Head motion during MRI acquisition reduces gray matter volume and thickness estimates

Imaging biomarkers derived from magnetic resonance imaging (MRI) data are used to quantify normal development, disease, and the effects of disease-modifying therapies. However, motion during image acquisition introduces image artifacts that, in turn, affect derived markers. A systematic effect can b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:NeuroImage (Orlando, Fla.) Ročník 107; s. 107 - 115
Hlavní autoři: Reuter, Martin, Tisdall, M. Dylan, Qureshi, Abid, Buckner, Randy L., van der Kouwe, André J.W., Fischl, Bruce
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Inc 15.02.2015
Elsevier Limited
Témata:
ISSN:1053-8119, 1095-9572, 1095-9572
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Imaging biomarkers derived from magnetic resonance imaging (MRI) data are used to quantify normal development, disease, and the effects of disease-modifying therapies. However, motion during image acquisition introduces image artifacts that, in turn, affect derived markers. A systematic effect can be problematic since factors of interest like age, disease, and treatment are often correlated with both a structural change and the amount of head motion in the scanner, confounding the ability to distinguish biology from artifact. Here we evaluate the effect of head motion during image acquisition on morphometric estimates of structures in the human brain using several popular image analysis software packages (FreeSurfer 5.3, VBM8 SPM, and FSL Siena 5.0.7). Within-session repeated T1-weighted MRIs were collected on 12 healthy volunteers while performing different motion tasks, including two still scans. We show that volume and thickness estimates of the cortical gray matter are biased by head motion with an average apparent volume loss of roughly 0.7%/mm/min of subject motion. Effects vary across regions and remain significant after excluding scans that fail a rigorous quality check. In view of these results, the interpretation of reported morphometric effects of movement disorders or other conditions with increased motion tendency may need to be revisited: effects may be overestimated when not controlling for head motion. Furthermore, drug studies with hypnotic, sedative, tranquilizing, or neuromuscular-blocking substances may contain spurious “effects” of reduced atrophy or brain growth simply because they affect motion distinct from true effects of the disease or therapeutic process. •MRI head motion induces a consistent bias in morphometric analysis.•Increased motion generally causes smaller gray matter volume and cortical thickness estimates.•Effects of movement disorders may be severely overestimated when not controlling for head motion.•Drugs that inhibit motion likely provide a spurious effect of reduced atrophy rates.•Exclusion of scans that fail a visual quality check is not sufficient to remove this bias.
AbstractList Imaging biomarkers derived from magnetic resonance imaging (MRI) data are used to quantify normal development, disease, and the effects of disease-modifying therapies. However, motion during image acquisition introduces image artifacts that, in turn, affect derived markers. A systematic effect can be problematic since factors of interest like age, disease, and treatment are often correlated with both a structural change and the amount of head motion in the scanner, confounding the ability to distinguish biology from artifact. Here we evaluate the effect of head motion during image acquisition on morphometric estimates of structures in the human brain using several popular image analysis software packages (FreeSurfer 5.3, VBM8 SPM, and FSL Siena 5.0.7). Within-session repeated T1-weighted MRIs were collected on 12 healthy volunteers while performing different motion tasks, including two still scans. We show that volume and thickness estimates of the cortical gray matter are biased by head motion with an average apparent volume loss of roughly 0.7%/mm/min of subject motion. Effects vary across regions and remain significant after excluding scans that fail a rigorous quality check. In view of these results, the interpretation of reported morphometric effects of movement disorders or other conditions with increased motion tendency may need to be revisited: effects may be overestimated when not controlling for head motion. Furthermore, drug studies with hypnotic, sedative, tranquillizing, or neuromuscular-blocking substances may contain spurious “effects” of reduced atrophy or brain growth simply because they affect motion distinct from true effects of the disease or therapeutic process.
Imaging biomarkers derived from magnetic resonance imaging (MRI) data are used to quantify normal development, disease, and the effects of disease-modifying therapies. However, motion during image acquisition introduces image artifacts that, in turn, affect derived markers. A systematic effect can be problematic since factors of interest like age, disease, and treatment are often correlated with both a structural change and the amount of head motion in the scanner, confounding the ability to distinguish biology from artifact. Here we evaluate the effect of head motion during image acquisition on morphometric estimates of structures in the human brain using several popular image analysis software packages (FreeSurfer 5.3, VBM8 SPM, and FSL Siena 5.0.7). Within-session repeated T1-weighted MRIs were collected on 12 healthy volunteers while performing different motion tasks, including two still scans. We show that volume and thickness estimates of the cortical gray matter are biased by head motion with an average apparent volume loss of roughly 0.7%/mm/min of subject motion. Effects vary across regions and remain significant after excluding scans that fail a rigorous quality check. In view of these results, the interpretation of reported morphometric effects of movement disorders or other conditions with increased motion tendency may need to be revisited: effects may be overestimated when not controlling for head motion. Furthermore, drug studies with hypnotic, sedative, tranquilizing, or neuromuscular-blocking substances may contain spurious “effects” of reduced atrophy or brain growth simply because they affect motion distinct from true effects of the disease or therapeutic process. •MRI head motion induces a consistent bias in morphometric analysis.•Increased motion generally causes smaller gray matter volume and cortical thickness estimates.•Effects of movement disorders may be severely overestimated when not controlling for head motion.•Drugs that inhibit motion likely provide a spurious effect of reduced atrophy rates.•Exclusion of scans that fail a visual quality check is not sufficient to remove this bias.
Imaging biomarkers derived from magnetic resonance imaging (MRI) data are used to quantify normal development, disease, and the effects of disease-modifying therapies. However, motion during image acquisition introduces image artifacts that, in turn, affect derived markers. A systematic effect can be problematic since factors of interest like age, disease, and treatment are often correlated with both a structural change and the amount of head motion in the scanner, confounding the ability to distinguish biology from artifact. Here we evaluate the effect of head motion during image acquisition on morphometric estimates of structures in the human brain using several popular image analysis software packages (FreeSurfer 5.3, VBM8 SPM, and FSL Siena 5.0.7). Within-session repeated T1-weighted MRIs were collected on 12 healthy volunteers while performing different motion tasks, including two still scans. We show that volume and thickness estimates of the cortical gray matter are biased by head motion with an average apparent volume loss of roughly 0.7%/mm/min of subject motion. Effects vary across regions and remain significant after excluding scans that fail a rigorous quality check. In view of these results, the interpretation of reported morphometric effects of movement disorders or other conditions with increased motion tendency may need to be revisited: effects may be overestimated when not controlling for head motion. Furthermore, drug studies with hypnotic, sedative, tranquilizing, or neuromuscular-blocking substances may contain spurious "effects" of reduced atrophy or brain growth simply because they affect motion distinct from true effects of the disease or therapeutic process.Imaging biomarkers derived from magnetic resonance imaging (MRI) data are used to quantify normal development, disease, and the effects of disease-modifying therapies. However, motion during image acquisition introduces image artifacts that, in turn, affect derived markers. A systematic effect can be problematic since factors of interest like age, disease, and treatment are often correlated with both a structural change and the amount of head motion in the scanner, confounding the ability to distinguish biology from artifact. Here we evaluate the effect of head motion during image acquisition on morphometric estimates of structures in the human brain using several popular image analysis software packages (FreeSurfer 5.3, VBM8 SPM, and FSL Siena 5.0.7). Within-session repeated T1-weighted MRIs were collected on 12 healthy volunteers while performing different motion tasks, including two still scans. We show that volume and thickness estimates of the cortical gray matter are biased by head motion with an average apparent volume loss of roughly 0.7%/mm/min of subject motion. Effects vary across regions and remain significant after excluding scans that fail a rigorous quality check. In view of these results, the interpretation of reported morphometric effects of movement disorders or other conditions with increased motion tendency may need to be revisited: effects may be overestimated when not controlling for head motion. Furthermore, drug studies with hypnotic, sedative, tranquilizing, or neuromuscular-blocking substances may contain spurious "effects" of reduced atrophy or brain growth simply because they affect motion distinct from true effects of the disease or therapeutic process.
Imaging biomarkers derived from magnetic resonance imaging (MRI) data are used to quantify normal development, disease, and the effects of disease-modifying therapies. However, motion during image acquisition introduces image artifacts that, in turn, affect derived markers. A systematic effect can be problematic since factors of interest like age, disease, and treatment are often correlated with both a structural change and the amount of head motion in the scanner, confounding the ability to distinguish biology from artifact. Here we evaluate the effect of head motion during image acquisition on morphometric estimates of structures in the human brain using several popular image analysis software packages (FreeSurfer 5.3, VBM8 SPM, and FSL Siena 5.0.7). Within-session repeated T1-weighted MRIs were collected on 12 healthy volunteers while performing different motion tasks, including two still scans. We show that volume and thickness estimates of the cortical gray matter are biased by head motion with an average apparent volume loss of roughly 0.7%/mm/min of subject motion. Effects vary across regions and remain significant after excluding scans that fail a rigorous quality check. In view of these results, the interpretation of reported morphometric effects of movement disorders or other conditions with increased motion tendency may need to be revisited: effects may be overestimated when not controlling for head motion. Furthermore, drug studies with hypnotic, sedative, tranquilizing, or neuromuscular-blocking substances may contain spurious "effects" of reduced atrophy or brain growth simply because they affect motion distinct from true effects of the disease or therapeutic process.
Author Fischl, Bruce
Qureshi, Abid
Reuter, Martin
Tisdall, M. Dylan
van der Kouwe, André J.W.
Buckner, Randy L.
Author_xml – sequence: 1
  givenname: Martin
  orcidid: 0000-0002-2665-9693
  surname: Reuter
  fullname: Reuter, Martin
  email: mreuter@nmr.mgh.harvard.edu
  organization: Massachusetts General Hospital, Department of Neurology, 55 Fruit Street, Boston, MA 02114, USA
– sequence: 2
  givenname: M. Dylan
  surname: Tisdall
  fullname: Tisdall, M. Dylan
  organization: Massachusetts General Hospital, Department of Radiology, A.A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Suite 2301, Charlestown, MA 02129, USA
– sequence: 3
  givenname: Abid
  surname: Qureshi
  fullname: Qureshi, Abid
  organization: Massachusetts General Hospital, Department of Neurology, 55 Fruit Street, Boston, MA 02114, USA
– sequence: 4
  givenname: Randy L.
  surname: Buckner
  fullname: Buckner, Randy L.
  organization: Massachusetts General Hospital, Department of Radiology, A.A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Suite 2301, Charlestown, MA 02129, USA
– sequence: 5
  givenname: André J.W.
  surname: van der Kouwe
  fullname: van der Kouwe, André J.W.
  organization: Massachusetts General Hospital, Department of Radiology, A.A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Suite 2301, Charlestown, MA 02129, USA
– sequence: 6
  givenname: Bruce
  surname: Fischl
  fullname: Fischl, Bruce
  organization: Massachusetts General Hospital, Department of Radiology, A.A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Suite 2301, Charlestown, MA 02129, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25498430$$D View this record in MEDLINE/PubMed
BookMark eNqNkl9vFCEUxYmpsX_0KxgSX3zZERhg4cVommqb1JgY-0wY5s6W7Qy0MLPJfnsZt27VB90nCPw493LuOUVHIQZACFNSUULlu3UVYErRD3YFFSOUV5RVhMhn6IQSLRZaLNnRvBf1QlGqj9FpzmtCiKZcvUDHTHCteE1O0M0l2BYPcfQx4HZKPqzwl29X2LqHyWf_8zhBOznIeJXsFg92HCHhTeynAbANLR5vvbsLkDOGPJaWRsgv0fPO9hlePa5n6ObTxffzy8X1189X5x-vF05KMS6c1eBkp1spljXjHTStY8pa1oKFzgEBxzU0jZK6awRxQhCidF1bAbyTlNRn6P1O935qBmgdhDHZ3tyn0kbammi9-fMm-FuzihtT_k4YV0Xg7aNAig9T6d8MPjvoexsgTtlQKQlZSiUPQQWXSmtJD0EZp2VSM_rmL3QdpxSKaYYRQQXTS_ZPikoupC61WaFe_-7G3oZf0y6A2gEuxZwTdHuEEjMHy6zNU7DMHCxDmSnBenJ6_9T50c7xKL76_hCBDzsBKHnYeEjG9T54Z_s72Jo2-v9L_ADVIvA3
CitedBy_id crossref_primary_10_1038_s41380_018_0202_6
crossref_primary_10_1016_j_neuroimage_2022_119760
crossref_primary_10_1002_mrm_30385
crossref_primary_10_1016_j_neuroimage_2016_04_029
crossref_primary_10_1016_j_neuroimage_2021_118709
crossref_primary_10_1016_j_ejrad_2020_109384
crossref_primary_10_1371_journal_pone_0236303
crossref_primary_10_3389_fnagi_2022_796110
crossref_primary_10_1016_j_neuroimage_2020_117227
crossref_primary_10_1016_j_neuroimage_2021_118835
crossref_primary_10_1002_hbm_22958
crossref_primary_10_3389_fnhum_2024_1316117
crossref_primary_10_1016_j_neuroimage_2020_117585
crossref_primary_10_1093_cercor_bhab403
crossref_primary_10_3389_fnhum_2022_921505
crossref_primary_10_1073_pnas_1801582115
crossref_primary_10_1016_j_neuroimage_2024_120865
crossref_primary_10_1016_j_neuroimage_2014_12_035
crossref_primary_10_1007_s12021_020_09469_5
crossref_primary_10_1007_s40474_015_0062_6
crossref_primary_10_1016_j_neuroscience_2015_06_031
crossref_primary_10_1007_s10334_025_01246_2
crossref_primary_10_1016_j_media_2023_102942
crossref_primary_10_1016_j_neuroimage_2015_11_054
crossref_primary_10_1016_j_rasd_2019_03_005
crossref_primary_10_1177_02841851231218384
crossref_primary_10_3389_fpsyt_2021_680811
crossref_primary_10_1002_hipo_23189
crossref_primary_10_1016_j_earlhumdev_2017_01_009
crossref_primary_10_1038_srep38366
crossref_primary_10_1016_j_neuroimage_2021_117756
crossref_primary_10_1016_j_neurobiolaging_2021_03_018
crossref_primary_10_1093_cercor_bhx317
crossref_primary_10_1016_j_neuroimage_2016_12_032
crossref_primary_10_1073_pnas_1807983116
crossref_primary_10_1016_j_bandl_2023_105230
crossref_primary_10_1002_hbm_24449
crossref_primary_10_1016_j_dcn_2022_101116
crossref_primary_10_1002_hbm_23911
crossref_primary_10_1016_j_neuroimage_2023_120119
crossref_primary_10_1073_pnas_2001228117
crossref_primary_10_1007_s11682_021_00613_6
crossref_primary_10_1212_WNL_0000000000209829
crossref_primary_10_1016_j_dcn_2020_100902
crossref_primary_10_1186_s13229_022_00489_3
crossref_primary_10_1007_s10802_024_01190_0
crossref_primary_10_1002_hbm_23397
crossref_primary_10_1038_s43856_024_00489_9
crossref_primary_10_1007_s00415_015_7892_3
crossref_primary_10_1016_j_bpsc_2018_03_003
crossref_primary_10_1002_jnr_24831
crossref_primary_10_1016_j_neuroimage_2016_11_005
crossref_primary_10_3389_fneur_2024_1339223
crossref_primary_10_1002_mrm_28649
crossref_primary_10_1016_j_media_2024_103282
crossref_primary_10_1038_s41467_019_13163_9
crossref_primary_10_1093_cercor_bhx229
crossref_primary_10_1002_brb3_1609
crossref_primary_10_1093_cercor_bhac518
crossref_primary_10_7554_eLife_66466
crossref_primary_10_1177_2514183X20974231
crossref_primary_10_1002_hbm_25204
crossref_primary_10_1186_s40708_021_00128_2
crossref_primary_10_3390_info15120748
crossref_primary_10_1002_hbm_24230
crossref_primary_10_1109_JTEHM_2018_2855213
crossref_primary_10_55095_CesRadiol2021_034
crossref_primary_10_1093_cercor_bhad178
crossref_primary_10_1016_j_neuroimage_2017_03_055
crossref_primary_10_1016_j_jrp_2021_104064
crossref_primary_10_1002_mrm_28991
crossref_primary_10_1093_cercor_bhz082
crossref_primary_10_1111_ene_16378
crossref_primary_10_1002_mrm_28197
crossref_primary_10_1371_journal_pone_0301132
crossref_primary_10_1016_j_neuroimage_2021_117974
crossref_primary_10_1016_j_nicl_2020_102242
crossref_primary_10_1016_j_radonc_2017_11_033
crossref_primary_10_1016_j_neuroimage_2022_119091
crossref_primary_10_1162_imag_a_00079
crossref_primary_10_1148_radiol_2019182566
crossref_primary_10_1053_j_ro_2022_10_002
crossref_primary_10_1016_j_media_2021_102219
crossref_primary_10_1503_jpn_180022
crossref_primary_10_1002_mrm_26364
crossref_primary_10_1016_j_neuroimage_2017_07_045
crossref_primary_10_1016_j_comppsych_2018_11_014
crossref_primary_10_1007_s11682_020_00338_y
crossref_primary_10_1016_j_pnpbp_2020_109879
crossref_primary_10_1038_s41597_024_02931_y
crossref_primary_10_1002_mrm_27214
crossref_primary_10_1109_TRPMS_2021_3063260
crossref_primary_10_1093_cercor_bhw151
crossref_primary_10_1002_hbm_24771
crossref_primary_10_1016_j_neuroimage_2018_09_060
crossref_primary_10_1038_s41380_023_02195_9
crossref_primary_10_1093_cercor_bhx249
crossref_primary_10_1016_j_neuroimage_2022_119711
crossref_primary_10_3389_fnins_2020_600423
crossref_primary_10_1007_s40708_016_0060_4
crossref_primary_10_12688_f1000research_6209_1
crossref_primary_10_1016_j_tics_2017_09_008
crossref_primary_10_1080_07420528_2024_2301944
crossref_primary_10_3389_fninf_2019_00060
crossref_primary_10_1186_s13229_016_0076_x
crossref_primary_10_1016_j_neuroimage_2021_118488
crossref_primary_10_1002_alz_14161
crossref_primary_10_1002_jmri_26693
crossref_primary_10_1016_j_schres_2023_04_008
crossref_primary_10_1016_j_neuroimage_2017_12_059
crossref_primary_10_1016_j_neuroimage_2015_10_068
crossref_primary_10_1002_hbm_23318
crossref_primary_10_12688_f1000research_6209_2
crossref_primary_10_1001_jamanetworkopen_2023_55901
crossref_primary_10_1162_imag_a_00175
crossref_primary_10_1093_cercor_bhy122
crossref_primary_10_1016_j_neuroimage_2015_12_003
crossref_primary_10_1111_ejn_13835
crossref_primary_10_1590_0004_282x20170072
crossref_primary_10_1038_s41467_017_00908_7
crossref_primary_10_1093_cercor_bhx038
crossref_primary_10_1002_jmri_25959
crossref_primary_10_1016_j_neuroimage_2019_05_051
crossref_primary_10_1093_cercor_bhx154
crossref_primary_10_1016_j_nicl_2021_102695
crossref_primary_10_1002_da_22627
crossref_primary_10_1016_j_neuron_2025_08_026
crossref_primary_10_1007_s00330_016_4730_7
crossref_primary_10_1038_s44220_023_00032_0
crossref_primary_10_1002_hbm_25767
crossref_primary_10_3389_fneur_2018_01055
crossref_primary_10_1038_mp_2016_194
crossref_primary_10_1162_imag_a_00023
crossref_primary_10_1016_j_biopsych_2020_03_022
crossref_primary_10_1016_j_neuroimage_2024_120646
crossref_primary_10_1162_imag_a_00022
crossref_primary_10_1186_s12888_019_2141_4
crossref_primary_10_1097_MAO_0000000000003058
crossref_primary_10_1007_s11065_021_09496_2
crossref_primary_10_1016_j_neuroimage_2022_119178
crossref_primary_10_1111_ner_13380
crossref_primary_10_1007_s11682_021_00582_w
crossref_primary_10_1093_cercor_bhy117
crossref_primary_10_1089_neu_2019_6850
crossref_primary_10_1111_ene_15246
crossref_primary_10_3389_fnhum_2024_1276057
crossref_primary_10_1038_s41598_019_48910_x
crossref_primary_10_1016_j_cortex_2020_11_022
crossref_primary_10_1016_j_neuroimage_2021_117931
crossref_primary_10_1016_j_biopsych_2019_06_021
crossref_primary_10_1016_j_neuroimage_2016_10_027
crossref_primary_10_1002_hbm_25756
crossref_primary_10_1002_hbm_24423
crossref_primary_10_1073_pnas_2418176122
crossref_primary_10_3390_brainsci12070856
crossref_primary_10_1002_alz_14383
crossref_primary_10_1002_mrm_70052
crossref_primary_10_1162_IMAG_a_4
crossref_primary_10_1210_clinem_dgaa903
crossref_primary_10_1002_hbm_70082
crossref_primary_10_1007_s00415_019_09509_4
crossref_primary_10_1093_cercor_bhy266
crossref_primary_10_3389_fnins_2025_1534924
crossref_primary_10_1016_j_bpsc_2016_09_005
crossref_primary_10_1038_s41598_022_05583_3
crossref_primary_10_1016_j_dcn_2017_11_008
crossref_primary_10_1038_s41597_022_01694_8
crossref_primary_10_1080_21678421_2018_1510575
crossref_primary_10_1002_hbm_25705
crossref_primary_10_1016_j_neuroimage_2022_119360
crossref_primary_10_1093_cercor_bhab488
crossref_primary_10_1038_s41598_018_36699_0
crossref_primary_10_1515_revneuro_2018_0096
crossref_primary_10_3389_fnins_2016_00558
crossref_primary_10_1007_s00330_023_10522_5
crossref_primary_10_1093_cercor_bhv301
crossref_primary_10_1089_neu_2017_5124
crossref_primary_10_1016_j_media_2023_103073
crossref_primary_10_3389_fnhum_2020_00143
crossref_primary_10_1016_j_neuroimage_2016_05_005
crossref_primary_10_1016_j_neuroimage_2021_118447
crossref_primary_10_1016_j_jneumeth_2023_109950
crossref_primary_10_1007_s10334_021_00939_8
crossref_primary_10_1093_sleep_zsx009
crossref_primary_10_1371_journal_pone_0133921
crossref_primary_10_1162_imag_a_00016
crossref_primary_10_1016_j_jaac_2018_09_425
crossref_primary_10_1186_s40708_024_00223_0
crossref_primary_10_1093_cercor_bhab015
crossref_primary_10_1038_s41582_020_0314_x
crossref_primary_10_1002_hipo_23251
crossref_primary_10_1038_s41583_024_00882_2
crossref_primary_10_1053_j_ajkd_2023_11_007
crossref_primary_10_1176_appi_ajp_2015_15060753
crossref_primary_10_1016_j_cmpb_2021_106239
crossref_primary_10_1016_j_neuroimage_2017_01_079
crossref_primary_10_3389_fnins_2020_491478
crossref_primary_10_1002_advs_202400061
crossref_primary_10_1016_j_brainresbull_2024_111169
crossref_primary_10_1093_cercor_bhz131
crossref_primary_10_3389_fneur_2017_00232
crossref_primary_10_1016_j_dcn_2022_101085
crossref_primary_10_3389_fnhum_2022_877326
crossref_primary_10_1016_j_neuroimage_2018_09_039
crossref_primary_10_1038_sdata_2015_31
crossref_primary_10_1016_j_neuroimage_2019_116091
crossref_primary_10_1038_s41467_025_57682_0
crossref_primary_10_1073_pnas_2304704121
crossref_primary_10_1017_S0033291716002695
crossref_primary_10_3233_JAD_230030
crossref_primary_10_1002_alz_70227
crossref_primary_10_1002_hbm_23665
crossref_primary_10_1007_s00429_020_02205_4
crossref_primary_10_1111_ane_12997
crossref_primary_10_1038_s41380_019_0420_6
crossref_primary_10_1111_infa_12270
crossref_primary_10_3390_jcm9061715
crossref_primary_10_1093_cercor_bhz126
crossref_primary_10_1093_cercor_bhz007
crossref_primary_10_1002_mrm_29201
crossref_primary_10_1002_jmri_27929
crossref_primary_10_1002_jaba_351
crossref_primary_10_1002_brb3_3505
crossref_primary_10_1038_nn_4501
crossref_primary_10_7717_peerj_5176
crossref_primary_10_1016_j_dcn_2019_100723
crossref_primary_10_1016_j_neurobiolaging_2020_11_004
crossref_primary_10_1109_TMI_2020_3002708
crossref_primary_10_1111_head_14189
crossref_primary_10_1016_j_bpsc_2019_11_007
crossref_primary_10_1038_s41531_021_00257_9
crossref_primary_10_1016_j_neuroimage_2018_02_041
crossref_primary_10_1002_hbm_23653
crossref_primary_10_1038_s41598_020_68118_8
crossref_primary_10_1002_mrm_27705
crossref_primary_10_1016_j_neuroimage_2019_01_029
crossref_primary_10_1002_mrm_26616
crossref_primary_10_1089_brain_2016_0450
crossref_primary_10_1093_cercor_bhac244
crossref_primary_10_3389_fnins_2021_666020
crossref_primary_10_1002_hbm_25957
crossref_primary_10_1016_j_compmedimag_2022_102151
crossref_primary_10_1523_JNEUROSCI_3302_16_2017
crossref_primary_10_1016_j_compmedimag_2024_102391
crossref_primary_10_1016_j_jneumeth_2021_109084
crossref_primary_10_1016_j_biopsych_2024_07_024
crossref_primary_10_1016_j_dcn_2016_12_001
crossref_primary_10_1016_j_neuroimage_2019_01_014
crossref_primary_10_1162_imag_a_00446
crossref_primary_10_1002_aur_1622
crossref_primary_10_1016_j_dcn_2015_12_005
crossref_primary_10_1016_j_neuroimage_2021_118751
crossref_primary_10_1017_S0954579418000342
crossref_primary_10_1016_j_media_2023_102850
crossref_primary_10_1371_journal_pone_0184661
crossref_primary_10_3389_fnins_2023_1146175
crossref_primary_10_1038_npjschz_2016_29
crossref_primary_10_1016_j_jad_2025_02_014
crossref_primary_10_1016_j_neuroimage_2018_01_023
crossref_primary_10_1093_schbul_sbaa097
crossref_primary_10_1186_s13073_017_0496_z
crossref_primary_10_1016_j_nicl_2019_102106
crossref_primary_10_1016_j_nicl_2021_102757
crossref_primary_10_1016_j_neuroimage_2018_01_020
crossref_primary_10_1016_j_neuropsychologia_2019_107136
crossref_primary_10_1073_pnas_1508831112
crossref_primary_10_1177_1754073916679009
crossref_primary_10_1016_j_neuroimage_2016_07_035
crossref_primary_10_1016_j_neuroimage_2020_116842
crossref_primary_10_1016_j_ynirp_2022_100137
crossref_primary_10_1038_s41597_019_0035_4
crossref_primary_10_1002_jmri_29682
crossref_primary_10_1016_j_pscychresns_2023_111707
crossref_primary_10_1093_cercor_bhaa126
crossref_primary_10_1016_j_neuroimage_2020_117012
crossref_primary_10_1016_j_mri_2020_10_007
crossref_primary_10_1016_j_dcn_2017_08_009
crossref_primary_10_1016_j_neuroimage_2023_120176
crossref_primary_10_1016_j_neuroimage_2017_08_025
crossref_primary_10_1002_hbm_23195
crossref_primary_10_1016_j_neuroimage_2023_120173
crossref_primary_10_1017_S1355617717000388
crossref_primary_10_3389_fneur_2016_00147
crossref_primary_10_3389_fnins_2019_01456
crossref_primary_10_1371_journal_pone_0199372
crossref_primary_10_1038_s41398_018_0296_2
crossref_primary_10_1038_s41598_017_09028_0
crossref_primary_10_1002_mrm_29251
crossref_primary_10_1007_s00429_021_02334_4
crossref_primary_10_1016_j_neuroimage_2018_11_006
crossref_primary_10_1371_journal_pbio_3003378
crossref_primary_10_1002_mrm_28723
crossref_primary_10_1016_j_neuroimage_2016_02_034
crossref_primary_10_1371_journal_pone_0254597
crossref_primary_10_1002_hbm_24959
crossref_primary_10_1093_cercor_bhx309
crossref_primary_10_1177_1745691617709589
crossref_primary_10_1016_j_compbiomed_2022_106211
crossref_primary_10_1016_j_cortex_2019_12_022
crossref_primary_10_1016_j_mri_2021_06_010
crossref_primary_10_1016_j_neuroimage_2016_12_002
crossref_primary_10_1162_imag_a_00300
crossref_primary_10_1007_s11042_023_15705_2
crossref_primary_10_1016_j_neuroimage_2021_118174
crossref_primary_10_1109_JBHI_2019_2907189
crossref_primary_10_1016_j_neuroimage_2019_116057
crossref_primary_10_1016_j_nicl_2018_05_030
crossref_primary_10_1016_j_dcn_2021_100997
crossref_primary_10_1016_j_neuroimage_2021_118172
crossref_primary_10_3390_brainsci14010062
crossref_primary_10_1016_j_nic_2017_01_002
crossref_primary_10_1038_nrn_2018_1
crossref_primary_10_1093_cercor_bhz040
crossref_primary_10_1002_nbm_5276
crossref_primary_10_1002_hbm_23180
crossref_primary_10_1016_j_nicl_2015_10_017
crossref_primary_10_3389_fneur_2025_1510115
crossref_primary_10_1002_hbm_70004
crossref_primary_10_1002_mrm_26654
crossref_primary_10_1016_j_nicl_2016_12_030
crossref_primary_10_1007_s00247_016_3677_9
crossref_primary_10_1002_hbm_23612
crossref_primary_10_1002_aur_1535
crossref_primary_10_1002_mpr_1871
crossref_primary_10_1002_hbm_70120
crossref_primary_10_1038_s41593_025_01990_7
Cites_doi 10.2214/ajr.147.6.1271
10.1006/nimg.1998.0396
10.1073/pnas.1317424111
10.1212/WNL.51.4.993
10.1002/mrm.23228
10.1016/j.neuroimage.2013.11.027
10.1148/radiology.216.3.r00au46891
10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
10.1093/biomet/93.3.491
10.1212/01.WNL.0000150542.16969.CC
10.1016/j.neuroimage.2011.12.063
10.1016/j.neuroimage.2010.07.020
10.1016/j.neurobiolaging.2010.11.001
10.1002/mrm.22176
10.1055/s-2004-821318
10.1016/j.neuroimage.2005.03.035
10.1016/j.neuroimage.2005.02.018
10.1016/j.neuroimage.2011.07.044
10.1523/JNEUROSCI.23-08-03295.2003
10.1016/j.neuroimage.2011.10.018
10.1016/j.neuroimage.2007.12.025
10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R
10.1002/mds.23762
10.1016/j.neuroimage.2006.01.039
10.1002/hbm.20500
10.1016/j.neuroimage.2013.05.049
10.1016/j.neuroimage.2012.10.065
10.2217/iim.10.33
10.1016/j.neuroimage.2012.02.084
10.1097/00004728-200105000-00022
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright © 2014 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Feb 15, 2015
2014 Elsevier Inc. All rights reserved. 2014
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: Copyright © 2014 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Feb 15, 2015
– notice: 2014 Elsevier Inc. All rights reserved. 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
7SC
7U5
JQ2
L7M
L~C
L~D
5PM
DOI 10.1016/j.neuroimage.2014.12.006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

MEDLINE - Academic
ProQuest One Psychology
MEDLINE
Engineering Research Database
Technology Research Database
ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 115
ExternalDocumentID PMC4300248
3558540341
25498430
10_1016_j_neuroimage_2014_12_006
S1053811914009975
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: P41-RR014075
– fundername: NINDS NIH HHS
  grantid: R01 NS083534
– fundername: NICHD NIH HHS
  grantid: K99 HD074649
– fundername: NICHD NIH HHS
  grantid: K99-HD074649
– fundername: NIA NIH HHS
  grantid: 2R01-AG016495
– fundername: NIBIB NIH HHS
  grantid: P41 EB015896
– fundername: NIA NIH HHS
  grantid: 5R01-AG008122-23
– fundername: NIMH NIH HHS
  grantid: R21 MH096559
– fundername: NCRR NIH HHS
  grantid: 1S10-RR019307
– fundername: NCI NIH HHS
  grantid: K25 CA181632
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
29N
53G
9DU
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFFHD
AFPKN
AGHFR
AGQPQ
AIGII
AKRLJ
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HMQ
HVGLF
HZ~
OK1
R2-
SEW
SNS
WUQ
XPP
ZMT
AACTN
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
RIG
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
7SC
7U5
JQ2
L7M
L~C
L~D
PUEGO
5PM
ID FETCH-LOGICAL-c665t-ca9ec6f9d657324febdc28aa2deaefce0ec49ebb869fb50c55008933a5e4f6103
IEDL.DBID M7P
ISICitedReferencesCount 349
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000348043100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8119
1095-9572
IngestDate Tue Nov 04 01:57:26 EST 2025
Sat Sep 27 18:55:32 EDT 2025
Tue Oct 07 09:27:42 EDT 2025
Sun Nov 09 12:48:57 EST 2025
Tue Oct 07 06:54:27 EDT 2025
Sun Nov 02 12:06:47 EST 2025
Fri Mar 21 18:56:19 EDT 2025
Sat Nov 29 04:30:37 EST 2025
Tue Nov 18 21:31:37 EST 2025
Tue Oct 14 19:34:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Thickness
MRI
Volume
Cortical gray matter estimates
Bias
Quality control
Spurious effect
Head motion
Language English
License Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c665t-ca9ec6f9d657324febdc28aa2deaefce0ec49ebb869fb50c55008933a5e4f6103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
authors contributed equally
ORCID 0000-0002-2665-9693
OpenAccessLink http://doi.org/10.1016/j.neuroimage.2014.12.006
PMID 25498430
PQID 1645696542
PQPubID 2031077
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4300248
proquest_miscellaneous_1660076868
proquest_miscellaneous_1654689961
proquest_miscellaneous_1652411091
proquest_journals_2051529721
proquest_journals_1645696542
pubmed_primary_25498430
crossref_primary_10_1016_j_neuroimage_2014_12_006
crossref_citationtrail_10_1016_j_neuroimage_2014_12_006
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2014_12_006
PublicationCentury 2000
PublicationDate 2015-02-15
PublicationDateYYYYMMDD 2015-02-15
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2015
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References (bb0085) 2014
Power, Barnes, Snyder, Schlaggar, Petersen (bb0040) 2012; 59
Satterthwaite, Wolf, Loughead (bb0045) 2012; 60
van der Kouwe, Benner, Salat, Fischl (bb0060) 2008; 40
Rosas, Reuter, Doros (bb0165) 2011; 26
Yendiki, Koldewyn, Kakunoori, Kanwisher, Fischl (bb0055) Mar 2014; 88
Gaser (bb0105) 2014
Thesen, Heid, Mueller, Schad (bb0080) Sep 2000; 44
Van Dijk, Sabuncu, Buckner (bb0035) 2012; 59
Zeng, Wang, Fox (bb0050) 2014; 111
Duning, Kloska, Steinstrater, Kugel, Heindel, Knecht (bb0005) 2005; 64
Zaitsev, Dold, Sakas, Hennig, Speck (bb0090) 2006; 31
Benjamini, Krieger, Yekutieli (bb0145) Sep 2006; 93
Reuter, Rosas, Fischl (bb0125) Dec 2010; 53
Bernal-Rusiel, Greve, Reuter, Fischl, Sabuncu (bb0135) 2013; 66
Ashburner, Friston (bb0110) 2005; 26
Mugler, Bao, Mulkern (bb0065) Sep 2000; 216
Reuter, Schmansky, Rosas, Fischl (bb0130) 2012; 61
White, Roddey, Shankaranarayanan (bb0170) Jan 2010; 63
Kempton, Ettinger, Schmechtig (bb0015) 2009; 30
Bartsch, Homola, Biller (bb0020) 2007; 130
Fischl, Sereno, Tootell, Dale (bb0120) 1999; 8
Smith, Nayak (bb0030) 2010; 2
Anderson, Schott, Bartlett, Leung, Miller, Fox (bb0160) Jul 2012; 33
van der Kouwe, Benner, Fischl (bb0070) 2005; 27
Smith, De Stefano, Jenkinson, Matthews (bb0100) 2001; 25
Jack, Petersen, Xu (bb0155) Oct 1998; 51
Jenkinson (bb0095) 1999
Bernal-Rusiel, Reuter, Greve, Fischl, Sabuncu (bb0140) 2013; 81
Resnick, Pham, Kraut, Zonderman, Davatzikos (bb0150) 2003; 23
Dickson, Weavers, Mitchell (bb0010) 2005; 26
Fischl, Sereno, Dale (bb0115) 1999; 9
Bellon, Haacke, Coleman, Sacco, Steiger, Gangarosa (bb0025) 1986; 147
Tisdall, Hess, Reuter, Meintjes, Fischl, van der Kouwe (bb0075) Aug 2012; 68
van der Kouwe (10.1016/j.neuroimage.2014.12.006_bb0060) 2008; 40
Reuter (10.1016/j.neuroimage.2014.12.006_bb0130) 2012; 61
Yendiki (10.1016/j.neuroimage.2014.12.006_bb0055) 2014; 88
Dickson (10.1016/j.neuroimage.2014.12.006_bb0010) 2005; 26
Thesen (10.1016/j.neuroimage.2014.12.006_bb0080) 2000; 44
Anderson (10.1016/j.neuroimage.2014.12.006_bb0160) 2012; 33
Mugler (10.1016/j.neuroimage.2014.12.006_bb0065) 2000; 216
Jack (10.1016/j.neuroimage.2014.12.006_bb0155) 1998; 51
Smith (10.1016/j.neuroimage.2014.12.006_bb0100) 2001; 25
Zaitsev (10.1016/j.neuroimage.2014.12.006_bb0090) 2006; 31
White (10.1016/j.neuroimage.2014.12.006_bb0170) 2010; 63
Satterthwaite (10.1016/j.neuroimage.2014.12.006_bb0045) 2012; 60
Kempton (10.1016/j.neuroimage.2014.12.006_bb0015) 2009; 30
Fischl (10.1016/j.neuroimage.2014.12.006_bb0115) 1999; 9
Bartsch (10.1016/j.neuroimage.2014.12.006_bb0020) 2007; 130
Tisdall (10.1016/j.neuroimage.2014.12.006_bb0075) 2012; 68
Zeng (10.1016/j.neuroimage.2014.12.006_bb0050) 2014; 111
Bernal-Rusiel (10.1016/j.neuroimage.2014.12.006_bb0135) 2013; 66
van der Kouwe (10.1016/j.neuroimage.2014.12.006_bb0070) 2005; 27
Reuter (10.1016/j.neuroimage.2014.12.006_bb0125) 2010; 53
Duning (10.1016/j.neuroimage.2014.12.006_bb0005) 2005; 64
Jenkinson (10.1016/j.neuroimage.2014.12.006_bb0095) 1999
Power (10.1016/j.neuroimage.2014.12.006_bb0040) 2012; 59
Ashburner (10.1016/j.neuroimage.2014.12.006_bb0110) 2005; 26
Rosas (10.1016/j.neuroimage.2014.12.006_bb0165) 2011; 26
Resnick (10.1016/j.neuroimage.2014.12.006_bb0150) 2003; 23
Bellon (10.1016/j.neuroimage.2014.12.006_bb0025) 1986; 147
Gaser (10.1016/j.neuroimage.2014.12.006_bb0105)
Bernal-Rusiel (10.1016/j.neuroimage.2014.12.006_bb0140) 2013; 81
Smith (10.1016/j.neuroimage.2014.12.006_bb0030) 2010; 2
Van Dijk (10.1016/j.neuroimage.2014.12.006_bb0035) 2012; 59
Fischl (10.1016/j.neuroimage.2014.12.006_bb0120) 1999; 8
Benjamini (10.1016/j.neuroimage.2014.12.006_bb0145) 2006; 93
3490763 - AJR Am J Roentgenol. 1986 Dec;147(6):1271-81
22233733 - Neuroimage. 2012 Mar;60(1):623-32
21163551 - Neurobiol Aging. 2012 Jul;33(7):1194-202
9781519 - Neurology. 1998 Oct;51(4):993-9
18242102 - Neuroimage. 2008 Apr 1;40(2):559-69
11351200 - J Comput Assist Tomogr. 2001 May-Jun;25(3):466-75
22430496 - Neuroimage. 2012 Jul 16;61(4):1402-18
21810475 - Neuroimage. 2012 Jan 2;59(1):431-8
15955494 - Neuroimage. 2005 Jul 1;26(3):839-51
9931269 - Neuroimage. 1999 Feb;9(2):195-207
16600642 - Neuroimage. 2006 Jul 1;31(3):1038-50
10975899 - Magn Reson Med. 2000 Sep;44(3):457-65
22019881 - Neuroimage. 2012 Feb 1;59(3):2142-54
20637289 - Neuroimage. 2010 Dec;53(4):1181-96
12716936 - J Neurosci. 2003 Apr 15;23(8):3295-301
24269273 - Neuroimage. 2014 Mar;88:79-90
23702413 - Neuroimage. 2013 Nov 1;81:358-70
15886023 - Neuroimage. 2005 Aug 1;27(1):222-30
15699394 - Neurology. 2005 Feb 8;64(3):548-50
18064587 - Hum Brain Mapp. 2009 Jan;30(1):291-8
24711399 - Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):6058-62
17178742 - Brain. 2007 Jan;130(Pt 1):36-47
23123680 - Neuroimage. 2013 Feb 1;66:249-60
10966728 - Radiology. 2000 Sep;216(3):891-9
16037892 - Int J Sports Med. 2005 Jul-Aug;26(6):481-5
22213578 - Magn Reson Med. 2012 Aug;68(2):389-99
10619420 - Hum Brain Mapp. 1999;8(4):272-84
21611979 - Mov Disord. 2011 Aug 1;26(9):1691-7
20027635 - Magn Reson Med. 2010 Jan;63(1):91-105
References_xml – volume: 26
  start-page: 1691
  year: 2011
  end-page: 1697
  ident: bb0165
  article-title: A tale of two factors: what determines the rate of progression in Huntington's disease? A longitudinal MRI study
  publication-title: Mov. Disord.
– volume: 26
  start-page: 839
  year: 2005
  end-page: 851
  ident: bb0110
  article-title: Unified segmentation
  publication-title: Neuroimage
– volume: 31
  start-page: 1038
  year: 2006
  end-page: 1050
  ident: bb0090
  article-title: Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system
  publication-title: Neuroimage
– volume: 147
  start-page: 1271
  year: 1986
  end-page: 1281
  ident: bb0025
  article-title: MR artifacts: a review
  publication-title: AJR Am. J. Roentgenol.
– volume: 51
  start-page: 993
  year: Oct 1998
  end-page: 999
  ident: bb0155
  article-title: Rate of medial temporal lobe atrophy in typical aging and Alzheimer's disease
  publication-title: Neurology
– volume: 30
  start-page: 291
  year: 2009
  end-page: 298
  ident: bb0015
  article-title: Effects of acute dehydration on brain morphology in healthy humans
  publication-title: Hum. Brain Mapp.
– volume: 25
  start-page: 466
  year: 2001
  end-page: 475
  ident: bb0100
  article-title: Normalized accurate measurement of longitudinal brain change
  publication-title: J. Comput. Assist. Tomogr.
– volume: 9
  start-page: 195
  year: 1999
  end-page: 207
  ident: bb0115
  article-title: Cortical surface-based analysis II: inflation, flattening, and a surface-based coordinate system
  publication-title: Neuroimage
– volume: 88
  start-page: 79
  year: Mar 2014
  end-page: 90
  ident: bb0055
  article-title: Spurious group differences due to head motion in a diffusion MRI study
  publication-title: Neuroimage
– volume: 2
  start-page: 445
  year: 2010
  end-page: 457
  ident: bb0030
  article-title: MRI artifacts and correction strategies
  publication-title: Imaging Med.
– volume: 60
  start-page: 623
  year: 2012
  end-page: 632
  ident: bb0045
  article-title: Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth
  publication-title: Neuroimage
– volume: 61
  start-page: 1402
  year: 2012
  end-page: 1418
  ident: bb0130
  article-title: Within-subject template estimation for unbiased longitudinal image analysis
  publication-title: Neuroimage
– volume: 130
  start-page: 36
  year: 2007
  end-page: 47
  ident: bb0020
  article-title: Manifestations of early brain recovery associated with abstinence from alcoholism
  publication-title: Brain
– volume: 44
  start-page: 457
  year: Sep 2000
  end-page: 465
  ident: bb0080
  article-title: Prospective acquisition correction for head motion with image-based tracking for real-time fMRI
  publication-title: Magn. Reson. Med.
– volume: 26
  start-page: 481
  year: 2005
  end-page: 485
  ident: bb0010
  article-title: The effects of dehydration on brain volume—preliminary results
  publication-title: Int. J. Sports Med.
– volume: 40
  start-page: 559
  year: 2008
  end-page: 569
  ident: bb0060
  article-title: Brain morphometry with multiecho MPRAGE
  publication-title: Neuroimage
– volume: 111
  start-page: 6058
  year: 2014
  end-page: 6062
  ident: bb0050
  article-title: Neurobiological basis of head motion in brain imaging
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– year: 2014
  ident: bb0085
  article-title: Harvard Center for Brain Science “Quality Control”
– volume: 59
  start-page: 431
  year: 2012
  end-page: 438
  ident: bb0035
  article-title: The influence of head motion on intrinsic functional connectivity MRI
  publication-title: Neuroimage
– year: 1999
  ident: bb0095
  article-title: : Oxford Center for Functional Magnetic Resonance Imaging of the Brain (FMRIB)
– volume: 8
  start-page: 272
  year: 1999
  end-page: 284
  ident: bb0120
  article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface
  publication-title: Hum. Brain Mapp.
– volume: 81
  start-page: 358
  year: 2013
  end-page: 370
  ident: bb0140
  article-title: Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data
  publication-title: Neuroimage
– volume: 33
  start-page: 1194
  year: Jul 2012
  end-page: 1202
  ident: bb0160
  article-title: Gray matter atrophy rate as a marker of disease progression in AD
  publication-title: Neurobiol. Aging
– volume: 53
  start-page: 1181
  year: Dec 2010
  end-page: 1196
  ident: bb0125
  article-title: Highly accurate inverse consistent registration: a robust approach
  publication-title: Neuroimage
– volume: 93
  start-page: 491
  year: Sep 2006
  end-page: 507
  ident: bb0145
  article-title: Adaptive linear step-up procedures that control the false discovery rate
  publication-title: Biometrika
– volume: 63
  start-page: 91
  year: Jan 2010
  end-page: 105
  ident: bb0170
  article-title: PROMO: real-time prospective motion correction in MRI using image-based tracking
  publication-title: Magn. Reson. Med.
– volume: 64
  start-page: 548
  year: 2005
  end-page: 550
  ident: bb0005
  article-title: Dehydration confounds the assessment of brain atrophy
  publication-title: Neurology
– volume: 27
  start-page: 222
  year: 2005
  end-page: 230
  ident: bb0070
  article-title: On-line automatic slice positioning for brain MR imaging
  publication-title: Neuroimage
– volume: 216
  start-page: 891
  year: Sep 2000
  end-page: 899
  ident: bb0065
  article-title: Optimized single-slab three-dimensional spin-echo MR imaging of the brain
  publication-title: Radiology
– volume: 66
  start-page: 249
  year: 2013
  end-page: 260
  ident: bb0135
  article-title: Statistical analysis of longitudinal neuroimage data with linear mixed effects models
  publication-title: Neuroimage.
– volume: 59
  start-page: 2142
  year: 2012
  end-page: 2154
  ident: bb0040
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
– volume: 68
  start-page: 389
  year: Aug 2012
  end-page: 399
  ident: bb0075
  article-title: Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI
  publication-title: Magn. Reson. Med.
– volume: 23
  start-page: 3295
  year: 2003
  end-page: 3301
  ident: bb0150
  article-title: Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain
  publication-title: J. Neurosci.
– year: 2014
  ident: bb0105
  article-title: Voxel-based morphometry extension to SPM8
– volume: 147
  start-page: 1271
  issue: 6
  year: 1986
  ident: 10.1016/j.neuroimage.2014.12.006_bb0025
  article-title: MR artifacts: a review
  publication-title: AJR Am. J. Roentgenol.
  doi: 10.2214/ajr.147.6.1271
– volume: 9
  start-page: 195
  issue: 2
  year: 1999
  ident: 10.1016/j.neuroimage.2014.12.006_bb0115
  article-title: Cortical surface-based analysis II: inflation, flattening, and a surface-based coordinate system
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0396
– volume: 111
  start-page: 6058
  issue: 16
  year: 2014
  ident: 10.1016/j.neuroimage.2014.12.006_bb0050
  article-title: Neurobiological basis of head motion in brain imaging
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1317424111
– volume: 51
  start-page: 993
  issue: 4
  year: 1998
  ident: 10.1016/j.neuroimage.2014.12.006_bb0155
  article-title: Rate of medial temporal lobe atrophy in typical aging and Alzheimer's disease
  publication-title: Neurology
  doi: 10.1212/WNL.51.4.993
– volume: 68
  start-page: 389
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2014.12.006_bb0075
  article-title: Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.23228
– volume: 88
  start-page: 79
  year: 2014
  ident: 10.1016/j.neuroimage.2014.12.006_bb0055
  article-title: Spurious group differences due to head motion in a diffusion MRI study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.11.027
– volume: 216
  start-page: 891
  issue: 3
  year: 2000
  ident: 10.1016/j.neuroimage.2014.12.006_bb0065
  article-title: Optimized single-slab three-dimensional spin-echo MR imaging of the brain
  publication-title: Radiology
  doi: 10.1148/radiology.216.3.r00au46891
– ident: 10.1016/j.neuroimage.2014.12.006_bb0105
– volume: 8
  start-page: 272
  issue: 4
  year: 1999
  ident: 10.1016/j.neuroimage.2014.12.006_bb0120
  article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
– volume: 93
  start-page: 491
  issue: 3
  year: 2006
  ident: 10.1016/j.neuroimage.2014.12.006_bb0145
  article-title: Adaptive linear step-up procedures that control the false discovery rate
  publication-title: Biometrika
  doi: 10.1093/biomet/93.3.491
– volume: 64
  start-page: 548
  issue: 3
  year: 2005
  ident: 10.1016/j.neuroimage.2014.12.006_bb0005
  article-title: Dehydration confounds the assessment of brain atrophy
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000150542.16969.CC
– volume: 60
  start-page: 623
  issue: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2014.12.006_bb0045
  article-title: Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.063
– volume: 53
  start-page: 1181
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2014.12.006_bb0125
  article-title: Highly accurate inverse consistent registration: a robust approach
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.07.020
– volume: 33
  start-page: 1194
  issue: 7
  year: 2012
  ident: 10.1016/j.neuroimage.2014.12.006_bb0160
  article-title: Gray matter atrophy rate as a marker of disease progression in AD
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2010.11.001
– year: 1999
  ident: 10.1016/j.neuroimage.2014.12.006_bb0095
– volume: 63
  start-page: 91
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2014.12.006_bb0170
  article-title: PROMO: real-time prospective motion correction in MRI using image-based tracking
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22176
– volume: 26
  start-page: 481
  issue: 6
  year: 2005
  ident: 10.1016/j.neuroimage.2014.12.006_bb0010
  article-title: The effects of dehydration on brain volume—preliminary results
  publication-title: Int. J. Sports Med.
  doi: 10.1055/s-2004-821318
– volume: 27
  start-page: 222
  issue: 1
  year: 2005
  ident: 10.1016/j.neuroimage.2014.12.006_bb0070
  article-title: On-line automatic slice positioning for brain MR imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.03.035
– volume: 26
  start-page: 839
  issue: 3
  year: 2005
  ident: 10.1016/j.neuroimage.2014.12.006_bb0110
  article-title: Unified segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.02.018
– volume: 59
  start-page: 431
  issue: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2014.12.006_bb0035
  article-title: The influence of head motion on intrinsic functional connectivity MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.07.044
– volume: 23
  start-page: 3295
  issue: 8
  year: 2003
  ident: 10.1016/j.neuroimage.2014.12.006_bb0150
  article-title: Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-08-03295.2003
– volume: 130
  start-page: 36
  issue: Pt. 1
  year: 2007
  ident: 10.1016/j.neuroimage.2014.12.006_bb0020
  article-title: Manifestations of early brain recovery associated with abstinence from alcoholism
  publication-title: Brain
– volume: 59
  start-page: 2142
  issue: 3
  year: 2012
  ident: 10.1016/j.neuroimage.2014.12.006_bb0040
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.018
– volume: 40
  start-page: 559
  issue: 2
  year: 2008
  ident: 10.1016/j.neuroimage.2014.12.006_bb0060
  article-title: Brain morphometry with multiecho MPRAGE
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.12.025
– volume: 44
  start-page: 457
  issue: 3
  year: 2000
  ident: 10.1016/j.neuroimage.2014.12.006_bb0080
  article-title: Prospective acquisition correction for head motion with image-based tracking for real-time fMRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R
– volume: 26
  start-page: 1691
  issue: 9
  year: 2011
  ident: 10.1016/j.neuroimage.2014.12.006_bb0165
  article-title: A tale of two factors: what determines the rate of progression in Huntington's disease? A longitudinal MRI study
  publication-title: Mov. Disord.
  doi: 10.1002/mds.23762
– volume: 31
  start-page: 1038
  issue: 3
  year: 2006
  ident: 10.1016/j.neuroimage.2014.12.006_bb0090
  article-title: Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.039
– volume: 30
  start-page: 291
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2014.12.006_bb0015
  article-title: Effects of acute dehydration on brain morphology in healthy humans
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20500
– volume: 81
  start-page: 358
  year: 2013
  ident: 10.1016/j.neuroimage.2014.12.006_bb0140
  article-title: Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.049
– volume: 66
  start-page: 249
  year: 2013
  ident: 10.1016/j.neuroimage.2014.12.006_bb0135
  article-title: Statistical analysis of longitudinal neuroimage data with linear mixed effects models
  publication-title: Neuroimage.
  doi: 10.1016/j.neuroimage.2012.10.065
– volume: 2
  start-page: 445
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2014.12.006_bb0030
  article-title: MRI artifacts and correction strategies
  publication-title: Imaging Med.
  doi: 10.2217/iim.10.33
– volume: 61
  start-page: 1402
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2014.12.006_bb0130
  article-title: Within-subject template estimation for unbiased longitudinal image analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.084
– volume: 25
  start-page: 466
  issue: 3
  year: 2001
  ident: 10.1016/j.neuroimage.2014.12.006_bb0100
  article-title: Normalized accurate measurement of longitudinal brain change
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-200105000-00022
– reference: 23123680 - Neuroimage. 2013 Feb 1;66:249-60
– reference: 24269273 - Neuroimage. 2014 Mar;88:79-90
– reference: 10619420 - Hum Brain Mapp. 1999;8(4):272-84
– reference: 16600642 - Neuroimage. 2006 Jul 1;31(3):1038-50
– reference: 20637289 - Neuroimage. 2010 Dec;53(4):1181-96
– reference: 17178742 - Brain. 2007 Jan;130(Pt 1):36-47
– reference: 22233733 - Neuroimage. 2012 Mar;60(1):623-32
– reference: 22019881 - Neuroimage. 2012 Feb 1;59(3):2142-54
– reference: 21810475 - Neuroimage. 2012 Jan 2;59(1):431-8
– reference: 10966728 - Radiology. 2000 Sep;216(3):891-9
– reference: 3490763 - AJR Am J Roentgenol. 1986 Dec;147(6):1271-81
– reference: 15699394 - Neurology. 2005 Feb 8;64(3):548-50
– reference: 21163551 - Neurobiol Aging. 2012 Jul;33(7):1194-202
– reference: 20027635 - Magn Reson Med. 2010 Jan;63(1):91-105
– reference: 12716936 - J Neurosci. 2003 Apr 15;23(8):3295-301
– reference: 18242102 - Neuroimage. 2008 Apr 1;40(2):559-69
– reference: 9781519 - Neurology. 1998 Oct;51(4):993-9
– reference: 21611979 - Mov Disord. 2011 Aug 1;26(9):1691-7
– reference: 16037892 - Int J Sports Med. 2005 Jul-Aug;26(6):481-5
– reference: 15955494 - Neuroimage. 2005 Jul 1;26(3):839-51
– reference: 11351200 - J Comput Assist Tomogr. 2001 May-Jun;25(3):466-75
– reference: 24711399 - Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):6058-62
– reference: 9931269 - Neuroimage. 1999 Feb;9(2):195-207
– reference: 18064587 - Hum Brain Mapp. 2009 Jan;30(1):291-8
– reference: 10975899 - Magn Reson Med. 2000 Sep;44(3):457-65
– reference: 15886023 - Neuroimage. 2005 Aug 1;27(1):222-30
– reference: 22430496 - Neuroimage. 2012 Jul 16;61(4):1402-18
– reference: 22213578 - Magn Reson Med. 2012 Aug;68(2):389-99
– reference: 23702413 - Neuroimage. 2013 Nov 1;81:358-70
SSID ssj0009148
Score 2.6161633
Snippet Imaging biomarkers derived from magnetic resonance imaging (MRI) data are used to quantify normal development, disease, and the effects of disease-modifying...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107
SubjectTerms Adult
Aging
Algorithms
Atrophy
Bias
Biomarkers
Brain
Brain research
Correlation analysis
Cortex
Cortical gray matter estimates
Estimates
Gray Matter - anatomy & histology
Head
Head motion
Head motions
Head Movements - physiology
Humans
Huntingtons disease
Hydration
Image acquisition
Image Interpretation, Computer-Assisted - methods
Image processing
Image Processing, Computer-Assisted
Imaging
Linear Models
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical services
Movement disorders
MRI
Neuroimaging
Quality Control
Software packages
Spurious effect
Substantia grisea
Thickness
Volume
Title Head motion during MRI acquisition reduces gray matter volume and thickness estimates
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811914009975
https://www.ncbi.nlm.nih.gov/pubmed/25498430
https://www.proquest.com/docview/1645696542
https://www.proquest.com/docview/2051529721
https://www.proquest.com/docview/1652411091
https://www.proquest.com/docview/1654689961
https://www.proquest.com/docview/1660076868
https://pubmed.ncbi.nlm.nih.gov/PMC4300248
Volume 107
WOSCitedRecordID wos000348043100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M7P
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M2M
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1da9swFBVrO8Ze1n0vaxc02KuZZVmy9VS20dLBEkJZIW9CX16zLU6bj8H-fe-V7WTdSijsJWAkBawrXR1LR-cQ8k5yxmzFRZIW1iZ5YXlivPCJkQ7FzWUlTHQt-VIMh-V4rEbthtuipVV2OTEmaj9zuEf-HmC9kArtlY4urxJ0jcLT1dZCY4fsoUoCj9S90UZ0l-XNVTjBk5Ix1TJ5Gn5X1IucTGHWIsErj5uC6Ht0-_L0L_z8m0X5x7J0sv-_L_SYPGoBKf3QjKAn5F6on5IHg_bI_Rk5P4VRQBuzH9pcaqSDs8_UuKvVpCF80Tnqv4YF_TY3v-k0KnbSJu1RU3uKlPofmFIpSnpMEd0-J-cnx18_nSatF0PipBTLxBkVnKyUl6IADFYF611WGpP5YELlQhpcroK1pVSVFamDD58UoBA3IuQVQDT-guzWszq8IpQznxqjUKg-zX1pDS-Usky6AGjD27JHii4E2rVC5eiX8VN3jLTvehM8jcHTLNMQvB5h65aXjVjHHdqoLsq6u4wK6VPDinKHtoddaHU79Rd6E9dbizM01clQM6lH3q6LYU7jQY2pw2yFfyEAWKFk69Y6uYSPZbm1jownrRL69GUzWNf9ghsDZc5T6O0bw3hdAXXHb5bUk4uoPw6tUAnv9fa3PyAPoavi9X8mDsnucr4Kb8h992s5Wcz7ZKcYF_G37JO9j8fD0Rk8DbJBP07ha-YGToo
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKQZQL70eggJHguOp6d-1dHxBCQJWoSYRQK_Vm_FpIIZs2D1D_FL-RmfVuQqGKeumBsx-Sx-OZsT3zfYS8FCljpkx5FOfGRFlu0kg77iItLIKbi5LrmrWknw-HxeGh_LhBfrW1MJhW2drE2lC7icU38h0I67mQSK_05vgkQtYo_F1tKTSCWuz5059wZZu97r2H_X2VJLsf9t91o4ZVILJC8HlktfRWlNIJnkM0UXrjbFJonTivfWl97G0mvTGFkKXhsYUQPkZOes19VkKwkcK8V8jVDG5CSBUxSAYrkF-WhdI7nkYFY7LJHAr5ZDU-5WgMVgITyrL6ERJ5ls53h_-Gu39nbf7hBndv_W8CvE1uNgE3fRtOyB2y4au75PqgSSm4Rw66oOU0kBnRULRJB596VNuTxSgktNEp4tv6Gf0y1ad0XCOS0mDWqa4cxZKBb-gyKEKWjDF6v08OLmVRD8hmNan8I0JT5mKtJQLxx5krjE5zKQ0T1kM05UzRIXm75co2QOzIB_JdtRl3R2qlLAqVRbFEgbJ0CFuOPA5gJBcYI1utUm2xLbgHBR7zAmO3W1VSjWmbqZUenducIGlQgphQHfJi2Qw2Cz-idOUnC5yCQ-CIkLRr-2SigNv42j6i_kkWINOH4XAs5YIPH0WWxiDtM8dm2QFx1c-2VKOvNb46jEKkv8frV_-cbHX3B33V7w33npAbILYa6oDxbbI5ny78U3LN_piPZtNntZGg5PNlH6rfye6qzg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQRUb3qUDBYwEy6hxEjvxAiFEGXXUdjRCVOrO-BUY6GTaeYD6a3wd98bJDIVq1E0XrG1HinNfsc89h5BXImXMlCmP4tyYKMtNGmnHXaSFRXJzUXJdq5Yc5P1-cXwsB2vkV9sLg7DKNibWgdqNLZ6R70BZz4VEeaWdsoFFDHa7b0_PIlSQwpvWVk4jmMi-P_8Jv2_TN71d-Navk6T74dP7vahRGIisEHwWWS29FaV0gudQWZTeOJsUWifOa19aH3ubSW9MIWRpeGyhnI9Rn15zn5VQeKTw3BvkZo6k5TVscLAk_GVZaMPjaVQwJhsUUcCW1VyVwxFEDASXZfWBJGouXZ4a_y19_0Zw_pESu3f_5828R-40hTh9FzznPlnz1QOycdhADR6Soz2wfhpEjmho5qSHH3tU27P5MADd6AR5b_2UfpnoczqqmUppCPdUV45iK8F3TCUUqUxGWNU_IkfX8lKbZL0aV36L0JS5WGuJBP1x5gqj01xKw4T1UGU5U3RI3n5-ZRuCdtQJOVEtEu-bWhqOQsNRLFFgOB3CFitPA0nJFdbI1sJU24QLaUNBJr3C2u3WrFQT8qZqaVOXDicoJpQgV1SHvFwMQyzDCypd-fEcH8GhoESq2pVzMlHAX_rKOaK-YRawp4-Doyz2BQ9EiiyNYbcvuNBiAvKtXxyphl9r3nVYhQyAT1a__QuyAb6kDnr9_afkNuxazYDA-DZZn03m_hm5ZX_MhtPJ8zpeUPL5un3qN0Mqs58
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Head+motion+during+MRI+acquisition+reduces+gray+matter+volume+and+thickness+estimates&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Reuter%2C+Martin&rft.au=Tisdall%2C+M.+Dylan&rft.au=Qureshi%2C+Abid&rft.au=Buckner%2C+Randy+L.&rft.date=2015-02-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=107&rft.spage=107&rft.epage=115&rft_id=info:doi/10.1016%2Fj.neuroimage.2014.12.006&rft.externalDocID=S1053811914009975
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon