Effective radiative forcing and adjustments in CMIP6 models

The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric chemistry and physics Jg. 20; H. 16; S. 9591 - 9618
Hauptverfasser: Kramer, Ryan J., Myhre, Gunnar, Alterskjær, Kari, Sima, Adriana, Boucher, Olivier, Dufresne, Jean-Louis, Naba, Pierre, Michou, Martine, Yukimoto, Seiji, Cole, Jason, Paynter, David, Shiogama, Hideo, O’Connor, Fiona M., Robertson, Eddy, Wiltshire, Andy, Andrews, Timothy, Hannay, Cécile, Miller, Ron, Nazarenko, Larissa, Kirkevåg, Alf, Olivié, Dirk, Fiedler, Stephanie, Lewinschal, Anna, Mackallah, Chloe, Dix, Martin, Pincus, Robert, Forster, Piers M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Goddard Space Flight Center European Geosciences Union / Copernicus Publications 17.08.2020
Copernicus GmbH
European Geosciences Union
Copernicus Publications, EGU
Copernicus Publications
Schlagworte:
ISSN:1680-7316, 1680-7324, 1680-7324
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (±0.23) W/sq. m, comprised of 1.81 (±0.09) W/sq. m from CO2, 1.08 (± 0.21) W/sq. m from other well-mixed greenhouse gases, −1.01 (± 0.23) W/sq. m from aerosols and −0.09 (±0.13) W/sq. m from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W/sq. m. The majority of the remaining 0.21 W/sq. m is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol–cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37 W/sq. m, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4×CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming.
AbstractList The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 13 contemporary climate models that are participating in CMIP6 and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global mean anthropogenic forcing relative to pre-industrial (1850) from climate models stands at 1.97 (± 0.26) W m−2, comprised of 1.80 (± 0.11) W m−2 from CO2, 1.07 (± 0.21) W m−2 from other well-mixed greenhouse gases, −1.04 (± 0.23) W m−2 from aerosols and −0.08 (± 0.14) W m−2 from land use change. Quoted uncertainties are one standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m−2. The majority of the remaining 0.17 W m−2 is likely to be from ozone. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the traditional stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing, but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37 W m−2, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4 × CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with equilibrium climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing. The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in CMIP6 and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global mean anthropogenic forcing relative to pre-industrial (1850) from climate models stands at 2.00 (± 0.23) W m −2 , comprised of 1.81 (± 0.09) W m −2 from CO 2 , 5 1.08 (± 0.21) W m −2 from other well-mixed greenhouse gases, −1.01 (± 0.23) W m −2 from aerosols and −0.09 (± 0.13) W 1 m −2 from land use change. Quoted uncertainties are one standard deviation across model best estimates, and 90% confidence in the reported forcings, due to internal variability, is typically within 0.1 W m −2. The majority of the remaining 0.21 W m −2 is likely to be from ozone. In most cases, the largest contributors to the spread in ERF is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol-cloud interactions to aerosol forcing. As determined in previous 10 studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing, but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37 W m −2 , exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4×CO 2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread 15 in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing, and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming.
The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (±0.23) W m.sup.-2, comprised of 1.81 (±0.09) W m.sup.-2 from CO.sub.2, 1.08 (± 0.21) W m.sup.-2 from other well-mixed greenhouse gases, -1.01 (± 0.23) W m.sup.-2 from aerosols and -0.09 (±0.13) W m.sup.-2 from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m.sup.-2 . The majority of the remaining 0.21 W m.sup.-2 is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol-cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from -0.63 to -1.37 W m.sup.-2, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4xCO.sub.2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming.
The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (±0.23) W m-2, comprised of 1.81 (±0.09) W m-2 from CO2, 1.08 (± 0.21) W m-2 from other well-mixed greenhouse gases, -1.01 (± 0.23) W m-2 from aerosols and -0.09 (±0.13) W m-2 from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m-2. The majority of the remaining 0.21 W m-2 is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol–cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from -0.63 to -1.37 W m-2, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4×CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming.
The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (±0.23) W/sq. m, comprised of 1.81 (±0.09) W/sq. m from CO2, 1.08 (± 0.21) W/sq. m from other well-mixed greenhouse gases, −1.01 (± 0.23) W/sq. m from aerosols and −0.09 (±0.13) W/sq. m from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W/sq. m. The majority of the remaining 0.21 W/sq. m is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol–cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37 W/sq. m, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4×CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming.
The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (+/- 0.23) W m(-2), comprised of 1.81 (+/- 0.09) Wm(-2) from CO2, 1.08 (+/- 0.21) Wm(-2) from other well-mixed greenhouse gases, -1.01 (+/- 0.23) W m(-2) from aerosols and -0.09 (+/- 0.13) W m(-2) from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m(-2). The majority of the remaining 0.21 W m(-2) is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol-cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from -0.63 to -1.37 W m(-2), exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4 x CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming.
The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 ( ±0.23 ) W m −2 , comprised of 1.81 ( ±0.09 ) W m −2 from CO2 , 1.08 ( ± 0.21) W m −2 from other well-mixed greenhouse gases, −1.01 ( ± 0.23) W m −2 from aerosols and −0.09 ( ±0.13 ) W m −2 from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m −2 . The majority of the remaining 0.21  W m −2 is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol–cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37  W m −2 , exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4×CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming.
The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (±0.23) W m−2, comprised of 1.81 (±0.09) W m−2 from CO2, 1.08 (± 0.21) W m−2 from other well-mixed greenhouse gases, −1.01 (± 0.23) W m−2 from aerosols and −0.09 (±0.13) W m−2 from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m−2. The majority of the remaining 0.21 W m−2 is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol–cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37 W m−2, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4×CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming.
Audience PUBLIC
Academic
Author Olivié, Dirk
Myhre, Gunnar
Wiltshire, Andy
Lewinschal, Anna
Paynter, David
Shiogama, Hideo
Cole, Jason
Miller, Ron
Pincus, Robert
Sima, Adriana
O’Connor, Fiona M.
Fiedler, Stephanie
Forster, Piers M.
Dix, Martin
Boucher, Olivier
Nazarenko, Larissa
Robertson, Eddy
Dufresne, Jean-Louis
Andrews, Timothy
Alterskjær, Kari
Kramer, Ryan J.
Hannay, Cécile
Mackallah, Chloe
Naba, Pierre
Kirkevåg, Alf
Yukimoto, Seiji
Michou, Martine
Author_xml – sequence: 1
  givenname: Christopher J. Smith
  orcidid: 0000-0003-0599-4633
  organization: University of Leeds
– sequence: 2
  givenname: Ryan J.
  orcidid: 0000-0002-9377-0674
  surname: Kramer
  fullname: Kramer, Ryan J.
  organization: Universities Space Research Association
– sequence: 3
  givenname: Gunnar
  orcidid: 0000-0002-4309-476X
  surname: Myhre
  fullname: Myhre, Gunnar
  organization: Center for International Climate and Environmental Research
– sequence: 4
  givenname: Kari
  orcidid: 0000-0003-4650-1102
  surname: Alterskjær
  fullname: Alterskjær, Kari
  organization: Center for International Climate and Environmental Research
– sequence: 5
  givenname: William Collins
  orcidid: 0000-0002-7419-0850
  organization: University of Reading
– sequence: 6
  givenname: Adriana
  orcidid: 0000-0002-1364-1988
  surname: Sima
  fullname: Sima, Adriana
  organization: Sorbonne University
– sequence: 7
  givenname: Olivier
  orcidid: 0000-0003-2328-5769
  surname: Boucher
  fullname: Boucher, Olivier
  organization: Institut Pierre-Simon Laplace
– sequence: 8
  givenname: Jean-Louis
  orcidid: 0000-0003-4764-9600
  surname: Dufresne
  fullname: Dufresne, Jean-Louis
  organization: Laboratoire de Météorologie Dynamique
– sequence: 9
  givenname: Pierre
  surname: Naba
  fullname: Naba, Pierre
  organization: Centre National de Recherches Météorologiques
– sequence: 10
  givenname: Martine
  surname: Michou
  fullname: Michou, Martine
  organization: Centre National de Recherches Météorologiques
– sequence: 11
  givenname: Seiji
  orcidid: 0000-0002-0415-1661
  surname: Yukimoto
  fullname: Yukimoto, Seiji
  organization: Meteorological Research Institute
– sequence: 12
  givenname: Jason
  orcidid: 0000-0003-0450-2748
  surname: Cole
  fullname: Cole, Jason
  organization: Environment Canada
– sequence: 13
  givenname: David
  orcidid: 0000-0002-7092-241X
  surname: Paynter
  fullname: Paynter, David
  organization: Geophysical Fluid Dynamics Laboratory
– sequence: 14
  givenname: Hideo
  surname: Shiogama
  fullname: Shiogama, Hideo
  organization: National Institute for Environmental Studies
– sequence: 15
  givenname: Fiona M.
  surname: O’Connor
  fullname: O’Connor, Fiona M.
  organization: Met Office
– sequence: 16
  givenname: Eddy
  surname: Robertson
  fullname: Robertson, Eddy
  organization: Met Office
– sequence: 17
  givenname: Andy
  surname: Wiltshire
  fullname: Wiltshire, Andy
  organization: Met Office
– sequence: 18
  givenname: Timothy
  surname: Andrews
  fullname: Andrews, Timothy
  organization: Met Office
– sequence: 19
  givenname: Cécile
  surname: Hannay
  fullname: Hannay, Cécile
  organization: National Center for Atmospheric Research
– sequence: 20
  givenname: Ron
  orcidid: 0000-0003-2122-0443
  surname: Miller
  fullname: Miller, Ron
  organization: Goddard Institute for Space Studies
– sequence: 21
  givenname: Larissa
  surname: Nazarenko
  fullname: Nazarenko, Larissa
  organization: Columbia University
– sequence: 22
  givenname: Alf
  orcidid: 0000-0002-3691-554X
  surname: Kirkevåg
  fullname: Kirkevåg, Alf
  organization: Norwegian Meteorological Institute
– sequence: 23
  givenname: Dirk
  surname: Olivié
  fullname: Olivié, Dirk
  organization: Norwegian Meteorological Institute
– sequence: 24
  givenname: Stephanie
  orcidid: 0000-0001-8898-9949
  surname: Fiedler
  fullname: Fiedler, Stephanie
  organization: University of Cologne
– sequence: 25
  givenname: Anna
  surname: Lewinschal
  fullname: Lewinschal, Anna
  organization: Stockholm University
– sequence: 26
  givenname: Chloe
  surname: Mackallah
  fullname: Mackallah, Chloe
  organization: Commonwealth Scientific and Industrial Research Organisation
– sequence: 27
  givenname: Martin
  surname: Dix
  fullname: Dix, Martin
  organization: Commonwealth Scientific and Industrial Research Organisation
– sequence: 28
  givenname: Robert
  orcidid: 0000-0002-0016-3470
  surname: Pincus
  fullname: Pincus, Robert
  organization: University of Colorado Boulder
– sequence: 29
  givenname: Piers M.
  surname: Forster
  fullname: Forster, Piers M.
  organization: University of Leeds
BackLink https://hal.science/hal-02913575$$DView record in HAL
https://www.osti.gov/biblio/1647673$$D View this record in Osti.gov
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-185355$$DView record from Swedish Publication Index (Stockholms universitet)
BookMark eNp9kktvEzEUhUeoSLSFPQsWI1hVYorfHotVFAqNFATitbXu2J7UUTJObU-Bf4-T4aEghLy41tV3jq-vzll1MoTBVdVjjC45VuwFmF1DUKO4wqUSdK86xaJFjaSEnfy-Y_GgOktpjRDhCLPT6uVV3zuT_Z2rI1gPh1sfovHDqobB1mDXY8pbN-RU-6Gev128F_U2WLdJD6v7PWySe_SznlefX199ml83y3dvFvPZsjFC8NwYLgyhLUiglIBwLaMIpDIC9bJjVMmWSmddGQf32HCkhMVKASDXYWmRpefVYvK1AdZ6F_0W4ncdwOtDI8SVhpi92TitmJXYdLxvmWC0p53AnXOUckxFS5wqXs8nr_TV7cbuyO2V_zI7uKVR45ZTzgv-dMJDyl4n47MzNyYMQ9mZxoJJIWmBLiboBjZHhtezpd73EFGYcsnvcGGfTewuhtvRpazXYYxDWZ8mjDIqOEP8D7WC8ik_9CFHMFufjJ4JSiRvyxILdfkPqhzrtr4M6Xpf-keCiyNBYbL7llcwpqQXHz8cs2JiTQwpRdfr8vkSjyKJ4DcaI73PnS650wTpfe70PndFiP4S_lrJfyRPJskACXR5IB36HCFRxqE_ALQK3pk
CitedBy_id crossref_primary_10_5194_acp_20_16023_2020
crossref_primary_10_5194_acp_21_14941_2021
crossref_primary_10_1029_2020JD033622
crossref_primary_10_5194_esd_13_1215_2022
crossref_primary_10_5194_acp_21_853_2021
crossref_primary_10_1007_s43621_025_00945_z
crossref_primary_10_5194_acp_24_11207_2024
crossref_primary_10_1126_sciadv_adv5013
crossref_primary_10_5194_esd_12_581_2021
crossref_primary_10_5194_acp_21_5821_2021
crossref_primary_10_1007_s00382_023_06710_0
crossref_primary_10_1088_2752_5295_ace4e8
crossref_primary_10_1038_s41612_024_00648_8
crossref_primary_10_1016_j_still_2025_106804
crossref_primary_10_1038_s41467_024_50406_w
crossref_primary_10_3389_feart_2022_1018661
crossref_primary_10_1029_2020JD034145
crossref_primary_10_5194_acp_25_1477_2025
crossref_primary_10_1093_pnasnexus_pgad097
crossref_primary_10_1371_journal_pclm_0000295
crossref_primary_10_1175_JCLI_D_19_0991_1
crossref_primary_10_1073_pnas_2425445122
crossref_primary_10_1016_j_jafr_2025_101919
crossref_primary_10_1029_2020GL087141
crossref_primary_10_1029_2021JD036251
crossref_primary_10_5194_acp_24_13361_2024
crossref_primary_10_5194_gmd_18_4899_2025
crossref_primary_10_1007_s00376_021_1119_6
crossref_primary_10_1088_1748_9326_ad9ec5
crossref_primary_10_1038_s43247_025_02491_y
crossref_primary_10_1016_j_scib_2023_03_048
crossref_primary_10_1088_1748_9326_acf50f
crossref_primary_10_5194_acp_21_7639_2021
crossref_primary_10_5194_acp_21_17243_2021
crossref_primary_10_5194_acp_23_13523_2023
crossref_primary_10_1038_s41467_024_46577_1
crossref_primary_10_5194_acp_25_7299_2025
crossref_primary_10_5194_acp_25_9031_2025
crossref_primary_10_5194_esd_12_253_2021
crossref_primary_10_1029_2022GL099788
crossref_primary_10_1029_2022GL099381
crossref_primary_10_1038_s41558_022_01415_4
crossref_primary_10_1029_2021GL097026
crossref_primary_10_5194_acp_23_13369_2023
crossref_primary_10_1029_2021GL097420
crossref_primary_10_1029_2023GL104848
crossref_primary_10_1038_s43247_025_02343_9
crossref_primary_10_1007_s40726_025_00382_6
crossref_primary_10_1029_2023GL104607
crossref_primary_10_1007_s00704_022_04207_0
crossref_primary_10_1016_j_ijhydene_2021_01_088
crossref_primary_10_1088_1748_9326_adb987
crossref_primary_10_1038_s43247_025_02392_0
crossref_primary_10_5194_gmd_18_5655_2025
crossref_primary_10_1038_s41467_023_42111_x
crossref_primary_10_5194_essd_12_2157_2020
crossref_primary_10_1029_2021GL097133
crossref_primary_10_1016_j_jhydrol_2023_130497
crossref_primary_10_1029_2023GL104314
crossref_primary_10_1029_2023GL104313
crossref_primary_10_1029_2020GL090778
crossref_primary_10_5194_acp_21_12021_2021
crossref_primary_10_1007_s13351_024_3089_y
crossref_primary_10_1038_s41612_024_00696_0
crossref_primary_10_5194_acp_23_8879_2023
crossref_primary_10_1088_1748_9326_ac0748
crossref_primary_10_1175_JCLI_D_21_0479_1
crossref_primary_10_2478_bjreecm_2023_0012
crossref_primary_10_1029_2020GL091585
crossref_primary_10_5194_esd_15_1435_2024
crossref_primary_10_1029_2021GL094948
crossref_primary_10_5194_acp_22_7353_2022
crossref_primary_10_5194_acp_24_7837_2024
crossref_primary_10_1038_s41558_023_01775_5
crossref_primary_10_1016_j_atmosenv_2023_120280
crossref_primary_10_1071_ES21031
crossref_primary_10_5194_acp_23_3575_2023
crossref_primary_10_1007_s00382_024_07144_y
crossref_primary_10_1029_2022GL102685
crossref_primary_10_1029_2022MS003475
crossref_primary_10_1146_annurev_earth_040523_014302
crossref_primary_10_1002_asl_1088
crossref_primary_10_5194_gmd_18_3623_2025
crossref_primary_10_5194_acp_22_12167_2022
crossref_primary_10_5194_acp_25_5683_2025
crossref_primary_10_1016_j_envpol_2025_125669
crossref_primary_10_1088_1748_9326_ac6ff6
crossref_primary_10_3390_ijerph18136817
crossref_primary_10_1029_2021JD035460
crossref_primary_10_5194_acp_20_15079_2020
crossref_primary_10_3390_su16198562
crossref_primary_10_3390_en15155695
crossref_primary_10_5194_acp_21_15431_2021
crossref_primary_10_5194_acp_21_731_2021
crossref_primary_10_5194_esd_12_709_2021
crossref_primary_10_1007_s10712_024_09838_8
crossref_primary_10_5194_acp_24_1025_2024
crossref_primary_10_1061_JCEMD4_COENG_16502
crossref_primary_10_5194_acp_23_15121_2023
crossref_primary_10_1029_2021JD036204
crossref_primary_10_1038_s43247_025_02466_z
crossref_primary_10_1029_2023GL106433
crossref_primary_10_1016_j_scib_2025_09_024
crossref_primary_10_1088_1748_9326_add60a
crossref_primary_10_1016_j_aosl_2025_100636
crossref_primary_10_1016_j_atmosres_2023_106896
crossref_primary_10_1007_s00382_022_06369_z
crossref_primary_10_1029_2021MS002464
crossref_primary_10_5194_acp_24_5287_2024
crossref_primary_10_1029_2023GL102916
crossref_primary_10_1029_2021GL095778
crossref_primary_10_1088_2752_5295_ac7d68
crossref_primary_10_1126_science_abq6872
crossref_primary_10_1007_s12145_025_01954_2
crossref_primary_10_1088_1748_9326_ad661d
crossref_primary_10_5194_esd_14_1295_2023
crossref_primary_10_1088_1748_9326_ad657e
crossref_primary_10_5194_esd_11_1209_2020
crossref_primary_10_1029_2022GL100200
crossref_primary_10_1175_JCLI_D_21_0565_1
crossref_primary_10_5194_acp_22_5757_2022
crossref_primary_10_1073_pnas_2016549118
crossref_primary_10_1038_s43247_023_00958_4
crossref_primary_10_1007_s13351_022_1187_2
crossref_primary_10_5194_hess_29_2881_2025
crossref_primary_10_1029_2020JD033880
crossref_primary_10_5194_acp_22_9129_2022
crossref_primary_10_1029_2020JD033364
crossref_primary_10_3389_fclim_2024_1397358
crossref_primary_10_1016_j_crsus_2025_100428
crossref_primary_10_1088_1748_9326_aca91e
crossref_primary_10_1016_j_scs_2023_104473
crossref_primary_10_1088_2752_5295_ada84b
crossref_primary_10_1073_pnas_2210481119
crossref_primary_10_1029_2020EF001900
crossref_primary_10_1073_pnas_2018211118
crossref_primary_10_1016_j_atmosres_2021_105866
crossref_primary_10_1029_2022JD036880
crossref_primary_10_5194_acp_25_2123_2025
crossref_primary_10_1007_s11665_025_10737_1
crossref_primary_10_1175_JCLI_D_20_0883_1
crossref_primary_10_1029_2023JD038481
crossref_primary_10_1029_2021JD036422
crossref_primary_10_1016_j_jenvman_2024_121087
crossref_primary_10_1029_2022MS002991
crossref_primary_10_1029_2022JC018725
crossref_primary_10_5194_acp_21_18609_2021
crossref_primary_10_5194_acp_21_9887_2021
crossref_primary_10_1038_s41561_023_01144_z
crossref_primary_10_1126_science_adq7280
crossref_primary_10_1007_s00382_025_07857_8
crossref_primary_10_1088_1748_9326_aba20c
crossref_primary_10_3389_feart_2021_710036
crossref_primary_10_1088_2752_5295_ace27a
crossref_primary_10_1029_2020GL091024
crossref_primary_10_3390_atmos11101095
crossref_primary_10_1029_2021RG000757
crossref_primary_10_1088_1748_9326_acca35
crossref_primary_10_5194_acp_22_7131_2022
crossref_primary_10_1038_s41467_021_25850_7
crossref_primary_10_1029_2022JD037623
crossref_primary_10_1038_s41586_025_08987_z
crossref_primary_10_1038_s41467_025_56699_9
crossref_primary_10_1088_1748_9326_ad86d1
crossref_primary_10_1175_JCLI_D_21_0167_1
crossref_primary_10_1029_2022GL098808
crossref_primary_10_1029_2021EF002645
crossref_primary_10_1029_2022MS003156
Cites_doi 10.1029/2019MS002010
10.1029/2019MS002025
10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
10.1029/2019MS001683
10.5194/acp-13-9971-2013
10.5194/essd-10-317-2018
10.1175/2007JCLI2110.1
10.1029/2018JD030188
10.1088/1748-9326/10/7/074004
10.1029/2019MS001739
10.1029/96JD03510
10.1029/2003GL018141
10.1002/jgrd.50174
10.5194/acp-19-15415-2019
10.1029/2005JD005776
10.5194/gmd-12-1443-2019
10.5194/acp-2019-1205-supplement
10.1029/2019RG000660
10.1007/s10712-017-9433-3
10.1071/ES19040
10.1029/2018MS001603
10.1175/JCLI-D-13-00025.1
10.5194/esd-2019-94-supplement
10.1175/JCLI-D-17-0208.1
10.1029/2003GL018747
10.1029/2019MS001829
10.5194/essd-2019-254
10.5194/acp-20-7829-2020
10.1029/2018MS001400
10.5194/gmd-10-2057-2017
10.5194/gmd-9-3447-2016
10.1002/2017MS001115
10.1175/JCLI-D-11-00248.1
10.5194/gmd-11-2273-2018
10.1186/s40645-020-00348-w
10.1038/35041545
10.1002/2014JD021710
10.1002/2017JD027326
10.5194/acp-20-613-2020
10.2151/jmsj.2019-051
10.1146/annurev.energy.25.1.441
10.1002/2015GL064291
10.1126/science.aau1864
10.1175/2007JCLI2044.1
10.1029/2018GL079826
10.1006/asle.2001.0037
10.1038/s41558-019-0660-0
10.5194/acp-21-1211-2021
10.1175/BAMS-D-13-00167.1
10.5194/gmd-9-1937-2016
10.1029/2019MS001791
10.1007/s00382-016-3280-7
10.1029/2019MS001916
10.1256/smsqj.53106
10.1017/CBO9781107415324.018
10.1126/science.245.4923.1227
10.1175/BAMS-D-15-00013.1
10.1002/jame.20041
10.1175/JCLI-D-11-00721.1
10.1175/JCLI-D-15-0362.1
10.5194/essd-12-1649-2020
10.5194/gmd-11-3945-2018
10.5194/gmd-10-585-2017
10.5194/gmd-12-2727-2019
10.5194/gmd-12-4823-2019
10.1002/2016GL071930
10.1029/2007GL031383
10.1007/s003820100157
10.1002/2016JD025320
10.1029/2019MS001866
10.1017/CBO9781107415324.016
10.1038/s41598-017-14828-5
10.5194/gmd-2019-282
10.1029/2019GL085782
10.1029/2019JD030581
10.1175/BAMS-D-16-0019.1
10.5194/acp-13-2045-2013
10.1007/s00382-013-1725-9
10.1038/nclimate3278
10.1029/2012GL054275
10.1088/1748-9326/aaafdd
10.5194/gmd-11-369-2018
10.1029/2019JD030568
10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2
10.1126/science.1084123
10.1029/2012GL051607
10.5194/gmd-2019-378
10.1038/s41612-019-0073-9
10.5194/acp-10-7017-2010
10.1175/JCLI4143.1
ContentType Journal Article
Copyright Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL
COPYRIGHT 2020 Copernicus GmbH
2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL
– notice: COPYRIGHT 2020 Copernicus GmbH
– notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID CYE
CYI
AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
1XC
VOOES
OTOTI
ABAVF
ADTPV
AOWAS
D8T
DG7
ZZAVC
DOA
DOI 10.5194/acp-20-9591-2020
DatabaseName NASA Scientific and Technical Information
NASA Technical Reports Server
CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Continental Europe Database (ProQuest)
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
OSTI.GOV
SWEPUB Stockholms universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Stockholms universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database




CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Physics
Environmental Sciences
EISSN 1680-7324
EndPage 9618
ExternalDocumentID oai_doaj_org_article_94d71cb5f84643f3b61bee33513682e9
oai_DiVA_org_su_185355
1647673
oai:HAL:hal-02913575v1
A632758843
10_5194_acp_20_9591_2020
20205006275
GrantInformation DOE-OBER-7457436
NSF-1852977
NNH15CO48B
GroupedDBID 23N
2WC
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
ABUWG
ACGFO
ADBBV
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BANNL
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CYE
CYI
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IAO
IEA
ISR
ITC
K6-
KQ8
OK1
OVT
P2P
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PYCSY
Q2X
RKB
RNS
TR2
XSB
~02
AAYXX
CITATION
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
GNUQQ
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQUKI
PRINS
1XC
VOOES
3V.
BBORY
M~E
OTOTI
RIG
ABAVF
ADTPV
AOWAS
C1A
D8T
DG7
IPNFZ
ZZAVC
ID FETCH-LOGICAL-c665t-c56c238a7a332a6e8430a79c60f7b4397837ede0141f1c5096d199aa0eb17d0d3
IEDL.DBID RKB
ISICitedReferencesCount 248
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000562966500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1680-7316
1680-7324
IngestDate Fri Oct 03 12:42:20 EDT 2025
Tue Nov 04 16:33:36 EST 2025
Mon Apr 01 04:56:12 EDT 2024
Sat Oct 25 08:31:30 EDT 2025
Sun Nov 09 07:00:26 EST 2025
Sat Nov 29 13:27:13 EST 2025
Sat Nov 29 10:20:57 EST 2025
Wed Nov 26 09:52:46 EST 2025
Sat Nov 29 03:21:55 EST 2025
Tue Nov 18 21:58:15 EST 2025
Fri Nov 21 15:49:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Rapid Adjustments
Effective Radiative Forcing
Oresent Day
Language English
License https://creativecommons.org/licenses/by/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c665t-c56c238a7a332a6e8430a79c60f7b4397837ede0141f1c5096d199aa0eb17d0d3
Notes GSFC
Goddard Space Flight Center
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
7457436; 1582977
USDOE Office of Science (SC), Biological and Environmental Research (BER)
ORCID 0000-0002-1364-1988
0000-0002-3691-554X
0000-0003-2328-5769
0000-0002-4309-476X
0000-0002-7419-0850
0000-0001-8898-9949
0000-0003-0599-4633
0000-0003-0450-2748
0000-0002-0016-3470
0000-0002-7092-241X
0000-0002-0415-1661
0000-0003-4650-1102
0000-0003-4764-9600
0000-0002-9377-0674
0000-0003-2122-0443
0000-0001-5476-2148
0000-0003-2893-4828
0000-0002-6078-0171
0000-0001-7034-638X
0000-0002-0373-3918
0000-0002-5717-1594
0000-0001-7307-173X
0000-0003-4989-5530
0000-0002-1751-3326
0000000323285769
000000024309476X
0000000304502748
000000027092241X
0000000293770674
0000000213641988
0000000188989949
0000000347649600
000000023691554X
0000000204151661
0000000274190850
0000000346501102
0000000200163470
0000000321220443
0000000305994633
OpenAccessLink https://doaj.org/article/94d71cb5f84643f3b61bee33513682e9
PQID 2434365405
PQPubID 105744
PageCount 28
ParticipantIDs doaj_primary_oai_doaj_org_article_94d71cb5f84643f3b61bee33513682e9
swepub_primary_oai_DiVA_org_su_185355
osti_scitechconnect_1647673
hal_primary_oai_HAL_hal_02913575v1
proquest_journals_2434365405
gale_infotracmisc_A632758843
gale_infotracacademiconefile_A632758843
gale_incontextgauss_ISR_A632758843
crossref_citationtrail_10_5194_acp_20_9591_2020
crossref_primary_10_5194_acp_20_9591_2020
nasa_ntrs_20205006275
PublicationCentury 2000
PublicationDate 2020-08-17
PublicationDateYYYYMMDD 2020-08-17
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-17
  day: 17
PublicationDecade 2020
PublicationPlace Goddard Space Flight Center
PublicationPlace_xml – name: Goddard Space Flight Center
– name: Katlenburg-Lindau
– name: Germany
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2020
Publisher European Geosciences Union / Copernicus Publications
Copernicus GmbH
European Geosciences Union
Copernicus Publications, EGU
Copernicus Publications
Publisher_xml – name: European Geosciences Union / Copernicus Publications
– name: Copernicus GmbH
– name: European Geosciences Union
– name: Copernicus Publications, EGU
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref93
ref92
ref51
ref50
ref94
ref91
ref90
ref46
ref45
ref89
ref48
ref47
ref42
ref86
ref41
ref85
ref44
ref88
ref43
ref87
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref15
  doi: 10.1029/2019MS002010
– ident: ref44
  doi: 10.1029/2019MS002025
– ident: ref84
  doi: 10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
– ident: ref86
  doi: 10.1029/2019MS001683
– ident: ref89
– ident: ref30
  doi: 10.5194/acp-13-9971-2013
– ident: ref59
  doi: 10.5194/essd-10-317-2018
– ident: ref74
  doi: 10.1175/2007JCLI2110.1
– ident: ref79
  doi: 10.1029/2018JD030188
– ident: ref16
  doi: 10.1088/1748-9326/10/7/074004
– ident: ref66
  doi: 10.1029/2019MS001739
– ident: ref29
  doi: 10.1029/96JD03510
– ident: ref69
  doi: 10.1029/2003GL018141
– ident: ref28
  doi: 10.1002/jgrd.50174
– ident: ref54
  doi: 10.5194/acp-19-15415-2019
– ident: ref35
  doi: 10.1029/2005JD005776
– ident: ref31
  doi: 10.5194/gmd-12-1443-2019
– ident: ref82
  doi: 10.5194/acp-2019-1205-supplement
– ident: ref9
  doi: 10.1029/2019RG000660
– ident: ref48
  doi: 10.1007/s10712-017-9433-3
– ident: ref12
  doi: 10.1071/ES19040
– ident: ref32
  doi: 10.1029/2018MS001603
– ident: ref41
  doi: 10.1175/JCLI-D-13-00025.1
– ident: ref50
  doi: 10.5194/esd-2019-94-supplement
– ident: ref51
  doi: 10.1175/JCLI-D-17-0208.1
– ident: ref33
  doi: 10.1029/2003GL018747
– ident: ref39
  doi: 10.1029/2019MS001829
– ident: ref73
  doi: 10.5194/essd-2019-254
– ident: ref25
  doi: 10.5194/acp-20-7829-2020
– ident: ref52
  doi: 10.1029/2018MS001400
– ident: ref53
  doi: 10.5194/gmd-10-2057-2017
– ident: ref61
  doi: 10.5194/gmd-9-3447-2016
– ident: ref88
  doi: 10.1002/2017MS001115
– ident: ref92
  doi: 10.1175/JCLI-D-11-00248.1
– ident: ref71
  doi: 10.5194/gmd-11-2273-2018
– ident: ref58
  doi: 10.1186/s40645-020-00348-w
– ident: ref10
  doi: 10.1038/35041545
– ident: ref93
  doi: 10.1002/2014JD021710
– ident: ref76
  doi: 10.1002/2017JD027326
– ident: ref34
  doi: 10.5194/acp-20-613-2020
– ident: ref91
  doi: 10.2151/jmsj.2019-051
– ident: ref38
  doi: 10.1146/annurev.energy.25.1.441
– ident: ref60
  doi: 10.1002/2015GL064291
– ident: ref75
  doi: 10.1126/science.aau1864
– ident: ref67
  doi: 10.1175/2007JCLI2044.1
– ident: ref72
  doi: 10.1029/2018GL079826
– ident: ref11
  doi: 10.1006/asle.2001.0037
– ident: ref27
  doi: 10.1038/s41558-019-0660-0
– ident: ref57
  doi: 10.5194/acp-21-1211-2021
– ident: ref68
  doi: 10.1175/BAMS-D-13-00167.1
– ident: ref24
  doi: 10.5194/gmd-9-1937-2016
– ident: ref65
  doi: 10.1029/2019MS001791
– ident: ref4
  doi: 10.1007/s00382-016-3280-7
– ident: ref20
  doi: 10.1029/2019MS001916
– ident: ref22
  doi: 10.1256/smsqj.53106
– ident: ref55
  doi: 10.1017/CBO9781107415324.018
– ident: ref1
  doi: 10.1126/science.245.4923.1227
– ident: ref77
  doi: 10.1175/BAMS-D-15-00013.1
– ident: ref13
  doi: 10.1002/jame.20041
– ident: ref37
  doi: 10.1175/JCLI-D-11-00721.1
– ident: ref17
  doi: 10.1175/JCLI-D-15-0362.1
– ident: ref8
  doi: 10.5194/essd-12-1649-2020
– ident: ref46
  doi: 10.5194/gmd-11-3945-2018
– ident: ref18
  doi: 10.5194/gmd-10-585-2017
– ident: ref80
  doi: 10.5194/gmd-12-2727-2019
– ident: ref78
  doi: 10.5194/gmd-12-4823-2019
– ident: ref23
  doi: 10.1002/2016GL071930
– ident: ref45
  doi: 10.1029/2007GL031383
– ident: ref19
– ident: ref87
  doi: 10.1007/s003820100157
– ident: ref70
– ident: ref26
  doi: 10.1002/2016JD025320
– ident: ref5
  doi: 10.1029/2019MS001866
– ident: ref14
  doi: 10.1017/CBO9781107415324.016
– ident: ref36
  doi: 10.1038/s41598-017-14828-5
– ident: ref90
  doi: 10.5194/gmd-2019-282
– ident: ref94
  doi: 10.1029/2019GL085782
– ident: ref62
  doi: 10.1029/2019JD030581
– ident: ref56
  doi: 10.1175/BAMS-D-16-0019.1
– ident: ref7
  doi: 10.5194/acp-13-2045-2013
– ident: ref85
  doi: 10.1007/s00382-013-1725-9
– ident: ref6
  doi: 10.1038/nclimate3278
– ident: ref21
– ident: ref43
  doi: 10.1029/2012GL054275
– ident: ref83
  doi: 10.1088/1748-9326/aaafdd
– ident: ref40
  doi: 10.5194/gmd-11-369-2018
– ident: ref42
  doi: 10.1029/2019JD030568
– ident: ref47
  doi: 10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2
– ident: ref63
  doi: 10.1126/science.1084123
– ident: ref3
  doi: 10.1029/2012GL051607
– ident: ref64
  doi: 10.5194/gmd-2019-378
– ident: ref2
  doi: 10.1038/s41612-019-0073-9
– ident: ref49
  doi: 10.5194/acp-10-7017-2010
– ident: ref81
  doi: 10.1175/JCLI4143.1
SSID ssj0025014
Score 2.683761
Snippet The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of...
SourceID doaj
swepub
osti
hal
proquest
gale
crossref
nasa
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9591
SubjectTerms Aerosol-cloud interactions
Aerosols
Air pollution
Analysis
Anthropogenic factors
Atmosphere
Atmospheric models
Carbon
Carbon dioxide
Climate
Climate change
Climate models
Climate sensitivity
Climatology
Earth Sciences
ENVIRONMENTAL SCIENCES
Experiments
Gases
General circulation models
Greenhouse effect
Greenhouse gases
Human influences
Intercomparison
Land use
Meteorology
Meteorology And Climatology
Ocean, Atmosphere
open climate campaign
Ozone
Physics
Radiative forcing
Sciences of the Universe
Sensitivity
Temperature
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgxYEL4lFEaEFWxUMcorXjxI7FaVmoWqmtKl7qzXL8KIuqbLXZ7e9nxsmumgtcuO0mjmJ_Hnu-icefCXlTaAd-NPg8Og0BStHw3Drlc6dqHupSyBjTRuFTdX5eX17qiztHfWFOWC8P3AM31aVX3DVVBEdZiigayZsQhKi4kHUR0tY9pvQ2mBpCLVwtw1BL1izHs5n6BUpgK-XUuhswjVxXUDeI_NnIISXd_t3sfP8XJkdOWtuB25osYcyNeehdbdHkj44ek0cDkaSzvgFPyL3QPiXZGXDg5Sp9Kqfv6Px6AYQ0_XtGPvZCxTC70RUKEqRfQFkdOC9qW0-t_73pUtJ5RxctnZ-dXEiaTsrp9siPoy_f58f5cHRC7qSs1jl0gANnbJUVorASUWdWaSdZVA1yEIhLgw-Y5Rm5QwkYz7W2lsHUrTzz4jk0e9mGF4SqUEZWQy80AdiGChAglaVuCl_GGlfxMjLd4mfcoCuOx1tcG4gvEHEDiJuCGUTcIOIZ-bB74qbX1PhL2U_YJbtyqIadLoCNmMFGzL9sJCOH2KEG9S5aTKi5spuuMyffvpqZFIXCzboiI--HQnEJ9Xd22J8AKKBE1qjkwagkDEg3un0IdjOq8fHs1OA1VmgugCDf8ozsoVkZgKpLDa1YEozOyD7amQH-gyK-DrOd3Nqg6ptU-Oat-ZlhroGncXOwROadkbe9SY5e_nnxc5bg6jYG2VlVvfwfoO6Th1hv_L7O1QGZrFeb8Io8cLfrRbd6nYbjH6YpL8Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYAYkXPsYmwgaKJj7EQ9QkTuxYPKBSmDZpmyq-NPFiObYziqakxO3-fu6cNCIve-GtTZ3m4jv7fmeff0fIq1Ro8KPWRJUWEKCkZRIpzU2keZHYIqOsqvxB4TN-cVFcXopFv-Dm-rTK7ZzoJ2rTaFwjn6Z4BJIhvviw-hNh1SjcXe1LaOyQu8iSgKUbFvnPIeDCPTMMuFgRR1ihqdumBMySTZVegYFEIgcJIf6PR27Js_cPc_TOL0yRnNTKgfOaNDDyxmj0X4ZR75WOH_3v-zwmD3s8Gs46A3pC7th6lwTnAKWb1q-4h2_C-fUScK3_tkvu-5xR7Z6S9x3zMUyXYYsMB_4TYGAN3jBUtQmV-b1xPovdhcs6nJ-fLljoS--4PfL9-PO3-UnU12KINGP5OgKNavDuiitKU8VQjbHiQrO44iWCGgh0rbGYNlolGjllTCKEUjH4Am5iQ_ehB5vaPiMht1kVF5nhpQX4wi1EXFkmytRkVYHbggGZblUhdU9UjvUyriUELKg8CcqTaSxReRKVF5B3wx2rjqTjlrYfUbtDO6TX9hea9kr2o1UKkC7RZV4BOstoRUuWlNZSmieUFakVATlC25BIoFFjhs6V2jgnT79-kTNGU46nf2lA3vaNqgbk16o_8AC9gJxbo5aHo5YwwvXo5yMwwZHEJ7MzidfiVCQUEPdNEpA9tFAJXeX8i-axZ6AOyAGarARAhazAGtOn9FoijRzj-OStdcp-8oK7B9MMyOvOukcP_7T8MfPd5TYS4V6eP7_9bw7IA5QIl-ITfkgm63ZjX5B7-ma9dO1LP2b_AppyQWU
  priority: 102
  providerName: ProQuest
Title Effective radiative forcing and adjustments in CMIP6 models
URI https://ntrs.nasa.gov/citations/20205006275
https://www.proquest.com/docview/2434365405
https://hal.science/hal-02913575
https://www.osti.gov/biblio/1647673
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-185355
https://doaj.org/article/94d71cb5f84643f3b61bee33513682e9
Volume 20
WOSCitedRecordID wos000562966500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAGF
  databaseName: Copernicus Publications
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: RKB
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html
  providerName: Copernicus Gesellschaft
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: P5Z
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Continental Europe Database (ProQuest)
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: BFMQW
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: PCBAR
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: PATMY
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: BENPR
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: PIMPY
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELeg8MAL42No2cYUTXyIh6hxnNixeOrKplVaq6gMNHixHNuBoimdmnZ_P3dOVi0v8AAvTevain139t3Z598R8iaRBvSos1FlJDgoSUkjbYSNjMipy1PGq8pfFL4Qs1l-dSWLe6m-MCashQduCTeUqRXUlFkFijJlFSs5LZ1jLKOM54nDq3sghjgl55jDrXO18LQMXS2exxHmZmoPKMFaSYfa3IBoRDKDvoHnH_cUksft367OD39icOSg1g2orcES5lzfDr2PLer10dnOP4zkGXnaGaHhqG3ynDxw9QsSTMF-Xq78Nnv4LhxfL8CY9b9eko8tyDGsjOEKwQz8NzB3DSi-UNc21PbXpvEB6024qMPxdFLw0GfZaXbJl7PTy_F51KVdiAzn2ToC5hlQ5FpoxhLNkWOxFtLwuBIl2i_g0zrrMEK0ogbhYyyVUusYln1hY8teAcmWtdsjoXBpFecw7tKBpSIcOFdpKsvEplWOJ4ABGd7RXpkOkxxTY1wr8E2QWwq4pZJYIbcUcisgH7Ytblo8jj_UPUEmbOshkrYvAK6ojivqb1wJyDEKg0KsjBqDcX7oTdOoyee5GnGWCLzoywLyvqtULaH_Rnd3G4AKCK_Vq3nYqwmT2fT-PgaZ6_X4fHShsCxOJGVgXN_SgOyiSCogVeMHmsUebDogByijCmwnBAA2GCll1goR47jAN9-JrurWKWiNF4s5Wu0BeduKc-_lnxZfR55czUahZZdl-_-DqAfkCfYb9-apOCSD9WrjXpPH5na9aFZH5NHJ6ayYH_n9Efgssu9QVowup9_wOZkW8MTp_htifUiT
linkProvider Copernicus Gesellschaft
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFLe2DgQXPsYQYQOiiYE4RE3sxE6EECodU6u1UwUDjZNxHGcUTUlp2iH-Kf5G3nPSarnstgO3JHWSF_t99j3_HiEvaaLBjprMy3UCAQpNA09pkXlaxIGJQ8bz3G4UHomTk_jsLJlskL-rvTBYVrnSiVZRZ6XG_8i7FLdAcvQv3s9-edg1CrOrqxYaNVscmz-_IWSr3g0PYX0PKD36eNofeE1XAU9zHi08oE2DnVJCMUYVR4J8JRLN_VykaJ4hZDOZwQLIPNCIjpIFSaKUD1pNZH7G4LmbZCtEZu-QrclwPPm2DvEwS4chHo99D3tC1YlR8JLCrtIzYEkviWBOqI_9xa8YQtsvYG0VNn9gUWanUBWYy04Jst72f69imlo7eHT_f5vBB-Re43G7vVpEHpINU2wTZwzBQjm3OQX3ldu_mILnbs-2yW1bFaurR-Rtje0MBsGdI4aDPQIvX4O9d1WRuSr7uaxsnX7lTgu3Px5OuGubC1U75MuNfNVjWLGyME-IK0yY-3GYidSAgyYMxJRhmKQ0C_MYE58O6a6WXuoGih07glxICMmQWSQwi6S-RGaRyCwOebO-Y1bDkFwz9gNy03ocAojbC-X8XDb6SCZAXaDTKAf_M2Q5S3mQGsNYFDAeU5M4ZB95USJESIE1SOdqWVVy-PmT7HFGBe5vZg553QzKS6Bfq2ZLB8wCooq1Ru61RoIO062f94HlWxQPeiOJ13yaBAxiisvAITsoERKmqrIfGvkWY9shuygiElxGxD3WWCCmFxKB8rjAN6-kQTbqGe5ei4JDDmppar38cPq1Z6erWkp0aKPo6fWPeUHuDE7HIzkanhzvkrtIHSYeArFHOov50jwjt_TlYlrNnzcawyXfb1rE_gFCvp5J
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF61KSAuPEoRpgWsioI4WLF37V1bCKE0IWrUJCpQoLdlvV6XoMoOcVLEX-PXMbN2oubSWw_c_Fjb4_U8PbPfEPKSJhrsqMm8XCcQoNA08JQWmadFHJg4ZDzP7ULhoRiP47Oz5GSD_F2uhcGyyqVOtIo6KzX-I29TXALJ0b9o501ZxEmv_376y8MOUphpXbbTqFnk2Pz5DeFb9W7Qg299QGn_w2n3yGs6DHia82juAZ0abJYSijGqOBLnK5Fo7uciRVMN4ZvJDBZD5oFGpJQsSBKlfNBwIvMzBvfdJFsx57HfIluH_dHHb6twDzN2GO7BOQ_7Q9VJUvCYwrbSU2BPL4lgfqiPvcavGEXbO2BlITZ_YIFmq1AVmM5WCXK_7gtfxTe1NrF__3-ezQfkXuOJu51adB6SDVNsE2cEQUQ5s7kG95XbvZiAR2_3tsltWy2rq0fkbY35DIbCnSG2g90C71-DH-CqInNV9nNR2fr9yp0Ubnc0OOGubTpU7ZAvN_JWj-HrlYV5QlxhwtyPw0ykBhw3YSDWDMMkpVmYx5gQdUh7yQZSNxDt2CnkQkKohowjgXEk9SUyjkTGccib1RXTGp7kmrGHyFmrcQgsbg-Us3PZ6CmZAHWBTqMc_NKQ5SzlQWoMY1HAeExN4pB95EuJ0CEFss25WlSVHHz-JDucUYHrnplDXjeD8hLo16pZ6gGzgGhjayP31kaCbtNrp_eB_dcoPuoMJR7zaRIwiDUuA4fsoHRImKrKvmjkW-xth-yiuEhwJREPWWPhmJ5LBNDjAp-8lAzZqG24eiUWDjmoJWvt4b3J146drmoh0dGNoqfX3-YFuQNyJYeD8fEuuYvEYT4iEHukNZ8tzDNyS1_OJ9XseaM8XPL9piXsH6Kdpuk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+radiative+forcing+and+adjustments+in+CMIP6+models&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=C.+J.+Smith&rft.au=C.+J.+Smith&rft.au=R.+J.+Kramer&rft.au=R.+J.+Kramer&rft.date=2020-08-17&rft.pub=Copernicus+Publications&rft.issn=1680-7316&rft.eissn=1680-7324&rft.volume=20&rft.spage=9591&rft.epage=9618&rft_id=info:doi/10.5194%2Facp-20-9591-2020&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_94d71cb5f84643f3b61bee33513682e9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7316&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7316&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7316&client=summon