Effective radiative forcing and adjustments in CMIP6 models
The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate model...
Gespeichert in:
| Veröffentlicht in: | Atmospheric chemistry and physics Jg. 20; H. 16; S. 9591 - 9618 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Goddard Space Flight Center
European Geosciences Union / Copernicus Publications
17.08.2020
Copernicus GmbH European Geosciences Union Copernicus Publications, EGU Copernicus Publications |
| Schlagworte: | |
| ISSN: | 1680-7316, 1680-7324, 1680-7324 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (±0.23) W/sq. m, comprised of 1.81 (±0.09) W/sq. m from CO2, 1.08 (± 0.21) W/sq. m from other well-mixed greenhouse gases, −1.01 (± 0.23) W/sq. m from aerosols and −0.09 (±0.13) W/sq. m from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W/sq. m. The majority of the remaining 0.21 W/sq. m is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol–cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37 W/sq. m, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4×CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming. |
|---|---|
| AbstractList | The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 13 contemporary climate models that are participating in CMIP6 and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global mean anthropogenic forcing relative to pre-industrial (1850) from climate models stands at 1.97 (± 0.26) W m−2, comprised of 1.80 (± 0.11) W m−2 from CO2, 1.07 (± 0.21) W m−2 from other well-mixed greenhouse gases, −1.04 (± 0.23) W m−2 from aerosols and −0.08 (± 0.14) W m−2 from land use change. Quoted uncertainties are one standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m−2. The majority of the remaining 0.17 W m−2 is likely to be from ozone. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the traditional stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing, but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37 W m−2, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4 × CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with equilibrium climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing.
The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in CMIP6 and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global mean anthropogenic forcing relative to pre-industrial (1850) from climate models stands at 2.00 (± 0.23) W m −2 , comprised of 1.81 (± 0.09) W m −2 from CO 2 , 5 1.08 (± 0.21) W m −2 from other well-mixed greenhouse gases, −1.01 (± 0.23) W m −2 from aerosols and −0.09 (± 0.13) W 1 m −2 from land use change. Quoted uncertainties are one standard deviation across model best estimates, and 90% confidence in the reported forcings, due to internal variability, is typically within 0.1 W m −2. The majority of the remaining 0.21 W m −2 is likely to be from ozone. In most cases, the largest contributors to the spread in ERF is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol-cloud interactions to aerosol forcing. As determined in previous 10 studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing, but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37 W m −2 , exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4×CO 2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread 15 in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing, and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming. The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (±0.23) W m.sup.-2, comprised of 1.81 (±0.09) W m.sup.-2 from CO.sub.2, 1.08 (± 0.21) W m.sup.-2 from other well-mixed greenhouse gases, -1.01 (± 0.23) W m.sup.-2 from aerosols and -0.09 (±0.13) W m.sup.-2 from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m.sup.-2 . The majority of the remaining 0.21 W m.sup.-2 is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol-cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from -0.63 to -1.37 W m.sup.-2, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4xCO.sub.2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming. The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (±0.23) W m-2, comprised of 1.81 (±0.09) W m-2 from CO2, 1.08 (± 0.21) W m-2 from other well-mixed greenhouse gases, -1.01 (± 0.23) W m-2 from aerosols and -0.09 (±0.13) W m-2 from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m-2. The majority of the remaining 0.21 W m-2 is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol–cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from -0.63 to -1.37 W m-2, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4×CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming. The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (±0.23) W/sq. m, comprised of 1.81 (±0.09) W/sq. m from CO2, 1.08 (± 0.21) W/sq. m from other well-mixed greenhouse gases, −1.01 (± 0.23) W/sq. m from aerosols and −0.09 (±0.13) W/sq. m from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W/sq. m. The majority of the remaining 0.21 W/sq. m is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol–cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37 W/sq. m, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4×CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming. The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (+/- 0.23) W m(-2), comprised of 1.81 (+/- 0.09) Wm(-2) from CO2, 1.08 (+/- 0.21) Wm(-2) from other well-mixed greenhouse gases, -1.01 (+/- 0.23) W m(-2) from aerosols and -0.09 (+/- 0.13) W m(-2) from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m(-2). The majority of the remaining 0.21 W m(-2) is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol-cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from -0.63 to -1.37 W m(-2), exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4 x CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming. The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 ( ±0.23 ) W m −2 , comprised of 1.81 ( ±0.09 ) W m −2 from CO2 , 1.08 ( ± 0.21) W m −2 from other well-mixed greenhouse gases, −1.01 ( ± 0.23) W m −2 from aerosols and −0.09 ( ±0.13 ) W m −2 from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m −2 . The majority of the remaining 0.21 W m −2 is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol–cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37 W m −2 , exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4×CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming. The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (±0.23) W m−2, comprised of 1.81 (±0.09) W m−2 from CO2, 1.08 (± 0.21) W m−2 from other well-mixed greenhouse gases, −1.01 (± 0.23) W m−2 from aerosols and −0.09 (±0.13) W m−2 from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m−2. The majority of the remaining 0.21 W m−2 is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol–cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37 W m−2, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4×CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming. |
| Audience | PUBLIC Academic |
| Author | Olivié, Dirk Myhre, Gunnar Wiltshire, Andy Lewinschal, Anna Paynter, David Shiogama, Hideo Cole, Jason Miller, Ron Pincus, Robert Sima, Adriana O’Connor, Fiona M. Fiedler, Stephanie Forster, Piers M. Dix, Martin Boucher, Olivier Nazarenko, Larissa Robertson, Eddy Dufresne, Jean-Louis Andrews, Timothy Alterskjær, Kari Kramer, Ryan J. Hannay, Cécile Mackallah, Chloe Naba, Pierre Kirkevåg, Alf Yukimoto, Seiji Michou, Martine |
| Author_xml | – sequence: 1 givenname: Christopher J. Smith orcidid: 0000-0003-0599-4633 organization: University of Leeds – sequence: 2 givenname: Ryan J. orcidid: 0000-0002-9377-0674 surname: Kramer fullname: Kramer, Ryan J. organization: Universities Space Research Association – sequence: 3 givenname: Gunnar orcidid: 0000-0002-4309-476X surname: Myhre fullname: Myhre, Gunnar organization: Center for International Climate and Environmental Research – sequence: 4 givenname: Kari orcidid: 0000-0003-4650-1102 surname: Alterskjær fullname: Alterskjær, Kari organization: Center for International Climate and Environmental Research – sequence: 5 givenname: William Collins orcidid: 0000-0002-7419-0850 organization: University of Reading – sequence: 6 givenname: Adriana orcidid: 0000-0002-1364-1988 surname: Sima fullname: Sima, Adriana organization: Sorbonne University – sequence: 7 givenname: Olivier orcidid: 0000-0003-2328-5769 surname: Boucher fullname: Boucher, Olivier organization: Institut Pierre-Simon Laplace – sequence: 8 givenname: Jean-Louis orcidid: 0000-0003-4764-9600 surname: Dufresne fullname: Dufresne, Jean-Louis organization: Laboratoire de Météorologie Dynamique – sequence: 9 givenname: Pierre surname: Naba fullname: Naba, Pierre organization: Centre National de Recherches Météorologiques – sequence: 10 givenname: Martine surname: Michou fullname: Michou, Martine organization: Centre National de Recherches Météorologiques – sequence: 11 givenname: Seiji orcidid: 0000-0002-0415-1661 surname: Yukimoto fullname: Yukimoto, Seiji organization: Meteorological Research Institute – sequence: 12 givenname: Jason orcidid: 0000-0003-0450-2748 surname: Cole fullname: Cole, Jason organization: Environment Canada – sequence: 13 givenname: David orcidid: 0000-0002-7092-241X surname: Paynter fullname: Paynter, David organization: Geophysical Fluid Dynamics Laboratory – sequence: 14 givenname: Hideo surname: Shiogama fullname: Shiogama, Hideo organization: National Institute for Environmental Studies – sequence: 15 givenname: Fiona M. surname: O’Connor fullname: O’Connor, Fiona M. organization: Met Office – sequence: 16 givenname: Eddy surname: Robertson fullname: Robertson, Eddy organization: Met Office – sequence: 17 givenname: Andy surname: Wiltshire fullname: Wiltshire, Andy organization: Met Office – sequence: 18 givenname: Timothy surname: Andrews fullname: Andrews, Timothy organization: Met Office – sequence: 19 givenname: Cécile surname: Hannay fullname: Hannay, Cécile organization: National Center for Atmospheric Research – sequence: 20 givenname: Ron orcidid: 0000-0003-2122-0443 surname: Miller fullname: Miller, Ron organization: Goddard Institute for Space Studies – sequence: 21 givenname: Larissa surname: Nazarenko fullname: Nazarenko, Larissa organization: Columbia University – sequence: 22 givenname: Alf orcidid: 0000-0002-3691-554X surname: Kirkevåg fullname: Kirkevåg, Alf organization: Norwegian Meteorological Institute – sequence: 23 givenname: Dirk surname: Olivié fullname: Olivié, Dirk organization: Norwegian Meteorological Institute – sequence: 24 givenname: Stephanie orcidid: 0000-0001-8898-9949 surname: Fiedler fullname: Fiedler, Stephanie organization: University of Cologne – sequence: 25 givenname: Anna surname: Lewinschal fullname: Lewinschal, Anna organization: Stockholm University – sequence: 26 givenname: Chloe surname: Mackallah fullname: Mackallah, Chloe organization: Commonwealth Scientific and Industrial Research Organisation – sequence: 27 givenname: Martin surname: Dix fullname: Dix, Martin organization: Commonwealth Scientific and Industrial Research Organisation – sequence: 28 givenname: Robert orcidid: 0000-0002-0016-3470 surname: Pincus fullname: Pincus, Robert organization: University of Colorado Boulder – sequence: 29 givenname: Piers M. surname: Forster fullname: Forster, Piers M. organization: University of Leeds |
| BackLink | https://hal.science/hal-02913575$$DView record in HAL https://www.osti.gov/biblio/1647673$$D View this record in Osti.gov https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-185355$$DView record from Swedish Publication Index (Stockholms universitet) |
| BookMark | eNp9kktvEzEUhUeoSLSFPQsWI1hVYorfHotVFAqNFATitbXu2J7UUTJObU-Bf4-T4aEghLy41tV3jq-vzll1MoTBVdVjjC45VuwFmF1DUKO4wqUSdK86xaJFjaSEnfy-Y_GgOktpjRDhCLPT6uVV3zuT_Z2rI1gPh1sfovHDqobB1mDXY8pbN-RU-6Gev128F_U2WLdJD6v7PWySe_SznlefX199ml83y3dvFvPZsjFC8NwYLgyhLUiglIBwLaMIpDIC9bJjVMmWSmddGQf32HCkhMVKASDXYWmRpefVYvK1AdZ6F_0W4ncdwOtDI8SVhpi92TitmJXYdLxvmWC0p53AnXOUckxFS5wqXs8nr_TV7cbuyO2V_zI7uKVR45ZTzgv-dMJDyl4n47MzNyYMQ9mZxoJJIWmBLiboBjZHhtezpd73EFGYcsnvcGGfTewuhtvRpazXYYxDWZ8mjDIqOEP8D7WC8ik_9CFHMFufjJ4JSiRvyxILdfkPqhzrtr4M6Xpf-keCiyNBYbL7llcwpqQXHz8cs2JiTQwpRdfr8vkSjyKJ4DcaI73PnS650wTpfe70PndFiP4S_lrJfyRPJskACXR5IB36HCFRxqE_ALQK3pk |
| CitedBy_id | crossref_primary_10_5194_acp_20_16023_2020 crossref_primary_10_5194_acp_21_14941_2021 crossref_primary_10_1029_2020JD033622 crossref_primary_10_5194_esd_13_1215_2022 crossref_primary_10_5194_acp_21_853_2021 crossref_primary_10_1007_s43621_025_00945_z crossref_primary_10_5194_acp_24_11207_2024 crossref_primary_10_1126_sciadv_adv5013 crossref_primary_10_5194_esd_12_581_2021 crossref_primary_10_5194_acp_21_5821_2021 crossref_primary_10_1007_s00382_023_06710_0 crossref_primary_10_1088_2752_5295_ace4e8 crossref_primary_10_1038_s41612_024_00648_8 crossref_primary_10_1016_j_still_2025_106804 crossref_primary_10_1038_s41467_024_50406_w crossref_primary_10_3389_feart_2022_1018661 crossref_primary_10_1029_2020JD034145 crossref_primary_10_5194_acp_25_1477_2025 crossref_primary_10_1093_pnasnexus_pgad097 crossref_primary_10_1371_journal_pclm_0000295 crossref_primary_10_1175_JCLI_D_19_0991_1 crossref_primary_10_1073_pnas_2425445122 crossref_primary_10_1016_j_jafr_2025_101919 crossref_primary_10_1029_2020GL087141 crossref_primary_10_1029_2021JD036251 crossref_primary_10_5194_acp_24_13361_2024 crossref_primary_10_5194_gmd_18_4899_2025 crossref_primary_10_1007_s00376_021_1119_6 crossref_primary_10_1088_1748_9326_ad9ec5 crossref_primary_10_1038_s43247_025_02491_y crossref_primary_10_1016_j_scib_2023_03_048 crossref_primary_10_1088_1748_9326_acf50f crossref_primary_10_5194_acp_21_7639_2021 crossref_primary_10_5194_acp_21_17243_2021 crossref_primary_10_5194_acp_23_13523_2023 crossref_primary_10_1038_s41467_024_46577_1 crossref_primary_10_5194_acp_25_7299_2025 crossref_primary_10_5194_acp_25_9031_2025 crossref_primary_10_5194_esd_12_253_2021 crossref_primary_10_1029_2022GL099788 crossref_primary_10_1029_2022GL099381 crossref_primary_10_1038_s41558_022_01415_4 crossref_primary_10_1029_2021GL097026 crossref_primary_10_5194_acp_23_13369_2023 crossref_primary_10_1029_2021GL097420 crossref_primary_10_1029_2023GL104848 crossref_primary_10_1038_s43247_025_02343_9 crossref_primary_10_1007_s40726_025_00382_6 crossref_primary_10_1029_2023GL104607 crossref_primary_10_1007_s00704_022_04207_0 crossref_primary_10_1016_j_ijhydene_2021_01_088 crossref_primary_10_1088_1748_9326_adb987 crossref_primary_10_1038_s43247_025_02392_0 crossref_primary_10_5194_gmd_18_5655_2025 crossref_primary_10_1038_s41467_023_42111_x crossref_primary_10_5194_essd_12_2157_2020 crossref_primary_10_1029_2021GL097133 crossref_primary_10_1016_j_jhydrol_2023_130497 crossref_primary_10_1029_2023GL104314 crossref_primary_10_1029_2023GL104313 crossref_primary_10_1029_2020GL090778 crossref_primary_10_5194_acp_21_12021_2021 crossref_primary_10_1007_s13351_024_3089_y crossref_primary_10_1038_s41612_024_00696_0 crossref_primary_10_5194_acp_23_8879_2023 crossref_primary_10_1088_1748_9326_ac0748 crossref_primary_10_1175_JCLI_D_21_0479_1 crossref_primary_10_2478_bjreecm_2023_0012 crossref_primary_10_1029_2020GL091585 crossref_primary_10_5194_esd_15_1435_2024 crossref_primary_10_1029_2021GL094948 crossref_primary_10_5194_acp_22_7353_2022 crossref_primary_10_5194_acp_24_7837_2024 crossref_primary_10_1038_s41558_023_01775_5 crossref_primary_10_1016_j_atmosenv_2023_120280 crossref_primary_10_1071_ES21031 crossref_primary_10_5194_acp_23_3575_2023 crossref_primary_10_1007_s00382_024_07144_y crossref_primary_10_1029_2022GL102685 crossref_primary_10_1029_2022MS003475 crossref_primary_10_1146_annurev_earth_040523_014302 crossref_primary_10_1002_asl_1088 crossref_primary_10_5194_gmd_18_3623_2025 crossref_primary_10_5194_acp_22_12167_2022 crossref_primary_10_5194_acp_25_5683_2025 crossref_primary_10_1016_j_envpol_2025_125669 crossref_primary_10_1088_1748_9326_ac6ff6 crossref_primary_10_3390_ijerph18136817 crossref_primary_10_1029_2021JD035460 crossref_primary_10_5194_acp_20_15079_2020 crossref_primary_10_3390_su16198562 crossref_primary_10_3390_en15155695 crossref_primary_10_5194_acp_21_15431_2021 crossref_primary_10_5194_acp_21_731_2021 crossref_primary_10_5194_esd_12_709_2021 crossref_primary_10_1007_s10712_024_09838_8 crossref_primary_10_5194_acp_24_1025_2024 crossref_primary_10_1061_JCEMD4_COENG_16502 crossref_primary_10_5194_acp_23_15121_2023 crossref_primary_10_1029_2021JD036204 crossref_primary_10_1038_s43247_025_02466_z crossref_primary_10_1029_2023GL106433 crossref_primary_10_1016_j_scib_2025_09_024 crossref_primary_10_1088_1748_9326_add60a crossref_primary_10_1016_j_aosl_2025_100636 crossref_primary_10_1016_j_atmosres_2023_106896 crossref_primary_10_1007_s00382_022_06369_z crossref_primary_10_1029_2021MS002464 crossref_primary_10_5194_acp_24_5287_2024 crossref_primary_10_1029_2023GL102916 crossref_primary_10_1029_2021GL095778 crossref_primary_10_1088_2752_5295_ac7d68 crossref_primary_10_1126_science_abq6872 crossref_primary_10_1007_s12145_025_01954_2 crossref_primary_10_1088_1748_9326_ad661d crossref_primary_10_5194_esd_14_1295_2023 crossref_primary_10_1088_1748_9326_ad657e crossref_primary_10_5194_esd_11_1209_2020 crossref_primary_10_1029_2022GL100200 crossref_primary_10_1175_JCLI_D_21_0565_1 crossref_primary_10_5194_acp_22_5757_2022 crossref_primary_10_1073_pnas_2016549118 crossref_primary_10_1038_s43247_023_00958_4 crossref_primary_10_1007_s13351_022_1187_2 crossref_primary_10_5194_hess_29_2881_2025 crossref_primary_10_1029_2020JD033880 crossref_primary_10_5194_acp_22_9129_2022 crossref_primary_10_1029_2020JD033364 crossref_primary_10_3389_fclim_2024_1397358 crossref_primary_10_1016_j_crsus_2025_100428 crossref_primary_10_1088_1748_9326_aca91e crossref_primary_10_1016_j_scs_2023_104473 crossref_primary_10_1088_2752_5295_ada84b crossref_primary_10_1073_pnas_2210481119 crossref_primary_10_1029_2020EF001900 crossref_primary_10_1073_pnas_2018211118 crossref_primary_10_1016_j_atmosres_2021_105866 crossref_primary_10_1029_2022JD036880 crossref_primary_10_5194_acp_25_2123_2025 crossref_primary_10_1007_s11665_025_10737_1 crossref_primary_10_1175_JCLI_D_20_0883_1 crossref_primary_10_1029_2023JD038481 crossref_primary_10_1029_2021JD036422 crossref_primary_10_1016_j_jenvman_2024_121087 crossref_primary_10_1029_2022MS002991 crossref_primary_10_1029_2022JC018725 crossref_primary_10_5194_acp_21_18609_2021 crossref_primary_10_5194_acp_21_9887_2021 crossref_primary_10_1038_s41561_023_01144_z crossref_primary_10_1126_science_adq7280 crossref_primary_10_1007_s00382_025_07857_8 crossref_primary_10_1088_1748_9326_aba20c crossref_primary_10_3389_feart_2021_710036 crossref_primary_10_1088_2752_5295_ace27a crossref_primary_10_1029_2020GL091024 crossref_primary_10_3390_atmos11101095 crossref_primary_10_1029_2021RG000757 crossref_primary_10_1088_1748_9326_acca35 crossref_primary_10_5194_acp_22_7131_2022 crossref_primary_10_1038_s41467_021_25850_7 crossref_primary_10_1029_2022JD037623 crossref_primary_10_1038_s41586_025_08987_z crossref_primary_10_1038_s41467_025_56699_9 crossref_primary_10_1088_1748_9326_ad86d1 crossref_primary_10_1175_JCLI_D_21_0167_1 crossref_primary_10_1029_2022GL098808 crossref_primary_10_1029_2021EF002645 crossref_primary_10_1029_2022MS003156 |
| Cites_doi | 10.1029/2019MS002010 10.1029/2019MS002025 10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2 10.1029/2019MS001683 10.5194/acp-13-9971-2013 10.5194/essd-10-317-2018 10.1175/2007JCLI2110.1 10.1029/2018JD030188 10.1088/1748-9326/10/7/074004 10.1029/2019MS001739 10.1029/96JD03510 10.1029/2003GL018141 10.1002/jgrd.50174 10.5194/acp-19-15415-2019 10.1029/2005JD005776 10.5194/gmd-12-1443-2019 10.5194/acp-2019-1205-supplement 10.1029/2019RG000660 10.1007/s10712-017-9433-3 10.1071/ES19040 10.1029/2018MS001603 10.1175/JCLI-D-13-00025.1 10.5194/esd-2019-94-supplement 10.1175/JCLI-D-17-0208.1 10.1029/2003GL018747 10.1029/2019MS001829 10.5194/essd-2019-254 10.5194/acp-20-7829-2020 10.1029/2018MS001400 10.5194/gmd-10-2057-2017 10.5194/gmd-9-3447-2016 10.1002/2017MS001115 10.1175/JCLI-D-11-00248.1 10.5194/gmd-11-2273-2018 10.1186/s40645-020-00348-w 10.1038/35041545 10.1002/2014JD021710 10.1002/2017JD027326 10.5194/acp-20-613-2020 10.2151/jmsj.2019-051 10.1146/annurev.energy.25.1.441 10.1002/2015GL064291 10.1126/science.aau1864 10.1175/2007JCLI2044.1 10.1029/2018GL079826 10.1006/asle.2001.0037 10.1038/s41558-019-0660-0 10.5194/acp-21-1211-2021 10.1175/BAMS-D-13-00167.1 10.5194/gmd-9-1937-2016 10.1029/2019MS001791 10.1007/s00382-016-3280-7 10.1029/2019MS001916 10.1256/smsqj.53106 10.1017/CBO9781107415324.018 10.1126/science.245.4923.1227 10.1175/BAMS-D-15-00013.1 10.1002/jame.20041 10.1175/JCLI-D-11-00721.1 10.1175/JCLI-D-15-0362.1 10.5194/essd-12-1649-2020 10.5194/gmd-11-3945-2018 10.5194/gmd-10-585-2017 10.5194/gmd-12-2727-2019 10.5194/gmd-12-4823-2019 10.1002/2016GL071930 10.1029/2007GL031383 10.1007/s003820100157 10.1002/2016JD025320 10.1029/2019MS001866 10.1017/CBO9781107415324.016 10.1038/s41598-017-14828-5 10.5194/gmd-2019-282 10.1029/2019GL085782 10.1029/2019JD030581 10.1175/BAMS-D-16-0019.1 10.5194/acp-13-2045-2013 10.1007/s00382-013-1725-9 10.1038/nclimate3278 10.1029/2012GL054275 10.1088/1748-9326/aaafdd 10.5194/gmd-11-369-2018 10.1029/2019JD030568 10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2 10.1126/science.1084123 10.1029/2012GL051607 10.5194/gmd-2019-378 10.1038/s41612-019-0073-9 10.5194/acp-10-7017-2010 10.1175/JCLI4143.1 |
| ContentType | Journal Article |
| Copyright | Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL COPYRIGHT 2020 Copernicus GmbH 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL – notice: COPYRIGHT 2020 Copernicus GmbH – notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
| CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
| DBID | CYE CYI AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M P5Z P62 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 1XC VOOES OTOTI ABAVF ADTPV AOWAS D8T DG7 ZZAVC DOA |
| DOI | 10.5194/acp-20-9591-2020 |
| DatabaseName | NASA Scientific and Technical Information NASA Technical Reports Server CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Continental Europe Database (ProQuest) Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) OSTI.GOV SWEPUB Stockholms universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Stockholms universitet SwePub Articles full text DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Physics Environmental Sciences |
| EISSN | 1680-7324 |
| EndPage | 9618 |
| ExternalDocumentID | oai_doaj_org_article_94d71cb5f84643f3b61bee33513682e9 oai_DiVA_org_su_185355 1647673 oai:HAL:hal-02913575v1 A632758843 10_5194_acp_20_9591_2020 20205006275 |
| GrantInformation | DOE-OBER-7457436 NSF-1852977 NNH15CO48B |
| GroupedDBID | 23N 2WC 4P2 5GY 5VS 6J9 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ ABUWG ACGFO ADBBV AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BANNL BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CYE CYI D1K E3Z EBS EDH EJD FD6 GROUPED_DOAJ GX1 H13 HCIFZ HH5 IAO IEA ISR ITC K6- KQ8 OK1 OVT P2P P62 PATMY PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PYCSY Q2X RKB RNS TR2 XSB ~02 AAYXX CITATION 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W GNUQQ H8D H96 KL. L.G L7M PKEHL PQEST PQUKI PRINS 1XC VOOES 3V. BBORY M~E OTOTI RIG ABAVF ADTPV AOWAS C1A D8T DG7 IPNFZ ZZAVC |
| ID | FETCH-LOGICAL-c665t-c56c238a7a332a6e8430a79c60f7b4397837ede0141f1c5096d199aa0eb17d0d3 |
| IEDL.DBID | RKB |
| ISICitedReferencesCount | 248 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000562966500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1680-7316 1680-7324 |
| IngestDate | Fri Oct 03 12:42:20 EDT 2025 Tue Nov 04 16:33:36 EST 2025 Mon Apr 01 04:56:12 EDT 2024 Sat Oct 25 08:31:30 EDT 2025 Sun Nov 09 07:00:26 EST 2025 Sat Nov 29 13:27:13 EST 2025 Sat Nov 29 10:20:57 EST 2025 Wed Nov 26 09:52:46 EST 2025 Sat Nov 29 03:21:55 EST 2025 Tue Nov 18 21:58:15 EST 2025 Fri Nov 21 15:49:31 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Keywords | Rapid Adjustments Effective Radiative Forcing Oresent Day |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c665t-c56c238a7a332a6e8430a79c60f7b4397837ede0141f1c5096d199aa0eb17d0d3 |
| Notes | GSFC Goddard Space Flight Center ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 7457436; 1582977 USDOE Office of Science (SC), Biological and Environmental Research (BER) |
| ORCID | 0000-0002-1364-1988 0000-0002-3691-554X 0000-0003-2328-5769 0000-0002-4309-476X 0000-0002-7419-0850 0000-0001-8898-9949 0000-0003-0599-4633 0000-0003-0450-2748 0000-0002-0016-3470 0000-0002-7092-241X 0000-0002-0415-1661 0000-0003-4650-1102 0000-0003-4764-9600 0000-0002-9377-0674 0000-0003-2122-0443 0000-0001-5476-2148 0000-0003-2893-4828 0000-0002-6078-0171 0000-0001-7034-638X 0000-0002-0373-3918 0000-0002-5717-1594 0000-0001-7307-173X 0000-0003-4989-5530 0000-0002-1751-3326 0000000323285769 000000024309476X 0000000304502748 000000027092241X 0000000293770674 0000000213641988 0000000188989949 0000000347649600 000000023691554X 0000000204151661 0000000274190850 0000000346501102 0000000200163470 0000000321220443 0000000305994633 |
| OpenAccessLink | https://doaj.org/article/94d71cb5f84643f3b61bee33513682e9 |
| PQID | 2434365405 |
| PQPubID | 105744 |
| PageCount | 28 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_94d71cb5f84643f3b61bee33513682e9 swepub_primary_oai_DiVA_org_su_185355 osti_scitechconnect_1647673 hal_primary_oai_HAL_hal_02913575v1 proquest_journals_2434365405 gale_infotracmisc_A632758843 gale_infotracacademiconefile_A632758843 gale_incontextgauss_ISR_A632758843 crossref_citationtrail_10_5194_acp_20_9591_2020 crossref_primary_10_5194_acp_20_9591_2020 nasa_ntrs_20205006275 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-17 |
| PublicationDateYYYYMMDD | 2020-08-17 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | Goddard Space Flight Center |
| PublicationPlace_xml | – name: Goddard Space Flight Center – name: Katlenburg-Lindau – name: Germany |
| PublicationTitle | Atmospheric chemistry and physics |
| PublicationYear | 2020 |
| Publisher | European Geosciences Union / Copernicus Publications Copernicus GmbH European Geosciences Union Copernicus Publications, EGU Copernicus Publications |
| Publisher_xml | – name: European Geosciences Union / Copernicus Publications – name: Copernicus GmbH – name: European Geosciences Union – name: Copernicus Publications, EGU – name: Copernicus Publications |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref93 ref92 ref51 ref50 ref94 ref91 ref90 ref46 ref45 ref89 ref48 ref47 ref42 ref86 ref41 ref85 ref44 ref88 ref43 ref87 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref84 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref15 doi: 10.1029/2019MS002010 – ident: ref44 doi: 10.1029/2019MS002025 – ident: ref84 doi: 10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2 – ident: ref86 doi: 10.1029/2019MS001683 – ident: ref89 – ident: ref30 doi: 10.5194/acp-13-9971-2013 – ident: ref59 doi: 10.5194/essd-10-317-2018 – ident: ref74 doi: 10.1175/2007JCLI2110.1 – ident: ref79 doi: 10.1029/2018JD030188 – ident: ref16 doi: 10.1088/1748-9326/10/7/074004 – ident: ref66 doi: 10.1029/2019MS001739 – ident: ref29 doi: 10.1029/96JD03510 – ident: ref69 doi: 10.1029/2003GL018141 – ident: ref28 doi: 10.1002/jgrd.50174 – ident: ref54 doi: 10.5194/acp-19-15415-2019 – ident: ref35 doi: 10.1029/2005JD005776 – ident: ref31 doi: 10.5194/gmd-12-1443-2019 – ident: ref82 doi: 10.5194/acp-2019-1205-supplement – ident: ref9 doi: 10.1029/2019RG000660 – ident: ref48 doi: 10.1007/s10712-017-9433-3 – ident: ref12 doi: 10.1071/ES19040 – ident: ref32 doi: 10.1029/2018MS001603 – ident: ref41 doi: 10.1175/JCLI-D-13-00025.1 – ident: ref50 doi: 10.5194/esd-2019-94-supplement – ident: ref51 doi: 10.1175/JCLI-D-17-0208.1 – ident: ref33 doi: 10.1029/2003GL018747 – ident: ref39 doi: 10.1029/2019MS001829 – ident: ref73 doi: 10.5194/essd-2019-254 – ident: ref25 doi: 10.5194/acp-20-7829-2020 – ident: ref52 doi: 10.1029/2018MS001400 – ident: ref53 doi: 10.5194/gmd-10-2057-2017 – ident: ref61 doi: 10.5194/gmd-9-3447-2016 – ident: ref88 doi: 10.1002/2017MS001115 – ident: ref92 doi: 10.1175/JCLI-D-11-00248.1 – ident: ref71 doi: 10.5194/gmd-11-2273-2018 – ident: ref58 doi: 10.1186/s40645-020-00348-w – ident: ref10 doi: 10.1038/35041545 – ident: ref93 doi: 10.1002/2014JD021710 – ident: ref76 doi: 10.1002/2017JD027326 – ident: ref34 doi: 10.5194/acp-20-613-2020 – ident: ref91 doi: 10.2151/jmsj.2019-051 – ident: ref38 doi: 10.1146/annurev.energy.25.1.441 – ident: ref60 doi: 10.1002/2015GL064291 – ident: ref75 doi: 10.1126/science.aau1864 – ident: ref67 doi: 10.1175/2007JCLI2044.1 – ident: ref72 doi: 10.1029/2018GL079826 – ident: ref11 doi: 10.1006/asle.2001.0037 – ident: ref27 doi: 10.1038/s41558-019-0660-0 – ident: ref57 doi: 10.5194/acp-21-1211-2021 – ident: ref68 doi: 10.1175/BAMS-D-13-00167.1 – ident: ref24 doi: 10.5194/gmd-9-1937-2016 – ident: ref65 doi: 10.1029/2019MS001791 – ident: ref4 doi: 10.1007/s00382-016-3280-7 – ident: ref20 doi: 10.1029/2019MS001916 – ident: ref22 doi: 10.1256/smsqj.53106 – ident: ref55 doi: 10.1017/CBO9781107415324.018 – ident: ref1 doi: 10.1126/science.245.4923.1227 – ident: ref77 doi: 10.1175/BAMS-D-15-00013.1 – ident: ref13 doi: 10.1002/jame.20041 – ident: ref37 doi: 10.1175/JCLI-D-11-00721.1 – ident: ref17 doi: 10.1175/JCLI-D-15-0362.1 – ident: ref8 doi: 10.5194/essd-12-1649-2020 – ident: ref46 doi: 10.5194/gmd-11-3945-2018 – ident: ref18 doi: 10.5194/gmd-10-585-2017 – ident: ref80 doi: 10.5194/gmd-12-2727-2019 – ident: ref78 doi: 10.5194/gmd-12-4823-2019 – ident: ref23 doi: 10.1002/2016GL071930 – ident: ref45 doi: 10.1029/2007GL031383 – ident: ref19 – ident: ref87 doi: 10.1007/s003820100157 – ident: ref70 – ident: ref26 doi: 10.1002/2016JD025320 – ident: ref5 doi: 10.1029/2019MS001866 – ident: ref14 doi: 10.1017/CBO9781107415324.016 – ident: ref36 doi: 10.1038/s41598-017-14828-5 – ident: ref90 doi: 10.5194/gmd-2019-282 – ident: ref94 doi: 10.1029/2019GL085782 – ident: ref62 doi: 10.1029/2019JD030581 – ident: ref56 doi: 10.1175/BAMS-D-16-0019.1 – ident: ref7 doi: 10.5194/acp-13-2045-2013 – ident: ref85 doi: 10.1007/s00382-013-1725-9 – ident: ref6 doi: 10.1038/nclimate3278 – ident: ref21 – ident: ref43 doi: 10.1029/2012GL054275 – ident: ref83 doi: 10.1088/1748-9326/aaafdd – ident: ref40 doi: 10.5194/gmd-11-369-2018 – ident: ref42 doi: 10.1029/2019JD030568 – ident: ref47 doi: 10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2 – ident: ref63 doi: 10.1126/science.1084123 – ident: ref3 doi: 10.1029/2012GL051607 – ident: ref64 doi: 10.5194/gmd-2019-378 – ident: ref2 doi: 10.1038/s41612-019-0073-9 – ident: ref49 doi: 10.5194/acp-10-7017-2010 – ident: ref81 doi: 10.1175/JCLI4143.1 |
| SSID | ssj0025014 |
| Score | 2.683761 |
| Snippet | The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of... |
| SourceID | doaj swepub osti hal proquest gale crossref nasa |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9591 |
| SubjectTerms | Aerosol-cloud interactions Aerosols Air pollution Analysis Anthropogenic factors Atmosphere Atmospheric models Carbon Carbon dioxide Climate Climate change Climate models Climate sensitivity Climatology Earth Sciences ENVIRONMENTAL SCIENCES Experiments Gases General circulation models Greenhouse effect Greenhouse gases Human influences Intercomparison Land use Meteorology Meteorology And Climatology Ocean, Atmosphere open climate campaign Ozone Physics Radiative forcing Sciences of the Universe Sensitivity Temperature |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgxYEL4lFEaEFWxUMcorXjxI7FaVmoWqmtKl7qzXL8KIuqbLXZ7e9nxsmumgtcuO0mjmJ_Hnu-icefCXlTaAd-NPg8Og0BStHw3Drlc6dqHupSyBjTRuFTdX5eX17qiztHfWFOWC8P3AM31aVX3DVVBEdZiigayZsQhKi4kHUR0tY9pvQ2mBpCLVwtw1BL1izHs5n6BUpgK-XUuhswjVxXUDeI_NnIISXd_t3sfP8XJkdOWtuB25osYcyNeehdbdHkj44ek0cDkaSzvgFPyL3QPiXZGXDg5Sp9Kqfv6Px6AYQ0_XtGPvZCxTC70RUKEqRfQFkdOC9qW0-t_73pUtJ5RxctnZ-dXEiaTsrp9siPoy_f58f5cHRC7qSs1jl0gANnbJUVorASUWdWaSdZVA1yEIhLgw-Y5Rm5QwkYz7W2lsHUrTzz4jk0e9mGF4SqUEZWQy80AdiGChAglaVuCl_GGlfxMjLd4mfcoCuOx1tcG4gvEHEDiJuCGUTcIOIZ-bB74qbX1PhL2U_YJbtyqIadLoCNmMFGzL9sJCOH2KEG9S5aTKi5spuuMyffvpqZFIXCzboiI--HQnEJ9Xd22J8AKKBE1qjkwagkDEg3un0IdjOq8fHs1OA1VmgugCDf8ozsoVkZgKpLDa1YEozOyD7amQH-gyK-DrOd3Nqg6ptU-Oat-ZlhroGncXOwROadkbe9SY5e_nnxc5bg6jYG2VlVvfwfoO6Th1hv_L7O1QGZrFeb8Io8cLfrRbd6nYbjH6YpL8Q priority: 102 providerName: Directory of Open Access Journals – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYAYkXPsYmwgaKJj7EQ9QkTuxYPKBSmDZpmyq-NPFiObYziqakxO3-fu6cNCIve-GtTZ3m4jv7fmeff0fIq1Ro8KPWRJUWEKCkZRIpzU2keZHYIqOsqvxB4TN-cVFcXopFv-Dm-rTK7ZzoJ2rTaFwjn6Z4BJIhvviw-hNh1SjcXe1LaOyQu8iSgKUbFvnPIeDCPTMMuFgRR1ihqdumBMySTZVegYFEIgcJIf6PR27Js_cPc_TOL0yRnNTKgfOaNDDyxmj0X4ZR75WOH_3v-zwmD3s8Gs46A3pC7th6lwTnAKWb1q-4h2_C-fUScK3_tkvu-5xR7Z6S9x3zMUyXYYsMB_4TYGAN3jBUtQmV-b1xPovdhcs6nJ-fLljoS--4PfL9-PO3-UnU12KINGP5OgKNavDuiitKU8VQjbHiQrO44iWCGgh0rbGYNlolGjllTCKEUjH4Am5iQ_ehB5vaPiMht1kVF5nhpQX4wi1EXFkmytRkVYHbggGZblUhdU9UjvUyriUELKg8CcqTaSxReRKVF5B3wx2rjqTjlrYfUbtDO6TX9hea9kr2o1UKkC7RZV4BOstoRUuWlNZSmieUFakVATlC25BIoFFjhs6V2jgnT79-kTNGU46nf2lA3vaNqgbk16o_8AC9gJxbo5aHo5YwwvXo5yMwwZHEJ7MzidfiVCQUEPdNEpA9tFAJXeX8i-axZ6AOyAGarARAhazAGtOn9FoijRzj-OStdcp-8oK7B9MMyOvOukcP_7T8MfPd5TYS4V6eP7_9bw7IA5QIl-ITfkgm63ZjX5B7-ma9dO1LP2b_AppyQWU priority: 102 providerName: ProQuest |
| Title | Effective radiative forcing and adjustments in CMIP6 models |
| URI | https://ntrs.nasa.gov/citations/20205006275 https://www.proquest.com/docview/2434365405 https://hal.science/hal-02913575 https://www.osti.gov/biblio/1647673 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-185355 https://doaj.org/article/94d71cb5f84643f3b61bee33513682e9 |
| Volume | 20 |
| WOSCitedRecordID | wos000562966500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAGF databaseName: Copernicus Publications customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: RKB dateStart: 20010101 isFulltext: true titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html providerName: Copernicus Gesellschaft – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: P5Z dateStart: 20100415 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Continental Europe Database (ProQuest) customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: BFMQW dateStart: 20100415 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: PCBAR dateStart: 20100415 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: PATMY dateStart: 20100415 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: BENPR dateStart: 20100415 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: PIMPY dateStart: 20100415 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELeg8MAL42No2cYUTXyIh6hxnNixeOrKplVaq6gMNHixHNuBoimdmnZ_P3dOVi0v8AAvTevain139t3Z598R8iaRBvSos1FlJDgoSUkjbYSNjMipy1PGq8pfFL4Qs1l-dSWLe6m-MCashQduCTeUqRXUlFkFijJlFSs5LZ1jLKOM54nDq3sghjgl55jDrXO18LQMXS2exxHmZmoPKMFaSYfa3IBoRDKDvoHnH_cUksft367OD39icOSg1g2orcES5lzfDr2PLer10dnOP4zkGXnaGaHhqG3ynDxw9QsSTMF-Xq78Nnv4LhxfL8CY9b9eko8tyDGsjOEKwQz8NzB3DSi-UNc21PbXpvEB6024qMPxdFLw0GfZaXbJl7PTy_F51KVdiAzn2ToC5hlQ5FpoxhLNkWOxFtLwuBIl2i_g0zrrMEK0ogbhYyyVUusYln1hY8teAcmWtdsjoXBpFecw7tKBpSIcOFdpKsvEplWOJ4ABGd7RXpkOkxxTY1wr8E2QWwq4pZJYIbcUcisgH7Ytblo8jj_UPUEmbOshkrYvAK6ojivqb1wJyDEKg0KsjBqDcX7oTdOoyee5GnGWCLzoywLyvqtULaH_Rnd3G4AKCK_Vq3nYqwmT2fT-PgaZ6_X4fHShsCxOJGVgXN_SgOyiSCogVeMHmsUebDogByijCmwnBAA2GCll1goR47jAN9-JrurWKWiNF4s5Wu0BeduKc-_lnxZfR55czUahZZdl-_-DqAfkCfYb9-apOCSD9WrjXpPH5na9aFZH5NHJ6ayYH_n9Efgssu9QVowup9_wOZkW8MTp_htifUiT |
| linkProvider | Copernicus Gesellschaft |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFLe2DgQXPsYQYQOiiYE4RE3sxE6EECodU6u1UwUDjZNxHGcUTUlp2iH-Kf5G3nPSarnstgO3JHWSF_t99j3_HiEvaaLBjprMy3UCAQpNA09pkXlaxIGJQ8bz3G4UHomTk_jsLJlskL-rvTBYVrnSiVZRZ6XG_8i7FLdAcvQv3s9-edg1CrOrqxYaNVscmz-_IWSr3g0PYX0PKD36eNofeE1XAU9zHi08oE2DnVJCMUYVR4J8JRLN_VykaJ4hZDOZwQLIPNCIjpIFSaKUD1pNZH7G4LmbZCtEZu-QrclwPPm2DvEwS4chHo99D3tC1YlR8JLCrtIzYEkviWBOqI_9xa8YQtsvYG0VNn9gUWanUBWYy04Jst72f69imlo7eHT_f5vBB-Re43G7vVpEHpINU2wTZwzBQjm3OQX3ldu_mILnbs-2yW1bFaurR-Rtje0MBsGdI4aDPQIvX4O9d1WRuSr7uaxsnX7lTgu3Px5OuGubC1U75MuNfNVjWLGyME-IK0yY-3GYidSAgyYMxJRhmKQ0C_MYE58O6a6WXuoGih07glxICMmQWSQwi6S-RGaRyCwOebO-Y1bDkFwz9gNy03ocAojbC-X8XDb6SCZAXaDTKAf_M2Q5S3mQGsNYFDAeU5M4ZB95USJESIE1SOdqWVVy-PmT7HFGBe5vZg553QzKS6Bfq2ZLB8wCooq1Ru61RoIO062f94HlWxQPeiOJ13yaBAxiisvAITsoERKmqrIfGvkWY9shuygiElxGxD3WWCCmFxKB8rjAN6-kQTbqGe5ei4JDDmppar38cPq1Z6erWkp0aKPo6fWPeUHuDE7HIzkanhzvkrtIHSYeArFHOov50jwjt_TlYlrNnzcawyXfb1rE_gFCvp5J |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF61KSAuPEoRpgWsioI4WLF37V1bCKE0IWrUJCpQoLdlvV6XoMoOcVLEX-PXMbN2oubSWw_c_Fjb4_U8PbPfEPKSJhrsqMm8XCcQoNA08JQWmadFHJg4ZDzP7ULhoRiP47Oz5GSD_F2uhcGyyqVOtIo6KzX-I29TXALJ0b9o501ZxEmv_376y8MOUphpXbbTqFnk2Pz5DeFb9W7Qg299QGn_w2n3yGs6DHia82juAZ0abJYSijGqOBLnK5Fo7uciRVMN4ZvJDBZD5oFGpJQsSBKlfNBwIvMzBvfdJFsx57HfIluH_dHHb6twDzN2GO7BOQ_7Q9VJUvCYwrbSU2BPL4lgfqiPvcavGEXbO2BlITZ_YIFmq1AVmM5WCXK_7gtfxTe1NrF__3-ezQfkXuOJu51adB6SDVNsE2cEQUQ5s7kG95XbvZiAR2_3tsltWy2rq0fkbY35DIbCnSG2g90C71-DH-CqInNV9nNR2fr9yp0Ubnc0OOGubTpU7ZAvN_JWj-HrlYV5QlxhwtyPw0ykBhw3YSDWDMMkpVmYx5gQdUh7yQZSNxDt2CnkQkKohowjgXEk9SUyjkTGccib1RXTGp7kmrGHyFmrcQgsbg-Us3PZ6CmZAHWBTqMc_NKQ5SzlQWoMY1HAeExN4pB95EuJ0CEFss25WlSVHHz-JDucUYHrnplDXjeD8hLo16pZ6gGzgGhjayP31kaCbtNrp_eB_dcoPuoMJR7zaRIwiDUuA4fsoHRImKrKvmjkW-xth-yiuEhwJREPWWPhmJ5LBNDjAp-8lAzZqG24eiUWDjmoJWvt4b3J146drmoh0dGNoqfX3-YFuQNyJYeD8fEuuYvEYT4iEHukNZ8tzDNyS1_OJ9XseaM8XPL9piXsH6Kdpuk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+radiative+forcing+and+adjustments+in+CMIP6+models&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=C.+J.+Smith&rft.au=C.+J.+Smith&rft.au=R.+J.+Kramer&rft.au=R.+J.+Kramer&rft.date=2020-08-17&rft.pub=Copernicus+Publications&rft.issn=1680-7316&rft.eissn=1680-7324&rft.volume=20&rft.spage=9591&rft.epage=9618&rft_id=info:doi/10.5194%2Facp-20-9591-2020&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_94d71cb5f84643f3b61bee33513682e9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7316&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7316&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7316&client=summon |