Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images
The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to regulate emotional responses. Quantitative in-vivo assessment of the cerebellum is important in the study of several neurological diseases in...
Saved in:
| Published in: | NeuroImage (Orlando, Fla.) Vol. 183; pp. 150 - 172 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Inc
01.12.2018
Elsevier Limited Elsevier |
| Subjects: | |
| ISSN: | 1053-8119, 1095-9572, 1095-9572 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to regulate emotional responses. Quantitative in-vivo assessment of the cerebellum is important in the study of several neurological diseases including cerebellar ataxia, autism, and schizophrenia. Different structural subdivisions of the cerebellum have been shown to correlate with differing pathologies. To further understand these pathologies, it is helpful to automatically parcellate the cerebellum at the highest fidelity possible. In this paper, we coordinated with colleagues around the world to evaluate automated cerebellum parcellation algorithms on two clinical cohorts showing that the cerebellum can be parcellated to a high accuracy by newer methods. We characterize these various methods at four hierarchical levels: coarse (i.e., whole cerebellum and gross structures), lobe, subdivisions of the vermis, and the lobules. Due to the number of labels, the hierarchy of labels, the number of algorithms, and the two cohorts, we have restricted our analyses to the Dice measure of overlap. Under these conditions, machine learning based methods provide a collection of strategies that are efficient and deliver parcellations of a high standard across both cohorts, surpassing previous work in the area. In conjunction with the rank-sum computation, we identified an overall winning method.
•First paper to evaluate the state-of-the-art in cerebellum parcellation.•Presenting results on both Adult and Pediatric Cohorts.•Adult Cohort contains healthy controls, and patients with either symptoms of cerebellar dysfunction or SCA 6.•Pediatric Cohort contains healthy controls, and patients with ADHD or Autism. |
|---|---|
| AbstractList | The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to regulate emotional responses. Quantitative in-vivo assessment of the cerebellum is important in the study of several neurological diseases including cerebellar ataxia, autism, and schizophrenia. Different structural subdivisions of the cerebellum have been shown to correlate with differing pathologies. To further understand these pathologies, it is helpful to automatically parcellate the cerebellum at the highest fidelity possible. In this paper, we coordinated with colleagues around the world to evaluate automated cerebellum parcellation algorithms on two clinical cohorts showing that the cerebellum can be parcellated to a high accuracy by newer methods. We characterize these various methods at four hierarchical levels: coarse (i.e., whole cerebellum and gross structures), lobe, subdivisions of the vermis, and the lobules. Due to the number of labels, the hierarchy of labels, the number of algorithms, and the two cohorts, we have restricted our analyses to the Dice measure of overlap. Under these conditions, machine learning based methods provide a collection of strategies that are efficient and deliver parcellations of a high standard across both cohorts, surpassing previous work in the area. In conjunction with the rank-sum computation, we identified an overall winning method. The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to regulate emotional responses. Quantitative in-vivo assessment of the cerebellum is important in the study of several neurological diseases including cerebellar ataxia, autism, and schizophrenia. Different structural subdivisions of the cerebellum have been shown to correlate with differing pathologies. To further understand these pathologies, it is helpful to automatically parcellate the cerebellum at the highest fidelity possible. In this paper, we coordinated with colleagues around the world to evaluate automated cerebellum parcellation algorithms on two clinical cohorts showing that the cerebellum can be parcellated to a high accuracy by newer methods. We characterize these various methods at four hierarchical levels: coarse (i.e., whole cerebellum and gross structures), lobe, subdivisions of the vermis, and the lobules. Due to the number of labels, the hierarchy of labels, the number of algorithms, and the two cohorts, we have restricted our analyses to the Dice measure of overlap. Under these conditions, machine learning based methods provide a collection of strategies that are efficient and deliver parcellations of a high standard across both cohorts, surpassing previous work in the area. In conjunction with the rank-sum computation, we identified an overall winning method. •First paper to evaluate the state-of-the-art in cerebellum parcellation.•Presenting results on both Adult and Pediatric Cohorts.•Adult Cohort contains healthy controls, and patients with either symptoms of cerebellar dysfunction or SCA 6.•Pediatric Cohort contains healthy controls, and patients with ADHD or Autism. The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to regulate emotional responses. Quantitative in-vivo assessment of the cerebellum is important in the study of several neurological diseases including cerebellar ataxia, autism, and schizophrenia. Different structural subdivisions of the cerebellum have been shown to correlate with differing pathologies. To further understand these pathologies, it is helpful to automatically parcellate the cerebellum at the highest fidelity possible. In this paper, we coordinated with colleagues around the world to evaluate automated cerebellum parcellation algorithms on two clinical cohorts showing that the cerebellum can be parcellated to a high accuracy by newer methods. We characterize these various methods at four hierarchical levels: coarse (i.e., whole cerebellum and gross structures), lobe, subdivisions of the vermis, and the lobules. Due to the number of labels, the hierarchy of labels, the number of algorithms, and the two cohorts, we have restricted our analyses to the Dice measure of overlap. Under these conditions, machine learning based methods provide a collection of strategies that are efficient and deliver parcellations of a high standard across both cohorts, surpassing previous work in the area. In conjunction with the rank-sum computation, we identified an overall winning method.The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to regulate emotional responses. Quantitative in-vivo assessment of the cerebellum is important in the study of several neurological diseases including cerebellar ataxia, autism, and schizophrenia. Different structural subdivisions of the cerebellum have been shown to correlate with differing pathologies. To further understand these pathologies, it is helpful to automatically parcellate the cerebellum at the highest fidelity possible. In this paper, we coordinated with colleagues around the world to evaluate automated cerebellum parcellation algorithms on two clinical cohorts showing that the cerebellum can be parcellated to a high accuracy by newer methods. We characterize these various methods at four hierarchical levels: coarse (i.e., whole cerebellum and gross structures), lobe, subdivisions of the vermis, and the lobules. Due to the number of labels, the hierarchy of labels, the number of algorithms, and the two cohorts, we have restricted our analyses to the Dice measure of overlap. Under these conditions, machine learning based methods provide a collection of strategies that are efficient and deliver parcellations of a high standard across both cohorts, surpassing previous work in the area. In conjunction with the rank-sum computation, we identified an overall winning method. |
| Author | Collins, D. Louis Dolz, Jose Cuzzocreo, Jennifer L. Han, Shuo Desrosiers, Christian Romero, José E. Carass, Aaron Mostofsky, Stewart H. Landman, Bennett A. Ganz, Melanie Beliveau, Vincent Ying, Sarah H. Crocetti, Deana Hernandez-Castillo, Carlos R. Ben Ayed, Ismail Thyreau, Benjamin Manjón, José V. Fonov, Vladimir S. Rasser, Paul E. Coupé, Pierrick Thompson, Paul M. Prince, Jerry L. Onyike, Chiadi U. |
| AuthorAffiliation | a Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA t Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA u Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA 90292, USA k Laboratory for Imagery, Vision, and Artificial Intelligence, École de Technologie Supérieure, Montreal, QC, Canada e Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA m Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, España f Consejo Nacional de Ciencia y Tecnología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico s Center for Neurodevelopmental Medicine and Imaging Research, Kennedy Krieger Institut |
| AuthorAffiliation_xml | – name: h Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark – name: m Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, España – name: q Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA – name: a Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA – name: e Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA – name: k Laboratory for Imagery, Vision, and Artificial Intelligence, École de Technologie Supérieure, Montreal, QC, Canada – name: l Institute of Development, Aging and Cancer, Tohoku University, Japan – name: t Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA – name: u Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA 90292, USA – name: c Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA – name: v Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA – name: i Department of Computer Science, University of Copenhagen, Copenhagen, Denmark – name: b Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA – name: n University of Bordeaux, LaBRI, UMR 5800, PICTURA, Talence, F-33400, France – name: r Department of Psychiatry and Behavioral Sciences, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA – name: p Image Processing Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada – name: s Center for Neurodevelopmental Medicine and Imaging Research, Kennedy Krieger Institute, Baltimore, MD 21205, USA – name: g Priority Research Centre for Brain & Mental Health and Stroke & Brain Injury, University of Newcastle, Callaghan NSW, Australia – name: d Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA – name: o CNRS, LaBRI, UMR 5800, PICTURA, Talence, F-33400, France – name: f Consejo Nacional de Ciencia y Tecnología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico – name: j Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark |
| Author_xml | – sequence: 1 givenname: Aaron surname: Carass fullname: Carass, Aaron email: aaron_carass@jhu.edu organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA – sequence: 2 givenname: Jennifer L. surname: Cuzzocreo fullname: Cuzzocreo, Jennifer L. organization: Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA – sequence: 3 givenname: Shuo surname: Han fullname: Han, Shuo organization: Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA – sequence: 4 givenname: Carlos R. surname: Hernandez-Castillo fullname: Hernandez-Castillo, Carlos R. organization: Consejo Nacional de Ciencia y Tecnología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico – sequence: 5 givenname: Paul E. surname: Rasser fullname: Rasser, Paul E. organization: Priority Research Centre for Brain & Mental Health and Stroke & Brain Injury, University of Newcastle, Callaghan, NSW, Australia – sequence: 6 givenname: Melanie surname: Ganz fullname: Ganz, Melanie organization: Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark – sequence: 7 givenname: Vincent surname: Beliveau fullname: Beliveau, Vincent organization: Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark – sequence: 8 givenname: Jose surname: Dolz fullname: Dolz, Jose organization: Laboratory for Imagery, Vision, and Artificial Intelligence, École de Technologie Supérieure, Montreal, QC, Canada – sequence: 9 givenname: Ismail surname: Ben Ayed fullname: Ben Ayed, Ismail organization: Laboratory for Imagery, Vision, and Artificial Intelligence, École de Technologie Supérieure, Montreal, QC, Canada – sequence: 10 givenname: Christian surname: Desrosiers fullname: Desrosiers, Christian organization: Laboratory for Imagery, Vision, and Artificial Intelligence, École de Technologie Supérieure, Montreal, QC, Canada – sequence: 11 givenname: Benjamin surname: Thyreau fullname: Thyreau, Benjamin organization: Institute of Development, Aging and Cancer, Tohoku University, Japan – sequence: 12 givenname: José E. surname: Romero fullname: Romero, José E. organization: Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain – sequence: 13 givenname: Pierrick surname: Coupé fullname: Coupé, Pierrick organization: University of Bordeaux, LaBRI, UMR 5800, PICTURA, Talence, F-33400, France – sequence: 14 givenname: José V. surname: Manjón fullname: Manjón, José V. organization: Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain – sequence: 15 givenname: Vladimir S. surname: Fonov fullname: Fonov, Vladimir S. organization: Image Processing Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada – sequence: 16 givenname: D. Louis surname: Collins fullname: Collins, D. Louis organization: Image Processing Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada – sequence: 17 givenname: Sarah H. surname: Ying fullname: Ying, Sarah H. organization: Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA – sequence: 18 givenname: Chiadi U. surname: Onyike fullname: Onyike, Chiadi U. organization: Department of Psychiatry and Behavioral Sciences, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA – sequence: 19 givenname: Deana surname: Crocetti fullname: Crocetti, Deana organization: Center for Neurodevelopmental Medicine and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, 21205, USA – sequence: 20 givenname: Bennett A. surname: Landman fullname: Landman, Bennett A. organization: Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, 37235, USA – sequence: 21 givenname: Stewart H. surname: Mostofsky fullname: Mostofsky, Stewart H. organization: Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA – sequence: 22 givenname: Paul M. surname: Thompson fullname: Thompson, Paul M. organization: Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA – sequence: 23 givenname: Jerry L. surname: Prince fullname: Prince, Jerry L. organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30099076$$D View this record in MEDLINE/PubMed https://hal.science/hal-01918431$$DView record in HAL |
| BookMark | eNqNkktvEzEQxy1URB_wFZAlLnDY4Me-fEGUqFCkSL2Us-X1ziYOu3awvZHy7etNSgo5RbI8I_s_vxnNzDW6sM4CQpiSGSW0_LyeWRi9M4NawowRWs9IOoS_QleUiCITRcUuJr_gWU2puETXIawJIYLm9Rt0yZMnSFVeITV3w0Z5Y5e4G_t-h9UY3aAitDjEZDLXZXEFmfIRa_DQQN-PA04hOnkqGmdx592AUykWotHYQ3BWWQ14X154i153qg_w7tneoF_f7x7n99ni4cfP-e0i02WZx0wJYIQL0uhOcVboFgrgrG5ZJXiZ7oY1OVFFrjUBnetGAy8Jg7ZpGDCuBL9BXw7czdgM0Gqw0atebnwqw--kU0b-_2PNSi7dVpasonlFE-DTAbA6Cbu_XcjpjVBB65zT7aT9-JzMuz8jhCgHE_YdseDGIBmpKyF4Icok_XAiXbvR29QKyShjOS14PgHf_1v9Mf_fSSVBfRBo70Lw0B0llMhpKeRaviyFnJZCknQIf-nMMVSbuB9d6oPpzwF8OwAgzW9rwMugDaQRt8aDjrJ15hzI1xOI7o01WvW_YXce4gmaSfIT |
| CitedBy_id | crossref_primary_10_1038_s41380_024_02584_8 crossref_primary_10_1038_s41593_023_01321_8 crossref_primary_10_1007_s12311_023_01532_6 crossref_primary_10_1002_mp_13240 crossref_primary_10_1097_NMD_0000000000001064 crossref_primary_10_1111_jon_12672 crossref_primary_10_1111_epi_17881 crossref_primary_10_1016_j_bpsc_2025_05_017 crossref_primary_10_1016_j_nicl_2025_103834 crossref_primary_10_1002_hbm_70317 crossref_primary_10_1007_s12311_023_01569_7 crossref_primary_10_31083_j_jin2101013 crossref_primary_10_1002_hbm_25546 crossref_primary_10_3389_fnagi_2022_881311 crossref_primary_10_1016_j_media_2021_102136 crossref_primary_10_1038_s41598_022_04943_3 crossref_primary_10_1016_j_neuroimage_2020_117062 crossref_primary_10_1007_s00276_023_03108_9 crossref_primary_10_1007_s00415_020_09875_4 crossref_primary_10_1016_j_artmed_2025_103219 crossref_primary_10_1002_acn3_51713 crossref_primary_10_1016_j_nicl_2019_101974 crossref_primary_10_1016_j_nicl_2021_102636 crossref_primary_10_1016_j_media_2020_101639 crossref_primary_10_3390_brainsci15010077 crossref_primary_10_1016_j_cobeha_2023_101328 crossref_primary_10_1016_j_neuroimage_2020_117450 crossref_primary_10_1002_hbm_26348 crossref_primary_10_1007_s00330_022_09170_y crossref_primary_10_1002_hbm_25572 crossref_primary_10_1007_s12311_023_01572_y crossref_primary_10_1016_j_jocn_2025_111073 crossref_primary_10_3389_fnins_2019_00440 crossref_primary_10_1016_j_neuroimage_2025_121063 crossref_primary_10_1016_j_compmedimag_2019_101660 crossref_primary_10_1016_j_neuroimage_2022_119703 crossref_primary_10_3389_fnins_2022_821078 crossref_primary_10_3390_s22041345 crossref_primary_10_1038_s44220_024_00297_z crossref_primary_10_1016_j_bpsgos_2021_05_010 crossref_primary_10_1111_pcn_13707 crossref_primary_10_1007_s12311_020_01227_2 crossref_primary_10_1109_JPROC_2021_3054390 crossref_primary_10_1177_03331024211058205 crossref_primary_10_1002_hbm_25604 crossref_primary_10_3389_fnint_2022_821109 crossref_primary_10_1093_cercor_bhaa020 crossref_primary_10_3389_fneur_2020_00529 crossref_primary_10_3389_fnagi_2024_1359320 crossref_primary_10_26693_jmbs05_05_066 crossref_primary_10_1002_mp_13495 crossref_primary_10_1007_s00429_022_02535_5 crossref_primary_10_1111_acps_13087 crossref_primary_10_1016_j_neuroimage_2020_116819 crossref_primary_10_3389_fnhum_2021_748241 crossref_primary_10_1007_s12311_023_01645_y crossref_primary_10_1002_hbm_70008 crossref_primary_10_3389_fninf_2022_862805 crossref_primary_10_1007_s12519_019_00255_1 crossref_primary_10_1186_s13229_023_00551_8 crossref_primary_10_1016_j_jns_2023_120726 crossref_primary_10_1111_ner_13098 crossref_primary_10_1002_mds_28044 crossref_primary_10_1109_ACCESS_2020_2998537 crossref_primary_10_1016_j_cobeha_2023_101302 crossref_primary_10_1016_j_dcn_2024_101379 crossref_primary_10_1109_JBHI_2020_2986926 crossref_primary_10_1002_mds_29611 crossref_primary_10_1016_j_bpsgos_2025_100541 |
| Cites_doi | 10.1016/j.neuroimage.2010.07.033 10.1016/j.neuroimage.2011.03.045 10.1002/jmri.10163 10.1002/nbm.3413 10.1016/j.media.2008.06.008 10.1007/s12311-014-0627-7 10.1016/j.neuroimage.2007.05.063 10.1080/14734220500348584 10.1016/j.neuroimage.2016.05.030 10.1016/j.neuroimage.2011.02.046 10.1016/j.neuroimage.2012.01.021 10.1016/j.neuroimage.2004.06.018 10.1002/hbm.23595 10.1016/j.media.2014.12.003 10.1016/j.neurobiolaging.2013.02.013 10.1016/j.pscychresns.2008.06.001 10.1212/01.WNL.0000134673.95020.EE 10.1176/appi.ajp.160.2.262 10.1155/2015/813696 10.1016/j.neuroimage.2016.12.064 10.1176/jnp.16.3.367 10.1001/archneur.1991.00530230086029 10.1017/S1355617708080594 10.1109/TMI.2010.2046908 10.1016/j.nicl.2015.02.007 10.1016/S0920-9964(01)00248-1 10.1016/j.neuroimage.2015.07.076 10.1136/jnnp.2003.018093 10.1016/S0006-3223(99)00093-1 10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M 10.1176/appi.ajp.160.9.1614 10.1212/WNL.50.1.121 10.1017/S0317167100014232 10.1212/01.wnl.0000196464.47508.00 10.1109/42.906424 10.1016/S1364-6613(98)01211-X 10.1111/j.1365-2990.1997.tb01309.x 10.1109/TPAMI.2012.143 10.1371/journal.pone.0146388 10.1016/j.neuroimage.2007.09.031 10.1016/S0165-0173(99)00040-5 10.1016/j.neuroimage.2005.08.061 10.25080/Majora-92bf1922-003 10.1109/42.811270 10.1212/WNL.44.11.2047 10.1097/00004728-199403000-00005 10.1016/0022-510X(86)90049-3 10.1016/j.media.2016.07.009 10.1097/00004583-200403000-00016 10.1016/j.media.2016.10.004 10.1002/cne.900970204 10.1016/j.neuroimage.2013.04.048 10.1016/j.neuroimage.2008.03.041 10.1093/brain/awh729 10.1016/j.media.2009.06.003 10.3389/fnsys.2014.00092 10.1177/1352458515595132 10.1016/j.neuroimage.2007.07.007 10.1016/j.neuroimage.2004.07.016 10.1016/j.schres.2016.06.028 10.1109/TMI.2015.2393853 10.1109/TMI.2011.2156806 10.2307/3001968 10.1016/j.neuroimage.2006.01.021 10.2214/ajr.162.1.8273650 10.1001/archneur.1959.03840060001001 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G 10.3389/fnsys.2014.00163 10.1016/j.neuroimage.2014.08.047 10.1002/(SICI)1097-0193(200004)9:4<212::AID-HBM3>3.0.CO;2-# 10.1016/j.neuroimage.2012.08.075 10.1016/j.neuroimage.2015.09.032 10.1016/j.neuroimage.2016.11.003 10.1016/S1053-8119(03)00041-7 10.1371/journal.pone.0184661 10.1016/j.neuroimage.2005.02.018 10.1016/S1361-8415(02)00054-3 10.1016/S0306-4522(98)90664-9 10.1146/annurev.neuro.31.060407.125606 10.1002/hbm.22409 10.1002/hbm.22529 10.1016/j.tins.2007.12.005 10.1038/mp.2013.78 10.1016/j.neuroimage.2010.09.018 10.1016/S0896-6273(02)00569-X 10.1016/j.media.2007.06.004 10.1007/s12021-012-9159-9 10.2307/1932409 10.3233/JAD-2010-100156 10.1016/j.neuroimage.2006.05.056 10.1006/nimg.1998.0395 10.1016/j.cviu.2012.10.006 10.1016/j.biopsych.2017.09.029 10.1006/nimg.2000.0730 10.1016/j.neuroimage.2006.02.051 10.1002/jmri.22003 10.1016/j.dib.2017.04.004 10.1016/j.pscychresns.2014.06.006 10.1002/hbm.22894 10.1109/TMI.2009.2013851 10.1016/S0140-6736(86)90837-8 10.1016/j.neubiorev.2007.08.004 10.1016/j.neuroimage.2014.03.037 10.1007/s00429-013-0595-6 10.1109/TMI.2014.2377694 10.1016/j.neuroimage.2009.09.005 10.1016/j.neuroimage.2011.02.076 10.1016/j.neuroimage.2017.04.039 10.1109/JBHI.2015.2439242 10.1177/088307389801300904 10.1016/j.jpsychires.2007.12.002 10.1016/j.neuroimage.2009.01.045 10.1016/j.biopsych.2008.01.003 10.1006/nimg.2002.1207 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. 2018. Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. – notice: 2018. Elsevier Inc. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 1XC 5PM |
| DOI | 10.1016/j.neuroimage.2018.08.003 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Computer Science |
| EISSN | 1095-9572 |
| EndPage | 172 |
| ExternalDocumentID | PMC6271471 oai:HAL:hal-01918431v1 30099076 10_1016_j_neuroimage_2018_08_003 S1053811918306906 |
| Genre | Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH078160 – fundername: NINDS NIH HHS grantid: R01 NS056307 – fundername: NIBIB NIH HHS grantid: R21 EB009900 – fundername: NIBIB NIH HHS grantid: U54 EB020403 – fundername: NIMH NIH HHS grantid: R01 MH085328 |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- ~HD 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 LCYCR NCXOZ RIG ZA5 9DU AAYXX AFFHD CITATION AGCQF AGRNS ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 1XC 5PM |
| ID | FETCH-LOGICAL-c664t-a9e20390bcfa325cde5e328d27936d27b2b40a54cc0ec4cbce3602edbb2e23a93 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 85 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000447750200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Tue Nov 04 01:58:47 EST 2025 Tue Oct 14 20:34:47 EDT 2025 Thu Oct 02 05:08:01 EDT 2025 Tue Oct 07 07:08:33 EDT 2025 Mon Jul 21 06:05:24 EDT 2025 Sat Nov 29 06:55:28 EST 2025 Tue Nov 18 21:57:25 EST 2025 Fri Feb 23 02:45:22 EST 2024 Tue Oct 14 19:31:20 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Autism Magnetic resonance imaging Cerebellar ataxia Attention deficit hyperactivity disorder |
| Language | English |
| License | Copyright © 2018 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c664t-a9e20390bcfa325cde5e328d27936d27b2b40a54cc0ec4cbce3602edbb2e23a93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 PMCID: PMC6271471 These authors curated the data and organized the comparison, all others contributed results. |
| ORCID | 0000-0001-5733-2127 0000-0003-2709-3350 0000-0002-9120-8098 |
| OpenAccessLink | http://hdl.handle.net/10251/145394 |
| PMID | 30099076 |
| PQID | 2122415341 |
| PQPubID | 2031077 |
| PageCount | 23 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6271471 hal_primary_oai_HAL_hal_01918431v1 proquest_miscellaneous_2087993596 proquest_journals_2122415341 pubmed_primary_30099076 crossref_primary_10_1016_j_neuroimage_2018_08_003 crossref_citationtrail_10_1016_j_neuroimage_2018_08_003 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_08_003 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_08_003 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-12-01 |
| PublicationDateYYYYMMDD | 2018-12-01 |
| PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc Elsevier Limited Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
| References | Strick, Dum, Fiez (bib126) 2009; 32 Middleton, Strick (bib88) 2000; 31 Brambati, Termine, Ruffino, Stella, Fazio, Cappa, Perani (bib22) 2004; 63 Park, Pipitone, Baer, Winterburn, Shah, Chavez, Schira, Lobaugh, Lerch, Voineskos, Chakravarty (bib98) 2014; 95 Bogovic, Bazin, Ying, Prince (bib19) 2013 Mostofsky, Reiss, Lockhart, Denckla (bib91) 1998; 13 Guo, Kashyap, Sonka, Oguz (bib57) 2017 Yang, Ye, Bogovic, Carass, Jedynak, Ying, Prince (bib146) 2016; 127 Tieleman, Hinton (bib130) 2015; vol. 4 Reuter, Fischl (bib105) 2011; 57 Van Leemput, Maes, Vandermeulen, Suetens (bib137) 1999; 18 van der Lijn, de Bruijne, Hoogendam, Klein, Hameeteman, Breteler, Niessen (bib136) 2009 Carass, Shao, Li, Dewey, Blitz, Roy, Pham, Prince, Ellingsen (bib28) 2017 D'Mello, Crocetti, Mostofsky, Stoodley (bib45) 2015; 7 Çiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (bib32) 2016 Sauwen, Sima, Van Cauter, Veraart, Leemans, Maes, Himmelreich, Van Huffel (bib110) 2015; 28 Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, van der Kouwe, Killiany, Kennedy, Klaveness, Montillo, Makris, Rosen, Dale (bib51) 2002; 33 Malacarne (bib81) 1776 Colloby, O'Brien, Taylor (bib36) 2014; 223 Okugawa, Sedvall, Agartz (bib97) 2003; 160 Schmahmann (bib113) 2004; 16 Fonov, Evans, Botteron, McKinstry, Collins, the Brain Development Cooperative Group (bib54) 2010; 54 Schmahmann, Caplan (bib114) 2006; 129 Yang, Abulnaga, Carass, Kansal, Jedynak, Onyike, Ying, Prince (bib145) 2016 Courchesne, Saitoh, Yeung-Courchesne, Press, Lincoln, Haas, Schreibman (bib38) 1994; 162 Weier, Fonov, Lavoie, Doyon, Collins (bib141) 2014; 35 Baker, Harding, Halliday, Kril, Harper (bib10) 1999; 91 Nopoulos, Ceilley, Gailis, Andreasen (bib93) 1999; 46 Price, Cardenas, Fein (bib104) 2014; 103 He, Zhang, Ren, Sun (bib59) 2015 Wang, Suh, Das, Pluta, Craige, Yushkevich (bib139) 2013; 35 Stoodley (bib125) 2014; 8 Cavanagh, Holton, Nolan (bib31) 1997; 23 Styner, Lee, Chin, Chin, Commowick, Tran, Markovic-Plese, Jewells, Warfield (bib127) 2008 Barrett, Workman, Sair, Savonenko, Kraut, Sodums, Joo, Nassery, Marano, Munro, Brandt, Zhou, Wong, Smith (bib13) 2017; 38 Tosun, Rettmann, Naiman, Resnick, Kraut, Prince (bib133) 2006; 29 Bernard, Millman, Mittal (bib17) 2015; 36 Giraud, Ta, Papadakis, Manjón, Collins, Coupé, Alzheimer’s Disease Neuroimaging Initiative (bib55) 2016; 124 Schmahmann (bib112) 1991; 48 Schmahmann, Doyon, Toga, Petrides, Evans (bib115) 2000 Huo, Plassard, Carass, Resnick, Pham, Prince, Landmann (bib65) 2016; 138 Fischl, Salat, van der Kouwe, Makris, Ségonne, Quinn, Dale (bib52) 2004; 23 Kansal, Yang, Fishman, Sair, Ying, Jedynak, Prince, Onyike (bib69) 2016; 140 Li, Ye, Yang, Carass, Ying, Prince (bib76) 2016 Thomann, Schläfer, Seidl, Dos Santos, Essig, Schröder (bib129) 2008; 42 Victor, Adams, Mancall (bib138) 1959; 1 Karas, Burton, Rombouts, van Schijndel, O'Brien, Scheltens, McKeith, Williams, Ballard, Barkhof (bib70) 2003; 18 Shao, Carass, Li, Dewey, Blitz, Prince, Ellingsen (bib117) 2018 Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman, Albert, Killiany (bib40) 2006; 31 Andreasen, Pierson (bib4) 2008; 64 Mendrik, Vincken, Kuijf, Breeuwer, Bouvy, de Bresser, Alansary, de Bruijn, Carass, El-Baz, Jog, Katyali, Khan, van der Lijn, Mahmood, Mukherjee, van Opbroek, Paneri, Pereira, Persson, Rajchl, Sarikayan, Smedby, Silva, Vrooman, Vyas, Wang, Zhaon, Biessels, Viergever (bib86) 2015 Lewis, Galley, Johnson, Stevenson, Huang, McKeown (bib75) 2013; 40 Bogovic, Jedynak, Rigg, Du, Landman, Prince, Ying (bib20) 2013; 64 Zhao, Carass, Lee, He, Prince (bib150) 2017 He, Carass, Yun, Zhao, Jedynak, Solomon, Saidha, Calabresi, Prince (bib60) 2017 Shiee, Bazin, Cuzzocreo, Ye, Kishore, Carass, Calabresi, Reich, Prince, Pham (bib122) 2014; 35 Carass, Cuzzocreo, Wheeler, Bazin, Resnick, Prince (bib24) 2010; 56 Diedrichsen (bib43) 2006; 33 Roy, He, Sweeney, Carass, Reich, Prince, Pham (bib109) 2015; 19 Ledig, Heckemann, Hammers, Lopez, Newcombe, Makropoulos, Lotjonen, Menon, Rueckert (bib74) 2015; 21 Romero, Coupé, Giraud, Ta, Fonov, Park, Chakravarty, Voineskos, Manjón (bib106) 2017; 147 Wilcoxon (bib143) 1945; 1 Shattuck, Leahy (bib118) 2002; 6 Desmond, Fiez (bib41) 1998; 2 Carass, Prince (bib25) 2016 Manjón, Coupé, Raniga, Xia, Fripp, Salvado (bib83) 2016 Ashburner, Friston (bib7) 1999; 7 Patenaude, Smith, Kennedy, Jenkinson (bib100) 2011; 56 Powell, Magnotta, Johnson, Jammalamadaka, Pierson, Andreasen (bib103) 2008; 39 Torvik, Torp (bib132) 1986; 75 Ito (bib66) 1984 Hsu, Schuff, Du, Mark, Zhu, Hardin, Weiner (bib63) 2002; 16 Catani, Jones, Daly, Embiricos, Deeley, Pugliese, Curran, Robertson, Murphy (bib30) 2008; 41 Martino, Yan, Li, Denio, Castellanos, Alaerts, Anderson, Assaf, Bookheimer, Dapretto, Deen, Delmonte, Dinstein, Ertl-Wagner, Fair, Gallagher, Kennedy, Keown, Keysers, Lainhart, Lord, Luna, Menon, Minshew, Monk, Mueller, Müller, Nebel, Nigg, O'Hearn, Pelphrey, Peltier, Rudie, Sunaert, Thioux, Tyszka, Uddin, Verhoeven, Wenderoth, Wiggins, Mostofsky, Milham (bib85) 2014; 19 Banerjee, Mitra, Shankar, Hayashi (bib11) 2016; 11 Shattuck, Mirza, Adisetiyo, Hojatkashani, Salamon, Narr, Poldrack, Bilder, Toga (bib119) 2008; 39 Ashburner, Andersson, Friston (bib6) 2000; 9 Avants, Epstein, Grossman, Gee (bib9) 2008; 12 Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menton, Rueckert, Glocker (bib68) 2017; 36 Bland, Altman (bib18) 1986; 327 Mostofsky, Mazzocco, Aakalu, Warsofsky, Denckla, Reiss (bib90) 1998; 50 Zhang, Brady, Smith (bib149) 2001; 20 Gottwald, Wilde, Mihajlovic, Mehdorn (bib56) 2004; 75 Long, Shelhamer, Darrell (bib78) 2015 Carass, Wheeler, Cuzzocreo, Bazin, Bassett, Prince (bib29) 2007 Liu, Bazin, Carass, Prince (bib77) 2012 Shiee, Bazin, Ozturk, Reich, Calabresi, Pham (bib123) 2010; 49 Esteban, Birman, Schaer, Koyejo, Poldrack, Gorgolewski (bib49) 2017; 12 Buckner, Head, Parker, Fotenos, Marcus, Morris, Snyder (bib23) 2004; 23 Maier, Menze, von der Gablentz, Häni, Heinrich, Liebrand, Winzeck, Basit, Bentley, Chen, Christiaens, Dutil, Egger, Feng, Glocker, Götz, Haeck, Halme, Havaei, Iftekharuddin, Jodoin, Kamnitsas, Kellner, Korvenoja, Larochelle, Ledig, Lee, Maes, Mahmood, Maier-Hein, McKinley, Muschelli, Pal, Pei, Rangarajan, Reza, Robben, Rueckert, Salli, Suetens, Wang, Wilms, Kirschke, Krämer, Münte, Schramm, Wiest, Handels, Reyes (bib79) 2017; 35 Amaral, Schumann, Nordahl (bib3) 2008; 31 Zuo, Carass, Han, Prince (bib151) 2018 Fischl (bib50) 2012; 62 Abulnaga, Yang, Carass, Kansal, Jedynak, Onyike, Ying, Prince (bib1) 2016 Nyúl, Udupa (bib94) 1999 Shiee, Bazin, Cuzzocreo, Blitz, Pham (bib121) 2011 Webb, Sparks, Friedman, Shaw, Giedd, Dawson, Dager (bib140) 2009; 172 Bogovic, Prince, Bazin (bib21) 2013; 117 Dolz, Desrosiers, Ayed (bib46) 2018; 170 Durston, Hulshoff Pol, Schnack, Buitelaar, Steenhuis, Minderaa, Kahn, van engeland (bib48) 2004; 43 Ying, Choi, Perlman, Baloh, Zee, Toga (bib148) 2006; 66 Yang, Zhong, Carass, Ying, Prince (bib147) 2014 Carass, Roy, Jog, Cuzzocreo, Magrath, Gherman, Button, Nguyen, Prados, Sudre, Cardoso, Cawley, Ciccarelli, Wheeler-Kingshott, Ourselin, Catanese, Deshpande, Maurel, Commowick, Barillot, Tomas-Fernandez, Warfield, Vaidya, Chunduru, Muthuganapathy, Krishnamurthi, Jesson, Arbel, Maier, Handels, Iheme, Unay, Jain, Sima, Smeets, Ghafoorian, Platel, Birenbaum, Greenspan, Bazin, Calabresi, Crainiceanu, Ellingsen, Reich, Prince, Pham (bib27) 2017; 148 Schaap, Metz, van Walsum, van der Giessen, Weustink, Mollet, Bauer, Bogunović, Castro, Deng, Dikici, O'Donnell, Frenay, Friman, Hoyos, Kitslaar, Krissian, Kühnel, Luengo-Oroz, Orkisz, Smedby, Styner, Szymczak, Tek, Wang, Warfield, Zambal, Zhang, Krestin, Niessen (bib111) 2009; 13 Tomas-Fernandez, Warfield (bib131) 2015; 34 Bazin, Pham (bib15) 2008; 12 Manjón, Coupé, Martí-Bonmatí, Collins, Robles (bib82) 2010; 31 Ta, Giraud, Collins, Coupé (bib128) 2014 Huo, Carass, Resnick, Pham, Prince, Landmann (bib64) 2016 Henle (bib62) 1879 Manto, Schmahmann, Koibuchi, Rossi (bib84) 2013 Ronneberger, Fischer, Brox (bib107) 2015 Rousseau, Habas, Studholme (bib108) 2011; 30 Schutter, Van Honk (bib116) 2005; 4 Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (bib135) 2010; 29 Dale, Fischl, Sereno (bib39) 1999; 9 Weier, Till, Fonov, Yeh, Arnold, Banwell, Collins (bib142) 2016; 22 Plassard, Yang, Rane, Prince, Claassen, Landman (bib102) 2016 Nyúl, Udupa (bib95) 1999; 42 Ashburner (bib5) 2007; 38 Chen, Qi, Yu, Heng (bib33) 2016 Silveri, Leggeio, Molinari (bib124) 1994; 44 Coupe, Manjon, Fonov, Pruessner, Robles, Collins (bib37) 2011; 54 Heimann, van Ginneken, Styner, Arzhaeva, Aurich, Bauer, Beck, Becker, Beichel, Bekes, Bello, Binnig, Bischof, Bornik, Cashman, Ying, Cordova, Dawant, Fidrich, Furst, Furukawa, Grenacher, Hornegger, Kainmuller, Kitney, Kobatake, Lamecker, Lange, Lee, Lennon, Li, Li, Meinzer, Nemeth, Raicu, Rau, van Rikxoort, Rousson, Rusko, Saddi, Schmidt, Seghers, Shimizu, Slagmolen, Sorantin, Soza, Susomboon, Waite, Wimmer, Wolf (bib61) 2009; 28 Jednoróg, Gawron, Marchewka, Heim, Grabowska (bib67) 2013; 219 Dice (bib42) 1945; 26 Diedrichsen, Balsters, Flavell, Cussans, Ramnani (bib44) 2009; 46 Han, Jovicich, Salat, van der Kouwe, Quinn, Czanner, Busa, Pacheco, Albert, Killiany, Maguire, Rosas, Makris, Dale, Dickerson, Fischl (bib58) 2006; 32 Carass, Roy, Jog, Cuzzocreo, Magrath, Gherman, Button, Nguyen, Bazin, Calabresi, Crainiceanu, Ellingsen, Reich, Prince, Pham (bib26) 2017; 12 Allen, Courchesne (bib2) 2003; 160 Menze, Jakab, Bauer, Kalpathy-Cramer, Farahani, Kirby, Burren, Porz, Slotboom, Wiest, Lanczi, Gerstner, Weber, Arbel, Avants, Ayache, Buendia, Collins, Cordier, Corso, Criminisi, Das, Delingette, Demiralp, Durst, Dojat, Doyle, Festa, Forbes, Geremia, Glocker, Golland, Guo, Hamamci, Iftekharuddin, Jena, John, Konukoglu, Lashkari, Mariz, Meier, Pereira, Precup, Price, Riklin-Raviv, Reza, Ryan, Sarikaya, Schwartz, Shin, Shotton, Silva, Sousa, Subbanna, Székely, Taylor, Thomas, Tustison, Unal, Vasseur, Wintermark, Ye, Zhao, Zhao, Zikic, Prastawa, Reyes, Van Leemput (bib87) 2015; 34 Ashburner, Friston (bib8) 2005; 26 Parker, Narayanan, Andreasen (bib99) 2014; 8 Cleavinger, Silveri (10.1016/j.neuroimage.2018.08.003_bib124) 1994; 44 Wang (10.1016/j.neuroimage.2018.08.003_bib139) 2013; 35 Tieleman (10.1016/j.neuroimage.2018.08.003_bib130) 2015; vol. 4 Allen (10.1016/j.neuroimage.2018.08.003_bib2) 2003; 160 Mostofsky (10.1016/j.neuroimage.2018.08.003_bib91) 1998; 13 Nopoulos (10.1016/j.neuroimage.2018.08.003_bib93) 1999; 46 Ta (10.1016/j.neuroimage.2018.08.003_bib128) 2014 Shao (10.1016/j.neuroimage.2018.08.003_bib117) 2018 Fischl (10.1016/j.neuroimage.2018.08.003_bib50) 2012; 62 Shiee (10.1016/j.neuroimage.2018.08.003_bib123) 2010; 49 Avants (10.1016/j.neuroimage.2018.08.003_bib9) 2008; 12 Liu (10.1016/j.neuroimage.2018.08.003_bib77) 2012 Dale (10.1016/j.neuroimage.2018.08.003_bib39) 1999; 9 Dice (10.1016/j.neuroimage.2018.08.003_bib42) 1945; 26 Kamnitsas (10.1016/j.neuroimage.2018.08.003_bib68) 2017; 36 Maier (10.1016/j.neuroimage.2018.08.003_bib79) 2017; 35 Ashburner (10.1016/j.neuroimage.2018.08.003_bib8) 2005; 26 van der Lijn (10.1016/j.neuroimage.2018.08.003_bib136) 2009 Karas (10.1016/j.neuroimage.2018.08.003_bib70) 2003; 18 Courchesne (10.1016/j.neuroimage.2018.08.003_bib38) 1994; 162 He (10.1016/j.neuroimage.2018.08.003_bib60) 2017 Patenaude (10.1016/j.neuroimage.2018.08.003_bib100) 2011; 56 Romero (10.1016/j.neuroimage.2018.08.003_bib106) 2017; 147 Henle (10.1016/j.neuroimage.2018.08.003_bib62) 1879 Webb (10.1016/j.neuroimage.2018.08.003_bib140) 2009; 172 Sauwen (10.1016/j.neuroimage.2018.08.003_bib110) 2015; 28 Durston (10.1016/j.neuroimage.2018.08.003_bib48) 2004; 43 Carass (10.1016/j.neuroimage.2018.08.003_bib24) 2010; 56 Menze (10.1016/j.neuroimage.2018.08.003_bib87) 2015; 34 Fischl (10.1016/j.neuroimage.2018.08.003_bib52) 2004; 23 Parker (10.1016/j.neuroimage.2018.08.003_bib99) 2014; 8 Weier (10.1016/j.neuroimage.2018.08.003_bib141) 2014; 35 Powell (10.1016/j.neuroimage.2018.08.003_bib103) 2008; 39 Dos Santos (10.1016/j.neuroimage.2018.08.003_bib47) 2011; 23 Ito (10.1016/j.neuroimage.2018.08.003_bib66) 1984 Victor (10.1016/j.neuroimage.2018.08.003_bib138) 1959; 1 Cavanagh (10.1016/j.neuroimage.2018.08.003_bib31) 1997; 23 Okugawa (10.1016/j.neuroimage.2018.08.003_bib96) 2002; 55 Torvik (10.1016/j.neuroimage.2018.08.003_bib132) 1986; 75 Manto (10.1016/j.neuroimage.2018.08.003_bib84) 2013 Ashburner (10.1016/j.neuroimage.2018.08.003_bib7) 1999; 7 Baker (10.1016/j.neuroimage.2018.08.003_bib10) 1999; 91 Gottwald (10.1016/j.neuroimage.2018.08.003_bib56) 2004; 75 Chen (10.1016/j.neuroimage.2018.08.003_bib33) 2016 Schaap (10.1016/j.neuroimage.2018.08.003_bib111) 2009; 13 Amaral (10.1016/j.neuroimage.2018.08.003_bib3) 2008; 31 Collins (10.1016/j.neuroimage.2018.08.003_bib35) 1994; 18 Shattuck (10.1016/j.neuroimage.2018.08.003_bib120) 2001; 13 Nyúl (10.1016/j.neuroimage.2018.08.003_bib94) 1999 Schutter (10.1016/j.neuroimage.2018.08.003_bib116) 2005; 4 Lewis (10.1016/j.neuroimage.2018.08.003_bib75) 2013; 40 Diedrichsen (10.1016/j.neuroimage.2018.08.003_bib44) 2009; 46 Stoodley (10.1016/j.neuroimage.2018.08.003_bib125) 2014; 8 Kingma (10.1016/j.neuroimage.2018.08.003_bib71) 2014 Maier-Hein (10.1016/j.neuroimage.2018.08.003_bib80) 2018 Plassard (10.1016/j.neuroimage.2018.08.003_bib102) 2016 Carass (10.1016/j.neuroimage.2018.08.003_bib25) 2016 Möller (10.1016/j.neuroimage.2018.08.003_bib89) 2013; 34 Mostofsky (10.1016/j.neuroimage.2018.08.003_bib90) 1998; 50 Park (10.1016/j.neuroimage.2018.08.003_bib98) 2014; 95 Fonov (10.1016/j.neuroimage.2018.08.003_bib54) 2010; 54 Ronneberger (10.1016/j.neuroimage.2018.08.003_bib107) 2015 Yang (10.1016/j.neuroimage.2018.08.003_bib146) 2016; 127 Ying (10.1016/j.neuroimage.2018.08.003_bib148) 2006; 66 Guo (10.1016/j.neuroimage.2018.08.003_bib57) 2017 Zhao (10.1016/j.neuroimage.2018.08.003_bib150) 2017 Barrett (10.1016/j.neuroimage.2018.08.003_bib13) 2017; 38 Shattuck (10.1016/j.neuroimage.2018.08.003_bib119) 2008; 39 Brambati (10.1016/j.neuroimage.2018.08.003_bib22) 2004; 63 Mendrik (10.1016/j.neuroimage.2018.08.003_bib86) 2015 Carass (10.1016/j.neuroimage.2018.08.003_bib27) 2017; 148 Yang (10.1016/j.neuroimage.2018.08.003_bib145) 2016 Bogovic (10.1016/j.neuroimage.2018.08.003_bib21) 2013; 117 Ashburner (10.1016/j.neuroimage.2018.08.003_bib5) 2007; 38 Murphy (10.1016/j.neuroimage.2018.08.003_bib92) 2013; 78 Banerjee (10.1016/j.neuroimage.2018.08.003_bib11) 2016; 11 Huo (10.1016/j.neuroimage.2018.08.003_bib65) 2016; 138 Schmahmann (10.1016/j.neuroimage.2018.08.003_bib114) 2006; 129 Tosun (10.1016/j.neuroimage.2018.08.003_bib133) 2006; 29 Martino (10.1016/j.neuroimage.2018.08.003_bib85) 2014; 19 Carass (10.1016/j.neuroimage.2018.08.003_bib26) 2017; 12 Coupe (10.1016/j.neuroimage.2018.08.003_bib37) 2011; 54 Bazin (10.1016/j.neuroimage.2018.08.003_bib15) 2008; 12 Desmond (10.1016/j.neuroimage.2018.08.003_bib41) 1998; 2 Thomann (10.1016/j.neuroimage.2018.08.003_bib129) 2008; 42 Manjón (10.1016/j.neuroimage.2018.08.003_bib82) 2010; 31 Weier (10.1016/j.neuroimage.2018.08.003_bib142) 2016; 22 Fischl (10.1016/j.neuroimage.2018.08.003_bib51) 2002; 33 Han (10.1016/j.neuroimage.2018.08.003_bib58) 2006; 32 Huo (10.1016/j.neuroimage.2018.08.003_bib64) 2016 Bogovic (10.1016/j.neuroimage.2018.08.003_bib19) 2013 Manjón (10.1016/j.neuroimage.2018.08.003_bib83) 2016 Styner (10.1016/j.neuroimage.2018.08.003_bib127) 2008 Carass (10.1016/j.neuroimage.2018.08.003_bib29) 2007 Bergstra (10.1016/j.neuroimage.2018.08.003_bib16) 2010 Carass (10.1016/j.neuroimage.2018.08.003_bib28) 2017 Price (10.1016/j.neuroimage.2018.08.003_bib104) 2014; 103 Baumann (10.1016/j.neuroimage.2018.08.003_bib14) 2015; 14 Okugawa (10.1016/j.neuroimage.2018.08.003_bib97) 2003; 160 Schmahmann (10.1016/j.neuroimage.2018.08.003_bib113) 2004; 16 Traut (10.1016/j.neuroimage.2018.08.003_bib134) 2018; 83 Colloby (10.1016/j.neuroimage.2018.08.003_bib36) 2014; 223 Strick (10.1016/j.neuroimage.2018.08.003_bib126) 2009; 32 Barnes (10.1016/j.neuroimage.2018.08.003_bib12) 2010 Çiçek (10.1016/j.neuroimage.2018.08.003_bib32) 2016 Diedrichsen (10.1016/j.neuroimage.2018.08.003_bib43) 2006; 33 He (10.1016/j.neuroimage.2018.08.003_bib59) 2015 Bernard (10.1016/j.neuroimage.2018.08.003_bib17) 2015; 36 Bogovic (10.1016/j.neuroimage.2018.08.003_bib20) 2013; 64 Yang (10.1016/j.neuroimage.2018.08.003_bib147) 2014 Cleavinger (10.1016/j.neuroimage.2018.08.003_bib34) 2008; 14 Pierson (10.1016/j.neuroimage.2018.08.003_bib101) 2002; 17 Catani (10.1016/j.neuroimage.2018.08.003_bib30) 2008; 41 Shiee (10.1016/j.neuroimage.2018.08.003_bib122) 2014; 35 Larsell (10.1016/j.neuroimage.2018.08.003_bib73) 1952; 97 Roy (10.1016/j.neuroimage.2018.08.003_bib109) 2015; 19 Van Leemput (10.1016/j.neuroimage.2018.08.003_bib137) 1999; 18 Dolz (10.1016/j.neuroimage.2018.08.003_bib46) 2018; 170 Zuo (10.1016/j.neuroimage.2018.08.003_bib151) 2018 Desikan (10.1016/j.neuroimage.2018.08.003_bib40) 2006; 31 Giraud (10.1016/j.neuroimage.2018.08.003_bib55) 2016; 124 Hsu (10.1016/j.neuroimage.2018.08.003_bib63) 2002; 16 Middleton (10.1016/j.neuroimage.2018.08.003_bib88) 2000; 31 Rousseau (10.1016/j.neuroimage.2018.08.003_bib108) 2011; 30 Zhang (10.1016/j.neuroimage.2018.08.003_bib149) 2001; 20 Jednoróg (10.1016/j.neuroimage.2018.08.003_bib67) 2013; 219 Ashburner (10.1016/j.neuroimage.2018.08.003_bib6) 2000; 9 Tustison (10.1016/j.neuroimage.2018.08.003_bib135) 2010; 29 Malacarne (10.1016/j.neuroimage.2018.08.003_bib81) 1776 Heimann (10.1016/j.neuroimage.2018.08.003_bib61) 2009; 28 Li (10.1016/j.neuroimage.2018.08.003_bib76) 2016 D'Mello (10.1016/j.neuroimage.2018.08.003_bib45) 2015; 7 Wilcoxon (10.1016/j.neuroimage.2018.08.003_bib143) 1945; 1 Esteban (10.1016/j.neuroimage.2018.08.003_bib49) 2017; 12 Ledig (10.1016/j.neuroimage.2018.08.003_bib74) 2015; 21 Long (10.1016/j.neuroimage.2018.08.003_bib78) 2015 Reuter (10.1016/j.neuroimage.2018.08.003_bib105) 2011; 57 Andreasen (10.1016/j.neuroimage.2018.08.003_bib4) 2008; 64 Nyúl (10.1016/j.neuroimage.2018.08.003_bib95) 1999; 42 Bland (10.1016/j.neuroimage.2018.08.003_bib18) 1986; 327 Buckner (10.1016/j.neuroimage.2018.08.003_bib23) 2004; 23 Tomas-Fernandez (10.1016/j.neuroimage.2018.08.003_bib131) 2015; 34 Shiee (10.1016/j.neuroimage.2018.08.003_bib121) 2011 Kansal (10.1016/j.neuroimage.2018.08.003_bib69) 2016; 140 Abulnaga (10.1016/j.neuroimage.2018.08.003_bib1) 2016 Schmahmann (10.1016/j.neuroimage.2018.08.003_bib115) 2000 Landman (10.1016/j.neuroimage.2018.08.003_bib72) 2013; 11 Schmahmann (10.1016/j.neuroimage.2018.08.003_bib112) 1991; 48 Shattuck (10.1016/j.neuroimage.2018.08.003_bib118) 2002; 6 Fitzpatrick (10.1016/j.neuroimage.2018.08.003_bib53) 2008; 32 Womer (10.1016/j.neuroimage.2018.08.003_bib144) 2016; 176 |
| References_xml | – volume: 31 start-page: 192 year: 2010 end-page: 203 ident: bib82 article-title: Adaptive non-local means denoising of MR images with spatially varying noise levels publication-title: Magn. Reson. Imag. – volume: 8 start-page: 92 year: 2014 ident: bib125 article-title: Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia publication-title: Front. Syst. Neurosci. – volume: 31 start-page: 137 year: 2008 end-page: 145 ident: bib3 article-title: Neuroanatomy of autism publication-title: Trends Neurosci. – volume: vol. 4 start-page: 26 year: 2015 end-page: 31 ident: bib130 article-title: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude publication-title: COURSERA: Neural Networks for Machine Learning – volume: 117 start-page: 145 year: 2013 end-page: 157 ident: bib21 article-title: A multiple object geometric deformable model for image segmentation publication-title: Comput. Vis. Image Understand. – volume: 14 start-page: 401 year: 2008 end-page: 413 ident: bib34 article-title: Quantitative magnetic resonance image analysis of the cerebellum in macrocephalic and normocephalic children and adults with autism publication-title: J. Int. Neuropsychol. Soc. – volume: 23 start-page: S69 year: 2004 end-page: s84 ident: bib52 article-title: Sequence-independent segmentation of magnetic resonance images publication-title: Neuroimage – volume: 32 start-page: 180 year: 2006 end-page: 194 ident: bib58 article-title: Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer publication-title: Neuroimage – volume: 18 start-page: 192 year: 1994 end-page: 205 ident: bib35 article-title: Automatic 3-D intersubject registration of MR volumetric data in standardized Talairach space publication-title: J. Comput. Assist. Tomogr. – volume: 55 start-page: 61 year: 2002 end-page: 67 ident: bib96 article-title: Selective reduction of the posterior superior vermis in men with chronic schizophrenia publication-title: Schizophr. Res. – volume: 160 start-page: 1614 year: 2003 end-page: 1617 ident: bib97 article-title: Smaller cerebellar vermis but not hemisphere volumes in patients with chronic schizophrenia publication-title: Am. J. Psychiatr. – year: 2016 ident: bib1 article-title: A toolbox to visually explore cerebellar sub-structure shape changes in cerebellar ataxia publication-title: Proceedings of SPIE Medical Imaging (SPIE-MI 2016), San Diego, CA – volume: 13 start-page: 434 year: 1998 end-page: 439 ident: bib91 article-title: Evaluation of cerebellar size in attention-deficit hyperactivity disorder publication-title: J. Child Neurol. – volume: 95 start-page: 217 year: 2014 end-page: 231 ident: bib98 article-title: Derivation of high-resolution MRI atlases of the human cerebellum at 3T and segmentation using multiple automatically generated templates publication-title: Neuroimage – volume: 57 start-page: 19 year: 2011 end-page: 21 ident: bib105 article-title: Avoiding asymmetry-induced bias in longitudinal image processing publication-title: Neuroimage – volume: 33 start-page: 127 year: 2006 end-page: 138 ident: bib43 article-title: A spatially unbiased atlas template of the human cerebellum publication-title: Neuroimage – volume: 48 start-page: 1178 year: 1991 end-page: 1187 ident: bib112 article-title: An emerging concept. The cerebellar contribution to higher function publication-title: Arch. Neurol. – volume: 43 start-page: 332 year: 2004 end-page: 340 ident: bib48 article-title: Magnetic resonance imaging of boys with attention-deficit/hyperactivity disorder and their unaffected siblings publication-title: J. Am. Acad. Child Adolesc. Psychiatr. – volume: 28 start-page: 1599 year: 2015 end-page: 1624 ident: bib110 article-title: Hierarchical non-negative matrix factorization to characterize brain tumor heterogeneity using multi-parametric MRI publication-title: NMR Biomed. – volume: 39 start-page: 1064 year: 2008 end-page: 1080 ident: bib119 article-title: Construction of a 3D probabilistic atlas of human cortical structures publication-title: Neuroimage – volume: 56 start-page: 907 year: 2011 end-page: 922 ident: bib100 article-title: Bayesian model of shape and appearance for subcortical brain segmentation publication-title: Neuroimage – volume: 12 start-page: 346 year: 2017 end-page: 350 ident: bib26 article-title: Longitudinal multiple sclerosis lesion segmentation data resource publication-title: Data in Brief – year: 2018 ident: bib80 article-title: Is the winner really the best? A critical analysis of common research practice in biomedical image analysis competitions publication-title: Nat. Commun. – start-page: 1 year: 2008 end-page: 6 ident: bib127 article-title: 3D segmentation in the clinic: a Grand challenge II: MS lesion segmentation publication-title: 11 – volume: 35 start-page: 3385 year: 2014 end-page: 3401 ident: bib122 article-title: Reconstruction of the human cerebral cortex robust to white matter lesions: method and validation publication-title: Hum. Brain Mapp. – volume: 91 start-page: 429 year: 1999 end-page: 438 ident: bib10 article-title: Neuronal loss in functional zones of the cerebellum of chronic alcoholics with and without Wernicke's encephalopathy publication-title: Neuroscience – start-page: 424 year: 2016 end-page: 432 ident: bib32 article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation publication-title: 19th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2016) – volume: 13 start-page: 701 year: 2009 end-page: 714 ident: bib111 article-title: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms publication-title: Med. Image Anal. – volume: 23 start-page: 355 year: 1997 end-page: 363 ident: bib31 article-title: Selective damage to the cerebellar vermis in chronic alcoholism: a contribution from neurotoxicology to an old problem of selective vulnerability publication-title: Neuropathol. Appl. Neurobiol. – volume: 18 start-page: 895 year: 2003 end-page: 907 ident: bib70 article-title: A comprehensive study of gray matter loss in patients with Alzheimer's disease using optimized voxel-based morphometry publication-title: Neuroimage – start-page: 9784 year: 2016 end-page: 9784 – 7 ident: bib76 article-title: Quality assurance using outlier detection on an automatic segmentation method for the cerebellar peduncles publication-title: Proceedings of SPIE Medical Imaging (SPIE-MI 2016), San Diego, CA – start-page: 92 year: 2016 end-page: 99 ident: bib83 article-title: HIST: HyperIntensity segmentation tool publication-title: Patch-MI 2016: Patch-based Techniques in Medical Imaging – volume: 34 start-page: 2014 year: 2013 end-page: 2022 ident: bib89 article-title: Different patterns of gray matter atrophy in early- and late-onset Alzheimer's disease publication-title: Neurobiol. Aging – volume: 44 start-page: 2047 year: 1994 ident: bib124 article-title: The cerebellum contributes to linguistic production publication-title: Neurology – start-page: 490 year: 1999 end-page: 495 ident: bib94 article-title: New variants of a method of MRI scale normalization publication-title: 16th Inf. Proc. in Med. Imaging (IPMI 1999) – year: 1776 ident: bib81 article-title: Nuova esposizione della vera struttura del cervelletto umano – volume: 219 start-page: 1697 year: 2013 end-page: 1707 ident: bib67 article-title: Cognitive subtypes of dyslexia are characterized by distinct patterns of grey matter volume publication-title: Brain Struct. Funct. – volume: 1 start-page: 579 year: 1959 end-page: 688 ident: bib138 article-title: A restricted form of cerebellar cortical degeneration occurring in alcoholic patients publication-title: AMA Arch. Neurol. – volume: 31 start-page: 968 year: 2006 end-page: 980 ident: bib40 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage – year: 2017 ident: bib57 article-title: Machine learning in a graph framework for subcortical segmentation publication-title: Proceedings of SPIE Medical Imaging (SPIE-MI 2017), Orlando, FL – start-page: 291 year: 2017 end-page: 298 ident: bib150 article-title: Whole brain segmentation and labeling from CT using synthetic MR images publication-title: Machine Learning in Medical Imaging (MLMI 2017) – volume: 41 start-page: 1184 year: 2008 end-page: 1191 ident: bib30 article-title: Altered cerebellar feedback projections in Asperger syndrome publication-title: Neuroimage – start-page: 1026 year: 2015 end-page: 1034 ident: bib59 article-title: Delving deep into rectifiers: surpassing humanlevel performance on imagenet classification publication-title: 2015 IEEE International Conference on Computer Vision (ICCV) – volume: 75 start-page: 1524 year: 2004 end-page: 1531 ident: bib56 article-title: Evidence for distinct cognitive deficits after focal cerebellar lesions publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 14 start-page: 197 year: 2015 end-page: 220 ident: bib14 article-title: Consensus paper: the role of the cerebellum in perceptual processes publication-title: Cerebellum – year: 1984 ident: bib66 article-title: The Cerebellum and Neural Control – volume: 35 start-page: 250 year: 2017 end-page: 269 ident: bib79 article-title: ISLES 2015 - a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI publication-title: Med. Image Anal. – volume: 64 start-page: 81 year: 2008 end-page: 88 ident: bib4 article-title: The role of the cerebellum in schizophrenia publication-title: Biol. Psychiatr. – volume: 16 start-page: 305 year: 2002 end-page: 310 ident: bib63 article-title: Comparison of automated and manual MRI volumetry of hippocampus in normal aging and dementia publication-title: Jrnl. of Magnetic Resonance Imaging – start-page: 656 year: 2007 end-page: 659 ident: bib29 article-title: A joint registration and segmentation approach to skull stripping publication-title: 4 – volume: 7 start-page: 631 year: 2015 end-page: 639 ident: bib45 article-title: Cerebellar gray matter and lobular volumes correlate with core autism symptoms publication-title: Neuroimage: Clinical – volume: 66 start-page: 424 year: 2006 end-page: 426 ident: bib148 article-title: Pontine and cerebellar atrophy correlate with clinical disability in SCA2 publication-title: Neurology – volume: 162 start-page: 123 year: 1994 end-page: 130 ident: bib38 article-title: Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic with MR imaging publication-title: Am. J. Roentgenol. – volume: 9 start-page: 179 year: 1999 end-page: 194 ident: bib39 article-title: Cortical surface-based analysis I: segmentation and surface reconstruction publication-title: Neuroimage – volume: 39 start-page: 238 year: 2008 end-page: 247 ident: bib103 article-title: Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures publication-title: Neuroimage – volume: 26 start-page: 297 year: 1945 end-page: 302 ident: bib42 article-title: Measures of the amount of ecologic association between species publication-title: Ecology – year: 2016 ident: bib102 article-title: Improving cerebellar segmentation with statistical fusion publication-title: Proceedings of SPIE Medical Imaging (SPIE-MI 2016), San Diego, CA – volume: 20 start-page: 45 year: 2001 end-page: 57 ident: bib149 article-title: Segmentation of brain MR images through a hidden Markov random field model and the Expectation-Maximization algorithm publication-title: IEEE Trans. Med. Imag. – start-page: 234 year: 2015 end-page: 241 ident: bib107 article-title: U-net: convolutional networks for biomedical image segmentation publication-title: 18th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2015) – volume: 97 start-page: 281 year: 1952 end-page: 356 ident: bib73 article-title: The morphogenesis and adult pattern of the lobules and tissues of the cerebellum of the white rat publication-title: J. Comp. Neuol. – volume: 32 start-page: 466 year: 2008 end-page: 485 ident: bib53 article-title: The relationship between alcoholic cerebellar degeneration and cognitive and emotional functioning publication-title: Neurosci. Biobehav. Rev. – volume: 11 start-page: 91 year: 2013 end-page: 103 ident: bib72 article-title: System for integrated neuroimaging analysis and processing of structure publication-title: Neuroinformatics – start-page: 29 year: 2010 end-page: 43 ident: bib12 article-title: The generalized patchmatch correspondence algorithm publication-title: 2010 European Conference on Computer Vision (ECCV 2010) – volume: 46 start-page: 39 year: 2009 end-page: 46 ident: bib44 article-title: A probabilistic MR atlas of the human cerebellum publication-title: Neuroimage – volume: 129 start-page: 290 year: 2006 end-page: 292 ident: bib114 article-title: Cognition, emotion and the cerebellum publication-title: Brain – start-page: 1 year: 2010 end-page: 7 ident: bib16 article-title: Theano: a CPU and GPU math compiler in Python publication-title: Proc. 9 – volume: 54 start-page: 313 year: 2010 end-page: 327 ident: bib54 article-title: Unbiased average age-appropriate atlases for pediatric studies publication-title: Neuroimage – volume: 49 start-page: 1524 year: 2010 end-page: 1535 ident: bib123 article-title: A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions publication-title: Neuroimage – volume: 36 start-page: 61 year: 2017 end-page: 78 ident: bib68 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med. Image Anal. – volume: 16 start-page: 367 year: 2004 end-page: 378 ident: bib113 article-title: Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome publication-title: J. Neuropsychiatry Clin. Neurosci. – volume: 35 start-page: 5026 year: 2014 end-page: 5039 ident: bib141 article-title: Rapid automatic segmentation of the human cerebellum and its lobules (RASCAL)–Implementation and application of the patch-based label-fusion technique with a template library to segment the human cerebellum publication-title: Hum. Brain Mapp. – volume: 327 start-page: 307 year: 1986 end-page: 310 ident: bib18 article-title: Statistical methods for assessing agreement between two methods of clinical measurement publication-title: Lancet – volume: 148 start-page: 77 year: 2017 end-page: 102 ident: bib27 article-title: Longitudinal multiple sclerosis lesion segmentation: resource & challenge publication-title: Neuroimage – volume: 7 start-page: 254 year: 1999 end-page: 266 ident: bib7 article-title: Nonlinear spatial normalization using basis functions publication-title: Hum. Brain Mapp. – start-page: 185 year: 2012 end-page: 190 ident: bib77 article-title: Topology preserving brain tissue segmentation using graph cuts publication-title: IEEE Workshop on Mathematical Methods in Biomedical Image Analysis – volume: 35 start-page: 611 year: 2013 end-page: 623 ident: bib139 article-title: Multi-atlas segmentation with joint label fusion publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 46 start-page: 703 year: 1999 end-page: 711 ident: bib93 article-title: An MRI study of cerebellar vermis morphology in patients with schizophrenia: evidence in support of the cognitive dysmetria concept publication-title: Biol. Psychiatr. – volume: 223 start-page: 187 year: 2014 end-page: 191 ident: bib36 article-title: Patterns of cerebellar volume loss in dementia with Lewy bodies and Alzheimer's disease: a VBM-DARTEL study publication-title: Psychiatr. Res. Neuroimaging – volume: 140 start-page: 707 year: 2016 end-page: 720 ident: bib69 article-title: Structural cerebellar correlates of cognitive and motor dysfunctions in cerebellar degeneration publication-title: Brain – volume: 147 start-page: 916 year: 2017 end-page: 924 ident: bib106 article-title: CERES: a new cerebellum lobule segmentation method publication-title: Neuroimage – volume: 50 start-page: 121 year: 1998 end-page: 130 ident: bib90 article-title: Decreased cerebellar posterior vermis size in fragile X syndrome: correlation with neurocognitive performance publication-title: Neurology – volume: 26 start-page: 839 year: 2005 end-page: 851 ident: bib8 article-title: Unified segmentation publication-title: Neuroimage – volume: 29 start-page: 1310 year: 2010 end-page: 1320 ident: bib135 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Trans. Med. Imag. – volume: 18 start-page: 897 year: 1999 end-page: 908 ident: bib137 article-title: Automated model-based tissue classification of MR images of the brain publication-title: IEEE Trans. Med. Imag. – year: 2000 ident: bib115 article-title: MRI atlas of the Human Cerebellum – volume: 12 start-page: 26 year: 2008 end-page: 41 ident: bib9 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. – volume: 34 start-page: 1993 year: 2015 end-page: 2024 ident: bib87 article-title: The multimodal brain tumor image segmentation benchmark (BRATS) publication-title: IEEE Trans. Med. Imag. – volume: 54 start-page: 940 year: 2011 end-page: 954 ident: bib37 article-title: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation publication-title: Neuroimage – start-page: 1 year: 2011 end-page: 12 ident: bib121 article-title: Segmentation of brain images using adaptive atlases with application to ventriculomegaly publication-title: 22 – volume: 63 start-page: 742 year: 2004 end-page: 745 ident: bib22 article-title: Regional reductions of gray matter volume in familial dyslexia publication-title: Neurology – volume: 12 year: 2017 ident: bib49 article-title: MRIQC: advancing the automatic prediction of image quality in MRI from unseen sites publication-title: PLoS One – volume: 9 start-page: 212 year: 2000 end-page: 225 ident: bib6 article-title: Image registration using a symmetric prior - in three-dimensions publication-title: Hum. Brain Mapp. – volume: 78 start-page: 474 year: 2013 end-page: 480 ident: bib92 article-title: Mapping the effects of ApoE4, age and cognitive status on 18F-florbetapir PET measured regional cortical patterns of beta-amyloid density and growth publication-title: Neuroimage – volume: 172 start-page: 61 year: 2009 end-page: 67 ident: bib140 article-title: Cerebellar vermal volumes and behavioral correlates in children with autism spectrum disorder publication-title: Psychiatr. Res. Neuroimaging – volume: 56 start-page: 1982 year: 2010 end-page: 1992 ident: bib24 article-title: Simple paradigm for extra-cerebral tissue removal: algorithm and analysis publication-title: Neuroimage – year: 2015 ident: bib86 article-title: MRBrainS challenge: online evaluation framework for brain image segmentation in 3T MRI scans publication-title: Comput. Intell. Neurosci. – volume: 12 start-page: 616 year: 2008 end-page: 625 ident: bib15 article-title: Homeomorphic brain image segmentation with topological and statistical atlases publication-title: Med. Image Anal. – start-page: 62 year: 2013 end-page: 73 ident: bib19 article-title: Automated segmentation of the cerebellar lobules using boundary specific classification and evolution publication-title: 23rd Inf. Proc. in Med. Imaging (IPMI 2013) – volume: 176 start-page: 164 year: 2016 end-page: 170 ident: bib144 article-title: Sexual dimorphism of the cerebellar vermis in schizophrenia publication-title: Schizophr. Res. – volume: 75 start-page: 43 year: 1986 end-page: 51 ident: bib132 article-title: The prevalence of alcoholic cerebellar atrophy: a morphometric and histological study of an autopsy material publication-title: J. Neurol. Sci. – volume: 42 start-page: 1072 year: 1999 end-page: 1081 ident: bib95 article-title: On standardizing the MR image intensity scale publication-title: Magn. Reson. Med. – volume: 38 start-page: 3391 year: 2017 end-page: 3401 ident: bib13 article-title: Association between serotonin denervation and resting-state functional connectivity in mild cognitive impairment publication-title: Hum. Brain Mapp. – volume: 33 start-page: 341 year: 2002 end-page: 355 ident: bib51 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron – start-page: 3431 year: 2015 end-page: 3440 ident: bib78 article-title: Fully convolutional networks for semantic segmentation publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 20 year: 2017 end-page: 28 ident: bib28 article-title: Whole brain parcellation with pathology: validation on ventriculomegaly patients publication-title: Patch-MI 2017: Patch-based Techniques in Medical Imaging – year: 2016 ident: bib145 article-title: Landmark based shape analysis for cerebellar ataxia classification and structural change pattern visualization publication-title: Proceedings of SPIE Medical Imaging (SPIE-MI 2016), San Diego, CA – volume: 17 start-page: 61 year: 2002 end-page: 76 ident: bib101 article-title: Manual and semiautomated measurement of cerebellar subregions on MR images publication-title: Neuroimage – volume: 64 start-page: 616 year: 2013 end-page: 629 ident: bib20 article-title: Approaching expert results using a hierarchical cerebellum parcellation protocol for multiple inexpert human raters publication-title: Neuroimage – volume: 42 start-page: 1198 year: 2008 end-page: 1202 ident: bib129 article-title: The cerebellum in mild cognitive impairment and Alzheimer's disease - a structural MRI study publication-title: J. Psychiatr. Res. – year: 2013 ident: bib84 article-title: Handbook of the Cerebellum and Cerebellar Disorders – volume: 11 year: 2016 ident: bib11 article-title: A novel GBM saliency detection model using multi-channel MRI publication-title: PLoS One – year: 2014 ident: bib71 article-title: Adam: a Method for Stochastic Optimization – volume: 19 start-page: 659 year: 2014 end-page: 667 ident: bib85 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol. Psychiatr. – volume: 4 start-page: 290 year: 2005 end-page: 294 ident: bib116 article-title: The cerebellum on the rise in human emotion publication-title: Cerebellum – volume: 22 start-page: 599 year: 2016 end-page: 607 ident: bib142 article-title: Contribution of the cerebellum to cognitive performance in children and adolescents with multiple sclerosis publication-title: Multiple Sclerosis Journal – volume: 13 start-page: 856 year: 2001 end-page: 876 ident: bib120 article-title: Magnetic resonance image tissue classification using a partial volume model publication-title: Neuroimage – volume: 103 start-page: 511 year: 2014 end-page: 521 ident: bib104 article-title: Automated MRI cerebellar size measurements using active appearance modeling publication-title: Neuroimage – volume: 32 start-page: 413 year: 2009 end-page: 434 ident: bib126 article-title: Cerebellum and nonmotor function publication-title: Annu. Rev. Neurosci. – volume: 31 start-page: 236 year: 2000 end-page: 250 ident: bib88 article-title: Basal ganglia and cerebellar loops: motor and cognitive circuits publication-title: Brain Res. Rev. – volume: 21 start-page: 40 year: 2015 end-page: 58 ident: bib74 article-title: Robust whole-brain segmentation: application to traumatic brain injury publication-title: Med. Image Anal. – volume: 34 start-page: 1349 year: 2015 end-page: 1361 ident: bib131 article-title: A model of population and subject (MOPS) intensities with application to multiple sclerosis lesion segmentation publication-title: IEEE Trans. Med. Imag. – volume: 127 start-page: 435 year: 2016 end-page: 444 ident: bib146 article-title: Automated cerebellar lobule segmentation with application to cerebellar structural analysis in cerebellar disease publication-title: Neuroimage – start-page: 221 year: 2009 end-page: 224 ident: bib136 article-title: Cerebellum segmentation in MRI using atlas registration and local multi-scale image descriptors publication-title: 6th International Symposium on Biomedical Imaging (ISBI 2009)fp – volume: 83 start-page: 579 year: 2018 end-page: 588 ident: bib134 article-title: Cerebellar volume in autism: literature meta-analysis and analysis of the autism brain imaging data exchange cohort publication-title: Biol. Psychiatr. – volume: 23 start-page: 724 year: 2004 end-page: 738 ident: bib23 article-title: A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume publication-title: Neuroimage – volume: 23 start-page: 411 year: 2011 end-page: 420 ident: bib47 article-title: Morphological cerebral correlates of CERAD test performance in mild cognitive impairment and Alzheimer's disease publication-title: Jrnl. Alzheimer’s Disease – start-page: 202 year: 2017 end-page: 209 ident: bib60 article-title: Towards topological correct segmentation of macular OCT from cascaded FCNs publication-title: Fetal, Infant and Ophthalmic Medical Image Analysis: International Workshop, FIFI 2017, and 4th International Workshop, OMIA 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, Proceedings – year: 2018 ident: bib117 article-title: Multi-atlas segmentation of the hydrocephalus brain using an adaptive ventricle atlas publication-title: Proceedings of SPIE Medical Imaging (SPIE-MI 2018), Houstan, TX – start-page: 259 year: 2016 end-page: 279 ident: bib25 article-title: An overview of the multi-object geometric deformable model approach in biomedical imaging publication-title: Medical Image Recognition, Segmentation and Parsing – start-page: 105 year: 2014 end-page: 112 ident: bib128 article-title: Optimized patchMatch for near real time and accurate label fusion publication-title: 17 – volume: 28 start-page: 1251 year: 2009 end-page: 1265 ident: bib61 article-title: Comparison and evaluation of methods for liver segmentation from CT datasets publication-title: IEEE Trans. Med. Imag. – volume: 62 start-page: 774 year: 2012 end-page: 781 ident: bib50 article-title: FreeSurfer publication-title: Neuroimage – volume: 124 start-page: 770 year: 2016 end-page: 782 ident: bib55 article-title: An optimized patchmatch for multi-scale and multi-feature label fusion publication-title: Neuroimage – volume: 6 start-page: 129 year: 2002 end-page: 142 ident: bib118 article-title: BrainSuite: an automated cortical surface identification tool publication-title: Med. Image Anal. – volume: 29 start-page: 838 year: 2006 end-page: 852 ident: bib133 article-title: Cortical reconstruction using implicit surface evolution: accuracy and precision analysis publication-title: Neuroimage – volume: 40 start-page: 299 year: 2013 end-page: 306 ident: bib75 article-title: The role of the cerebellum in the pathophysiology of Parkinson's disease publication-title: Can. J. Neurol. Sci./J. Can. Sci. Neurol. – volume: 36 start-page: 4016 year: 2015 end-page: 4030 ident: bib17 article-title: Beat and metaphoric gestures are differentially associated with regional cerebellar and cortical volumes publication-title: Hum. Brain Mapp. – year: 1879 ident: bib62 article-title: Handbuch der Nervenlehre des Menschen – volume: 38 start-page: 95 year: 2007 end-page: 113 ident: bib5 article-title: A fast diffeomorphic image registration algorithm publication-title: Neuroimage – volume: 170 start-page: 456 year: 2018 end-page: 470 ident: bib46 article-title: 3D fully convolutional networks for subcortical segmentation in MRI: a large-scale study publication-title: Neuroimage – year: 2016 ident: bib64 article-title: Combining multi-atlas segmentation with brain surface estimation publication-title: Proceedings of SPIE Medical Imaging (SPIE-MI 2016), San Diego, CA – start-page: 2487 year: 2016 end-page: 2496 ident: bib33 article-title: DCAN: deep contour-aware networks for accurate gland segmentation publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 138 start-page: 197 year: 2016 end-page: 210 ident: bib65 article-title: Consistent cortical reconstruction and multi-atlas brain segmentation publication-title: Neuroimage – volume: 19 start-page: 1598 year: 2015 end-page: 1609 ident: bib109 article-title: Subject-specific sparse dictionary learning for atlas-based brain MRI segmentation publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 2 start-page: 355 year: 1998 end-page: 362 ident: bib41 article-title: Neuroimaging studies of the cerebellum: language, learning and memory publication-title: Trends Cognit. Sci. – start-page: 68 year: 2014 end-page: 76 ident: bib147 article-title: Deep learning for cerebellar ataxia classification and functional score regression publication-title: Machine Learning in Medical Imaging – volume: 30 start-page: 1852 year: 2011 end-page: 1862 ident: bib108 article-title: A supervised patch-based approach for human brain labeling publication-title: IEEE Trans. Med. Imag. – year: 2018 ident: bib151 article-title: Automatic outlier detection using hidden Markov model for cerebellar lobule segmentation publication-title: Proceedings of SPIE Medical Imaging (SPIE-MI 2018), Houstan, TX – volume: 1 start-page: 80 year: 1945 end-page: 83 ident: bib143 article-title: Individual comparisons by ranking methods publication-title: Biometrics Bull. – volume: 8 start-page: 163 year: 2014 ident: bib99 article-title: The therapeutic potential of the cerebellum in schizophrenia publication-title: Front. Syst. Neurosci. – volume: 160 start-page: 262 year: 2003 end-page: 273 ident: bib2 article-title: Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: an fMRI study of Autism publication-title: Am. J. Psychiatr. – volume: 54 start-page: 313 year: 2010 ident: 10.1016/j.neuroimage.2018.08.003_bib54 article-title: Unbiased average age-appropriate atlases for pediatric studies publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.07.033 – volume: 56 start-page: 1982 year: 2010 ident: 10.1016/j.neuroimage.2018.08.003_bib24 article-title: Simple paradigm for extra-cerebral tissue removal: algorithm and analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.03.045 – start-page: 656 year: 2007 ident: 10.1016/j.neuroimage.2018.08.003_bib29 article-title: A joint registration and segmentation approach to skull stripping – volume: 16 start-page: 305 year: 2002 ident: 10.1016/j.neuroimage.2018.08.003_bib63 article-title: Comparison of automated and manual MRI volumetry of hippocampus in normal aging and dementia publication-title: Jrnl. of Magnetic Resonance Imaging doi: 10.1002/jmri.10163 – volume: 28 start-page: 1599 year: 2015 ident: 10.1016/j.neuroimage.2018.08.003_bib110 article-title: Hierarchical non-negative matrix factorization to characterize brain tumor heterogeneity using multi-parametric MRI publication-title: NMR Biomed. doi: 10.1002/nbm.3413 – volume: 12 start-page: 616 year: 2008 ident: 10.1016/j.neuroimage.2018.08.003_bib15 article-title: Homeomorphic brain image segmentation with topological and statistical atlases publication-title: Med. Image Anal. doi: 10.1016/j.media.2008.06.008 – volume: 14 start-page: 197 year: 2015 ident: 10.1016/j.neuroimage.2018.08.003_bib14 article-title: Consensus paper: the role of the cerebellum in perceptual processes publication-title: Cerebellum doi: 10.1007/s12311-014-0627-7 – volume: 39 start-page: 238 year: 2008 ident: 10.1016/j.neuroimage.2018.08.003_bib103 article-title: Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.05.063 – start-page: 259 year: 2016 ident: 10.1016/j.neuroimage.2018.08.003_bib25 article-title: An overview of the multi-object geometric deformable model approach in biomedical imaging – start-page: 1 year: 2008 ident: 10.1016/j.neuroimage.2018.08.003_bib127 article-title: 3D segmentation in the clinic: a Grand challenge II: MS lesion segmentation – volume: 4 start-page: 290 year: 2005 ident: 10.1016/j.neuroimage.2018.08.003_bib116 article-title: The cerebellum on the rise in human emotion publication-title: Cerebellum doi: 10.1080/14734220500348584 – start-page: 3431 year: 2015 ident: 10.1016/j.neuroimage.2018.08.003_bib78 article-title: Fully convolutional networks for semantic segmentation – volume: 138 start-page: 197 year: 2016 ident: 10.1016/j.neuroimage.2018.08.003_bib65 article-title: Consistent cortical reconstruction and multi-atlas brain segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.05.030 – volume: 56 start-page: 907 year: 2011 ident: 10.1016/j.neuroimage.2018.08.003_bib100 article-title: Bayesian model of shape and appearance for subcortical brain segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.02.046 – year: 2018 ident: 10.1016/j.neuroimage.2018.08.003_bib80 article-title: Is the winner really the best? A critical analysis of common research practice in biomedical image analysis competitions publication-title: Nat. Commun. – volume: 62 start-page: 774 year: 2012 ident: 10.1016/j.neuroimage.2018.08.003_bib50 article-title: FreeSurfer publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.021 – volume: 23 start-page: 724 year: 2004 ident: 10.1016/j.neuroimage.2018.08.003_bib23 article-title: A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.06.018 – volume: 38 start-page: 3391 year: 2017 ident: 10.1016/j.neuroimage.2018.08.003_bib13 article-title: Association between serotonin denervation and resting-state functional connectivity in mild cognitive impairment publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23595 – volume: 21 start-page: 40 year: 2015 ident: 10.1016/j.neuroimage.2018.08.003_bib74 article-title: Robust whole-brain segmentation: application to traumatic brain injury publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.12.003 – volume: 34 start-page: 2014 year: 2013 ident: 10.1016/j.neuroimage.2018.08.003_bib89 article-title: Different patterns of gray matter atrophy in early- and late-onset Alzheimer's disease publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2013.02.013 – year: 2016 ident: 10.1016/j.neuroimage.2018.08.003_bib64 article-title: Combining multi-atlas segmentation with brain surface estimation – volume: 172 start-page: 61 year: 2009 ident: 10.1016/j.neuroimage.2018.08.003_bib140 article-title: Cerebellar vermal volumes and behavioral correlates in children with autism spectrum disorder publication-title: Psychiatr. Res. Neuroimaging doi: 10.1016/j.pscychresns.2008.06.001 – volume: 63 start-page: 742 year: 2004 ident: 10.1016/j.neuroimage.2018.08.003_bib22 article-title: Regional reductions of gray matter volume in familial dyslexia publication-title: Neurology doi: 10.1212/01.WNL.0000134673.95020.EE – volume: 160 start-page: 262 year: 2003 ident: 10.1016/j.neuroimage.2018.08.003_bib2 article-title: Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: an fMRI study of Autism publication-title: Am. J. Psychiatr. doi: 10.1176/appi.ajp.160.2.262 – start-page: 29 year: 2010 ident: 10.1016/j.neuroimage.2018.08.003_bib12 article-title: The generalized patchmatch correspondence algorithm – start-page: 424 year: 2016 ident: 10.1016/j.neuroimage.2018.08.003_bib32 article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation – year: 2015 ident: 10.1016/j.neuroimage.2018.08.003_bib86 article-title: MRBrainS challenge: online evaluation framework for brain image segmentation in 3T MRI scans publication-title: Comput. Intell. Neurosci. doi: 10.1155/2015/813696 – start-page: 490 year: 1999 ident: 10.1016/j.neuroimage.2018.08.003_bib94 article-title: New variants of a method of MRI scale normalization – volume: 148 start-page: 77 year: 2017 ident: 10.1016/j.neuroimage.2018.08.003_bib27 article-title: Longitudinal multiple sclerosis lesion segmentation: resource & challenge publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.12.064 – volume: 16 start-page: 367 year: 2004 ident: 10.1016/j.neuroimage.2018.08.003_bib113 article-title: Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome publication-title: J. Neuropsychiatry Clin. Neurosci. doi: 10.1176/jnp.16.3.367 – volume: 48 start-page: 1178 year: 1991 ident: 10.1016/j.neuroimage.2018.08.003_bib112 article-title: An emerging concept. The cerebellar contribution to higher function publication-title: Arch. Neurol. doi: 10.1001/archneur.1991.00530230086029 – volume: 14 start-page: 401 year: 2008 ident: 10.1016/j.neuroimage.2018.08.003_bib34 article-title: Quantitative magnetic resonance image analysis of the cerebellum in macrocephalic and normocephalic children and adults with autism publication-title: J. Int. Neuropsychol. Soc. doi: 10.1017/S1355617708080594 – volume: 29 start-page: 1310 year: 2010 ident: 10.1016/j.neuroimage.2018.08.003_bib135 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2010.2046908 – volume: 7 start-page: 631 year: 2015 ident: 10.1016/j.neuroimage.2018.08.003_bib45 article-title: Cerebellar gray matter and lobular volumes correlate with core autism symptoms publication-title: Neuroimage: Clinical doi: 10.1016/j.nicl.2015.02.007 – volume: vol. 4 start-page: 26 year: 2015 ident: 10.1016/j.neuroimage.2018.08.003_bib130 article-title: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude – volume: 55 start-page: 61 year: 2002 ident: 10.1016/j.neuroimage.2018.08.003_bib96 article-title: Selective reduction of the posterior superior vermis in men with chronic schizophrenia publication-title: Schizophr. Res. doi: 10.1016/S0920-9964(01)00248-1 – year: 2000 ident: 10.1016/j.neuroimage.2018.08.003_bib115 – volume: 124 start-page: 770 year: 2016 ident: 10.1016/j.neuroimage.2018.08.003_bib55 article-title: An optimized patchmatch for multi-scale and multi-feature label fusion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.07.076 – volume: 75 start-page: 1524 year: 2004 ident: 10.1016/j.neuroimage.2018.08.003_bib56 article-title: Evidence for distinct cognitive deficits after focal cerebellar lesions publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2003.018093 – volume: 46 start-page: 703 year: 1999 ident: 10.1016/j.neuroimage.2018.08.003_bib93 article-title: An MRI study of cerebellar vermis morphology in patients with schizophrenia: evidence in support of the cognitive dysmetria concept publication-title: Biol. Psychiatr. doi: 10.1016/S0006-3223(99)00093-1 – volume: 42 start-page: 1072 year: 1999 ident: 10.1016/j.neuroimage.2018.08.003_bib95 article-title: On standardizing the MR image intensity scale publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M – volume: 160 start-page: 1614 year: 2003 ident: 10.1016/j.neuroimage.2018.08.003_bib97 article-title: Smaller cerebellar vermis but not hemisphere volumes in patients with chronic schizophrenia publication-title: Am. J. Psychiatr. doi: 10.1176/appi.ajp.160.9.1614 – year: 2014 ident: 10.1016/j.neuroimage.2018.08.003_bib71 – volume: 50 start-page: 121 year: 1998 ident: 10.1016/j.neuroimage.2018.08.003_bib90 article-title: Decreased cerebellar posterior vermis size in fragile X syndrome: correlation with neurocognitive performance publication-title: Neurology doi: 10.1212/WNL.50.1.121 – volume: 40 start-page: 299 year: 2013 ident: 10.1016/j.neuroimage.2018.08.003_bib75 article-title: The role of the cerebellum in the pathophysiology of Parkinson's disease publication-title: Can. J. Neurol. Sci./J. Can. Sci. Neurol. doi: 10.1017/S0317167100014232 – volume: 66 start-page: 424 year: 2006 ident: 10.1016/j.neuroimage.2018.08.003_bib148 article-title: Pontine and cerebellar atrophy correlate with clinical disability in SCA2 publication-title: Neurology doi: 10.1212/01.wnl.0000196464.47508.00 – volume: 20 start-page: 45 year: 2001 ident: 10.1016/j.neuroimage.2018.08.003_bib149 article-title: Segmentation of brain MR images through a hidden Markov random field model and the Expectation-Maximization algorithm publication-title: IEEE Trans. Med. Imag. doi: 10.1109/42.906424 – volume: 2 start-page: 355 year: 1998 ident: 10.1016/j.neuroimage.2018.08.003_bib41 article-title: Neuroimaging studies of the cerebellum: language, learning and memory publication-title: Trends Cognit. Sci. doi: 10.1016/S1364-6613(98)01211-X – year: 1776 ident: 10.1016/j.neuroimage.2018.08.003_bib81 – volume: 23 start-page: 355 year: 1997 ident: 10.1016/j.neuroimage.2018.08.003_bib31 article-title: Selective damage to the cerebellar vermis in chronic alcoholism: a contribution from neurotoxicology to an old problem of selective vulnerability publication-title: Neuropathol. Appl. Neurobiol. doi: 10.1111/j.1365-2990.1997.tb01309.x – volume: 35 start-page: 611 year: 2013 ident: 10.1016/j.neuroimage.2018.08.003_bib139 article-title: Multi-atlas segmentation with joint label fusion publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.143 – volume: 11 year: 2016 ident: 10.1016/j.neuroimage.2018.08.003_bib11 article-title: A novel GBM saliency detection model using multi-channel MRI publication-title: PLoS One doi: 10.1371/journal.pone.0146388 – start-page: 105 year: 2014 ident: 10.1016/j.neuroimage.2018.08.003_bib128 article-title: Optimized patchMatch for near real time and accurate label fusion – volume: 39 start-page: 1064 year: 2008 ident: 10.1016/j.neuroimage.2018.08.003_bib119 article-title: Construction of a 3D probabilistic atlas of human cortical structures publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.09.031 – volume: 31 start-page: 236 year: 2000 ident: 10.1016/j.neuroimage.2018.08.003_bib88 article-title: Basal ganglia and cerebellar loops: motor and cognitive circuits publication-title: Brain Res. Rev. doi: 10.1016/S0165-0173(99)00040-5 – volume: 29 start-page: 838 year: 2006 ident: 10.1016/j.neuroimage.2018.08.003_bib133 article-title: Cortical reconstruction using implicit surface evolution: accuracy and precision analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.08.061 – start-page: 221 year: 2009 ident: 10.1016/j.neuroimage.2018.08.003_bib136 article-title: Cerebellum segmentation in MRI using atlas registration and local multi-scale image descriptors – start-page: 1 year: 2010 ident: 10.1016/j.neuroimage.2018.08.003_bib16 article-title: Theano: a CPU and GPU math compiler in Python doi: 10.25080/Majora-92bf1922-003 – year: 2013 ident: 10.1016/j.neuroimage.2018.08.003_bib84 – start-page: 234 year: 2015 ident: 10.1016/j.neuroimage.2018.08.003_bib107 article-title: U-net: convolutional networks for biomedical image segmentation – year: 2017 ident: 10.1016/j.neuroimage.2018.08.003_bib57 article-title: Machine learning in a graph framework for subcortical segmentation – volume: 18 start-page: 897 year: 1999 ident: 10.1016/j.neuroimage.2018.08.003_bib137 article-title: Automated model-based tissue classification of MR images of the brain publication-title: IEEE Trans. Med. Imag. doi: 10.1109/42.811270 – volume: 44 start-page: 2047 year: 1994 ident: 10.1016/j.neuroimage.2018.08.003_bib124 article-title: The cerebellum contributes to linguistic production publication-title: Neurology doi: 10.1212/WNL.44.11.2047 – volume: 18 start-page: 192 year: 1994 ident: 10.1016/j.neuroimage.2018.08.003_bib35 article-title: Automatic 3-D intersubject registration of MR volumetric data in standardized Talairach space publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/00004728-199403000-00005 – start-page: 185 year: 2012 ident: 10.1016/j.neuroimage.2018.08.003_bib77 article-title: Topology preserving brain tissue segmentation using graph cuts – volume: 75 start-page: 43 year: 1986 ident: 10.1016/j.neuroimage.2018.08.003_bib132 article-title: The prevalence of alcoholic cerebellar atrophy: a morphometric and histological study of an autopsy material publication-title: J. Neurol. Sci. doi: 10.1016/0022-510X(86)90049-3 – start-page: 291 year: 2017 ident: 10.1016/j.neuroimage.2018.08.003_bib150 article-title: Whole brain segmentation and labeling from CT using synthetic MR images – volume: 35 start-page: 250 year: 2017 ident: 10.1016/j.neuroimage.2018.08.003_bib79 article-title: ISLES 2015 - a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.07.009 – volume: 43 start-page: 332 year: 2004 ident: 10.1016/j.neuroimage.2018.08.003_bib48 article-title: Magnetic resonance imaging of boys with attention-deficit/hyperactivity disorder and their unaffected siblings publication-title: J. Am. Acad. Child Adolesc. Psychiatr. doi: 10.1097/00004583-200403000-00016 – start-page: 202 year: 2017 ident: 10.1016/j.neuroimage.2018.08.003_bib60 article-title: Towards topological correct segmentation of macular OCT from cascaded FCNs – year: 1984 ident: 10.1016/j.neuroimage.2018.08.003_bib66 – volume: 36 start-page: 61 year: 2017 ident: 10.1016/j.neuroimage.2018.08.003_bib68 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.10.004 – volume: 97 start-page: 281 year: 1952 ident: 10.1016/j.neuroimage.2018.08.003_bib73 article-title: The morphogenesis and adult pattern of the lobules and tissues of the cerebellum of the white rat publication-title: J. Comp. Neuol. doi: 10.1002/cne.900970204 – volume: 78 start-page: 474 year: 2013 ident: 10.1016/j.neuroimage.2018.08.003_bib92 article-title: Mapping the effects of ApoE4, age and cognitive status on 18F-florbetapir PET measured regional cortical patterns of beta-amyloid density and growth publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.048 – volume: 41 start-page: 1184 year: 2008 ident: 10.1016/j.neuroimage.2018.08.003_bib30 article-title: Altered cerebellar feedback projections in Asperger syndrome publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.03.041 – volume: 129 start-page: 290 year: 2006 ident: 10.1016/j.neuroimage.2018.08.003_bib114 article-title: Cognition, emotion and the cerebellum publication-title: Brain doi: 10.1093/brain/awh729 – volume: 13 start-page: 701 year: 2009 ident: 10.1016/j.neuroimage.2018.08.003_bib111 article-title: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms publication-title: Med. Image Anal. doi: 10.1016/j.media.2009.06.003 – volume: 8 start-page: 92 year: 2014 ident: 10.1016/j.neuroimage.2018.08.003_bib125 article-title: Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2014.00092 – volume: 22 start-page: 599 year: 2016 ident: 10.1016/j.neuroimage.2018.08.003_bib142 article-title: Contribution of the cerebellum to cognitive performance in children and adolescents with multiple sclerosis publication-title: Multiple Sclerosis Journal doi: 10.1177/1352458515595132 – volume: 38 start-page: 95 year: 2007 ident: 10.1016/j.neuroimage.2018.08.003_bib5 article-title: A fast diffeomorphic image registration algorithm publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.07.007 – volume: 23 start-page: S69 year: 2004 ident: 10.1016/j.neuroimage.2018.08.003_bib52 article-title: Sequence-independent segmentation of magnetic resonance images publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.016 – volume: 176 start-page: 164 year: 2016 ident: 10.1016/j.neuroimage.2018.08.003_bib144 article-title: Sexual dimorphism of the cerebellar vermis in schizophrenia publication-title: Schizophr. Res. doi: 10.1016/j.schres.2016.06.028 – volume: 34 start-page: 1349 year: 2015 ident: 10.1016/j.neuroimage.2018.08.003_bib131 article-title: A model of population and subject (MOPS) intensities with application to multiple sclerosis lesion segmentation publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2015.2393853 – volume: 140 start-page: 707 year: 2016 ident: 10.1016/j.neuroimage.2018.08.003_bib69 article-title: Structural cerebellar correlates of cognitive and motor dysfunctions in cerebellar degeneration publication-title: Brain – volume: 30 start-page: 1852 year: 2011 ident: 10.1016/j.neuroimage.2018.08.003_bib108 article-title: A supervised patch-based approach for human brain labeling publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2011.2156806 – year: 2016 ident: 10.1016/j.neuroimage.2018.08.003_bib1 article-title: A toolbox to visually explore cerebellar sub-structure shape changes in cerebellar ataxia – volume: 1 start-page: 80 year: 1945 ident: 10.1016/j.neuroimage.2018.08.003_bib143 article-title: Individual comparisons by ranking methods publication-title: Biometrics Bull. doi: 10.2307/3001968 – volume: 31 start-page: 968 year: 2006 ident: 10.1016/j.neuroimage.2018.08.003_bib40 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.021 – start-page: 1026 year: 2015 ident: 10.1016/j.neuroimage.2018.08.003_bib59 article-title: Delving deep into rectifiers: surpassing humanlevel performance on imagenet classification – volume: 162 start-page: 123 year: 1994 ident: 10.1016/j.neuroimage.2018.08.003_bib38 article-title: Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic with MR imaging publication-title: Am. J. Roentgenol. doi: 10.2214/ajr.162.1.8273650 – volume: 1 start-page: 579 year: 1959 ident: 10.1016/j.neuroimage.2018.08.003_bib138 article-title: A restricted form of cerebellar cortical degeneration occurring in alcoholic patients publication-title: AMA Arch. Neurol. doi: 10.1001/archneur.1959.03840060001001 – volume: 7 start-page: 254 year: 1999 ident: 10.1016/j.neuroimage.2018.08.003_bib7 article-title: Nonlinear spatial normalization using basis functions publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G – volume: 8 start-page: 163 year: 2014 ident: 10.1016/j.neuroimage.2018.08.003_bib99 article-title: The therapeutic potential of the cerebellum in schizophrenia publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2014.00163 – volume: 103 start-page: 511 year: 2014 ident: 10.1016/j.neuroimage.2018.08.003_bib104 article-title: Automated MRI cerebellar size measurements using active appearance modeling publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.08.047 – volume: 9 start-page: 212 year: 2000 ident: 10.1016/j.neuroimage.2018.08.003_bib6 article-title: Image registration using a symmetric prior - in three-dimensions publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(200004)9:4<212::AID-HBM3>3.0.CO;2-# – start-page: 92 year: 2016 ident: 10.1016/j.neuroimage.2018.08.003_bib83 article-title: HIST: HyperIntensity segmentation tool – volume: 64 start-page: 616 year: 2013 ident: 10.1016/j.neuroimage.2018.08.003_bib20 article-title: Approaching expert results using a hierarchical cerebellum parcellation protocol for multiple inexpert human raters publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.08.075 – volume: 127 start-page: 435 year: 2016 ident: 10.1016/j.neuroimage.2018.08.003_bib146 article-title: Automated cerebellar lobule segmentation with application to cerebellar structural analysis in cerebellar disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.09.032 – volume: 147 start-page: 916 year: 2017 ident: 10.1016/j.neuroimage.2018.08.003_bib106 article-title: CERES: a new cerebellum lobule segmentation method publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.11.003 – volume: 18 start-page: 895 year: 2003 ident: 10.1016/j.neuroimage.2018.08.003_bib70 article-title: A comprehensive study of gray matter loss in patients with Alzheimer's disease using optimized voxel-based morphometry publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00041-7 – volume: 12 year: 2017 ident: 10.1016/j.neuroimage.2018.08.003_bib49 article-title: MRIQC: advancing the automatic prediction of image quality in MRI from unseen sites publication-title: PLoS One doi: 10.1371/journal.pone.0184661 – volume: 26 start-page: 839 year: 2005 ident: 10.1016/j.neuroimage.2018.08.003_bib8 article-title: Unified segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.02.018 – volume: 6 start-page: 129 year: 2002 ident: 10.1016/j.neuroimage.2018.08.003_bib118 article-title: BrainSuite: an automated cortical surface identification tool publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(02)00054-3 – volume: 91 start-page: 429 year: 1999 ident: 10.1016/j.neuroimage.2018.08.003_bib10 article-title: Neuronal loss in functional zones of the cerebellum of chronic alcoholics with and without Wernicke's encephalopathy publication-title: Neuroscience doi: 10.1016/S0306-4522(98)90664-9 – year: 2018 ident: 10.1016/j.neuroimage.2018.08.003_bib151 article-title: Automatic outlier detection using hidden Markov model for cerebellar lobule segmentation – start-page: 1 year: 2011 ident: 10.1016/j.neuroimage.2018.08.003_bib121 article-title: Segmentation of brain images using adaptive atlases with application to ventriculomegaly – volume: 32 start-page: 413 year: 2009 ident: 10.1016/j.neuroimage.2018.08.003_bib126 article-title: Cerebellum and nonmotor function publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.31.060407.125606 – volume: 35 start-page: 3385 year: 2014 ident: 10.1016/j.neuroimage.2018.08.003_bib122 article-title: Reconstruction of the human cerebral cortex robust to white matter lesions: method and validation publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22409 – volume: 35 start-page: 5026 year: 2014 ident: 10.1016/j.neuroimage.2018.08.003_bib141 article-title: Rapid automatic segmentation of the human cerebellum and its lobules (RASCAL)–Implementation and application of the patch-based label-fusion technique with a template library to segment the human cerebellum publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22529 – volume: 31 start-page: 137 year: 2008 ident: 10.1016/j.neuroimage.2018.08.003_bib3 article-title: Neuroanatomy of autism publication-title: Trends Neurosci. doi: 10.1016/j.tins.2007.12.005 – volume: 19 start-page: 659 year: 2014 ident: 10.1016/j.neuroimage.2018.08.003_bib85 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol. Psychiatr. doi: 10.1038/mp.2013.78 – volume: 54 start-page: 940 year: 2011 ident: 10.1016/j.neuroimage.2018.08.003_bib37 article-title: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.09.018 – volume: 33 start-page: 341 year: 2002 ident: 10.1016/j.neuroimage.2018.08.003_bib51 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron doi: 10.1016/S0896-6273(02)00569-X – volume: 12 start-page: 26 year: 2008 ident: 10.1016/j.neuroimage.2018.08.003_bib9 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. doi: 10.1016/j.media.2007.06.004 – volume: 11 start-page: 91 year: 2013 ident: 10.1016/j.neuroimage.2018.08.003_bib72 article-title: System for integrated neuroimaging analysis and processing of structure publication-title: Neuroinformatics doi: 10.1007/s12021-012-9159-9 – volume: 26 start-page: 297 year: 1945 ident: 10.1016/j.neuroimage.2018.08.003_bib42 article-title: Measures of the amount of ecologic association between species publication-title: Ecology doi: 10.2307/1932409 – volume: 23 start-page: 411 year: 2011 ident: 10.1016/j.neuroimage.2018.08.003_bib47 article-title: Morphological cerebral correlates of CERAD test performance in mild cognitive impairment and Alzheimer's disease publication-title: Jrnl. Alzheimer’s Disease doi: 10.3233/JAD-2010-100156 – volume: 33 start-page: 127 year: 2006 ident: 10.1016/j.neuroimage.2018.08.003_bib43 article-title: A spatially unbiased atlas template of the human cerebellum publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.05.056 – volume: 9 start-page: 179 year: 1999 ident: 10.1016/j.neuroimage.2018.08.003_bib39 article-title: Cortical surface-based analysis I: segmentation and surface reconstruction publication-title: Neuroimage doi: 10.1006/nimg.1998.0395 – volume: 117 start-page: 145 year: 2013 ident: 10.1016/j.neuroimage.2018.08.003_bib21 article-title: A multiple object geometric deformable model for image segmentation publication-title: Comput. Vis. Image Understand. doi: 10.1016/j.cviu.2012.10.006 – volume: 83 start-page: 579 year: 2018 ident: 10.1016/j.neuroimage.2018.08.003_bib134 article-title: Cerebellar volume in autism: literature meta-analysis and analysis of the autism brain imaging data exchange cohort publication-title: Biol. Psychiatr. doi: 10.1016/j.biopsych.2017.09.029 – year: 2016 ident: 10.1016/j.neuroimage.2018.08.003_bib102 article-title: Improving cerebellar segmentation with statistical fusion – start-page: 62 year: 2013 ident: 10.1016/j.neuroimage.2018.08.003_bib19 article-title: Automated segmentation of the cerebellar lobules using boundary specific classification and evolution – volume: 13 start-page: 856 year: 2001 ident: 10.1016/j.neuroimage.2018.08.003_bib120 article-title: Magnetic resonance image tissue classification using a partial volume model publication-title: Neuroimage doi: 10.1006/nimg.2000.0730 – volume: 32 start-page: 180 year: 2006 ident: 10.1016/j.neuroimage.2018.08.003_bib58 article-title: Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.02.051 – volume: 31 start-page: 192 year: 2010 ident: 10.1016/j.neuroimage.2018.08.003_bib82 article-title: Adaptive non-local means denoising of MR images with spatially varying noise levels publication-title: Magn. Reson. Imag. doi: 10.1002/jmri.22003 – volume: 12 start-page: 346 year: 2017 ident: 10.1016/j.neuroimage.2018.08.003_bib26 article-title: Longitudinal multiple sclerosis lesion segmentation data resource publication-title: Data in Brief doi: 10.1016/j.dib.2017.04.004 – volume: 223 start-page: 187 year: 2014 ident: 10.1016/j.neuroimage.2018.08.003_bib36 article-title: Patterns of cerebellar volume loss in dementia with Lewy bodies and Alzheimer's disease: a VBM-DARTEL study publication-title: Psychiatr. Res. Neuroimaging doi: 10.1016/j.pscychresns.2014.06.006 – volume: 36 start-page: 4016 year: 2015 ident: 10.1016/j.neuroimage.2018.08.003_bib17 article-title: Beat and metaphoric gestures are differentially associated with regional cerebellar and cortical volumes publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22894 – start-page: 20 year: 2017 ident: 10.1016/j.neuroimage.2018.08.003_bib28 article-title: Whole brain parcellation with pathology: validation on ventriculomegaly patients – year: 2018 ident: 10.1016/j.neuroimage.2018.08.003_bib117 article-title: Multi-atlas segmentation of the hydrocephalus brain using an adaptive ventricle atlas – volume: 28 start-page: 1251 year: 2009 ident: 10.1016/j.neuroimage.2018.08.003_bib61 article-title: Comparison and evaluation of methods for liver segmentation from CT datasets publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2009.2013851 – start-page: 68 year: 2014 ident: 10.1016/j.neuroimage.2018.08.003_bib147 article-title: Deep learning for cerebellar ataxia classification and functional score regression – volume: 327 start-page: 307 year: 1986 ident: 10.1016/j.neuroimage.2018.08.003_bib18 article-title: Statistical methods for assessing agreement between two methods of clinical measurement publication-title: Lancet doi: 10.1016/S0140-6736(86)90837-8 – year: 2016 ident: 10.1016/j.neuroimage.2018.08.003_bib145 article-title: Landmark based shape analysis for cerebellar ataxia classification and structural change pattern visualization – volume: 32 start-page: 466 year: 2008 ident: 10.1016/j.neuroimage.2018.08.003_bib53 article-title: The relationship between alcoholic cerebellar degeneration and cognitive and emotional functioning publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2007.08.004 – volume: 95 start-page: 217 year: 2014 ident: 10.1016/j.neuroimage.2018.08.003_bib98 article-title: Derivation of high-resolution MRI atlases of the human cerebellum at 3T and segmentation using multiple automatically generated templates publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.03.037 – volume: 219 start-page: 1697 year: 2013 ident: 10.1016/j.neuroimage.2018.08.003_bib67 article-title: Cognitive subtypes of dyslexia are characterized by distinct patterns of grey matter volume publication-title: Brain Struct. Funct. doi: 10.1007/s00429-013-0595-6 – volume: 34 start-page: 1993 year: 2015 ident: 10.1016/j.neuroimage.2018.08.003_bib87 article-title: The multimodal brain tumor image segmentation benchmark (BRATS) publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2014.2377694 – volume: 49 start-page: 1524 year: 2010 ident: 10.1016/j.neuroimage.2018.08.003_bib123 article-title: A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.09.005 – year: 1879 ident: 10.1016/j.neuroimage.2018.08.003_bib62 – volume: 57 start-page: 19 year: 2011 ident: 10.1016/j.neuroimage.2018.08.003_bib105 article-title: Avoiding asymmetry-induced bias in longitudinal image processing publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.02.076 – volume: 170 start-page: 456 year: 2018 ident: 10.1016/j.neuroimage.2018.08.003_bib46 article-title: 3D fully convolutional networks for subcortical segmentation in MRI: a large-scale study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.04.039 – volume: 19 start-page: 1598 year: 2015 ident: 10.1016/j.neuroimage.2018.08.003_bib109 article-title: Subject-specific sparse dictionary learning for atlas-based brain MRI segmentation publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2015.2439242 – volume: 13 start-page: 434 year: 1998 ident: 10.1016/j.neuroimage.2018.08.003_bib91 article-title: Evaluation of cerebellar size in attention-deficit hyperactivity disorder publication-title: J. Child Neurol. doi: 10.1177/088307389801300904 – start-page: 2487 year: 2016 ident: 10.1016/j.neuroimage.2018.08.003_bib33 article-title: DCAN: deep contour-aware networks for accurate gland segmentation – volume: 42 start-page: 1198 year: 2008 ident: 10.1016/j.neuroimage.2018.08.003_bib129 article-title: The cerebellum in mild cognitive impairment and Alzheimer's disease - a structural MRI study publication-title: J. Psychiatr. Res. doi: 10.1016/j.jpsychires.2007.12.002 – volume: 46 start-page: 39 year: 2009 ident: 10.1016/j.neuroimage.2018.08.003_bib44 article-title: A probabilistic MR atlas of the human cerebellum publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.01.045 – start-page: 9784 year: 2016 ident: 10.1016/j.neuroimage.2018.08.003_bib76 article-title: Quality assurance using outlier detection on an automatic segmentation method for the cerebellar peduncles – volume: 64 start-page: 81 year: 2008 ident: 10.1016/j.neuroimage.2018.08.003_bib4 article-title: The role of the cerebellum in schizophrenia publication-title: Biol. Psychiatr. doi: 10.1016/j.biopsych.2008.01.003 – volume: 17 start-page: 61 year: 2002 ident: 10.1016/j.neuroimage.2018.08.003_bib101 article-title: Manual and semiautomated measurement of cerebellar subregions on MR images publication-title: Neuroimage doi: 10.1006/nimg.2002.1207 |
| SSID | ssj0009148 |
| Score | 2.5677056 |
| Snippet | The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to... |
| SourceID | pubmedcentral hal proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 150 |
| SubjectTerms | Adult Algorithms Alzheimer's disease Attention Deficit Disorder with Hyperactivity - diagnostic imaging Attention deficit hyperactivity disorder Autism Autism Spectrum Disorder - diagnostic imaging Automation Cerebellar ataxia Cerebellar Ataxia - diagnostic imaging Cerebellum Cerebellum - diagnostic imaging Child Cognitive ability Cohort Studies Computer Science Dementia Female Humans Image Processing, Computer-Assisted - methods Image Processing, Computer-Assisted - standards Learning algorithms Machine Learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Magnetic Resonance Imaging - standards Male Medical Imaging Mental disorders Motor task performance Neuroimaging - methods Neuroimaging - standards Neurological diseases Pediatrics Schizophrenia Short term memory Teams |
| Title | Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918306906 https://dx.doi.org/10.1016/j.neuroimage.2018.08.003 https://www.ncbi.nlm.nih.gov/pubmed/30099076 https://www.proquest.com/docview/2122415341 https://www.proquest.com/docview/2087993596 https://hal.science/hal-01918431 https://pubmed.ncbi.nlm.nih.gov/PMC6271471 |
| Volume | 183 |
| WOSCitedRecordID | wos000447750200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1095-9572 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M7P dateStart: 19980501 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1095-9572 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1095-9572 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M2M dateStart: 20020801 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBdLO0Zf9v2RrQva2KuYLcmWzB5GVlK60YQwNsibsGW5zVjtNB-F_fe7kz-yrDACe3HA8hHZd7o76X53R8g7lYNNsIVmGdcxg_1XwTJpFXOwKmUhczBivs7suZpM9GyWTJsDt1UDq2x1olfUeWXxjPw99yGgCJTux8U1w65RGF1tWmj0yCFWSeAeujfdFt0NZZ0KFwmmwzBpkDw1vsvXi5xfwapFgJf2hTzb1lm3zVPvEnGSt53Qv7GUfxin0wf_-1oPyf3GLaXDWo4ekTuufEzujZvA-xOSntT9CssLigf2v2i6WVfg7Lqc-pQkVhUMXEnE2VHrlg7DGZsrukh9ZMBzn2ImC4UvUWLeJIVtfoXFPhz1X2f1lHw_HX07OWNNdwZm41iuWZo4HogkyGyRCh7Z3EVOcJ1zWPExXDOeySCNpLWBs9Jm1ok44C7PMu64SBPxjByUVeleEKoSoJHa2VBrmceJ5lKLLEtVDN4p0PeJaplibFO6HDto_DQtRu2H2bLTIDsNNtcMRJ-EHeWiLt-xB03S8t206amgUA3YmD1oP3S0jQtTuyZ7Ur8FMesmipW_z4bnBu-BJ46decKbsE-OW0kyjb5Zma0Y9cmbbhg0hWdy6aoNPBNolWAidtwnz2uh7f5K4E4hUDCidsR5Zy67I-X80lcjj7kKwcN5-e9pvSJH-KI1EOiYHKyXG_ea3LU36_lqOSA9NVP-qgfkcPh5NPsCv59Gk-lXuDvm44Ff2L8B1pFUBQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQcCF92OhgEFwtJo4TuwIIVQVqq26u-JQpN5M7Dh0qzZZ9lHUP8VvZMZ5LEsltJceuOSw3lGceJ6Zb2YIeStzsAm2UMxwlTCIvwpmhJXMgVSKQuRgxHyf2YEcjdTRUfplg_xqa2EQVtnqRK-o88riN_Jt7lNAMSjdj5MfDKdGYXa1HaFRs8WBu_gJIdvsw_4nON93nO99Ptzts2aqALNJIuYsSx0PINI3tsgiHtvcxS7iKufAqQlcDTciyGJhbeCssMa6KAm4y43hjkcZNl8ClX9dYMkoQgX5cNnkNxR16V0cMRWGaYMcqvFkvj_l-Ay0BALKlG8c2o7qumwOrx0jLvOy0_s3dvMPY7h39397jffIncbtpju1nNwnG658QG4OG2DBQ5Lt1vMYy-8UExIXNFvMK3DmXU59yRWrCgauMuIIqXVTh-maxRmdZD7z4bmbYqUOhTdfYl0onToMckCkqD-N2SPy9Uoe8DHZLKvSPSVUpkAjlLOhUiJPUsWFiozJZALeN9D3iGyZQNumNTtOCDnVLQbvRC_ZRyP7aBweGkQ9EnaUk7o9yRo0actnui2_BYOhwYauQfu-o21ctNr1WpP6DbB1t1HsbN7fGWj8DSINnDwUnoc9stVyrm706Uwv2bZHXnfLoAn9IZeuWsB_AiVTLDRPeuRJLSTdrSKMhAIJK3JFfFb2srpSjo99t_WEyxA8uGf_3tYrcqt_OBzowf7o4Dm5jQ9dg562yOZ8unAvyA17Ph_Ppi-9yqDk21UL12-5760m |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFFVceD8CBRYEx1Xt9ca7FkKotI1aNUQRAqm3xV6vaRB1Qh5F_Wv8OmbWdkKohHLpgUsO2Yyyzn7zyn4zA_BK5egTbKF5JnTMMf8qeCat4g61UhYyRyfm-8z2VL-vT06SwQb8amphiFbZ2ERvqPORpf_Id4S_Auqg0d0palrEYL_7bvyD0wQpumltxmlUEDl2Fz8xfZu-PdrHs34tRPfg094hrycMcBvHcsbTxIkAs_7MFmkkOjZ3HRcJnQtEbYyvmchkkHaktYGz0mbWRXEgXJ5lwokopUZMaP43FQYZsgWb7w_6g4_Llr-hrArxOhHXYZjUPKKKXea7VQ7P0GYQvUz7NqLN4K7LzvHaKbE0L4fAfzM5_3CN3Vv_8496G27WATnbrTToDmy48i5sfagpB_cg3asmNZZfGW3-gqXz2QjDfJczX4zFRwXHIJoYhsy6iaOLnPkZG6f-TsTjnlEND8NTKKlilE0cpT-obMyfzPQ-fL6SB3wArXJUukfAVIIyUjsbai3zONFC6ijLUhVjXI7ybVANIIytm7bT7JDvpmHnfTNLKBmCkqGxokHUhnAhOa4al6whkzSYM01hLroSg951Ddk3C9k6eKuCsjWlXyLEFxulnueHuz1D72EOQjOJwvOwDdsNik1taadmCeE2vFgso430h1y60Rw_E2iVUAl63IaHlcIsviqiHClQuKJWVGllL6sr5fDU92GPhQoxtnv87209hy3UKdM76h8_gRv0zBUbahtas8ncPYXr9nw2nE6e1faDwZer1q7fmTi3QA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+fully+automated+state-of-the-art+cerebellum+parcellation+from+magnetic+resonance+images&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Carass%2C+Aaron&rft.au=Cuzzocreo%2C+Jennifer+L.&rft.au=Han%2C+Shuo&rft.au=Hernandez-Castillo%2C+Carlos+R.&rft.date=2018-12-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=183&rft.spage=150&rft.epage=172&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.08.003&rft.externalDocID=S1053811918306906 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |