Replication stress and chromatin context link ATM activation to a role in DNA replication
ATM-mediated signaling in response to DNA damage is a barrier to tumorigenesis. Here we asked whether replication stress could also contribute to ATM signaling. We demonstrate that, in the absence of DNA damage, ATM responds to replication stress in a hypoxia-induced heterochromatin-like context. In...
Saved in:
| Published in: | Molecular cell Vol. 52; no. 5; p. 758 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
12.12.2013
|
| Subjects: | |
| ISSN: | 1097-4164, 1097-4164 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | ATM-mediated signaling in response to DNA damage is a barrier to tumorigenesis. Here we asked whether replication stress could also contribute to ATM signaling. We demonstrate that, in the absence of DNA damage, ATM responds to replication stress in a hypoxia-induced heterochromatin-like context. In certain hypoxic conditions, replication stress occurs in the absence of detectable DNA damage. Hypoxia also induces H3K9me3, a histone modification associated with gene repression and heterochromatin. Hypoxia-induced replication stress together with increased H3K9me3 leads to ATM activation. Importantly, ATM prevents the accumulation of DNA damage in hypoxia. Most significantly, we describe a stress-specific role for ATM in maintaining DNA replication rates in a background of increased H3K9me3. Furthermore, the ATM-mediated response to oncogene-induced replication stress is enhanced in hypoxic conditions. Together, these data indicate that hypoxia plays a critical role in the activation of the DNA damage response, therefore contributing to this barrier to tumorigenesis. |
|---|---|
| AbstractList | ATM-mediated signaling in response to DNA damage is a barrier to tumorigenesis. Here we asked whether replication stress could also contribute to ATM signaling. We demonstrate that, in the absence of DNA damage, ATM responds to replication stress in a hypoxia-induced heterochromatin-like context. In certain hypoxic conditions, replication stress occurs in the absence of detectable DNA damage. Hypoxia also induces H3K9me3, a histone modification associated with gene repression and heterochromatin. Hypoxia-induced replication stress together with increased H3K9me3 leads to ATM activation. Importantly, ATM prevents the accumulation of DNA damage in hypoxia. Most significantly, we describe a stress-specific role for ATM in maintaining DNA replication rates in a background of increased H3K9me3. Furthermore, the ATM-mediated response to oncogene-induced replication stress is enhanced in hypoxic conditions. Together, these data indicate that hypoxia plays a critical role in the activation of the DNA damage response, therefore contributing to this barrier to tumorigenesis. ATM-mediated signaling in response to DNA damage is a barrier to tumorigenesis. Here we asked whether replication stress could also contribute to ATM signaling. We demonstrate that, in the absence of DNA damage, ATM responds to replication stress in a hypoxia-induced heterochromatin-like context. In certain hypoxic conditions, replication stress occurs in the absence of detectable DNA damage. Hypoxia also induces H3K9me3, a histone modification associated with gene repression and heterochromatin. Hypoxia-induced replication stress together with increased H3K9me3 leads to ATM activation. Importantly, ATM prevents the accumulation of DNA damage in hypoxia. Most significantly, we describe a stress-specific role for ATM in maintaining DNA replication rates in a background of increased H3K9me3. Furthermore, the ATM-mediated response to oncogene-induced replication stress is enhanced in hypoxic conditions. Together, these data indicate that hypoxia plays a critical role in the activation of the DNA damage response, therefore contributing to this barrier to tumorigenesis.ATM-mediated signaling in response to DNA damage is a barrier to tumorigenesis. Here we asked whether replication stress could also contribute to ATM signaling. We demonstrate that, in the absence of DNA damage, ATM responds to replication stress in a hypoxia-induced heterochromatin-like context. In certain hypoxic conditions, replication stress occurs in the absence of detectable DNA damage. Hypoxia also induces H3K9me3, a histone modification associated with gene repression and heterochromatin. Hypoxia-induced replication stress together with increased H3K9me3 leads to ATM activation. Importantly, ATM prevents the accumulation of DNA damage in hypoxia. Most significantly, we describe a stress-specific role for ATM in maintaining DNA replication rates in a background of increased H3K9me3. Furthermore, the ATM-mediated response to oncogene-induced replication stress is enhanced in hypoxic conditions. Together, these data indicate that hypoxia plays a critical role in the activation of the DNA damage response, therefore contributing to this barrier to tumorigenesis. |
| Author | Pires, Isabel M Hammond, Ester M Olcina, Monica M Senra, Joana M Foskolou, Iosifina P Anbalagan, Selvakumar Ryan, Anderson J Jiang, Yanyan |
| Author_xml | – sequence: 1 givenname: Monica M surname: Olcina fullname: Olcina, Monica M organization: The Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK – sequence: 2 givenname: Iosifina P surname: Foskolou fullname: Foskolou, Iosifina P organization: The Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK – sequence: 3 givenname: Selvakumar surname: Anbalagan fullname: Anbalagan, Selvakumar organization: The Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK – sequence: 4 givenname: Joana M surname: Senra fullname: Senra, Joana M organization: The Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK – sequence: 5 givenname: Isabel M surname: Pires fullname: Pires, Isabel M organization: The Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK – sequence: 6 givenname: Yanyan surname: Jiang fullname: Jiang, Yanyan organization: The Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK – sequence: 7 givenname: Anderson J surname: Ryan fullname: Ryan, Anderson J organization: The Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK – sequence: 8 givenname: Ester M surname: Hammond fullname: Hammond, Ester M email: ester.hammond@oncology.ox.ac.uk organization: The Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK. Electronic address: ester.hammond@oncology.ox.ac.uk |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24268576$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkMtOwzAURC1URB_wBwh5ySbBdvyIl1V5SgUkVBasIsexRYpjl9hF8PcEtQgWozsanTuLmYKRD94AcIpRjhHmF-u8C04blxOEiyHKEZYHYIKRFBnFnI7--TGYxrhGCFNWyiMwJpTwkgk-AS9PZuNarVIbPIypNzFC5RuoX_vQDamHOvhkPhN0rX-D89U9VDq1H7uHFKCCfXAGDuDlwxz2f23H4NAqF83J_s7A8_XVanGbLR9v7hbzZaY5ZylTJUF1o23BbEMQLQUpkKWywYJIZog1uBbWKFXXpZEKK1roQVaKWmJrLSMzcL7r3fThfWtiqro2Drs45U3YxgpTIRgnUvygZ3t0W3emqTZ926n-q_qdg3wDFHBmUw |
| CitedBy_id | crossref_primary_10_1038_onc_2015_427 crossref_primary_10_1158_0008_5472_CAN_18_0569 crossref_primary_10_1042_BST20191106 crossref_primary_10_1172_JCI77195 crossref_primary_10_1038_s41568_024_00781_9 crossref_primary_10_1172_JCI168277 crossref_primary_10_1016_j_pharmthera_2016_02_007 crossref_primary_10_1016_j_jtbi_2022_111104 crossref_primary_10_1042_BST20200861 crossref_primary_10_1093_mutage_gez019 crossref_primary_10_1172_JCI80402 crossref_primary_10_1016_j_ctrv_2024_102808 crossref_primary_10_3390_ijms25052767 crossref_primary_10_1667_RR14150_1 crossref_primary_10_1038_s41467_021_24066_z crossref_primary_10_1113_JP285230 crossref_primary_10_1242_dev_125708 crossref_primary_10_1177_1010428317711656 crossref_primary_10_3390_biomedicines6020047 crossref_primary_10_1161_CIRCRESAHA_123_322620 crossref_primary_10_1128_JVI_03650_14 crossref_primary_10_1186_s13046_017_0570_9 crossref_primary_10_1002_dvdy_24522 crossref_primary_10_1016_j_tice_2024_102408 crossref_primary_10_1259_bjr_20140649 crossref_primary_10_1016_j_pbiomolbio_2021_03_007 crossref_primary_10_1038_s41388_024_03192_0 crossref_primary_10_1038_s41598_017_11658_3 crossref_primary_10_1111_cas_13455 crossref_primary_10_1016_j_pbiomolbio_2020_11_005 crossref_primary_10_1016_j_mrgentox_2018_06_001 crossref_primary_10_1007_s11515_016_1435_x crossref_primary_10_1016_j_molcel_2017_03_005 crossref_primary_10_1172_JCI131698 crossref_primary_10_1016_j_clon_2014_02_002 crossref_primary_10_1093_nar_gkab551 crossref_primary_10_1134_S1990519X20010101 crossref_primary_10_1017_erm_2022_14 crossref_primary_10_1038_s41388_020_01474_x crossref_primary_10_1186_s12885_019_5476_9 crossref_primary_10_1093_nar_gkad858 crossref_primary_10_1002_1878_0261_13431 crossref_primary_10_1016_j_devcel_2021_01_011 crossref_primary_10_3390_ijms21218320 crossref_primary_10_3892_ijo_2019_4672 crossref_primary_10_1038_s41598_023_44880_3 crossref_primary_10_1080_09553002_2021_1988178 crossref_primary_10_1111_febs_14377 crossref_primary_10_1016_j_dnarep_2015_04_030 crossref_primary_10_1038_cddis_2014_577 crossref_primary_10_3390_genes12060845 crossref_primary_10_1080_15384101_2018_1532254 crossref_primary_10_3390_cancers13030499 crossref_primary_10_1038_srep21698 crossref_primary_10_1242_dmm_045807 crossref_primary_10_1016_j_semradonc_2021_09_008 crossref_primary_10_1038_s41419_025_07862_z crossref_primary_10_1038_ncb3035 crossref_primary_10_1242_jcs_169730 crossref_primary_10_1016_j_radonc_2023_109906 crossref_primary_10_1016_j_mrrev_2020_108346 crossref_primary_10_3390_ijms15045388 crossref_primary_10_3389_fcell_2021_720194 crossref_primary_10_1016_j_celrep_2014_10_060 crossref_primary_10_1186_s12885_017_3319_0 crossref_primary_10_3390_genes6040935 crossref_primary_10_1016_j_radonc_2016_10_023 crossref_primary_10_1016_j_semcancer_2023_11_008 crossref_primary_10_1038_s41418_021_00740_z crossref_primary_10_1038_s41467_017_02245_1 crossref_primary_10_3390_biomedicines10112775 crossref_primary_10_1016_j_semcancer_2023_11_006 crossref_primary_10_1016_j_cell_2015_08_006 crossref_primary_10_1038_onc_2015_134 crossref_primary_10_15252_embr_202051120 crossref_primary_10_3389_fcell_2021_626229 crossref_primary_10_1158_0008_5472_CAN_19_1807 crossref_primary_10_1016_j_yexcr_2014_09_002 crossref_primary_10_1002_ijc_34288 crossref_primary_10_1007_s12035_022_02915_2 crossref_primary_10_1016_j_molcel_2017_05_015 crossref_primary_10_1111_febs_15695 crossref_primary_10_18632_oncotarget_16102 crossref_primary_10_1111_febs_15374 crossref_primary_10_1242_bio_015347 crossref_primary_10_3390_ijms18071486 |
| ContentType | Journal Article |
| Copyright | Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.molcel.2013.10.019 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1097-4164 |
| ExternalDocumentID | 24268576 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Cancer Research UK grantid: 19276 – fundername: Medical Research Council grantid: MC_PC_12006 |
| GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 5VS 62- 7-5 AAEDT AAEDW AAHBH AAIKJ AAKRW AAKUH AALRI AAMRU AAQFI AAVLU AAXUO AAYWO ABDGV ABJNI ABMAC ACGFO ACGFS ACNCT ACVFH ADBBV ADCNI ADEZE ADVLN AEFWE AENEX AEUPX AEXQZ AFFNX AFPUW AFTJW AGCQF AGHFR AGKMS AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP ASPBG AVWKF AZFZN BAWUL CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EFKBS EIF EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NPM O-L O9- OK1 P2P RIG ROL RPZ SDG SES SSZ TR2 7X8 |
| ID | FETCH-LOGICAL-c665t-a820bdcf35fd20487230f49d17295e2fe1b7feaabb8e9a1a43ca43f97b91fff52 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 95 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000328591800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1097-4164 |
| IngestDate | Wed Oct 01 14:24:36 EDT 2025 Mon Jul 21 05:52:59 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c665t-a820bdcf35fd20487230f49d17295e2fe1b7feaabb8e9a1a43ca43f97b91fff52 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doi.org/10.1016/j.molcel.2013.10.019 |
| PMID | 24268576 |
| PQID | 1477562975 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1477562975 pubmed_primary_24268576 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-12-12 |
| PublicationDateYYYYMMDD | 2013-12-12 |
| PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-12 day: 12 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Molecular cell |
| PublicationTitleAlternate | Mol Cell |
| PublicationYear | 2013 |
| SSID | ssj0014589 |
| Score | 2.4399562 |
| Snippet | ATM-mediated signaling in response to DNA damage is a barrier to tumorigenesis. Here we asked whether replication stress could also contribute to ATM... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 758 |
| SubjectTerms | Animals Ataxia Telangiectasia Mutated Proteins - genetics Cell Hypoxia - genetics Cell Line DNA Damage DNA Replication - genetics DNA-Binding Proteins - genetics HEK293 Cells Heterochromatin - genetics Histones - genetics Humans Mice NIH 3T3 Cells Nuclear Proteins - genetics Signal Transduction |
| Title | Replication stress and chromatin context link ATM activation to a role in DNA replication |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24268576 https://www.proquest.com/docview/1477562975 |
| Volume | 52 |
| WOSCitedRecordID | wos000328591800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UKnjx_agvVvC62t1ks8lJilo82NCDQj2FzT5Q0KS2VfDfO5MHvYngITllQ5idzH4z880MIRfSRtzFImdOSc_CpNdjuicFC6y3uTWRNnnVZ_ZBpWk8HiejJuA2a2iVrU2sDLUtDcbIr3ioFJzViZLXkw-GU6Mwu9qM0FgmnQCgDGq1Gi-yCKGsRuBhkpUB8Ajb0rmK3_VevhmHyQceXCK_i_8CMqvDZrD538_cIhsNzKT9Wi-2yZIrdshaPXjye5c8A-5uo3W0LhehurDUvExLhLAFRQo72G2KCV7afxxSLICow7d0XlJNkZZI4cHbtE-ni7ftkafB3ePNPWuGLDATRXLONEAA2BQfSG-xia8Cn8SHiQVgk0gnvOO58k7rPI9dorkOAwOXT1SecO-9FPtkpSgLd0goF9YZ4QByehvantCeuyjS4OA5Hjjlu-S8lVkGSoyZCV248nOWLaTWJQe14LNJ3W0jQwwRg1d09IfVx2Qd9xPpJlyckI6HX9idklXzNX-dTc8q7YB7Ohr-ABANxiw |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Replication+stress+and+chromatin+context+link+ATM+activation+to+a+role+in+DNA+replication&rft.jtitle=Molecular+cell&rft.au=Olcina%2C+Monica+M&rft.au=Foskolou%2C+Iosifina+P&rft.au=Anbalagan%2C+Selvakumar&rft.au=Senra%2C+Joana+M&rft.date=2013-12-12&rft.issn=1097-4164&rft.eissn=1097-4164&rft.volume=52&rft.issue=5&rft.spage=758&rft_id=info:doi/10.1016%2Fj.molcel.2013.10.019&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4164&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4164&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4164&client=summon |