CFD based form factor determination method

The 1978 ITTC Power Prediction method is used to predict the propulsive power of ships through towing tank testing. The form factor approach and its determination in this method have been questioned. This paper investigates the possibility to improve the power predictions by introducing Combined CFD...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Ocean engineering Ročník 220; s. 108451
Hlavní autoři: Korkmaz, Kadir Burak, Werner, Sofia, Sakamoto, Nobuaki, Queutey, Patrick, Deng, Ganbo, Yuling, Gao, Guoxiang, Dong, Maki, Kevin, Ye, Haixuan, Akinturk, Ayhan, Sayeed, Tanvir, Hino, Takanori, Zhao, Feng, Tezdogan, Tahsin, Demirel, Yigit Kemal, Bensow, Rickard
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.01.2021
Elsevier
Témata:
ISSN:0029-8018, 1873-5258, 1873-5258
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The 1978 ITTC Power Prediction method is used to predict the propulsive power of ships through towing tank testing. The form factor approach and its determination in this method have been questioned. This paper investigates the possibility to improve the power predictions by introducing Combined CFD/EFD Method where the experimental determination of form factor is replaced by double body RANS computations applied for open cases KVLCC2 and KCS, including first-time published towing tank tests of KVLCC2 at ballast condition including an experimental uncertainty analysis specifically derived for the form factor. Computations from nine organisations and seven CFD codes are compared to the experiments. The form factor predictions for both hulls in design loading condition compared well with the experimental results in general. For the KVLCC2 ballast condition, majority of the form factors were under-predicted while staying within the experimental uncertainty. Speed dependency is observed with the application of ITTC57 line but it is reduced with the Katsui line and nearly eliminated by numerical friction lines. Comparison of the full-scale viscous resistance predictions obtained by the extrapolations from model scale and direct full-scale computations show that the Combined CFD/EFD Method show significantly less scatter and may thus be a preferred approach. •The experimental uncertainty when determining the form factor is significantly amplified by the Prohaska method.•Towing tank test of KVLCC2 in ballast condition is presented with an uncertainty analysis.•Predictions of wide range of CFD codes and methods compared well with the experiments.•Friction lines are the main cause of the speed dependency of the form factors.•The scatter among the full scale computations are higher than the extrapolations.
AbstractList The 1978 ITTC Power Prediction method is used to predict the propulsive power of ships through towing tank testing. The form factor approach and its determination in this method have been questioned. This paper investigates the possibility to improve the power predictions by introducing Combined CFD/EFD Method where the experimental determination of form factor is replaced by double body RANS computations applied for open cases KVLCC2 and KCS, including first-time published towing tank tests of KVLCC2 at ballast condition including an experimental uncertainty analysis specifically derived for the form factor. Computations from nine organisations and seven CFD codes are compared to the experiments. The form factor predictions for both hulls in design loading condition compared well with the experimental results in general. For the KVLCC2 ballast condition, majority of the form factors were under-predicted while staying within the experimental uncertainty. Speed dependency is observed with the application of ITTC57 line but it is reduced with the Katsui line and nearly eliminated by numerical friction lines. Comparison of the full-scale viscous resistance predictions obtained by the extrapolations from model scale and direct full-scale computations show that the Combined CFD/EFD Method show significantly less scatter and may thus be a preferred approach.
The 1978 ITTC Power Prediction method is used to predict the propulsive power of ships through towing tank testing. The form factor approach and its determination in this method have been questioned. This paper investigates the possibility to improve the power predictions by introducing Combined CFD/EFD Method where the experimental determination of form factor is replaced by double body RANS computations applied for open cases KVLCC2 and KCS, including first-time published towing tank tests of KVLCC2 at ballast condition including an experimental uncertainty analysis specifically derived for the form factor. Computations from nine organisations and seven CFD codes are compared to the experiments. The form factor predictions for both hulls in design loading condition compared well with the experimental results in general. For the KVLCC2 ballast condition, majority of the form factors were under-predicted while staying within the experimental uncertainty. Speed dependency is observed with the application of ITTC57 line but it is reduced with the Katsui line and nearly eliminated by numerical friction lines. Comparison of the full-scale viscous resistance predictions obtained by the extrapolations from model scale and direct full-scale computations show that the Combined CFD/EFD Method show significantly less scatter and may thus be a preferred approach. •The experimental uncertainty when determining the form factor is significantly amplified by the Prohaska method.•Towing tank test of KVLCC2 in ballast condition is presented with an uncertainty analysis.•Predictions of wide range of CFD codes and methods compared well with the experiments.•Friction lines are the main cause of the speed dependency of the form factors.•The scatter among the full scale computations are higher than the extrapolations.
ArticleNumber 108451
Author Queutey, Patrick
Sakamoto, Nobuaki
Bensow, Rickard
Demirel, Yigit Kemal
Guoxiang, Dong
Maki, Kevin
Werner, Sofia
Deng, Ganbo
Ye, Haixuan
Korkmaz, Kadir Burak
Yuling, Gao
Zhao, Feng
Sayeed, Tanvir
Hino, Takanori
Akinturk, Ayhan
Tezdogan, Tahsin
Author_xml – sequence: 1
  givenname: Kadir Burak
  orcidid: 0000-0001-7136-7932
  surname: Korkmaz
  fullname: Korkmaz, Kadir Burak
  email: burak.korkmaz@sspa.se
  organization: SSPA Sweden AB, Chalmers Tvärgata 10, Box 24001, Se-400 22, Göteborg, Sweden
– sequence: 2
  givenname: Sofia
  surname: Werner
  fullname: Werner, Sofia
  organization: SSPA Sweden AB, Chalmers Tvärgata 10, Box 24001, Se-400 22, Göteborg, Sweden
– sequence: 3
  givenname: Nobuaki
  surname: Sakamoto
  fullname: Sakamoto, Nobuaki
  organization: National Maritime Research Institute (NMRI), Japan
– sequence: 4
  givenname: Patrick
  surname: Queutey
  fullname: Queutey, Patrick
  organization: LHEEA, CNRS Ecole Centrale de Nantes, France
– sequence: 5
  givenname: Ganbo
  surname: Deng
  fullname: Deng, Ganbo
  organization: LHEEA, CNRS Ecole Centrale de Nantes, France
– sequence: 6
  givenname: Gao
  surname: Yuling
  fullname: Yuling, Gao
  organization: Shanghai Ship and Shipping Research Institute (SSSRI), China
– sequence: 7
  givenname: Dong
  surname: Guoxiang
  fullname: Guoxiang, Dong
  organization: Shanghai Ship and Shipping Research Institute (SSSRI), China
– sequence: 8
  givenname: Kevin
  surname: Maki
  fullname: Maki, Kevin
  organization: CSHL University of Michigan, USA
– sequence: 9
  givenname: Haixuan
  surname: Ye
  fullname: Ye, Haixuan
  organization: CSHL University of Michigan, USA
– sequence: 10
  givenname: Ayhan
  surname: Akinturk
  fullname: Akinturk, Ayhan
  organization: Ocean, Coastal and River Engineering (OCRE), NRC, Canada
– sequence: 11
  givenname: Tanvir
  surname: Sayeed
  fullname: Sayeed, Tanvir
  organization: Ocean, Coastal and River Engineering (OCRE), NRC, Canada
– sequence: 12
  givenname: Takanori
  surname: Hino
  fullname: Hino, Takanori
  organization: Yokohama National University, Japan
– sequence: 13
  givenname: Feng
  surname: Zhao
  fullname: Zhao, Feng
  organization: China Ship Scientific Research Centre (CSSRC), China
– sequence: 14
  givenname: Tahsin
  surname: Tezdogan
  fullname: Tezdogan, Tahsin
  organization: University of Strathclyde, United Kingdom
– sequence: 15
  givenname: Yigit Kemal
  surname: Demirel
  fullname: Demirel, Yigit Kemal
  organization: University of Strathclyde, United Kingdom
– sequence: 16
  givenname: Rickard
  surname: Bensow
  fullname: Bensow, Rickard
  organization: Chalmers University of Technology, Sweden
BackLink https://hal.science/hal-03047918$$DView record in HAL
https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-57272$$DView record from Swedish Publication Index
https://research.chalmers.se/publication/521721$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNqFkU-LFDEQxRtZwdnVryBzVekxSXfSCXhwmHVdYcCDf65FdaWyk2Gme0h6V_z2dm-rsILsJQXF772q1Dsvzrq-46J4KcVKCmne7lc9MXbc3ayUUFPT1lo-KRbSNlWplbZnxUII5UorpH1WnOe8F0IYI6pF8XpzdblsMbNfhj4dlwFp6NPS88DpGDscYt8tjzzsev-8eBrwkPnF73pRfLv68HVzXW4_f_y0WW9LMkYPpadasjOtrzmE1lXWO5SmVqzR6qY15GQg2QQllQq6sbVFNpoqKxsKikR1UXyZffMPPt22cErxiOkn9BghcWZMtAPa4eHIKUNmMCQEmpbBkgpQBxaA2LbAtaxkg15YqUbXN_91vYzf19CnG0gRdKOaiX410-OYB-j1egtTT1Sibpy0d3JkzcxS6nNOHP4KpIApIdjDn4RgSgjmhEbhu3-EFIf7iw8J4-FxuZ_lXSLCDj0-2JRiHiLEqcBIAN0_OPe703jF8RNOu-AMhKAs1D4YaOsJUd4qFNq51oxj3s9jeMz8LnKCTJE7Yh8T0wC-j49t-gtcndX0
CitedBy_id crossref_primary_10_3390_jmse13071203
crossref_primary_10_1016_j_oceaneng_2021_110074
crossref_primary_10_1016_j_oceaneng_2021_110496
crossref_primary_10_3390_jmse9010075
crossref_primary_10_1007_s40722_022_00256_9
crossref_primary_10_1016_j_oceaneng_2023_116098
crossref_primary_10_1016_j_oceaneng_2025_121952
crossref_primary_10_1007_s00773_024_01026_y
crossref_primary_10_3390_jmse12040622
crossref_primary_10_1016_j_oceaneng_2025_120367
crossref_primary_10_1115_1_4069363
crossref_primary_10_3390_jmse11010187
crossref_primary_10_1080_09377255_2023_2252232
crossref_primary_10_1088_1757_899X_1288_1_012047
crossref_primary_10_1016_j_joes_2023_07_001
crossref_primary_10_1063_5_0243505
crossref_primary_10_1088_1755_1315_1198_1_012027
crossref_primary_10_3390_jmse12050783
Cites_doi 10.3390/jmse8010024
10.1016/j.apor.2019.101930
10.1016/j.jcp.2014.01.006
10.1007/s00773-008-0018-1
10.1007/s11804-016-1372-8
10.1016/S0029-8018(98)00042-0
10.1016/j.oceaneng.2016.11.005
10.1016/j.oceaneng.2020.107428
10.1016/S1001-6058(15)60496-6
10.1007/s42241-019-0075-4
ContentType Journal Article
Copyright 2021
Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/) Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/deed.fr)
Attribution - NonCommercial - NoDerivatives
Copyright_xml – notice: 2021
– notice: Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/) Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/deed.fr)
– notice: Attribution - NonCommercial - NoDerivatives
DBID 6I.
AAFTH
-LJ
GXV
AAYXX
CITATION
1XC
VOOES
ADTPV
AOWAS
D8T
ZZAVC
ABBSD
F1S
DOI 10.1016/j.oceaneng.2020.108451
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
National Research Council Canada Archive
CISTI Source
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
SWEPUB Chalmers tekniska högskola full text
SWEPUB Chalmers tekniska högskola
DatabaseTitle CrossRef
DatabaseTitleList




DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
Sciences
Mathematics
Physics
Computer Science
EISSN 1873-5258
ExternalDocumentID oai_research_chalmers_se_6c00a6be_8c2f_4fe0_aabb_e41317ad0812
oai_DiVA_org_ri_57272
oai:HAL:hal-03047918v1
10_1016_j_oceaneng_2020_108451
oai_cisti_icist_nrc_cnrc_ca_cistinparc_03959f96_ff28_4df6_b4ca_c2d82a0599b6
S0029801820313585
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
-LJ
AATTM
AAXKI
AAYWO
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
EFKBS
GXV
~HD
29N
6TJ
9DU
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ADMUD
ADNMO
AFFNX
AFJKZ
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SET
SEW
WUQ
1XC
VOOES
ADTPV
AOWAS
D8T
ZZAVC
ABBSD
F1S
ID FETCH-LOGICAL-c665t-dc41e96bd4effb938d9a1642e5a857b6c91fc17f2122f57848ae65c3817cf2c03
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000607850200051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-8018
1873-5258
IngestDate Wed Nov 05 04:22:38 EST 2025
Wed Sep 24 03:45:02 EDT 2025
Tue Oct 14 20:37:46 EDT 2025
Sat Nov 29 07:26:56 EST 2025
Tue Nov 18 22:18:29 EST 2025
Fri Nov 21 15:58:02 EST 2025
Fri Feb 23 02:45:01 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords CFD
Experimental uncertainty analysis
Scale effects
Ship resistance
Combined CFD/EFD Methods
Form factor
Language English
License This is an open access article under the CC BY license.
Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c665t-dc41e96bd4effb938d9a1642e5a857b6c91fc17f2122f57848ae65c3817cf2c03
ORCID 0000-0001-7136-7932
0000-0003-2298-1658
0000-0001-5180-2095
OpenAccessLink https://hal.science/hal-03047918
ParticipantIDs swepub_primary_oai_research_chalmers_se_6c00a6be_8c2f_4fe0_aabb_e41317ad0812
swepub_primary_oai_DiVA_org_ri_57272
hal_primary_oai_HAL_hal_03047918v1
crossref_primary_10_1016_j_oceaneng_2020_108451
crossref_citationtrail_10_1016_j_oceaneng_2020_108451
nrccanada_primary_oai_cisti_icist_nrc_cnrc_ca_cistinparc_03959f96_ff28_4df6_b4ca_c2d82a0599b6
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2020_108451
PublicationCentury 2000
PublicationDate 2021-01-15
PublicationDateYYYYMMDD 2021-01-15
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Tokyo (bib29) 2015
York, Evensen, Ló, Nez, De, Delgado (bib35) 2004; 72
IMO (bib6) 2011; vol. 203
ITTC (bib13) 2014; 7
Hughes (bib5) 1954; 96
Korkmaz, Werner, Bensow (bib17) 2019
ITTC (bib12) 2014; 7
Ponkratov (bib22) 2016
Raven, van der Ploeg, Starke, Eça (bib24) 2008
Dogrul, Song, Demirel (bib1) 2020; 209
Larsson, Stern, Visonneau (bib18) 2014
ITTC (bib9) 1975
Pereira, Eça, Vaz (bib21) 2017; 129
Sun, Qiong, Jia, Jie, Jinfang, Guofu (bib26) 2020; 8
Eça, Hoekstra (bib2) 2008; 13
Katsui, Asai, Himeno, Tahara (bib15) 2005
Wang, Yu, Feng (bib32) 2019; 31
Wang, Xiong, Shi, Liu (bib33) 2015; 23
García Gómez (bib4) 2000; 26
Niklas, Pruszko (bib20) 2019
ITTC (bib7) 1957
Terziev, Tezdogan, Incecik (bib27) 2019; 92
Prohaska (bib23) 1966
SIMMAN (bib25) 2008
Xing, Stern (bib34) 2009; 132
Eça, Hoekstra (bib3) 2014; 262
ITTC (bib11) 2014; 7
Lindgren, Dyne (bib19) 1980
ITTC (bib8) 1972
Van, Ahn, Lee, Kim, Hwang, Kim, Kim, Park (bib30) 2011
Korkmaz, Werner, Bensow (bib16) 2019
ITTC (bib10) 1978
Toki (bib28) 2008; 8
Wang, Yu, Zhang, Xiong (bib31) 2016; 15
ITTC (bib14) 2017; 7
ITTC (10.1016/j.oceaneng.2020.108451_bib13) 2014; 7
Pereira (10.1016/j.oceaneng.2020.108451_bib21) 2017; 129
Wang (10.1016/j.oceaneng.2020.108451_bib33) 2015; 23
García Gómez (10.1016/j.oceaneng.2020.108451_bib4) 2000; 26
Toki (10.1016/j.oceaneng.2020.108451_bib28) 2008; 8
IMO (10.1016/j.oceaneng.2020.108451_bib6) 2011; vol. 203
Prohaska (10.1016/j.oceaneng.2020.108451_bib23) 1966
Van (10.1016/j.oceaneng.2020.108451_bib30) 2011
ITTC (10.1016/j.oceaneng.2020.108451_bib12) 2014; 7
ITTC (10.1016/j.oceaneng.2020.108451_bib9) 1975
Terziev (10.1016/j.oceaneng.2020.108451_bib27) 2019; 92
Dogrul (10.1016/j.oceaneng.2020.108451_bib1) 2020; 209
Lindgren (10.1016/j.oceaneng.2020.108451_bib19) 1980
ITTC (10.1016/j.oceaneng.2020.108451_bib10) 1978
Korkmaz (10.1016/j.oceaneng.2020.108451_bib16) 2019
Tokyo (10.1016/j.oceaneng.2020.108451_bib29) 2015
Larsson (10.1016/j.oceaneng.2020.108451_bib18) 2014
Eça (10.1016/j.oceaneng.2020.108451_bib3) 2014; 262
ITTC (10.1016/j.oceaneng.2020.108451_bib7) 1957
ITTC (10.1016/j.oceaneng.2020.108451_bib11) 2014; 7
Wang (10.1016/j.oceaneng.2020.108451_bib31) 2016; 15
Sun (10.1016/j.oceaneng.2020.108451_bib26) 2020; 8
York (10.1016/j.oceaneng.2020.108451_bib35) 2004; 72
Korkmaz (10.1016/j.oceaneng.2020.108451_bib17) 2019
Niklas (10.1016/j.oceaneng.2020.108451_bib20) 2019
Katsui (10.1016/j.oceaneng.2020.108451_bib15) 2005
Hughes (10.1016/j.oceaneng.2020.108451_bib5) 1954; 96
Raven (10.1016/j.oceaneng.2020.108451_bib24) 2008
Eça (10.1016/j.oceaneng.2020.108451_bib2) 2008; 13
Ponkratov (10.1016/j.oceaneng.2020.108451_bib22) 2016
Wang (10.1016/j.oceaneng.2020.108451_bib32) 2019; 31
ITTC (10.1016/j.oceaneng.2020.108451_bib8) 1972
ITTC (10.1016/j.oceaneng.2020.108451_bib14) 2017; 7
SIMMAN (10.1016/j.oceaneng.2020.108451_bib25) 2008
Xing (10.1016/j.oceaneng.2020.108451_bib34) 2009; 132
References_xml – year: 1972
  ident: bib8
  article-title: Report of Performance Committee
– volume: 209
  start-page: 107428
  year: 2020
  ident: bib1
  article-title: Scale effect on ship resistance components and form factor
  publication-title: Ocean. Eng.
– volume: 7
  year: 2017
  ident: bib14
  article-title: Uncertainty analysis in cfd verification and validation, methodology and procedures
  publication-title: ITTC - Quality System Manual Recommended Procedures and Guidelines
– volume: 8
  year: 2020
  ident: bib26
  article-title: Numerical analysis of full-scale ship self-propulsion performance with direct comparison to statistical sea trail results
  publication-title: J. Mar. Sci. Eng.
– year: 1966
  ident: bib23
  article-title: A Simple Method for the Evaluation of the Form Factor and Low Speed Wave Resistance
– volume: 262
  start-page: 104
  year: 2014
  end-page: 130
  ident: bib3
  article-title: A procedure for the estimation of the numerical uncertainty of cfd calculations based on grid refinement studies
  publication-title: J. Comput. Phys.
– volume: 96
  year: 1954
  ident: bib5
  article-title: Friction and form resistance in turbulent flow, and a proposed formulation for use in model and ship correlation
  publication-title: R. I. N. A.
– volume: 129
  start-page: 133
  year: 2017
  end-page: 148
  ident: bib21
  article-title: Verification and validation exercises for the flow around the KVLCC2 tanker at model and full-scale Reynolds numbers
  publication-title: Ocean. Eng.
– volume: 26
  start-page: 97
  year: 2000
  end-page: 109
  ident: bib4
  article-title: On the form factor scale effect
  publication-title: Ocean. Eng.
– year: 2011
  ident: bib30
  article-title: Resistance characteristics and form factor evaluation for geosim models of KVLCC2and KCS
  publication-title: Advanced Model Measurement Technology for EU Maritime Industry
– year: 2019
  ident: bib20
  article-title: Full-Scale CFD Simulations for the Determination of Ship Resistance as a Rational, Alternative Method to Towing Tank Experiments. Ocean Engineering 190
– year: 2016
  ident: bib22
  article-title: 2016 workshop on ship scale hydrodynamic computer simulation
  publication-title: loyd's Register Workshop on Ship Scale Hydrodynamics
– volume: 8
  start-page: 71
  year: 2008
  end-page: 79
  ident: bib28
  article-title: Investigation on correlation lines through the analyses of geosim model test results
  publication-title: J. Jpn. Soc. Nav. Archit. Ocean Eng.
– volume: 72
  year: 2004
  ident: bib35
  article-title: Unified equations for the slope, intercept, and standard errors of the best straight line
  publication-title: American Journal of Physics - AMER J PHYS
– start-page: 85
  year: 1980
  ident: bib19
  article-title: Ship Performance Prediction
– year: 2019
  ident: bib16
  article-title: Investigations for cfd based form factor methods
  publication-title: Numerical Towing Tank Symposium (NuTTS 2019)
– volume: 7
  year: 2014
  ident: bib11
  article-title: 1978 ittc performance prediction method
  publication-title: ITTC – Recommended Procedures and Guidelines
– volume: 7
  year: 2014
  ident: bib13
  article-title: Ship models
  publication-title: ITTC – Recommended Procedures and Guidelines
– year: 2014
  ident: bib18
  article-title: Numerical Ship Hydrodynamics: an Assessment of the Gothenburg 2010 Workshop
– volume: 13
  start-page: 328
  year: 2008
  end-page: 345
  ident: bib2
  article-title: The numerical friction line
  publication-title: Journal of Marine Science and TechnologyJournal of Marine Science and Technology
– volume: 7
  year: 2014
  ident: bib12
  article-title: General guideline for uncertainty analysis in resistance tests
  publication-title: ITTC – Recommended Procedures and Guidelines
– volume: 31
  year: 2019
  ident: bib32
  article-title: Feasible study on full-scale delivered power prediction using CFD/EFD combination method
  publication-title: J. Hydrodyn.
– year: 2015
  ident: bib29
  article-title: Tokyo 2015 a Workshop on Cfd in Ship Hydrodynamics
– year: 1957
  ident: bib7
  article-title: Subjects 2 and 4 Skin Friction and Turbulence Stimulation
– volume: vol. 203
  year: 2011
  ident: bib6
  publication-title: Annex 19: Resolution MEPC
– year: 2019
  ident: bib17
  article-title: Numerical friction lines for cfd based form factor determination method
  publication-title: VIII International Conference on Computational Methods in Marine Engineering MARINE 2019
– year: 2008
  ident: bib24
  article-title: Towards a cfd-based prediction of ship performance - progress in predicting full-scale resistance and scale effects
– year: 1975
  ident: bib9
  article-title: Report of Performance Committee
– volume: 15
  start-page: 236
  year: 2016
  end-page: 241
  ident: bib31
  article-title: CFD-based method of determining form factor k for different ship types and different drafts
  publication-title: J. Mar. Sci. Appl.
– volume: 23
  start-page: 383
  year: 2015
  end-page: 393
  ident: bib33
  article-title: A numerical flat plate friction line and its application
  publication-title: J. Hydrodyn.
– year: 2008
  ident: bib25
  article-title: Simman 2008 Workshop Verification and Validation of Ship Manoeuvring Simulation Methods
– volume: 132
  start-page: 65
  year: 2009
  ident: bib34
  article-title: Factors of safety for richardson extrapolation
  publication-title: Journal of Fluids Engineering-transactions of The Asme - J FLUID ENG
– year: 2005
  ident: bib15
  article-title: The proposal of a new friction line
  publication-title: Fifth Osaka Colloquium on Advanced CFD Applications to Ship Flow and Hull Form Design, Osaka, Japan
– volume: 92
  year: 2019
  ident: bib27
  article-title: A geosim analysis of ship resistance decomposition and scale effects with the aid of CFD
  publication-title: Appl. Ocean Res.
– year: 1978
  ident: bib10
  article-title: Report of Performance Committee
– volume: 8
  year: 2020
  ident: 10.1016/j.oceaneng.2020.108451_bib26
  article-title: Numerical analysis of full-scale ship self-propulsion performance with direct comparison to statistical sea trail results
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse8010024
– volume: 72
  year: 2004
  ident: 10.1016/j.oceaneng.2020.108451_bib35
  article-title: Unified equations for the slope, intercept, and standard errors of the best straight line
  publication-title: American Journal of Physics - AMER J PHYS
– volume: 92
  year: 2019
  ident: 10.1016/j.oceaneng.2020.108451_bib27
  article-title: A geosim analysis of ship resistance decomposition and scale effects with the aid of CFD
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2019.101930
– year: 2015
  ident: 10.1016/j.oceaneng.2020.108451_bib29
– year: 2019
  ident: 10.1016/j.oceaneng.2020.108451_bib17
  article-title: Numerical friction lines for cfd based form factor determination method
– start-page: 85
  year: 1980
  ident: 10.1016/j.oceaneng.2020.108451_bib19
– year: 2016
  ident: 10.1016/j.oceaneng.2020.108451_bib22
  article-title: 2016 workshop on ship scale hydrodynamic computer simulation
– year: 2008
  ident: 10.1016/j.oceaneng.2020.108451_bib25
– volume: 262
  start-page: 104
  year: 2014
  ident: 10.1016/j.oceaneng.2020.108451_bib3
  article-title: A procedure for the estimation of the numerical uncertainty of cfd calculations based on grid refinement studies
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.01.006
– year: 2019
  ident: 10.1016/j.oceaneng.2020.108451_bib20
– year: 2014
  ident: 10.1016/j.oceaneng.2020.108451_bib18
– volume: 7
  year: 2017
  ident: 10.1016/j.oceaneng.2020.108451_bib14
  article-title: Uncertainty analysis in cfd verification and validation, methodology and procedures
  publication-title: ITTC - Quality System Manual Recommended Procedures and Guidelines
– volume: 132
  start-page: 65
  year: 2009
  ident: 10.1016/j.oceaneng.2020.108451_bib34
  article-title: Factors of safety for richardson extrapolation
  publication-title: Journal of Fluids Engineering-transactions of The Asme - J FLUID ENG
– volume: 7
  year: 2014
  ident: 10.1016/j.oceaneng.2020.108451_bib11
  article-title: 1978 ittc performance prediction method
  publication-title: ITTC – Recommended Procedures and Guidelines
– volume: 13
  start-page: 328
  year: 2008
  ident: 10.1016/j.oceaneng.2020.108451_bib2
  article-title: The numerical friction line
  publication-title: Journal of Marine Science and TechnologyJournal of Marine Science and Technology
  doi: 10.1007/s00773-008-0018-1
– volume: 8
  start-page: 71
  year: 2008
  ident: 10.1016/j.oceaneng.2020.108451_bib28
  article-title: Investigation on correlation lines through the analyses of geosim model test results
  publication-title: J. Jpn. Soc. Nav. Archit. Ocean Eng.
– year: 2011
  ident: 10.1016/j.oceaneng.2020.108451_bib30
  article-title: Resistance characteristics and form factor evaluation for geosim models of KVLCC2and KCS
– volume: 7
  year: 2014
  ident: 10.1016/j.oceaneng.2020.108451_bib12
  article-title: General guideline for uncertainty analysis in resistance tests
  publication-title: ITTC – Recommended Procedures and Guidelines
– year: 2005
  ident: 10.1016/j.oceaneng.2020.108451_bib15
  article-title: The proposal of a new friction line
– volume: 96
  year: 1954
  ident: 10.1016/j.oceaneng.2020.108451_bib5
  article-title: Friction and form resistance in turbulent flow, and a proposed formulation for use in model and ship correlation
  publication-title: R. I. N. A.
– year: 1957
  ident: 10.1016/j.oceaneng.2020.108451_bib7
– volume: 15
  start-page: 236
  year: 2016
  ident: 10.1016/j.oceaneng.2020.108451_bib31
  article-title: CFD-based method of determining form factor k for different ship types and different drafts
  publication-title: J. Mar. Sci. Appl.
  doi: 10.1007/s11804-016-1372-8
– year: 1975
  ident: 10.1016/j.oceaneng.2020.108451_bib9
– volume: vol. 203
  year: 2011
  ident: 10.1016/j.oceaneng.2020.108451_bib6
– volume: 26
  start-page: 97
  year: 2000
  ident: 10.1016/j.oceaneng.2020.108451_bib4
  article-title: On the form factor scale effect
  publication-title: Ocean. Eng.
  doi: 10.1016/S0029-8018(98)00042-0
– volume: 7
  year: 2014
  ident: 10.1016/j.oceaneng.2020.108451_bib13
  article-title: Ship models
  publication-title: ITTC – Recommended Procedures and Guidelines
– volume: 129
  start-page: 133
  year: 2017
  ident: 10.1016/j.oceaneng.2020.108451_bib21
  article-title: Verification and validation exercises for the flow around the KVLCC2 tanker at model and full-scale Reynolds numbers
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2016.11.005
– year: 1972
  ident: 10.1016/j.oceaneng.2020.108451_bib8
– year: 2008
  ident: 10.1016/j.oceaneng.2020.108451_bib24
– year: 1966
  ident: 10.1016/j.oceaneng.2020.108451_bib23
– volume: 209
  start-page: 107428
  year: 2020
  ident: 10.1016/j.oceaneng.2020.108451_bib1
  article-title: Scale effect on ship resistance components and form factor
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2020.107428
– year: 1978
  ident: 10.1016/j.oceaneng.2020.108451_bib10
– volume: 23
  start-page: 383
  year: 2015
  ident: 10.1016/j.oceaneng.2020.108451_bib33
  article-title: A numerical flat plate friction line and its application
  publication-title: J. Hydrodyn.
  doi: 10.1016/S1001-6058(15)60496-6
– volume: 31
  year: 2019
  ident: 10.1016/j.oceaneng.2020.108451_bib32
  article-title: Feasible study on full-scale delivered power prediction using CFD/EFD combination method
  publication-title: J. Hydrodyn.
  doi: 10.1007/s42241-019-0075-4
– year: 2019
  ident: 10.1016/j.oceaneng.2020.108451_bib16
  article-title: Investigations for cfd based form factor methods
SSID ssj0006603
Score 2.3810859
Snippet The 1978 ITTC Power Prediction method is used to predict the propulsive power of ships through towing tank testing. The form factor approach and its...
SourceID swepub
hal
crossref
nrccanada
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 108451
SubjectTerms Approximation theory
Ballast (railroad track)
CFD
Combined CFD/EFD Methods
computational fluid dynamics
Computer Science
Design loadings
Determination methods
Distributed, Parallel, and Cluster Computing
Engineering Sciences
Experimental determination
Experimental uncertainty
Experimental uncertainty analysis
Fluid mechanics
Fluids mechanics
Forecasting
Form factor
Form factors
hull
Mathematics
Mechanics
Numerical Analysis
Physics
Power predictions
scale effect
Scale effects
ship design
Ship model tanks
Ship resistance
Ship testing
Structural mechanics
Tanks (containers)
Towing tank test
Uncertainty analysis
Viscous resistance
Title CFD based form factor determination method
URI https://dx.doi.org/10.1016/j.oceaneng.2020.108451
https://nrc-publications.canada.ca/eng/view/object/?id=03959f96-ff28-4df6-b4ca-c2d82a0599b6
https://hal.science/hal-03047918
https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-57272
https://research.chalmers.se/publication/521721
Volume 220
WOSCitedRecordID wos000607850200051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006603
  issn: 0029-8018
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdgA_Eh8VFAlC9FaE9MgcZ1EvuxrJs2KGPSxugLsmzHpt1GWqXtNPHXc7aTLIWhjQde3NZ13Lp3_fl8ufsdQms2XZLSiISGxDQkkrGQEmnBUGVEWMx0tIuHg3R3lw6HbK8MK5q5cgJpntOzMzb9r6KGPhC2TZ39B3HXk0IHPAehQwtih_ZKgt_Y6q_bvSlziYllQZ31rAp7cfL2daObhulnZV3y-pydsEbiSXH8Q_z0kRewAa6_XxSiTu_5qouqdBd86Rri98WxAB2Y-DtDcgFmasPDuph7P7kvD3DcdDxg63UIfeql94aVW3cTXTGzO57HU-0BlaZdOOx6evYKcbHLf_sTvb0j4ejtxC4ZVgzHd-yiIElJSrtEl73d2-d7_S0-2Nn9uPxuI8ZwuzeAdiROQnsPOGURPYWz8ipOY0ZX0GpvZ3P4od65k6TTrUKC7DoaGeUXf6m_GTPXRzaq9lZeKBe6J37joXW2y8EDdK88dAQ9rywP0TWdt9D9qqBHUOJ7C91psFPCq081pe-she46DSkJzlvopgsdVrNH6A0oXOAULrAKF3iFC5YULvAK9xh92do82NgOywocoUqSeB5mikSaJTIj2hjJujRjAs7XWMeCxqlMFIuMilID9g82gP2ECp3EyrI-KoNVp_sEreSTXD9FAZiKLJK6kxrNCDVKKpiAUBlLhbvKqDaKq5-Sq5Ke3lZJOeFVHOIRr0TArQi4F0Ebvauvm3qClkuvYJWkeGlmevORgx5eeu1rEG39QZabHTSM275z_Wqjb7Xkl4Yqu23zsX3gMIIr1wjfn08B7mAWFjPDEm4MppxkJuGS2CE4o1hYMiWZtNGa16alyfvjwx6fFN95MeaxDa9oo8EFw0oOsRFXI1egacZnmieq0xGJ1JwqbDgxusOFkJJrMHGjVGRwbsDPrrL05-j2OVS8QCvzYqFfohvqdD6eFa_K_9sv1jbwXg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CFD+based+form+factor+determination+method&rft.jtitle=Ocean+engineering&rft.au=Korkmaz%2C+Kadir+Burak&rft.au=Werner%2C+Sofia&rft.au=Sakamoto%2C+Nobuaki&rft.au=Queutey%2C+Patrick&rft.date=2021-01-15&rft.pub=Elsevier&rft.issn=0029-8018&rft.eissn=1873-5258&rft.volume=220&rft_id=info:doi/10.1016%2Fj.oceaneng.2020.108451&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03047918v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon