Tree Algorithm: Retrospective Cohort Study

Metabolic syndrome is a cluster of disorders that significantly influence the development and deterioration of numerous diseases. FibroScan is an ultrasound device that was recently shown to predict metabolic syndrome with moderate accuracy. However, previous research regarding prediction of metabol...

Full description

Saved in:
Bibliographic Details
Published in:JMIR medical informatics Vol. 8; no. 3; p. e17110
Main Authors: Yu, Cheng-Sheng, Lin, Yu-Jiun, Lin, Chang-Hsien, Wang, Sen-Te, Lin, Shiyng-Yu, Lin, Sanders H, Wu, Jenny L, Chang, Shy-Shin
Format: Journal Article
Language:English
Published: Canada JMIR Publications 01.03.2020
Subjects:
ISSN:2291-9694, 2291-9694
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Metabolic syndrome is a cluster of disorders that significantly influence the development and deterioration of numerous diseases. FibroScan is an ultrasound device that was recently shown to predict metabolic syndrome with moderate accuracy. However, previous research regarding prediction of metabolic syndrome in subjects examined with FibroScan has been mainly based on conventional statistical models. Alternatively, machine learning, whereby a computer algorithm learns from prior experience, has better predictive performance over conventional statistical modeling. We aimed to evaluate the accuracy of different decision tree machine learning algorithms to predict the state of metabolic syndrome in self-paid health examination subjects who were examined with FibroScan. Multivariate logistic regression was conducted for every known risk factor of metabolic syndrome. Principal components analysis was used to visualize the distribution of metabolic syndrome patients. We further applied various statistical machine learning techniques to visualize and investigate the pattern and relationship between metabolic syndrome and several risk variables. Obesity, serum glutamic-oxalocetic transaminase, serum glutamic pyruvic transaminase, controlled attenuation parameter score, and glycated hemoglobin emerged as significant risk factors in multivariate logistic regression. The area under the receiver operating characteristic curve values for classification and regression trees and for the random forest were 0.831 and 0.904, respectively. Machine learning technology facilitates the identification of metabolic syndrome in self-paid health examination subjects with high accuracy.
AbstractList Metabolic syndrome is a cluster of disorders that significantly influence the development and deterioration of numerous diseases. FibroScan is an ultrasound device that was recently shown to predict metabolic syndrome with moderate accuracy. However, previous research regarding prediction of metabolic syndrome in subjects examined with FibroScan has been mainly based on conventional statistical models. Alternatively, machine learning, whereby a computer algorithm learns from prior experience, has better predictive performance over conventional statistical modeling. We aimed to evaluate the accuracy of different decision tree machine learning algorithms to predict the state of metabolic syndrome in self-paid health examination subjects who were examined with FibroScan. Multivariate logistic regression was conducted for every known risk factor of metabolic syndrome. Principal components analysis was used to visualize the distribution of metabolic syndrome patients. We further applied various statistical machine learning techniques to visualize and investigate the pattern and relationship between metabolic syndrome and several risk variables. Obesity, serum glutamic-oxalocetic transaminase, serum glutamic pyruvic transaminase, controlled attenuation parameter score, and glycated hemoglobin emerged as significant risk factors in multivariate logistic regression. The area under the receiver operating characteristic curve values for classification and regression trees and for the random forest were 0.831 and 0.904, respectively. Machine learning technology facilitates the identification of metabolic syndrome in self-paid health examination subjects with high accuracy.
Metabolic syndrome is a cluster of disorders that significantly influence the development and deterioration of numerous diseases. FibroScan is an ultrasound device that was recently shown to predict metabolic syndrome with moderate accuracy. However, previous research regarding prediction of metabolic syndrome in subjects examined with FibroScan has been mainly based on conventional statistical models. Alternatively, machine learning, whereby a computer algorithm learns from prior experience, has better predictive performance over conventional statistical modeling.BACKGROUNDMetabolic syndrome is a cluster of disorders that significantly influence the development and deterioration of numerous diseases. FibroScan is an ultrasound device that was recently shown to predict metabolic syndrome with moderate accuracy. However, previous research regarding prediction of metabolic syndrome in subjects examined with FibroScan has been mainly based on conventional statistical models. Alternatively, machine learning, whereby a computer algorithm learns from prior experience, has better predictive performance over conventional statistical modeling.We aimed to evaluate the accuracy of different decision tree machine learning algorithms to predict the state of metabolic syndrome in self-paid health examination subjects who were examined with FibroScan.OBJECTIVEWe aimed to evaluate the accuracy of different decision tree machine learning algorithms to predict the state of metabolic syndrome in self-paid health examination subjects who were examined with FibroScan.Multivariate logistic regression was conducted for every known risk factor of metabolic syndrome. Principal components analysis was used to visualize the distribution of metabolic syndrome patients. We further applied various statistical machine learning techniques to visualize and investigate the pattern and relationship between metabolic syndrome and several risk variables.METHODSMultivariate logistic regression was conducted for every known risk factor of metabolic syndrome. Principal components analysis was used to visualize the distribution of metabolic syndrome patients. We further applied various statistical machine learning techniques to visualize and investigate the pattern and relationship between metabolic syndrome and several risk variables.Obesity, serum glutamic-oxalocetic transaminase, serum glutamic pyruvic transaminase, controlled attenuation parameter score, and glycated hemoglobin emerged as significant risk factors in multivariate logistic regression. The area under the receiver operating characteristic curve values for classification and regression trees and for the random forest were 0.831 and 0.904, respectively.RESULTSObesity, serum glutamic-oxalocetic transaminase, serum glutamic pyruvic transaminase, controlled attenuation parameter score, and glycated hemoglobin emerged as significant risk factors in multivariate logistic regression. The area under the receiver operating characteristic curve values for classification and regression trees and for the random forest were 0.831 and 0.904, respectively.Machine learning technology facilitates the identification of metabolic syndrome in self-paid health examination subjects with high accuracy.CONCLUSIONSMachine learning technology facilitates the identification of metabolic syndrome in self-paid health examination subjects with high accuracy.
BackgroundMetabolic syndrome is a cluster of disorders that significantly influence the development and deterioration of numerous diseases. FibroScan is an ultrasound device that was recently shown to predict metabolic syndrome with moderate accuracy. However, previous research regarding prediction of metabolic syndrome in subjects examined with FibroScan has been mainly based on conventional statistical models. Alternatively, machine learning, whereby a computer algorithm learns from prior experience, has better predictive performance over conventional statistical modeling. ObjectiveWe aimed to evaluate the accuracy of different decision tree machine learning algorithms to predict the state of metabolic syndrome in self-paid health examination subjects who were examined with FibroScan. MethodsMultivariate logistic regression was conducted for every known risk factor of metabolic syndrome. Principal components analysis was used to visualize the distribution of metabolic syndrome patients. We further applied various statistical machine learning techniques to visualize and investigate the pattern and relationship between metabolic syndrome and several risk variables. ResultsObesity, serum glutamic-oxalocetic transaminase, serum glutamic pyruvic transaminase, controlled attenuation parameter score, and glycated hemoglobin emerged as significant risk factors in multivariate logistic regression. The area under the receiver operating characteristic curve values for classification and regression trees and for the random forest were 0.831 and 0.904, respectively. ConclusionsMachine learning technology facilitates the identification of metabolic syndrome in self-paid health examination subjects with high accuracy.
Background: Metabolic syndrome is a cluster of disorders that significantly influence the development and deterioration of numerous diseases. FibroScan is an ultrasound device that was recently shown to predict metabolic syndrome with moderate accuracy. However, previous research regarding prediction of metabolic syndrome in subjects examined with FibroScan has been mainly based on conventional statistical models. Alternatively, machine learning, whereby a computer algorithm learns from prior experience, has better predictive performance over conventional statistical modeling. Objective: We aimed to evaluate the accuracy of different decision tree machine learning algorithms to predict the state of metabolic syndrome in self-paid health examination subjects who were examined with FibroScan. Methods: Multivariate logistic regression was conducted for every known risk factor of metabolic syndrome. Principal components analysis was used to visualize the distribution of metabolic syndrome patients. We further applied various statistical machine learning techniques to visualize and investigate the pattern and relationship between metabolic syndrome and several risk variables. Results: Obesity, serum glutamic-oxalocetic transaminase, serum glutamic pyruvic transaminase, controlled attenuation parameter score, and glycated hemoglobin emerged as significant risk factors in multivariate logistic regression. The area under the receiver operating characteristic curve values for classification and regression trees and for the random forest were 0.831 and 0.904, respectively. Conclusions: Machine learning technology facilitates the identification of metabolic syndrome in self-paid health examination subjects with high accuracy.
Author Lin, Chang-Hsien
Lin, Shiyng-Yu
Wu, Jenny L
Lin, Yu-Jiun
Wang, Sen-Te
Lin, Sanders H
Yu, Cheng-Sheng
Chang, Shy-Shin
AuthorAffiliation 2 Department of Family Medicine School of Medicine, College of Medicine Taipei Medical University Taipei Taiwan
1 Department of Family Medicine Taipei Medical University Hospital Taipei Taiwan
AuthorAffiliation_xml – name: 2 Department of Family Medicine School of Medicine, College of Medicine Taipei Medical University Taipei Taiwan
– name: 1 Department of Family Medicine Taipei Medical University Hospital Taipei Taiwan
Author_xml – sequence: 1
  givenname: Cheng-Sheng
  orcidid: 0000-0002-3334-0816
  surname: Yu
  fullname: Yu, Cheng-Sheng
– sequence: 2
  givenname: Yu-Jiun
  orcidid: 0000-0003-2349-195X
  surname: Lin
  fullname: Lin, Yu-Jiun
– sequence: 3
  givenname: Chang-Hsien
  orcidid: 0000-0002-8624-6292
  surname: Lin
  fullname: Lin, Chang-Hsien
– sequence: 4
  givenname: Sen-Te
  orcidid: 0000-0002-8607-5307
  surname: Wang
  fullname: Wang, Sen-Te
– sequence: 5
  givenname: Shiyng-Yu
  orcidid: 0000-0001-7308-1217
  surname: Lin
  fullname: Lin, Shiyng-Yu
– sequence: 6
  givenname: Sanders H
  orcidid: 0000-0002-1454-6595
  surname: Lin
  fullname: Lin, Sanders H
– sequence: 7
  givenname: Jenny L
  orcidid: 0000-0002-5589-6428
  surname: Wu
  fullname: Wu, Jenny L
– sequence: 8
  givenname: Shy-Shin
  orcidid: 0000-0001-7705-884X
  surname: Chang
  fullname: Chang, Shy-Shin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32202504$$D View this record in MEDLINE/PubMed
BookMark eNpdkttqGzEURUVJadLUv1AEpVAobnWZkWb6UAjuLeDQ0iT0UWikM7bMWHIljcF_X8VOQ-In3ZYWR2frJTrxwQNCE0o-MNqKj1RSSp6hM8ZaOm1FW508mp-iSUorQgitqBBCvkCnnDHCalKdoe2vCNaZ7PwCX0HWXRicwdc7b2NYA_7j8hJfabN0HvAcdPR7MFgYEr5NdwuNv4BxyQWPbyIAvhgWIZZr60_4N-QY0gaKfgt4FpYhZnydR7t7hZ73ekgwuR_P0e23rzezH9P5z--Xs4v51JRC87TRHeOacQKC8M5a3jEGxAAVVhhquWSCkV43HbSG8ko2lQXd2NYY0VAQlp-jy4PXBr1Sm-jWOu5U0E7tN0JcKB2zMwOoTvY17cBIUpdGadOSqjaVkYwQZpseiuvzwbUZuzVYAz5HPTyRPj3xbqkWYask5aKpaBG8uxfE8HeElNXaJQPDoD2EMSnGG9pUnAhZ0DdH6CqM0ZdWKVbTErmoJC_U68cVPZTyP94CvD0ApuSQIvQPCCXq7ueo_c8p3Psjzrisc8m0PMQNR_Q_D7HDJg
CitedBy_id crossref_primary_10_1089_aid_2023_0137
crossref_primary_10_3390_life12091414
crossref_primary_10_1016_j_aohep_2023_101138
crossref_primary_10_1016_j_diabres_2022_110047
crossref_primary_10_1186_s12920_024_01998_1
crossref_primary_10_1097_MD_0000000000037112
crossref_primary_10_2196_18585
crossref_primary_10_2196_25560
crossref_primary_10_1016_j_metabol_2021_154872
crossref_primary_10_3390_metabo13070822
crossref_primary_10_1016_j_numecd_2022_08_007
crossref_primary_10_1097_MEG_0000000000002169
crossref_primary_10_1007_s11845_023_03275_z
crossref_primary_10_1016_j_procs_2024_04_277
crossref_primary_10_1016_j_procs_2024_10_229
crossref_primary_10_2196_27304
crossref_primary_10_1109_ACCESS_2022_3225435
crossref_primary_10_3390_bdcc6030098
crossref_primary_10_1016_j_ypmed_2023_107821
crossref_primary_10_3390_bdcc6040139
crossref_primary_10_3390_brainsci13030513
crossref_primary_10_3390_computation11090170
crossref_primary_10_1016_j_hlpt_2025_101036
crossref_primary_10_3390_diagnostics13243631
crossref_primary_10_1051_matecconf_202237007005
crossref_primary_10_2174_1574893618666230419084754
crossref_primary_10_1055_a_2649_1560
crossref_primary_10_3389_fmed_2021_626580
crossref_primary_10_1186_s12911_021_01497_8
crossref_primary_10_1038_s41598_022_06235_2
crossref_primary_10_2196_24305
crossref_primary_10_3389_fgene_2022_810152
Cites_doi 10.1016/j.jcrc.2017.02.032
10.1109/IEMBS.2011.6091597
10.1016/S0140-6736(05)67402-8
10.9735/2229-3981
10.7150/ijms.13800
10.1016/s0020-7373(87)80053-6
10.1109/ISDA.2010.5687211
10.1016/j.amjmed.2014.06.035
10.1001/jama.2017.18391
10.3390/jcm8111775
10.4292/wjgpt.v7.i1.91
10.1002/hep.29489
10.1093/eurheartj/ehw302
10.1016/j.imu.2019.100180
10.1198/106186008x319331
10.2307/2986296
10.1016/j.cgh.2008.07.006
10.14257/ijbsbt.2013.5.5.25
10.1016/j.ajp.2018.06.018
10.1109/ICMLC.2010.45
10.1016/j.athoracsur.2010.03.073
10.1016/s0399-8320(08)73994-0
10.1287/opre.1080.0619
10.1186/1472-6947-5-3
10.1016/j.jtcvs.2005.12.055
10.5120/3932-5571
10.1681/ASN.2006040368
10.2337/dc16-1358
10.1097/MEG.0b013e32835f4c3d
10.2307/2290467
10.1023/A:1010933404324
10.12968/gasn.2018.16.5.s15
10.1242/dmm.001180
10.1198/0003130043204
10.1016/j.artmed.2017.11.004
10.1136/gut.2006.111302
10.1136/gut.2010.221382
10.4254/wjh.v5.i5.264
10.1016/S0140-6736(02)09512-0
10.1097/MD.0000000000012931
10.1198/106186006X133933
10.1056/NEJMp1702071
10.1109/CIC.1991.169073
10.1016/j.jhep.2016.05.023
10.1148/rg.301095057
10.1542/peds.2009-1385
10.1002/14651858.CD010542.pub2
10.1111/j.1464-5491.2006.01858.x
10.1016/s0893-6080(01)00111-3
10.1210/jc.2007-0482
10.1016/j.artmed.2017.12.001
10.1287/isre.2013.0480
10.18637/jss.v061.i01
10.1038/srep44844
10.1111/apt.13488
10.1053/j.gastro.2019.01.042
10.7326/0003-4819-115-11-843
10.1016/j.patrec.2005.10.010
ContentType Journal Article
Copyright Cheng-Sheng Yu, Yu-Jiun Lin, Chang-Hsien Lin, Sen-Te Wang, Shiyng-Yu Lin, Sanders H Lin, Jenny L Wu, Shy-Shin Chang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 23.03.2020.
2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Cheng-Sheng Yu, Yu-Jiun Lin, Chang-Hsien Lin, Sen-Te Wang, Shiyng-Yu Lin, Sanders H Lin, Jenny L Wu, Shy-Shin Chang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 23.03.2020. 2020
Copyright_xml – notice: Cheng-Sheng Yu, Yu-Jiun Lin, Chang-Hsien Lin, Sen-Te Wang, Shiyng-Yu Lin, Sanders H Lin, Jenny L Wu, Shy-Shin Chang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 23.03.2020.
– notice: 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Cheng-Sheng Yu, Yu-Jiun Lin, Chang-Hsien Lin, Sen-Te Wang, Shiyng-Yu Lin, Sanders H Lin, Jenny L Wu, Shy-Shin Chang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 23.03.2020. 2020
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88C
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M0T
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.2196/17110
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Healthcare Administration Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
ProQuest Health Management
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2291-9694
ExternalDocumentID oai_doaj_org_article_b7f51bec705141ac9045c4c72002d8fe
PMC7136841
32202504
10_2196_17110
Genre Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID 53G
5VS
7X7
8FI
8FJ
AAFWJ
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
DIK
FYUFA
GROUPED_DOAJ
HMCUK
HYE
KQ8
M0T
M48
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
RPM
UKHRP
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c667t-8ab23a230e603bdd3b22e0ce16d6c1d372620fa8be9c134784dea8d9cc681e6d3
IEDL.DBID BENPR
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000523281400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2291-9694
IngestDate Tue Oct 14 19:00:00 EDT 2025
Tue Nov 04 01:52:13 EST 2025
Thu Sep 04 17:09:22 EDT 2025
Tue Oct 07 07:45:24 EDT 2025
Thu Apr 03 06:55:50 EDT 2025
Tue Nov 18 21:57:02 EST 2025
Sat Nov 29 06:43:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords metabolic syndrome
decision tree
controlled attenuation parameter technology
machine learning
Language English
License Cheng-Sheng Yu, Yu-Jiun Lin, Chang-Hsien Lin, Sen-Te Wang, Shiyng-Yu Lin, Sanders H Lin, Jenny L Wu, Shy-Shin Chang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 23.03.2020.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c667t-8ab23a230e603bdd3b22e0ce16d6c1d372620fa8be9c134784dea8d9cc681e6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7308-1217
0000-0002-1454-6595
0000-0002-3334-0816
0000-0001-7705-884X
0000-0002-8607-5307
0000-0002-5589-6428
0000-0003-2349-195X
0000-0002-8624-6292
OpenAccessLink https://www.proquest.com/docview/2511966473?pq-origsite=%requestingapplication%
PMID 32202504
PQID 2511966473
PQPubID 4997117
ParticipantIDs doaj_primary_oai_doaj_org_article_b7f51bec705141ac9045c4c72002d8fe
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7136841
proquest_miscellaneous_2381843067
proquest_journals_2511966473
pubmed_primary_32202504
crossref_primary_10_2196_17110
crossref_citationtrail_10_2196_17110
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Toronto
– name: Toronto, Canada
PublicationTitle JMIR medical informatics
PublicationTitleAlternate JMIR Med Inform
PublicationYear 2020
Publisher JMIR Publications
Publisher_xml – name: JMIR Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref17
ref16
ref19
ref18
Salama, GI (ref34) 2012; 1
ref50
ref46
Koh, HC (ref23) 2005; 19
ref45
ref48
ref47
ref42
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Breiman, L (ref49) 1984
ref40
ref35
ref37
ref36
ref31
ref30
ref33
ref32
Edelstein, P (ref41) 2013; 34
ref2
ref1
Hothorn, T (ref54) 2015; 16
ref39
ref38
(ref44) 2002; 39
ref24
ref68
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
Quinlan, JR (ref51) 1993
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref28
  doi: 10.1016/j.jcrc.2017.02.032
– ident: ref62
– ident: ref37
  doi: 10.1109/IEMBS.2011.6091597
– ident: ref47
  doi: 10.1016/S0140-6736(05)67402-8
– ident: ref63
  doi: 10.9735/2229-3981
– ident: ref69
  doi: 10.7150/ijms.13800
– ident: ref48
  doi: 10.1016/s0020-7373(87)80053-6
– ident: ref33
  doi: 10.1109/ISDA.2010.5687211
– ident: ref3
  doi: 10.1016/j.amjmed.2014.06.035
– ident: ref20
  doi: 10.1001/jama.2017.18391
– ident: ref19
  doi: 10.3390/jcm8111775
– ident: ref5
  doi: 10.4292/wjgpt.v7.i1.91
– ident: ref16
  doi: 10.1002/hep.29489
– ident: ref22
  doi: 10.1093/eurheartj/ehw302
– ident: ref68
  doi: 10.1016/j.imu.2019.100180
– ident: ref57
  doi: 10.1198/106186008x319331
– ident: ref53
  doi: 10.2307/2986296
– ident: ref10
  doi: 10.1016/j.cgh.2008.07.006
– ident: ref27
  doi: 10.14257/ijbsbt.2013.5.5.25
– ident: ref2
  doi: 10.1016/j.ajp.2018.06.018
– ident: ref36
  doi: 10.1109/ICMLC.2010.45
– year: 1984
  ident: ref49
  publication-title: Classification and Regression Trees (Wadsworth Statistics/Probability)
– volume: 1
  start-page: 36
  issue: 1
  year: 2012
  ident: ref34
  publication-title: Int J Comput Inf Technol
– ident: ref29
  doi: 10.1016/j.athoracsur.2010.03.073
– ident: ref4
  doi: 10.1016/s0399-8320(08)73994-0
– ident: ref25
  doi: 10.1287/opre.1080.0619
– ident: ref32
  doi: 10.1186/1472-6947-5-3
– ident: ref50
– volume: 16
  start-page: 3905
  issue: 1
  year: 2015
  ident: ref54
  publication-title: J Machine Learn Res
– volume: 19
  start-page: 64
  issue: 2
  year: 2005
  ident: ref23
  publication-title: J Healthc Inf Manag
– ident: ref39
  doi: 10.1016/j.jtcvs.2005.12.055
– volume: 34
  start-page: 16
  issue: 1
  year: 2013
  ident: ref41
  publication-title: Health Manag Technol
– ident: ref38
  doi: 10.5120/3932-5571
– ident: ref43
  doi: 10.1681/ASN.2006040368
– ident: ref67
  doi: 10.2337/dc16-1358
– ident: ref8
  doi: 10.1097/MEG.0b013e32835f4c3d
– ident: ref59
  doi: 10.2307/2290467
– ident: ref58
  doi: 10.1023/A:1010933404324
– ident: ref6
  doi: 10.12968/gasn.2018.16.5.s15
– ident: ref1
  doi: 10.1242/dmm.001180
– ident: ref64
  doi: 10.1198/0003130043204
– ident: ref42
  doi: 10.1016/j.artmed.2017.11.004
– ident: ref9
  doi: 10.1136/gut.2006.111302
– ident: ref14
  doi: 10.1136/gut.2010.221382
– ident: ref60
– ident: ref7
  doi: 10.4254/wjh.v5.i5.264
– ident: ref45
  doi: 10.1016/S0140-6736(02)09512-0
– ident: ref18
  doi: 10.1097/MD.0000000000012931
– volume: 39
  start-page: S1
  issue: 2 Suppl 1
  year: 2002
  ident: ref44
  publication-title: Am J Kidney Dis
– ident: ref55
  doi: 10.1198/106186006X133933
– ident: ref21
  doi: 10.1056/NEJMp1702071
– ident: ref31
  doi: 10.1109/CIC.1991.169073
– ident: ref13
  doi: 10.1016/j.jhep.2016.05.023
– ident: ref35
  doi: 10.1148/rg.301095057
– ident: ref26
  doi: 10.1542/peds.2009-1385
– ident: ref12
  doi: 10.1002/14651858.CD010542.pub2
– ident: ref46
  doi: 10.1111/j.1464-5491.2006.01858.x
– year: 1993
  ident: ref51
  publication-title: C4.5: Programs For Machine Learning (Morgan Kaufmann Series In Machine Learning)
– ident: ref24
  doi: 10.1016/s0893-6080(01)00111-3
– ident: ref15
  doi: 10.1210/jc.2007-0482
– ident: ref40
  doi: 10.1016/j.artmed.2017.12.001
– ident: ref65
  doi: 10.1287/isre.2013.0480
– ident: ref52
– ident: ref56
  doi: 10.18637/jss.v061.i01
– ident: ref66
  doi: 10.1038/srep44844
– ident: ref11
  doi: 10.1111/apt.13488
– ident: ref17
  doi: 10.1053/j.gastro.2019.01.042
– ident: ref30
  doi: 10.7326/0003-4819-115-11-843
– ident: ref61
  doi: 10.1016/j.patrec.2005.10.010
SSID ssj0001416667
Score 2.4269814
Snippet Metabolic syndrome is a cluster of disorders that significantly influence the development and deterioration of numerous diseases. FibroScan is an ultrasound...
Background: Metabolic syndrome is a cluster of disorders that significantly influence the development and deterioration of numerous diseases. FibroScan is an...
BackgroundMetabolic syndrome is a cluster of disorders that significantly influence the development and deterioration of numerous diseases. FibroScan is an...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e17110
SubjectTerms Algorithms
Biopsy
Blood pressure
Cholesterol
Classification
Cohort analysis
Data collection
Decision trees
Fasting
Hemoglobin
Hospitals
Insulin resistance
Kidney diseases
Laboratories
Liver
Machine learning
Metabolic syndrome
Original Paper
Overweight
Triglycerides
Ultrasonic imaging
Womens health
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swED5GKWUwRvfba1c06KtpZLuW1LeuW9nDUsrWsb4ZWbosgdQejlvof987WQlJGexlbyFSEkV3sr_P-vQdwKHyViq0OsUSiaDktOZMLU2qCTp7U1iZ-eAz-01dXOjra3O5VuqLNWGDPfAwcUe1mhxL-iHFRt3SOkMYxBVOsbjA6wny1ZdQzxqZCk9XCt4OUzvwjLXOlGVHUkk-Jbt28wke_X8Dlo_1kWs3nPNdeB6RojgdRvgCnmDzEnbGcS_8FdxddvyaZctijD0Fcz5z4kd0IBC_Zv1UjINUEkV0UaWOXPhmIYJQQFjxOVbYEVcdojid_247-tjNifiOfdcuT2GKs3ZKKF2w5vD-Nfw8_3J19jWNVRRSRzPQp9rWWW6JaWA5ymvv8zrLcORQlr500ueKLeknVtdoHJ8r1YWn2HnjXKkllj5_A1tN2-A7EKV2SADTEMcbURiRv00pPDYsPSHomMDhcnorFy3GudLFvCKqwVGoQhQSOFh1-zN4ajzu8Iljs2pkC-zwBiVGFROj-ldiJLC_jGwV1-WiYkJFBK9QeQIfV820onibxDbY3lIfBjEFU6kE3g6JsBoJXf6C6VsCaiNFNoa62dLMpsG1W8m81IV8_z_-2x48zZj3By3cPmz13S1-gG13188W3UFYCg9mvxBw
  priority: 102
  providerName: Directory of Open Access Journals
Title Predicting Metabolic Syndrome With Machine Learning Models Using a Decision Tree Algorithm: Retrospective Cohort Study
URI https://www.ncbi.nlm.nih.gov/pubmed/32202504
https://www.proquest.com/docview/2511966473
https://www.proquest.com/docview/2381843067
https://pubmed.ncbi.nlm.nih.gov/PMC7136841
https://doaj.org/article/b7f51bec705141ac9045c4c72002d8fe
Volume 8
WOSCitedRecordID wos000523281400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2291-9694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2291-9694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2291-9694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: 7X7
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Healthcare Administration Database
  customDbUrl:
  eissn: 2291-9694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: M0T
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthmanagement
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2291-9694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2291-9694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: PIMPY
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED7WdJTB2M9u89YFDfpqGsWuJe9ltF3LBnMwXcayJ2NLlyaQxZ3jFvbf705R0qaMvezFGEuYw3cn350-fQewr2wpFZY6xAQpQYnI59JKpqGm0NmmcSn71vHMflGDgR6N0twX3BYeVrlaE91CbWvDNfIDDoUpNI9V9OHyV8hdo3h31bfQ2IJtZiqLO7B9fDrIz2-qLDFvi6kdeMiYZ3rBgVSST8ve-gk5rv6_BZh3cZK3fjxnj_9X5CfwyIec4mhpI0_hHs6fwU7mN9Wfw3Xe8D3jn0WGLVnFbGrEV09lIL5P24nIHOYShadjpYncQWchHOJAlOKjb9Ujhg2iOJpdkBzt5Od7cY5tU6-Oc4qTekLhvmDw4u9d-HZ2Ojz5FPp2DKGhT9iGuqz6UUkpCya9qLI2qvp97BmUiU2MtJFibvtxqStMDR9Q1bElI7CpMYmWmNjoBXTm9RxfgUi0QYpUU0oWe2QPyG9TCg9TxrBQDBrA_ko_hfFc5dwyY1ZQzsJqLJwaA-iup10uyTnuTjhm5a4HmUvbPaibi8K7ZlGp8aEkU1ZMBS9Lk1KUa2KjGL5i9RgD2Fupt_AOvihudBvAu_UwuSbvt5RzrK9oDkdDMedkAbxcWtJaElpHHXtcAGrDxjZE3RyZTyeO_lvJKNGxfP1vsd7Agz6XBhxcbg86bXOFb-G-uW6ni6YLW2qk3FV3vc90XTmCrllvSM_yz1n-4w8mjyVM
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NgQYS4vePwBhGGo_R6iSzEySExsa0aW01QRF7C4l9XSuVZKTZ0P4p_kbu3KRbJ8TbHniLYsuyk8_nO_vzdwDr2mZSYxb7qJAClJDmXJLLxI_JdbZJlMnAOp3Zru7346Oj5HAJfrd3YZhW2dpEZ6htaXiPfINdYXLNIx1-OPnpc9YoPl1tU2jMYHGA578oZJu-39-h__s2CHY_Dbb3_CargG-U0rUfZ3kQZuR5o-qEubVhHgTYMSiVVUbaULNE-zCLc0wM37OMI0tjsYkxKpaobEjt3oCbrKvHFMJeZ3CxpxPxIZxegbvMsKbubkgt-W7upSXPZQb4mzt7lZV5aZnbvf-_faAHcK9xqMXWbAY8hCUsHsFKr6EMPIazw4qfmd0telgT5idjI740Qg3i27geiZ5jlKJoxGapIucHmgrHpxCZ2GkSEYlBhSi2Jsc07nr04534jHVVtpdVxXY5omBGMDXz_Al8vZZRP4XloizwOQgVGyQ_PKFQuENoR25Na9xMmKFDHrYH6y0eUtMosXNCkElKERnDJnWw8WBtXu1kJj1ytcJHBtO8kJXC3YuyOk4bw5PmergpaaJqFrqXmUkItiYymsk5Nh6iB6stnNLGfE3TCyx58GZeTIaHT5OyAstTqsO-XsQRpwfPZsid94RWCaeN54FewPRCVxdLivHIiZtrGao4ki_-3a3XcHtv0Oum3f3-wUu4E_AmiCMGrsJyXZ3iK7hlzurxtFpzM1TA9-tG_B82e3y2
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NgSokxO8fgTGMNB6j1kkaJ0gIjZWKaWtVQRF7C4l9XSuVZKTZ0P41_jru3KRbJ8TbHniLYiuy2-_Od_bn7wB2lEmlwjRyMURKUHyyuTiTsRtR6GziIJWesTqzh2o4jI6O4tEG_G7uwjCtsvGJ1lGbQvMeeZtDYQrNA-W3JzUtYtTrvz_56XIFKT5pbcppLCFygOe_KH1bvNvv0X_9xvP6H8d7n9y6woCrw1BVbpRmnp9SFI5hx8-M8TPPw45GGZpQS-MrlmufpFGGseY7l1FgaF4m1jqMJIbGp-_egJsq6Hqc-A0644v9nYAP5FQL7jDbmobelkryPd1Ly5-tEvC30PYqQ_PSkte_9z__WPfhbh1oi92lZTyADcwfQmtQUwkewdmo5GdmfYsBVmQL85kWX2oBB_FtVk3FwDJNUdQitNSR6wYthOVZiFT06gJFYlwiit35Mc27mv54Kz5jVRbNJVaxV0wpyRFM2Tx_DF-vZdZPYDMvcnwGIow0UnweU4rcIStA_ppS2I2ZuUORtwM7DTYSXSu0c6GQeUKZGkMosRByYHvV7WQpSXK1wwcG1qqRFcTti6I8TmqHlGRq0pVkwIoF8GWqY4rtdaAVk3ZMNEEHthpoJbVbWyQXuHLg9aqZHBKfMqU5FqfUh2PAgDNRB54uUbwaCa0eVjPPAbWG77Whrrfks6kVPVfSD6NAPv_3sF5Bi4CeHO4PD17AbY_3RixfcAs2q_IUX8ItfVbNFuW2NVYB368b8H8AMQ6FfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Metabolic+Syndrome+With+Machine+Learning+Models+Using+a+Decision+Tree+Algorithm%3A+Retrospective+Cohort+Study&rft.jtitle=JMIR+medical+informatics&rft.au=Yu%2C+Cheng-Sheng&rft.au=Lin%2C+Yu-Jiun&rft.au=Lin%2C+Chang-Hsien&rft.au=Wang%2C+Sen-Te&rft.date=2020-03-01&rft.issn=2291-9694&rft.eissn=2291-9694&rft.volume=8&rft.issue=3&rft.spage=e17110&rft_id=info:doi/10.2196%2F17110&rft.externalDBID=n%2Fa&rft.externalDocID=10_2196_17110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2291-9694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2291-9694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2291-9694&client=summon