Head motion during MRI acquisition reduces gray matter volume and thickness estimates
Imaging biomarkers derived from magnetic resonance imaging (MRI) data are used to quantify normal development, disease, and the effects of disease-modifying therapies. However, motion during image acquisition introduces image artifacts that, in turn, affect derived markers. A systematic effect can b...
Uloženo v:
| Vydáno v: | NeuroImage (Orlando, Fla.) Ročník 107; s. 107 - 115 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Inc
15.02.2015
Elsevier Limited |
| Témata: | |
| ISSN: | 1053-8119, 1095-9572, 1095-9572 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Imaging biomarkers derived from magnetic resonance imaging (MRI) data are used to quantify normal development, disease, and the effects of disease-modifying therapies. However, motion during image acquisition introduces image artifacts that, in turn, affect derived markers. A systematic effect can be problematic since factors of interest like age, disease, and treatment are often correlated with both a structural change and the amount of head motion in the scanner, confounding the ability to distinguish biology from artifact. Here we evaluate the effect of head motion during image acquisition on morphometric estimates of structures in the human brain using several popular image analysis software packages (FreeSurfer 5.3, VBM8 SPM, and FSL Siena 5.0.7). Within-session repeated T1-weighted MRIs were collected on 12 healthy volunteers while performing different motion tasks, including two still scans. We show that volume and thickness estimates of the cortical gray matter are biased by head motion with an average apparent volume loss of roughly 0.7%/mm/min of subject motion. Effects vary across regions and remain significant after excluding scans that fail a rigorous quality check. In view of these results, the interpretation of reported morphometric effects of movement disorders or other conditions with increased motion tendency may need to be revisited: effects may be overestimated when not controlling for head motion. Furthermore, drug studies with hypnotic, sedative, tranquilizing, or neuromuscular-blocking substances may contain spurious “effects” of reduced atrophy or brain growth simply because they affect motion distinct from true effects of the disease or therapeutic process.
•MRI head motion induces a consistent bias in morphometric analysis.•Increased motion generally causes smaller gray matter volume and cortical thickness estimates.•Effects of movement disorders may be severely overestimated when not controlling for head motion.•Drugs that inhibit motion likely provide a spurious effect of reduced atrophy rates.•Exclusion of scans that fail a visual quality check is not sufficient to remove this bias. |
|---|---|
| AbstractList | Imaging biomarkers derived from magnetic resonance imaging (MRI) data are used to quantify normal development, disease, and the effects of disease-modifying therapies. However, motion during image acquisition introduces image artifacts that, in turn, affect derived markers. A systematic effect can be problematic since factors of interest like age, disease, and treatment are often correlated with both a structural change and the amount of head motion in the scanner, confounding the ability to distinguish biology from artifact. Here we evaluate the effect of head motion during image acquisition on morphometric estimates of structures in the human brain using several popular image analysis software packages (FreeSurfer 5.3, VBM8 SPM, and FSL Siena 5.0.7). Within-session repeated T1-weighted MRIs were collected on 12 healthy volunteers while performing different motion tasks, including two still scans. We show that volume and thickness estimates of the cortical gray matter are biased by head motion with an average apparent volume loss of roughly 0.7%/mm/min of subject motion. Effects vary across regions and remain significant after excluding scans that fail a rigorous quality check. In view of these results, the interpretation of reported morphometric effects of movement disorders or other conditions with increased motion tendency may need to be revisited: effects may be overestimated when not controlling for head motion. Furthermore, drug studies with hypnotic, sedative, tranquillizing, or neuromuscular-blocking substances may contain spurious “effects” of reduced atrophy or brain growth simply because they affect motion distinct from true effects of the disease or therapeutic process. Imaging biomarkers derived from magnetic resonance imaging (MRI) data are used to quantify normal development, disease, and the effects of disease-modifying therapies. However, motion during image acquisition introduces image artifacts that, in turn, affect derived markers. A systematic effect can be problematic since factors of interest like age, disease, and treatment are often correlated with both a structural change and the amount of head motion in the scanner, confounding the ability to distinguish biology from artifact. Here we evaluate the effect of head motion during image acquisition on morphometric estimates of structures in the human brain using several popular image analysis software packages (FreeSurfer 5.3, VBM8 SPM, and FSL Siena 5.0.7). Within-session repeated T1-weighted MRIs were collected on 12 healthy volunteers while performing different motion tasks, including two still scans. We show that volume and thickness estimates of the cortical gray matter are biased by head motion with an average apparent volume loss of roughly 0.7%/mm/min of subject motion. Effects vary across regions and remain significant after excluding scans that fail a rigorous quality check. In view of these results, the interpretation of reported morphometric effects of movement disorders or other conditions with increased motion tendency may need to be revisited: effects may be overestimated when not controlling for head motion. Furthermore, drug studies with hypnotic, sedative, tranquilizing, or neuromuscular-blocking substances may contain spurious “effects” of reduced atrophy or brain growth simply because they affect motion distinct from true effects of the disease or therapeutic process. •MRI head motion induces a consistent bias in morphometric analysis.•Increased motion generally causes smaller gray matter volume and cortical thickness estimates.•Effects of movement disorders may be severely overestimated when not controlling for head motion.•Drugs that inhibit motion likely provide a spurious effect of reduced atrophy rates.•Exclusion of scans that fail a visual quality check is not sufficient to remove this bias. Imaging biomarkers derived from magnetic resonance imaging (MRI) data are used to quantify normal development, disease, and the effects of disease-modifying therapies. However, motion during image acquisition introduces image artifacts that, in turn, affect derived markers. A systematic effect can be problematic since factors of interest like age, disease, and treatment are often correlated with both a structural change and the amount of head motion in the scanner, confounding the ability to distinguish biology from artifact. Here we evaluate the effect of head motion during image acquisition on morphometric estimates of structures in the human brain using several popular image analysis software packages (FreeSurfer 5.3, VBM8 SPM, and FSL Siena 5.0.7). Within-session repeated T1-weighted MRIs were collected on 12 healthy volunteers while performing different motion tasks, including two still scans. We show that volume and thickness estimates of the cortical gray matter are biased by head motion with an average apparent volume loss of roughly 0.7%/mm/min of subject motion. Effects vary across regions and remain significant after excluding scans that fail a rigorous quality check. In view of these results, the interpretation of reported morphometric effects of movement disorders or other conditions with increased motion tendency may need to be revisited: effects may be overestimated when not controlling for head motion. Furthermore, drug studies with hypnotic, sedative, tranquilizing, or neuromuscular-blocking substances may contain spurious "effects" of reduced atrophy or brain growth simply because they affect motion distinct from true effects of the disease or therapeutic process.Imaging biomarkers derived from magnetic resonance imaging (MRI) data are used to quantify normal development, disease, and the effects of disease-modifying therapies. However, motion during image acquisition introduces image artifacts that, in turn, affect derived markers. A systematic effect can be problematic since factors of interest like age, disease, and treatment are often correlated with both a structural change and the amount of head motion in the scanner, confounding the ability to distinguish biology from artifact. Here we evaluate the effect of head motion during image acquisition on morphometric estimates of structures in the human brain using several popular image analysis software packages (FreeSurfer 5.3, VBM8 SPM, and FSL Siena 5.0.7). Within-session repeated T1-weighted MRIs were collected on 12 healthy volunteers while performing different motion tasks, including two still scans. We show that volume and thickness estimates of the cortical gray matter are biased by head motion with an average apparent volume loss of roughly 0.7%/mm/min of subject motion. Effects vary across regions and remain significant after excluding scans that fail a rigorous quality check. In view of these results, the interpretation of reported morphometric effects of movement disorders or other conditions with increased motion tendency may need to be revisited: effects may be overestimated when not controlling for head motion. Furthermore, drug studies with hypnotic, sedative, tranquilizing, or neuromuscular-blocking substances may contain spurious "effects" of reduced atrophy or brain growth simply because they affect motion distinct from true effects of the disease or therapeutic process. Imaging biomarkers derived from magnetic resonance imaging (MRI) data are used to quantify normal development, disease, and the effects of disease-modifying therapies. However, motion during image acquisition introduces image artifacts that, in turn, affect derived markers. A systematic effect can be problematic since factors of interest like age, disease, and treatment are often correlated with both a structural change and the amount of head motion in the scanner, confounding the ability to distinguish biology from artifact. Here we evaluate the effect of head motion during image acquisition on morphometric estimates of structures in the human brain using several popular image analysis software packages (FreeSurfer 5.3, VBM8 SPM, and FSL Siena 5.0.7). Within-session repeated T1-weighted MRIs were collected on 12 healthy volunteers while performing different motion tasks, including two still scans. We show that volume and thickness estimates of the cortical gray matter are biased by head motion with an average apparent volume loss of roughly 0.7%/mm/min of subject motion. Effects vary across regions and remain significant after excluding scans that fail a rigorous quality check. In view of these results, the interpretation of reported morphometric effects of movement disorders or other conditions with increased motion tendency may need to be revisited: effects may be overestimated when not controlling for head motion. Furthermore, drug studies with hypnotic, sedative, tranquilizing, or neuromuscular-blocking substances may contain spurious "effects" of reduced atrophy or brain growth simply because they affect motion distinct from true effects of the disease or therapeutic process. |
| Author | Fischl, Bruce Qureshi, Abid Reuter, Martin Tisdall, M. Dylan van der Kouwe, André J.W. Buckner, Randy L. |
| Author_xml | – sequence: 1 givenname: Martin orcidid: 0000-0002-2665-9693 surname: Reuter fullname: Reuter, Martin email: mreuter@nmr.mgh.harvard.edu organization: Massachusetts General Hospital, Department of Neurology, 55 Fruit Street, Boston, MA 02114, USA – sequence: 2 givenname: M. Dylan surname: Tisdall fullname: Tisdall, M. Dylan organization: Massachusetts General Hospital, Department of Radiology, A.A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Suite 2301, Charlestown, MA 02129, USA – sequence: 3 givenname: Abid surname: Qureshi fullname: Qureshi, Abid organization: Massachusetts General Hospital, Department of Neurology, 55 Fruit Street, Boston, MA 02114, USA – sequence: 4 givenname: Randy L. surname: Buckner fullname: Buckner, Randy L. organization: Massachusetts General Hospital, Department of Radiology, A.A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Suite 2301, Charlestown, MA 02129, USA – sequence: 5 givenname: André J.W. surname: van der Kouwe fullname: van der Kouwe, André J.W. organization: Massachusetts General Hospital, Department of Radiology, A.A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Suite 2301, Charlestown, MA 02129, USA – sequence: 6 givenname: Bruce surname: Fischl fullname: Fischl, Bruce organization: Massachusetts General Hospital, Department of Radiology, A.A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Suite 2301, Charlestown, MA 02129, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25498430$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl9vFCEUxYmpsX_0KxgSX3zZERhg4cVommqb1JgY-0wY5s6W7Qy0MLPJfnsZt27VB90nCPw493LuOUVHIQZACFNSUULlu3UVYErRD3YFFSOUV5RVhMhn6IQSLRZaLNnRvBf1QlGqj9FpzmtCiKZcvUDHTHCteE1O0M0l2BYPcfQx4HZKPqzwl29X2LqHyWf_8zhBOznIeJXsFg92HCHhTeynAbANLR5vvbsLkDOGPJaWRsgv0fPO9hlePa5n6ObTxffzy8X1189X5x-vF05KMS6c1eBkp1spljXjHTStY8pa1oKFzgEBxzU0jZK6awRxQhCidF1bAbyTlNRn6P1O935qBmgdhDHZ3tyn0kbammi9-fMm-FuzihtT_k4YV0Xg7aNAig9T6d8MPjvoexsgTtlQKQlZSiUPQQWXSmtJD0EZp2VSM_rmL3QdpxSKaYYRQQXTS_ZPikoupC61WaFe_-7G3oZf0y6A2gEuxZwTdHuEEjMHy6zNU7DMHCxDmSnBenJ6_9T50c7xKL76_hCBDzsBKHnYeEjG9T54Z_s72Jo2-v9L_ADVIvA3 |
| CitedBy_id | crossref_primary_10_1038_s41380_018_0202_6 crossref_primary_10_1016_j_neuroimage_2022_119760 crossref_primary_10_1002_mrm_30385 crossref_primary_10_1016_j_neuroimage_2016_04_029 crossref_primary_10_1016_j_neuroimage_2021_118709 crossref_primary_10_1016_j_ejrad_2020_109384 crossref_primary_10_1371_journal_pone_0236303 crossref_primary_10_3389_fnagi_2022_796110 crossref_primary_10_1016_j_neuroimage_2020_117227 crossref_primary_10_1016_j_neuroimage_2021_118835 crossref_primary_10_1002_hbm_22958 crossref_primary_10_3389_fnhum_2024_1316117 crossref_primary_10_1016_j_neuroimage_2020_117585 crossref_primary_10_1093_cercor_bhab403 crossref_primary_10_3389_fnhum_2022_921505 crossref_primary_10_1073_pnas_1801582115 crossref_primary_10_1016_j_neuroimage_2024_120865 crossref_primary_10_1016_j_neuroimage_2014_12_035 crossref_primary_10_1007_s12021_020_09469_5 crossref_primary_10_1007_s40474_015_0062_6 crossref_primary_10_1016_j_neuroscience_2015_06_031 crossref_primary_10_1007_s10334_025_01246_2 crossref_primary_10_1016_j_media_2023_102942 crossref_primary_10_1016_j_neuroimage_2015_11_054 crossref_primary_10_1016_j_rasd_2019_03_005 crossref_primary_10_1177_02841851231218384 crossref_primary_10_3389_fpsyt_2021_680811 crossref_primary_10_1002_hipo_23189 crossref_primary_10_1016_j_earlhumdev_2017_01_009 crossref_primary_10_1038_srep38366 crossref_primary_10_1016_j_neuroimage_2021_117756 crossref_primary_10_1016_j_neurobiolaging_2021_03_018 crossref_primary_10_1093_cercor_bhx317 crossref_primary_10_1016_j_neuroimage_2016_12_032 crossref_primary_10_1073_pnas_1807983116 crossref_primary_10_1016_j_bandl_2023_105230 crossref_primary_10_1002_hbm_24449 crossref_primary_10_1016_j_dcn_2022_101116 crossref_primary_10_1002_hbm_23911 crossref_primary_10_1016_j_neuroimage_2023_120119 crossref_primary_10_1073_pnas_2001228117 crossref_primary_10_1007_s11682_021_00613_6 crossref_primary_10_1212_WNL_0000000000209829 crossref_primary_10_1016_j_dcn_2020_100902 crossref_primary_10_1186_s13229_022_00489_3 crossref_primary_10_1007_s10802_024_01190_0 crossref_primary_10_1002_hbm_23397 crossref_primary_10_1038_s43856_024_00489_9 crossref_primary_10_1007_s00415_015_7892_3 crossref_primary_10_1016_j_bpsc_2018_03_003 crossref_primary_10_1002_jnr_24831 crossref_primary_10_1016_j_neuroimage_2016_11_005 crossref_primary_10_3389_fneur_2024_1339223 crossref_primary_10_1002_mrm_28649 crossref_primary_10_1016_j_media_2024_103282 crossref_primary_10_1038_s41467_019_13163_9 crossref_primary_10_1093_cercor_bhx229 crossref_primary_10_1002_brb3_1609 crossref_primary_10_1093_cercor_bhac518 crossref_primary_10_7554_eLife_66466 crossref_primary_10_1177_2514183X20974231 crossref_primary_10_1002_hbm_25204 crossref_primary_10_1186_s40708_021_00128_2 crossref_primary_10_3390_info15120748 crossref_primary_10_1002_hbm_24230 crossref_primary_10_1109_JTEHM_2018_2855213 crossref_primary_10_55095_CesRadiol2021_034 crossref_primary_10_1093_cercor_bhad178 crossref_primary_10_1016_j_neuroimage_2017_03_055 crossref_primary_10_1016_j_jrp_2021_104064 crossref_primary_10_1002_mrm_28991 crossref_primary_10_1093_cercor_bhz082 crossref_primary_10_1111_ene_16378 crossref_primary_10_1002_mrm_28197 crossref_primary_10_1371_journal_pone_0301132 crossref_primary_10_1016_j_neuroimage_2021_117974 crossref_primary_10_1016_j_nicl_2020_102242 crossref_primary_10_1016_j_radonc_2017_11_033 crossref_primary_10_1016_j_neuroimage_2022_119091 crossref_primary_10_1162_imag_a_00079 crossref_primary_10_1148_radiol_2019182566 crossref_primary_10_1053_j_ro_2022_10_002 crossref_primary_10_1016_j_media_2021_102219 crossref_primary_10_1503_jpn_180022 crossref_primary_10_1002_mrm_26364 crossref_primary_10_1016_j_neuroimage_2017_07_045 crossref_primary_10_1016_j_comppsych_2018_11_014 crossref_primary_10_1007_s11682_020_00338_y crossref_primary_10_1016_j_pnpbp_2020_109879 crossref_primary_10_1038_s41597_024_02931_y crossref_primary_10_1002_mrm_27214 crossref_primary_10_1109_TRPMS_2021_3063260 crossref_primary_10_1093_cercor_bhw151 crossref_primary_10_1002_hbm_24771 crossref_primary_10_1016_j_neuroimage_2018_09_060 crossref_primary_10_1038_s41380_023_02195_9 crossref_primary_10_1093_cercor_bhx249 crossref_primary_10_1016_j_neuroimage_2022_119711 crossref_primary_10_3389_fnins_2020_600423 crossref_primary_10_1007_s40708_016_0060_4 crossref_primary_10_12688_f1000research_6209_1 crossref_primary_10_1016_j_tics_2017_09_008 crossref_primary_10_1080_07420528_2024_2301944 crossref_primary_10_3389_fninf_2019_00060 crossref_primary_10_1186_s13229_016_0076_x crossref_primary_10_1016_j_neuroimage_2021_118488 crossref_primary_10_1002_alz_14161 crossref_primary_10_1002_jmri_26693 crossref_primary_10_1016_j_schres_2023_04_008 crossref_primary_10_1016_j_neuroimage_2017_12_059 crossref_primary_10_1016_j_neuroimage_2015_10_068 crossref_primary_10_1002_hbm_23318 crossref_primary_10_12688_f1000research_6209_2 crossref_primary_10_1001_jamanetworkopen_2023_55901 crossref_primary_10_1162_imag_a_00175 crossref_primary_10_1093_cercor_bhy122 crossref_primary_10_1016_j_neuroimage_2015_12_003 crossref_primary_10_1111_ejn_13835 crossref_primary_10_1590_0004_282x20170072 crossref_primary_10_1038_s41467_017_00908_7 crossref_primary_10_1093_cercor_bhx038 crossref_primary_10_1002_jmri_25959 crossref_primary_10_1016_j_neuroimage_2019_05_051 crossref_primary_10_1093_cercor_bhx154 crossref_primary_10_1016_j_nicl_2021_102695 crossref_primary_10_1002_da_22627 crossref_primary_10_1016_j_neuron_2025_08_026 crossref_primary_10_1007_s00330_016_4730_7 crossref_primary_10_1038_s44220_023_00032_0 crossref_primary_10_1002_hbm_25767 crossref_primary_10_3389_fneur_2018_01055 crossref_primary_10_1038_mp_2016_194 crossref_primary_10_1162_imag_a_00023 crossref_primary_10_1016_j_biopsych_2020_03_022 crossref_primary_10_1016_j_neuroimage_2024_120646 crossref_primary_10_1162_imag_a_00022 crossref_primary_10_1186_s12888_019_2141_4 crossref_primary_10_1097_MAO_0000000000003058 crossref_primary_10_1007_s11065_021_09496_2 crossref_primary_10_1016_j_neuroimage_2022_119178 crossref_primary_10_1111_ner_13380 crossref_primary_10_1007_s11682_021_00582_w crossref_primary_10_1093_cercor_bhy117 crossref_primary_10_1089_neu_2019_6850 crossref_primary_10_1111_ene_15246 crossref_primary_10_3389_fnhum_2024_1276057 crossref_primary_10_1038_s41598_019_48910_x crossref_primary_10_1016_j_cortex_2020_11_022 crossref_primary_10_1016_j_neuroimage_2021_117931 crossref_primary_10_1016_j_biopsych_2019_06_021 crossref_primary_10_1016_j_neuroimage_2016_10_027 crossref_primary_10_1002_hbm_25756 crossref_primary_10_1002_hbm_24423 crossref_primary_10_1073_pnas_2418176122 crossref_primary_10_3390_brainsci12070856 crossref_primary_10_1002_alz_14383 crossref_primary_10_1002_mrm_70052 crossref_primary_10_1162_IMAG_a_4 crossref_primary_10_1210_clinem_dgaa903 crossref_primary_10_1002_hbm_70082 crossref_primary_10_1007_s00415_019_09509_4 crossref_primary_10_1093_cercor_bhy266 crossref_primary_10_3389_fnins_2025_1534924 crossref_primary_10_1016_j_bpsc_2016_09_005 crossref_primary_10_1038_s41598_022_05583_3 crossref_primary_10_1016_j_dcn_2017_11_008 crossref_primary_10_1038_s41597_022_01694_8 crossref_primary_10_1080_21678421_2018_1510575 crossref_primary_10_1002_hbm_25705 crossref_primary_10_1016_j_neuroimage_2022_119360 crossref_primary_10_1093_cercor_bhab488 crossref_primary_10_1038_s41598_018_36699_0 crossref_primary_10_1515_revneuro_2018_0096 crossref_primary_10_3389_fnins_2016_00558 crossref_primary_10_1007_s00330_023_10522_5 crossref_primary_10_1093_cercor_bhv301 crossref_primary_10_1089_neu_2017_5124 crossref_primary_10_1016_j_media_2023_103073 crossref_primary_10_3389_fnhum_2020_00143 crossref_primary_10_1016_j_neuroimage_2016_05_005 crossref_primary_10_1016_j_neuroimage_2021_118447 crossref_primary_10_1016_j_jneumeth_2023_109950 crossref_primary_10_1007_s10334_021_00939_8 crossref_primary_10_1093_sleep_zsx009 crossref_primary_10_1371_journal_pone_0133921 crossref_primary_10_1162_imag_a_00016 crossref_primary_10_1016_j_jaac_2018_09_425 crossref_primary_10_1186_s40708_024_00223_0 crossref_primary_10_1093_cercor_bhab015 crossref_primary_10_1038_s41582_020_0314_x crossref_primary_10_1002_hipo_23251 crossref_primary_10_1038_s41583_024_00882_2 crossref_primary_10_1053_j_ajkd_2023_11_007 crossref_primary_10_1176_appi_ajp_2015_15060753 crossref_primary_10_1016_j_cmpb_2021_106239 crossref_primary_10_1016_j_neuroimage_2017_01_079 crossref_primary_10_3389_fnins_2020_491478 crossref_primary_10_1002_advs_202400061 crossref_primary_10_1016_j_brainresbull_2024_111169 crossref_primary_10_1093_cercor_bhz131 crossref_primary_10_3389_fneur_2017_00232 crossref_primary_10_1016_j_dcn_2022_101085 crossref_primary_10_3389_fnhum_2022_877326 crossref_primary_10_1016_j_neuroimage_2018_09_039 crossref_primary_10_1038_sdata_2015_31 crossref_primary_10_1016_j_neuroimage_2019_116091 crossref_primary_10_1038_s41467_025_57682_0 crossref_primary_10_1073_pnas_2304704121 crossref_primary_10_1017_S0033291716002695 crossref_primary_10_3233_JAD_230030 crossref_primary_10_1002_alz_70227 crossref_primary_10_1002_hbm_23665 crossref_primary_10_1007_s00429_020_02205_4 crossref_primary_10_1111_ane_12997 crossref_primary_10_1038_s41380_019_0420_6 crossref_primary_10_1111_infa_12270 crossref_primary_10_3390_jcm9061715 crossref_primary_10_1093_cercor_bhz126 crossref_primary_10_1093_cercor_bhz007 crossref_primary_10_1002_mrm_29201 crossref_primary_10_1002_jmri_27929 crossref_primary_10_1002_jaba_351 crossref_primary_10_1002_brb3_3505 crossref_primary_10_1038_nn_4501 crossref_primary_10_7717_peerj_5176 crossref_primary_10_1016_j_dcn_2019_100723 crossref_primary_10_1016_j_neurobiolaging_2020_11_004 crossref_primary_10_1109_TMI_2020_3002708 crossref_primary_10_1111_head_14189 crossref_primary_10_1016_j_bpsc_2019_11_007 crossref_primary_10_1038_s41531_021_00257_9 crossref_primary_10_1016_j_neuroimage_2018_02_041 crossref_primary_10_1002_hbm_23653 crossref_primary_10_1038_s41598_020_68118_8 crossref_primary_10_1002_mrm_27705 crossref_primary_10_1016_j_neuroimage_2019_01_029 crossref_primary_10_1002_mrm_26616 crossref_primary_10_1089_brain_2016_0450 crossref_primary_10_1093_cercor_bhac244 crossref_primary_10_3389_fnins_2021_666020 crossref_primary_10_1002_hbm_25957 crossref_primary_10_1016_j_compmedimag_2022_102151 crossref_primary_10_1523_JNEUROSCI_3302_16_2017 crossref_primary_10_1016_j_compmedimag_2024_102391 crossref_primary_10_1016_j_jneumeth_2021_109084 crossref_primary_10_1016_j_biopsych_2024_07_024 crossref_primary_10_1016_j_dcn_2016_12_001 crossref_primary_10_1016_j_neuroimage_2019_01_014 crossref_primary_10_1162_imag_a_00446 crossref_primary_10_1002_aur_1622 crossref_primary_10_1016_j_dcn_2015_12_005 crossref_primary_10_1016_j_neuroimage_2021_118751 crossref_primary_10_1017_S0954579418000342 crossref_primary_10_1016_j_media_2023_102850 crossref_primary_10_1371_journal_pone_0184661 crossref_primary_10_3389_fnins_2023_1146175 crossref_primary_10_1038_npjschz_2016_29 crossref_primary_10_1016_j_jad_2025_02_014 crossref_primary_10_1016_j_neuroimage_2018_01_023 crossref_primary_10_1093_schbul_sbaa097 crossref_primary_10_1186_s13073_017_0496_z crossref_primary_10_1016_j_nicl_2019_102106 crossref_primary_10_1016_j_nicl_2021_102757 crossref_primary_10_1016_j_neuroimage_2018_01_020 crossref_primary_10_1016_j_neuropsychologia_2019_107136 crossref_primary_10_1073_pnas_1508831112 crossref_primary_10_1177_1754073916679009 crossref_primary_10_1016_j_neuroimage_2016_07_035 crossref_primary_10_1016_j_neuroimage_2020_116842 crossref_primary_10_1016_j_ynirp_2022_100137 crossref_primary_10_1038_s41597_019_0035_4 crossref_primary_10_1002_jmri_29682 crossref_primary_10_1016_j_pscychresns_2023_111707 crossref_primary_10_1093_cercor_bhaa126 crossref_primary_10_1016_j_neuroimage_2020_117012 crossref_primary_10_1016_j_mri_2020_10_007 crossref_primary_10_1016_j_dcn_2017_08_009 crossref_primary_10_1016_j_neuroimage_2023_120176 crossref_primary_10_1016_j_neuroimage_2017_08_025 crossref_primary_10_1002_hbm_23195 crossref_primary_10_1016_j_neuroimage_2023_120173 crossref_primary_10_1017_S1355617717000388 crossref_primary_10_3389_fneur_2016_00147 crossref_primary_10_3389_fnins_2019_01456 crossref_primary_10_1371_journal_pone_0199372 crossref_primary_10_1038_s41398_018_0296_2 crossref_primary_10_1038_s41598_017_09028_0 crossref_primary_10_1002_mrm_29251 crossref_primary_10_1007_s00429_021_02334_4 crossref_primary_10_1016_j_neuroimage_2018_11_006 crossref_primary_10_1371_journal_pbio_3003378 crossref_primary_10_1002_mrm_28723 crossref_primary_10_1016_j_neuroimage_2016_02_034 crossref_primary_10_1371_journal_pone_0254597 crossref_primary_10_1002_hbm_24959 crossref_primary_10_1093_cercor_bhx309 crossref_primary_10_1177_1745691617709589 crossref_primary_10_1016_j_compbiomed_2022_106211 crossref_primary_10_1016_j_cortex_2019_12_022 crossref_primary_10_1016_j_mri_2021_06_010 crossref_primary_10_1016_j_neuroimage_2016_12_002 crossref_primary_10_1162_imag_a_00300 crossref_primary_10_1007_s11042_023_15705_2 crossref_primary_10_1016_j_neuroimage_2021_118174 crossref_primary_10_1109_JBHI_2019_2907189 crossref_primary_10_1016_j_neuroimage_2019_116057 crossref_primary_10_1016_j_nicl_2018_05_030 crossref_primary_10_1016_j_dcn_2021_100997 crossref_primary_10_1016_j_neuroimage_2021_118172 crossref_primary_10_3390_brainsci14010062 crossref_primary_10_1016_j_nic_2017_01_002 crossref_primary_10_1038_nrn_2018_1 crossref_primary_10_1093_cercor_bhz040 crossref_primary_10_1002_nbm_5276 crossref_primary_10_1002_hbm_23180 crossref_primary_10_1016_j_nicl_2015_10_017 crossref_primary_10_3389_fneur_2025_1510115 crossref_primary_10_1002_hbm_70004 crossref_primary_10_1002_mrm_26654 crossref_primary_10_1016_j_nicl_2016_12_030 crossref_primary_10_1007_s00247_016_3677_9 crossref_primary_10_1002_hbm_23612 crossref_primary_10_1002_aur_1535 crossref_primary_10_1002_mpr_1871 crossref_primary_10_1002_hbm_70120 crossref_primary_10_1038_s41593_025_01990_7 |
| Cites_doi | 10.2214/ajr.147.6.1271 10.1006/nimg.1998.0396 10.1073/pnas.1317424111 10.1212/WNL.51.4.993 10.1002/mrm.23228 10.1016/j.neuroimage.2013.11.027 10.1148/radiology.216.3.r00au46891 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 10.1093/biomet/93.3.491 10.1212/01.WNL.0000150542.16969.CC 10.1016/j.neuroimage.2011.12.063 10.1016/j.neuroimage.2010.07.020 10.1016/j.neurobiolaging.2010.11.001 10.1002/mrm.22176 10.1055/s-2004-821318 10.1016/j.neuroimage.2005.03.035 10.1016/j.neuroimage.2005.02.018 10.1016/j.neuroimage.2011.07.044 10.1523/JNEUROSCI.23-08-03295.2003 10.1016/j.neuroimage.2011.10.018 10.1016/j.neuroimage.2007.12.025 10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R 10.1002/mds.23762 10.1016/j.neuroimage.2006.01.039 10.1002/hbm.20500 10.1016/j.neuroimage.2013.05.049 10.1016/j.neuroimage.2012.10.065 10.2217/iim.10.33 10.1016/j.neuroimage.2012.02.084 10.1097/00004728-200105000-00022 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Inc. Copyright © 2014 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Feb 15, 2015 2014 Elsevier Inc. All rights reserved. 2014 |
| Copyright_xml | – notice: 2014 Elsevier Inc. – notice: Copyright © 2014 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Feb 15, 2015 – notice: 2014 Elsevier Inc. All rights reserved. 2014 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 7SC 7U5 JQ2 L7M L~C L~D 5PM |
| DOI | 10.1016/j.neuroimage.2014.12.006 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology MEDLINE Engineering Research Database Technology Research Database ProQuest One Psychology |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| EndPage | 115 |
| ExternalDocumentID | PMC4300248 3558540341 25498430 10_1016_j_neuroimage_2014_12_006 S1053811914009975 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCRR NIH HHS grantid: P41-RR014075 – fundername: NINDS NIH HHS grantid: R01 NS083534 – fundername: NICHD NIH HHS grantid: K99 HD074649 – fundername: NICHD NIH HHS grantid: K99-HD074649 – fundername: NIA NIH HHS grantid: 2R01-AG016495 – fundername: NIBIB NIH HHS grantid: P41 EB015896 – fundername: NIA NIH HHS grantid: 5R01-AG008122-23 – fundername: NIMH NIH HHS grantid: R21 MH096559 – fundername: NCRR NIH HHS grantid: 1S10-RR019307 – fundername: NCI NIH HHS grantid: K25 CA181632 |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- ~HD 29N 53G 9DU AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFFHD AFPKN AGHFR AGQPQ AIGII AKRLJ APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HMQ HVGLF HZ~ OK1 R2- SEW SNS WUQ XPP ZMT AACTN ALIPV CGR CUY CVF ECM EIF NPM RIG 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO 7SC 7U5 JQ2 L7M L~C L~D PUEGO 5PM |
| ID | FETCH-LOGICAL-c665t-ca9ec6f9d657324febdc28aa2deaefce0ec49ebb869fb50c55008933a5e4f6103 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 349 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000348043100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Tue Nov 04 01:57:26 EST 2025 Sat Sep 27 18:55:32 EDT 2025 Tue Oct 07 09:27:42 EDT 2025 Sun Nov 09 12:48:57 EST 2025 Tue Oct 07 06:54:27 EDT 2025 Sun Nov 02 12:06:47 EST 2025 Fri Mar 21 18:56:19 EDT 2025 Sat Nov 29 04:30:37 EST 2025 Tue Nov 18 21:31:37 EST 2025 Tue Oct 14 19:34:58 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Thickness MRI Volume Cortical gray matter estimates Bias Quality control Spurious effect Head motion |
| Language | English |
| License | Copyright © 2014 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c665t-ca9ec6f9d657324febdc28aa2deaefce0ec49ebb869fb50c55008933a5e4f6103 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 authors contributed equally |
| ORCID | 0000-0002-2665-9693 |
| OpenAccessLink | http://doi.org/10.1016/j.neuroimage.2014.12.006 |
| PMID | 25498430 |
| PQID | 1645696542 |
| PQPubID | 2031077 |
| PageCount | 9 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4300248 proquest_miscellaneous_1660076868 proquest_miscellaneous_1654689961 proquest_miscellaneous_1652411091 proquest_journals_2051529721 proquest_journals_1645696542 pubmed_primary_25498430 crossref_primary_10_1016_j_neuroimage_2014_12_006 crossref_citationtrail_10_1016_j_neuroimage_2014_12_006 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2014_12_006 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-02-15 |
| PublicationDateYYYYMMDD | 2015-02-15 |
| PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2015 |
| Publisher | Elsevier Inc Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
| References | (bb0085) 2014 Power, Barnes, Snyder, Schlaggar, Petersen (bb0040) 2012; 59 Satterthwaite, Wolf, Loughead (bb0045) 2012; 60 van der Kouwe, Benner, Salat, Fischl (bb0060) 2008; 40 Rosas, Reuter, Doros (bb0165) 2011; 26 Yendiki, Koldewyn, Kakunoori, Kanwisher, Fischl (bb0055) Mar 2014; 88 Gaser (bb0105) 2014 Thesen, Heid, Mueller, Schad (bb0080) Sep 2000; 44 Van Dijk, Sabuncu, Buckner (bb0035) 2012; 59 Zeng, Wang, Fox (bb0050) 2014; 111 Duning, Kloska, Steinstrater, Kugel, Heindel, Knecht (bb0005) 2005; 64 Zaitsev, Dold, Sakas, Hennig, Speck (bb0090) 2006; 31 Benjamini, Krieger, Yekutieli (bb0145) Sep 2006; 93 Reuter, Rosas, Fischl (bb0125) Dec 2010; 53 Bernal-Rusiel, Greve, Reuter, Fischl, Sabuncu (bb0135) 2013; 66 Ashburner, Friston (bb0110) 2005; 26 Mugler, Bao, Mulkern (bb0065) Sep 2000; 216 Reuter, Schmansky, Rosas, Fischl (bb0130) 2012; 61 White, Roddey, Shankaranarayanan (bb0170) Jan 2010; 63 Kempton, Ettinger, Schmechtig (bb0015) 2009; 30 Bartsch, Homola, Biller (bb0020) 2007; 130 Fischl, Sereno, Tootell, Dale (bb0120) 1999; 8 Smith, Nayak (bb0030) 2010; 2 Anderson, Schott, Bartlett, Leung, Miller, Fox (bb0160) Jul 2012; 33 van der Kouwe, Benner, Fischl (bb0070) 2005; 27 Smith, De Stefano, Jenkinson, Matthews (bb0100) 2001; 25 Jack, Petersen, Xu (bb0155) Oct 1998; 51 Jenkinson (bb0095) 1999 Bernal-Rusiel, Reuter, Greve, Fischl, Sabuncu (bb0140) 2013; 81 Resnick, Pham, Kraut, Zonderman, Davatzikos (bb0150) 2003; 23 Dickson, Weavers, Mitchell (bb0010) 2005; 26 Fischl, Sereno, Dale (bb0115) 1999; 9 Bellon, Haacke, Coleman, Sacco, Steiger, Gangarosa (bb0025) 1986; 147 Tisdall, Hess, Reuter, Meintjes, Fischl, van der Kouwe (bb0075) Aug 2012; 68 van der Kouwe (10.1016/j.neuroimage.2014.12.006_bb0060) 2008; 40 Reuter (10.1016/j.neuroimage.2014.12.006_bb0130) 2012; 61 Yendiki (10.1016/j.neuroimage.2014.12.006_bb0055) 2014; 88 Dickson (10.1016/j.neuroimage.2014.12.006_bb0010) 2005; 26 Thesen (10.1016/j.neuroimage.2014.12.006_bb0080) 2000; 44 Anderson (10.1016/j.neuroimage.2014.12.006_bb0160) 2012; 33 Mugler (10.1016/j.neuroimage.2014.12.006_bb0065) 2000; 216 Jack (10.1016/j.neuroimage.2014.12.006_bb0155) 1998; 51 Smith (10.1016/j.neuroimage.2014.12.006_bb0100) 2001; 25 Zaitsev (10.1016/j.neuroimage.2014.12.006_bb0090) 2006; 31 White (10.1016/j.neuroimage.2014.12.006_bb0170) 2010; 63 Satterthwaite (10.1016/j.neuroimage.2014.12.006_bb0045) 2012; 60 Kempton (10.1016/j.neuroimage.2014.12.006_bb0015) 2009; 30 Fischl (10.1016/j.neuroimage.2014.12.006_bb0115) 1999; 9 Bartsch (10.1016/j.neuroimage.2014.12.006_bb0020) 2007; 130 Tisdall (10.1016/j.neuroimage.2014.12.006_bb0075) 2012; 68 Zeng (10.1016/j.neuroimage.2014.12.006_bb0050) 2014; 111 Bernal-Rusiel (10.1016/j.neuroimage.2014.12.006_bb0135) 2013; 66 van der Kouwe (10.1016/j.neuroimage.2014.12.006_bb0070) 2005; 27 Reuter (10.1016/j.neuroimage.2014.12.006_bb0125) 2010; 53 Duning (10.1016/j.neuroimage.2014.12.006_bb0005) 2005; 64 Jenkinson (10.1016/j.neuroimage.2014.12.006_bb0095) 1999 Power (10.1016/j.neuroimage.2014.12.006_bb0040) 2012; 59 Ashburner (10.1016/j.neuroimage.2014.12.006_bb0110) 2005; 26 Rosas (10.1016/j.neuroimage.2014.12.006_bb0165) 2011; 26 Resnick (10.1016/j.neuroimage.2014.12.006_bb0150) 2003; 23 Bellon (10.1016/j.neuroimage.2014.12.006_bb0025) 1986; 147 Gaser (10.1016/j.neuroimage.2014.12.006_bb0105) Bernal-Rusiel (10.1016/j.neuroimage.2014.12.006_bb0140) 2013; 81 Smith (10.1016/j.neuroimage.2014.12.006_bb0030) 2010; 2 Van Dijk (10.1016/j.neuroimage.2014.12.006_bb0035) 2012; 59 Fischl (10.1016/j.neuroimage.2014.12.006_bb0120) 1999; 8 Benjamini (10.1016/j.neuroimage.2014.12.006_bb0145) 2006; 93 3490763 - AJR Am J Roentgenol. 1986 Dec;147(6):1271-81 22233733 - Neuroimage. 2012 Mar;60(1):623-32 21163551 - Neurobiol Aging. 2012 Jul;33(7):1194-202 9781519 - Neurology. 1998 Oct;51(4):993-9 18242102 - Neuroimage. 2008 Apr 1;40(2):559-69 11351200 - J Comput Assist Tomogr. 2001 May-Jun;25(3):466-75 22430496 - Neuroimage. 2012 Jul 16;61(4):1402-18 21810475 - Neuroimage. 2012 Jan 2;59(1):431-8 15955494 - Neuroimage. 2005 Jul 1;26(3):839-51 9931269 - Neuroimage. 1999 Feb;9(2):195-207 16600642 - Neuroimage. 2006 Jul 1;31(3):1038-50 10975899 - Magn Reson Med. 2000 Sep;44(3):457-65 22019881 - Neuroimage. 2012 Feb 1;59(3):2142-54 20637289 - Neuroimage. 2010 Dec;53(4):1181-96 12716936 - J Neurosci. 2003 Apr 15;23(8):3295-301 24269273 - Neuroimage. 2014 Mar;88:79-90 23702413 - Neuroimage. 2013 Nov 1;81:358-70 15886023 - Neuroimage. 2005 Aug 1;27(1):222-30 15699394 - Neurology. 2005 Feb 8;64(3):548-50 18064587 - Hum Brain Mapp. 2009 Jan;30(1):291-8 24711399 - Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):6058-62 17178742 - Brain. 2007 Jan;130(Pt 1):36-47 23123680 - Neuroimage. 2013 Feb 1;66:249-60 10966728 - Radiology. 2000 Sep;216(3):891-9 16037892 - Int J Sports Med. 2005 Jul-Aug;26(6):481-5 22213578 - Magn Reson Med. 2012 Aug;68(2):389-99 10619420 - Hum Brain Mapp. 1999;8(4):272-84 21611979 - Mov Disord. 2011 Aug 1;26(9):1691-7 20027635 - Magn Reson Med. 2010 Jan;63(1):91-105 |
| References_xml | – volume: 26 start-page: 1691 year: 2011 end-page: 1697 ident: bb0165 article-title: A tale of two factors: what determines the rate of progression in Huntington's disease? A longitudinal MRI study publication-title: Mov. Disord. – volume: 26 start-page: 839 year: 2005 end-page: 851 ident: bb0110 article-title: Unified segmentation publication-title: Neuroimage – volume: 31 start-page: 1038 year: 2006 end-page: 1050 ident: bb0090 article-title: Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system publication-title: Neuroimage – volume: 147 start-page: 1271 year: 1986 end-page: 1281 ident: bb0025 article-title: MR artifacts: a review publication-title: AJR Am. J. Roentgenol. – volume: 51 start-page: 993 year: Oct 1998 end-page: 999 ident: bb0155 article-title: Rate of medial temporal lobe atrophy in typical aging and Alzheimer's disease publication-title: Neurology – volume: 30 start-page: 291 year: 2009 end-page: 298 ident: bb0015 article-title: Effects of acute dehydration on brain morphology in healthy humans publication-title: Hum. Brain Mapp. – volume: 25 start-page: 466 year: 2001 end-page: 475 ident: bb0100 article-title: Normalized accurate measurement of longitudinal brain change publication-title: J. Comput. Assist. Tomogr. – volume: 9 start-page: 195 year: 1999 end-page: 207 ident: bb0115 article-title: Cortical surface-based analysis II: inflation, flattening, and a surface-based coordinate system publication-title: Neuroimage – volume: 88 start-page: 79 year: Mar 2014 end-page: 90 ident: bb0055 article-title: Spurious group differences due to head motion in a diffusion MRI study publication-title: Neuroimage – volume: 2 start-page: 445 year: 2010 end-page: 457 ident: bb0030 article-title: MRI artifacts and correction strategies publication-title: Imaging Med. – volume: 60 start-page: 623 year: 2012 end-page: 632 ident: bb0045 article-title: Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth publication-title: Neuroimage – volume: 61 start-page: 1402 year: 2012 end-page: 1418 ident: bb0130 article-title: Within-subject template estimation for unbiased longitudinal image analysis publication-title: Neuroimage – volume: 130 start-page: 36 year: 2007 end-page: 47 ident: bb0020 article-title: Manifestations of early brain recovery associated with abstinence from alcoholism publication-title: Brain – volume: 44 start-page: 457 year: Sep 2000 end-page: 465 ident: bb0080 article-title: Prospective acquisition correction for head motion with image-based tracking for real-time fMRI publication-title: Magn. Reson. Med. – volume: 26 start-page: 481 year: 2005 end-page: 485 ident: bb0010 article-title: The effects of dehydration on brain volume—preliminary results publication-title: Int. J. Sports Med. – volume: 40 start-page: 559 year: 2008 end-page: 569 ident: bb0060 article-title: Brain morphometry with multiecho MPRAGE publication-title: Neuroimage – volume: 111 start-page: 6058 year: 2014 end-page: 6062 ident: bb0050 article-title: Neurobiological basis of head motion in brain imaging publication-title: Proc. Natl. Acad. Sci. U. S. A. – year: 2014 ident: bb0085 article-title: Harvard Center for Brain Science “Quality Control” – volume: 59 start-page: 431 year: 2012 end-page: 438 ident: bb0035 article-title: The influence of head motion on intrinsic functional connectivity MRI publication-title: Neuroimage – year: 1999 ident: bb0095 article-title: : Oxford Center for Functional Magnetic Resonance Imaging of the Brain (FMRIB) – volume: 8 start-page: 272 year: 1999 end-page: 284 ident: bb0120 article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface publication-title: Hum. Brain Mapp. – volume: 81 start-page: 358 year: 2013 end-page: 370 ident: bb0140 article-title: Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data publication-title: Neuroimage – volume: 33 start-page: 1194 year: Jul 2012 end-page: 1202 ident: bb0160 article-title: Gray matter atrophy rate as a marker of disease progression in AD publication-title: Neurobiol. Aging – volume: 53 start-page: 1181 year: Dec 2010 end-page: 1196 ident: bb0125 article-title: Highly accurate inverse consistent registration: a robust approach publication-title: Neuroimage – volume: 93 start-page: 491 year: Sep 2006 end-page: 507 ident: bb0145 article-title: Adaptive linear step-up procedures that control the false discovery rate publication-title: Biometrika – volume: 63 start-page: 91 year: Jan 2010 end-page: 105 ident: bb0170 article-title: PROMO: real-time prospective motion correction in MRI using image-based tracking publication-title: Magn. Reson. Med. – volume: 64 start-page: 548 year: 2005 end-page: 550 ident: bb0005 article-title: Dehydration confounds the assessment of brain atrophy publication-title: Neurology – volume: 27 start-page: 222 year: 2005 end-page: 230 ident: bb0070 article-title: On-line automatic slice positioning for brain MR imaging publication-title: Neuroimage – volume: 216 start-page: 891 year: Sep 2000 end-page: 899 ident: bb0065 article-title: Optimized single-slab three-dimensional spin-echo MR imaging of the brain publication-title: Radiology – volume: 66 start-page: 249 year: 2013 end-page: 260 ident: bb0135 article-title: Statistical analysis of longitudinal neuroimage data with linear mixed effects models publication-title: Neuroimage. – volume: 59 start-page: 2142 year: 2012 end-page: 2154 ident: bb0040 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: Neuroimage – volume: 68 start-page: 389 year: Aug 2012 end-page: 399 ident: bb0075 article-title: Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI publication-title: Magn. Reson. Med. – volume: 23 start-page: 3295 year: 2003 end-page: 3301 ident: bb0150 article-title: Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain publication-title: J. Neurosci. – year: 2014 ident: bb0105 article-title: Voxel-based morphometry extension to SPM8 – volume: 147 start-page: 1271 issue: 6 year: 1986 ident: 10.1016/j.neuroimage.2014.12.006_bb0025 article-title: MR artifacts: a review publication-title: AJR Am. J. Roentgenol. doi: 10.2214/ajr.147.6.1271 – volume: 9 start-page: 195 issue: 2 year: 1999 ident: 10.1016/j.neuroimage.2014.12.006_bb0115 article-title: Cortical surface-based analysis II: inflation, flattening, and a surface-based coordinate system publication-title: Neuroimage doi: 10.1006/nimg.1998.0396 – volume: 111 start-page: 6058 issue: 16 year: 2014 ident: 10.1016/j.neuroimage.2014.12.006_bb0050 article-title: Neurobiological basis of head motion in brain imaging publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1317424111 – volume: 51 start-page: 993 issue: 4 year: 1998 ident: 10.1016/j.neuroimage.2014.12.006_bb0155 article-title: Rate of medial temporal lobe atrophy in typical aging and Alzheimer's disease publication-title: Neurology doi: 10.1212/WNL.51.4.993 – volume: 68 start-page: 389 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2014.12.006_bb0075 article-title: Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.23228 – volume: 88 start-page: 79 year: 2014 ident: 10.1016/j.neuroimage.2014.12.006_bb0055 article-title: Spurious group differences due to head motion in a diffusion MRI study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.11.027 – volume: 216 start-page: 891 issue: 3 year: 2000 ident: 10.1016/j.neuroimage.2014.12.006_bb0065 article-title: Optimized single-slab three-dimensional spin-echo MR imaging of the brain publication-title: Radiology doi: 10.1148/radiology.216.3.r00au46891 – ident: 10.1016/j.neuroimage.2014.12.006_bb0105 – volume: 8 start-page: 272 issue: 4 year: 1999 ident: 10.1016/j.neuroimage.2014.12.006_bb0120 article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 – volume: 93 start-page: 491 issue: 3 year: 2006 ident: 10.1016/j.neuroimage.2014.12.006_bb0145 article-title: Adaptive linear step-up procedures that control the false discovery rate publication-title: Biometrika doi: 10.1093/biomet/93.3.491 – volume: 64 start-page: 548 issue: 3 year: 2005 ident: 10.1016/j.neuroimage.2014.12.006_bb0005 article-title: Dehydration confounds the assessment of brain atrophy publication-title: Neurology doi: 10.1212/01.WNL.0000150542.16969.CC – volume: 60 start-page: 623 issue: 1 year: 2012 ident: 10.1016/j.neuroimage.2014.12.006_bb0045 article-title: Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.063 – volume: 53 start-page: 1181 issue: 4 year: 2010 ident: 10.1016/j.neuroimage.2014.12.006_bb0125 article-title: Highly accurate inverse consistent registration: a robust approach publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.07.020 – volume: 33 start-page: 1194 issue: 7 year: 2012 ident: 10.1016/j.neuroimage.2014.12.006_bb0160 article-title: Gray matter atrophy rate as a marker of disease progression in AD publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2010.11.001 – year: 1999 ident: 10.1016/j.neuroimage.2014.12.006_bb0095 – volume: 63 start-page: 91 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2014.12.006_bb0170 article-title: PROMO: real-time prospective motion correction in MRI using image-based tracking publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22176 – volume: 26 start-page: 481 issue: 6 year: 2005 ident: 10.1016/j.neuroimage.2014.12.006_bb0010 article-title: The effects of dehydration on brain volume—preliminary results publication-title: Int. J. Sports Med. doi: 10.1055/s-2004-821318 – volume: 27 start-page: 222 issue: 1 year: 2005 ident: 10.1016/j.neuroimage.2014.12.006_bb0070 article-title: On-line automatic slice positioning for brain MR imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.03.035 – volume: 26 start-page: 839 issue: 3 year: 2005 ident: 10.1016/j.neuroimage.2014.12.006_bb0110 article-title: Unified segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.02.018 – volume: 59 start-page: 431 issue: 1 year: 2012 ident: 10.1016/j.neuroimage.2014.12.006_bb0035 article-title: The influence of head motion on intrinsic functional connectivity MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.07.044 – volume: 23 start-page: 3295 issue: 8 year: 2003 ident: 10.1016/j.neuroimage.2014.12.006_bb0150 article-title: Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-08-03295.2003 – volume: 130 start-page: 36 issue: Pt. 1 year: 2007 ident: 10.1016/j.neuroimage.2014.12.006_bb0020 article-title: Manifestations of early brain recovery associated with abstinence from alcoholism publication-title: Brain – volume: 59 start-page: 2142 issue: 3 year: 2012 ident: 10.1016/j.neuroimage.2014.12.006_bb0040 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.018 – volume: 40 start-page: 559 issue: 2 year: 2008 ident: 10.1016/j.neuroimage.2014.12.006_bb0060 article-title: Brain morphometry with multiecho MPRAGE publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.12.025 – volume: 44 start-page: 457 issue: 3 year: 2000 ident: 10.1016/j.neuroimage.2014.12.006_bb0080 article-title: Prospective acquisition correction for head motion with image-based tracking for real-time fMRI publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R – volume: 26 start-page: 1691 issue: 9 year: 2011 ident: 10.1016/j.neuroimage.2014.12.006_bb0165 article-title: A tale of two factors: what determines the rate of progression in Huntington's disease? A longitudinal MRI study publication-title: Mov. Disord. doi: 10.1002/mds.23762 – volume: 31 start-page: 1038 issue: 3 year: 2006 ident: 10.1016/j.neuroimage.2014.12.006_bb0090 article-title: Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.039 – volume: 30 start-page: 291 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2014.12.006_bb0015 article-title: Effects of acute dehydration on brain morphology in healthy humans publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20500 – volume: 81 start-page: 358 year: 2013 ident: 10.1016/j.neuroimage.2014.12.006_bb0140 article-title: Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.049 – volume: 66 start-page: 249 year: 2013 ident: 10.1016/j.neuroimage.2014.12.006_bb0135 article-title: Statistical analysis of longitudinal neuroimage data with linear mixed effects models publication-title: Neuroimage. doi: 10.1016/j.neuroimage.2012.10.065 – volume: 2 start-page: 445 issue: 4 year: 2010 ident: 10.1016/j.neuroimage.2014.12.006_bb0030 article-title: MRI artifacts and correction strategies publication-title: Imaging Med. doi: 10.2217/iim.10.33 – volume: 61 start-page: 1402 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2014.12.006_bb0130 article-title: Within-subject template estimation for unbiased longitudinal image analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.084 – volume: 25 start-page: 466 issue: 3 year: 2001 ident: 10.1016/j.neuroimage.2014.12.006_bb0100 article-title: Normalized accurate measurement of longitudinal brain change publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/00004728-200105000-00022 – reference: 23123680 - Neuroimage. 2013 Feb 1;66:249-60 – reference: 24269273 - Neuroimage. 2014 Mar;88:79-90 – reference: 10619420 - Hum Brain Mapp. 1999;8(4):272-84 – reference: 16600642 - Neuroimage. 2006 Jul 1;31(3):1038-50 – reference: 20637289 - Neuroimage. 2010 Dec;53(4):1181-96 – reference: 17178742 - Brain. 2007 Jan;130(Pt 1):36-47 – reference: 22233733 - Neuroimage. 2012 Mar;60(1):623-32 – reference: 22019881 - Neuroimage. 2012 Feb 1;59(3):2142-54 – reference: 21810475 - Neuroimage. 2012 Jan 2;59(1):431-8 – reference: 10966728 - Radiology. 2000 Sep;216(3):891-9 – reference: 3490763 - AJR Am J Roentgenol. 1986 Dec;147(6):1271-81 – reference: 15699394 - Neurology. 2005 Feb 8;64(3):548-50 – reference: 21163551 - Neurobiol Aging. 2012 Jul;33(7):1194-202 – reference: 20027635 - Magn Reson Med. 2010 Jan;63(1):91-105 – reference: 12716936 - J Neurosci. 2003 Apr 15;23(8):3295-301 – reference: 18242102 - Neuroimage. 2008 Apr 1;40(2):559-69 – reference: 9781519 - Neurology. 1998 Oct;51(4):993-9 – reference: 21611979 - Mov Disord. 2011 Aug 1;26(9):1691-7 – reference: 16037892 - Int J Sports Med. 2005 Jul-Aug;26(6):481-5 – reference: 15955494 - Neuroimage. 2005 Jul 1;26(3):839-51 – reference: 11351200 - J Comput Assist Tomogr. 2001 May-Jun;25(3):466-75 – reference: 24711399 - Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):6058-62 – reference: 9931269 - Neuroimage. 1999 Feb;9(2):195-207 – reference: 18064587 - Hum Brain Mapp. 2009 Jan;30(1):291-8 – reference: 10975899 - Magn Reson Med. 2000 Sep;44(3):457-65 – reference: 15886023 - Neuroimage. 2005 Aug 1;27(1):222-30 – reference: 22430496 - Neuroimage. 2012 Jul 16;61(4):1402-18 – reference: 22213578 - Magn Reson Med. 2012 Aug;68(2):389-99 – reference: 23702413 - Neuroimage. 2013 Nov 1;81:358-70 |
| SSID | ssj0009148 |
| Score | 2.6161633 |
| Snippet | Imaging biomarkers derived from magnetic resonance imaging (MRI) data are used to quantify normal development, disease, and the effects of disease-modifying... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 107 |
| SubjectTerms | Adult Aging Algorithms Atrophy Bias Biomarkers Brain Brain research Correlation analysis Cortex Cortical gray matter estimates Estimates Gray Matter - anatomy & histology Head Head motion Head motions Head Movements - physiology Humans Huntingtons disease Hydration Image acquisition Image Interpretation, Computer-Assisted - methods Image processing Image Processing, Computer-Assisted Imaging Linear Models Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical services Movement disorders MRI Neuroimaging Quality Control Software packages Spurious effect Substantia grisea Thickness Volume |
| Title | Head motion during MRI acquisition reduces gray matter volume and thickness estimates |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811914009975 https://www.ncbi.nlm.nih.gov/pubmed/25498430 https://www.proquest.com/docview/1645696542 https://www.proquest.com/docview/2051529721 https://www.proquest.com/docview/1652411091 https://www.proquest.com/docview/1654689961 https://www.proquest.com/docview/1660076868 https://pubmed.ncbi.nlm.nih.gov/PMC4300248 |
| Volume | 107 |
| WOSCitedRecordID | wos000348043100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M7P dateStart: 19980501 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M2M dateStart: 20020801 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1da9swFBVrO8Ze1n0vaxc02KuZZVmy9VS20dLBEkJZIW9CX16zLU6bj8H-fe-V7WTdSijsJWAkBawrXR1LR-cQ8k5yxmzFRZIW1iZ5YXlivPCJkQ7FzWUlTHQt-VIMh-V4rEbthtuipVV2OTEmaj9zuEf-HmC9kArtlY4urxJ0jcLT1dZCY4fsoUoCj9S90UZ0l-XNVTjBk5Ix1TJ5Gn5X1IucTGHWIsErj5uC6Ht0-_L0L_z8m0X5x7J0sv-_L_SYPGoBKf3QjKAn5F6on5IHg_bI_Rk5P4VRQBuzH9pcaqSDs8_UuKvVpCF80Tnqv4YF_TY3v-k0KnbSJu1RU3uKlPofmFIpSnpMEd0-J-cnx18_nSatF0PipBTLxBkVnKyUl6IADFYF611WGpP5YELlQhpcroK1pVSVFamDD58UoBA3IuQVQDT-guzWszq8IpQznxqjUKg-zX1pDS-Usky6AGjD27JHii4E2rVC5eiX8VN3jLTvehM8jcHTLNMQvB5h65aXjVjHHdqoLsq6u4wK6VPDinKHtoddaHU79Rd6E9dbizM01clQM6lH3q6LYU7jQY2pw2yFfyEAWKFk69Y6uYSPZbm1jownrRL69GUzWNf9ghsDZc5T6O0bw3hdAXXHb5bUk4uoPw6tUAnv9fa3PyAPoavi9X8mDsnucr4Kb8h992s5Wcz7ZKcYF_G37JO9j8fD0Rk8DbJBP07ha-YGToo |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKQZQL70eggJHguOp6d-1dHxBCQJWoSYRQK_Vm_FpIIZs2D1D_FL-RmfVuQqGKeumBsx-Sx-OZsT3zfYS8FCljpkx5FOfGRFlu0kg77iItLIKbi5LrmrWknw-HxeGh_LhBfrW1MJhW2drE2lC7icU38h0I67mQSK_05vgkQtYo_F1tKTSCWuz5059wZZu97r2H_X2VJLsf9t91o4ZVILJC8HlktfRWlNIJnkM0UXrjbFJonTivfWl97G0mvTGFkKXhsYUQPkZOes19VkKwkcK8V8jVDG5CSBUxSAYrkF-WhdI7nkYFY7LJHAr5ZDU-5WgMVgITyrL6ERJ5ls53h_-Gu39nbf7hBndv_W8CvE1uNgE3fRtOyB2y4au75PqgSSm4Rw66oOU0kBnRULRJB596VNuTxSgktNEp4tv6Gf0y1ad0XCOS0mDWqa4cxZKBb-gyKEKWjDF6v08OLmVRD8hmNan8I0JT5mKtJQLxx5krjE5zKQ0T1kM05UzRIXm75co2QOzIB_JdtRl3R2qlLAqVRbFEgbJ0CFuOPA5gJBcYI1utUm2xLbgHBR7zAmO3W1VSjWmbqZUenducIGlQgphQHfJi2Qw2Cz-idOUnC5yCQ-CIkLRr-2SigNv42j6i_kkWINOH4XAs5YIPH0WWxiDtM8dm2QFx1c-2VKOvNb46jEKkv8frV_-cbHX3B33V7w33npAbILYa6oDxbbI5ny78U3LN_piPZtNntZGg5PNlH6rfye6qzg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQRUb3qUDBYwEy6hxEjvxAiFEGXXUdjRCVOrO-BUY6GTaeYD6a3wd98bJDIVq1E0XrG1HinNfsc89h5BXImXMlCmP4tyYKMtNGmnHXaSFRXJzUXJdq5Yc5P1-cXwsB2vkV9sLg7DKNibWgdqNLZ6R70BZz4VEeaWdsoFFDHa7b0_PIlSQwpvWVk4jmMi-P_8Jv2_TN71d-Navk6T74dP7vahRGIisEHwWWS29FaV0gudQWZTeOJsUWifOa19aH3ubSW9MIWRpeGyhnI9Rn15zn5VQeKTw3BvkZo6k5TVscLAk_GVZaMPjaVQwJhsUUcCW1VyVwxFEDASXZfWBJGouXZ4a_y19_0Zw_pESu3f_5828R-40hTh9FzznPlnz1QOycdhADR6Soz2wfhpEjmho5qSHH3tU27P5MADd6AR5b_2UfpnoczqqmUppCPdUV45iK8F3TCUUqUxGWNU_IkfX8lKbZL0aV36L0JS5WGuJBP1x5gqj01xKw4T1UGU5U3RI3n5-ZRuCdtQJOVEtEu-bWhqOQsNRLFFgOB3CFitPA0nJFdbI1sJU24QLaUNBJr3C2u3WrFQT8qZqaVOXDicoJpQgV1SHvFwMQyzDCypd-fEcH8GhoESq2pVzMlHAX_rKOaK-YRawp4-Doyz2BQ9EiiyNYbcvuNBiAvKtXxyphl9r3nVYhQyAT1a__QuyAb6kDnr9_afkNuxazYDA-DZZn03m_hm5ZX_MhtPJ8zpeUPL5un3qN0Mqs58 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Head+motion+during+MRI+acquisition+reduces+gray+matter+volume+and+thickness+estimates&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Reuter%2C+Martin&rft.au=Tisdall%2C+M.+Dylan&rft.au=Qureshi%2C+Abid&rft.au=Buckner%2C+Randy+L.&rft.date=2015-02-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=107&rft.spage=107&rft.epage=115&rft_id=info:doi/10.1016%2Fj.neuroimage.2014.12.006&rft.externalDocID=S1053811914009975 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |