Chemokines modulate glycan binding and the immunoregulatory activity of galectins
Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism in which chemokines control the immunomodulatory functi...
Gespeichert in:
| Veröffentlicht in: | Communications biology Jg. 4; H. 1; S. 1415 - 11 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
20.12.2021
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2399-3642, 2399-3642 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism in which chemokines control the immunomodulatory functions of galectins. We show the existence of several specific galectin-chemokine binding pairs, including galectin-1/CXCL4. NMR analyses show that CXCL4 binding induces changes in the galectin-1 carbohydrate binding site. Consequently, CXCL4 alters the glycan-binding affinity and specificity of galectin-1. Regarding immunomodulation, CXCL4 significantly increases the apoptotic activity of galectin-1 on activated CD8
+
T cells, while no effect is observed in CD4
+
T cells. The opposite is found for another galectin-chemokine pair, i.e., galectin-9/CCL5. This heterodimer significantly reduces the galectin-9 induced apoptosis of CD4
+
T cells and not of CD8
+
T cells. Collectively, the current study describes an immunomodulatory mechanism in which specific galectin-chemokine interactions control the glycan-binding activity and immunoregulatory function of galectins.
Sanjurjo et al investigate the role of galectins in immunomodulation, reporting that chemokines can control galectin immunomodulatory function through a mechanism involving galectin-chemokine binding pairs. Specifically, the authors find that CXCL4 binding changes the galectin-1 carbohydrate binding site, altering the glycan-binding affinity and specificity of galectin-1, as well as increasing the apoptotic activity of galectin-1 on CD8
+
T cells. |
|---|---|
| AbstractList | Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism in which chemokines control the immunomodulatory functions of galectins. We show the existence of several specific galectin-chemokine binding pairs, including galectin-1/CXCL4. NMR analyses show that CXCL4 binding induces changes in the galectin-1 carbohydrate binding site. Consequently, CXCL4 alters the glycan-binding affinity and specificity of galectin-1. Regarding immunomodulation, CXCL4 significantly increases the apoptotic activity of galectin-1 on activated CD8+ T cells, while no effect is observed in CD4+ T cells. The opposite is found for another galectin-chemokine pair, i.e., galectin-9/CCL5. This heterodimer significantly reduces the galectin-9 induced apoptosis of CD4+ T cells and not of CD8+ T cells. Collectively, the current study describes an immunomodulatory mechanism in which specific galectin-chemokine interactions control the glycan-binding activity and immunoregulatory function of galectins.Sanjurjo et al investigate the role of galectins in immunomodulation, reporting that chemokines can control galectin immunomodulatory function through a mechanism involving galectin-chemokine binding pairs. Specifically, the authors find that CXCL4 binding changes the galectin-1 carbohydrate binding site, altering the glycan-binding affinity and specificity of galectin-1, as well as increasing the apoptotic activity of galectin-1 on CD8+ T cells. Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism in which chemokines control the immunomodulatory functions of galectins. We show the existence of several specific galectin-chemokine binding pairs, including galectin-1/CXCL4. NMR analyses show that CXCL4 binding induces changes in the galectin-1 carbohydrate binding site. Consequently, CXCL4 alters the glycan-binding affinity and specificity of galectin-1. Regarding immunomodulation, CXCL4 significantly increases the apoptotic activity of galectin-1 on activated CD8+ T cells, while no effect is observed in CD4+ T cells. The opposite is found for another galectin-chemokine pair, i.e., galectin-9/CCL5. This heterodimer significantly reduces the galectin-9 induced apoptosis of CD4+ T cells and not of CD8+ T cells. Collectively, the current study describes an immunomodulatory mechanism in which specific galectin-chemokine interactions control the glycan-binding activity and immunoregulatory function of galectins. Sanjurjo et al investigate the role of galectins in immunomodulation, reporting that chemokines can control galectin immunomodulatory function through a mechanism involving galectin-chemokine binding pairs. Specifically, the authors find that CXCL4 binding changes the galectin-1 carbohydrate binding site, altering the glycan-binding affinity and specificity of galectin-1, as well as increasing the apoptotic activity of galectin-1 on CD8+ T cells. Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism in which chemokines control the immunomodulatory functions of galectins. We show the existence of several specific galectin-chemokine binding pairs, including galectin-1/CXCL4. NMR analyses show that CXCL4 binding induces changes in the galectin-1 carbohydrate binding site. Consequently, CXCL4 alters the glycan-binding affinity and specificity of galectin-1. Regarding immunomodulation, CXCL4 significantly increases the apoptotic activity of galectin-1 on activated CD8 + T cells, while no effect is observed in CD4 + T cells. The opposite is found for another galectin-chemokine pair, i.e., galectin-9/CCL5. This heterodimer significantly reduces the galectin-9 induced apoptosis of CD4 + T cells and not of CD8 + T cells. Collectively, the current study describes an immunomodulatory mechanism in which specific galectin-chemokine interactions control the glycan-binding activity and immunoregulatory function of galectins. Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism in which chemokines control the immunomodulatory functions of galectins. We show the existence of several specific galectin-chemokine binding pairs, including galectin-1/CXCL4. NMR analyses show that CXCL4 binding induces changes in the galectin-1 carbohydrate binding site. Consequently, CXCL4 alters the glycan-binding affinity and specificity of galectin-1. Regarding immunomodulation, CXCL4 significantly increases the apoptotic activity of galectin-1 on activated CD8 + T cells, while no effect is observed in CD4 + T cells. The opposite is found for another galectin-chemokine pair, i.e., galectin-9/CCL5. This heterodimer significantly reduces the galectin-9 induced apoptosis of CD4 + T cells and not of CD8 + T cells. Collectively, the current study describes an immunomodulatory mechanism in which specific galectin-chemokine interactions control the glycan-binding activity and immunoregulatory function of galectins. Sanjurjo et al investigate the role of galectins in immunomodulation, reporting that chemokines can control galectin immunomodulatory function through a mechanism involving galectin-chemokine binding pairs. Specifically, the authors find that CXCL4 binding changes the galectin-1 carbohydrate binding site, altering the glycan-binding affinity and specificity of galectin-1, as well as increasing the apoptotic activity of galectin-1 on CD8 + T cells. Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism in which chemokines control the immunomodulatory functions of galectins. We show the existence of several specific galectin-chemokine binding pairs, including galectin-1/CXCL4. NMR analyses show that CXCL4 binding induces changes in the galectin-1 carbohydrate binding site. Consequently, CXCL4 alters the glycan-binding affinity and specificity of galectin-1. Regarding immunomodulation, CXCL4 significantly increases the apoptotic activity of galectin-1 on activated CD8 T cells, while no effect is observed in CD4 T cells. The opposite is found for another galectin-chemokine pair, i.e., galectin-9/CCL5. This heterodimer significantly reduces the galectin-9 induced apoptosis of CD4 T cells and not of CD8 T cells. Collectively, the current study describes an immunomodulatory mechanism in which specific galectin-chemokine interactions control the glycan-binding activity and immunoregulatory function of galectins. Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism in which chemokines control the immunomodulatory functions of galectins. We show the existence of several specific galectin-chemokine binding pairs, including galectin-1/CXCL4. NMR analyses show that CXCL4 binding induces changes in the galectin-1 carbohydrate binding site. Consequently, CXCL4 alters the glycan-binding affinity and specificity of galectin-1. Regarding immunomodulation, CXCL4 significantly increases the apoptotic activity of galectin-1 on activated CD8+ T cells, while no effect is observed in CD4+ T cells. The opposite is found for another galectin-chemokine pair, i.e., galectin-9/CCL5. This heterodimer significantly reduces the galectin-9 induced apoptosis of CD4+ T cells and not of CD8+ T cells. Collectively, the current study describes an immunomodulatory mechanism in which specific galectin-chemokine interactions control the glycan-binding activity and immunoregulatory function of galectins.Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism in which chemokines control the immunomodulatory functions of galectins. We show the existence of several specific galectin-chemokine binding pairs, including galectin-1/CXCL4. NMR analyses show that CXCL4 binding induces changes in the galectin-1 carbohydrate binding site. Consequently, CXCL4 alters the glycan-binding affinity and specificity of galectin-1. Regarding immunomodulation, CXCL4 significantly increases the apoptotic activity of galectin-1 on activated CD8+ T cells, while no effect is observed in CD4+ T cells. The opposite is found for another galectin-chemokine pair, i.e., galectin-9/CCL5. This heterodimer significantly reduces the galectin-9 induced apoptosis of CD4+ T cells and not of CD8+ T cells. Collectively, the current study describes an immunomodulatory mechanism in which specific galectin-chemokine interactions control the glycan-binding activity and immunoregulatory function of galectins. Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism in which chemokines control the immunomodulatory functions of galectins. We show the existence of several specific galectin-chemokine binding pairs, including galectin-1/CXCL4. NMR analyses show that CXCL4 binding induces changes in the galectin-1 carbohydrate binding site. Consequently, CXCL4 alters the glycan-binding affinity and specificity of galectin-1. Regarding immunomodulation, CXCL4 significantly increases the apoptotic activity of galectin-1 on activated CD8+ T cells, while no effect is observed in CD4+ T cells. The opposite is found for another galectin-chemokine pair, i.e., galectin-9/CCL5. This heterodimer significantly reduces the galectin-9 induced apoptosis of CD4+ T cells and not of CD8+ T cells. Collectively, the current study describes an immunomodulatory mechanism in which specific galectin-chemokine interactions control the glycan-binding activity and immunoregulatory function of galectins. Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism by which chemokines control the galectins immunomodulatory functions. We show the existence of several specific galectin-chemokine binding pairs, including galectin-1/CXCL4. NMR analyses show that CXCL4 binding induces changes in the galectin-1 carbohydrate binding site. Consequently, CXCL4 alters the glycan-binding affinity and specificity of galectin-1. Regarding immunomodulation, CXCL4 significantly increases the apoptotic activity of galectin-1 on activated CD8+ T cells, while no effect is observed in CD4+ T cells. The opposite is found for another galectin-chemokine pair, i.e., galectin-9/CCL5. This pair significantly reduces the galectin-9 induced apoptosis of CD4+ T cells and not of CD8+ T cells. Collectively, the current study describes an immunomodulatory mechanism in which specific galectin-chemokine interactions control the glycan-binding activity and immunoregulatory function of galectins. Sanjurjo et al investigate the role of galectins in immunomodulation, reporting that chemokines can control galectin immunomodulatory function through a mechanism involving galectin-chemokine binding pairs. Specifically, the authors find that CXCL4 binding changes the galectin-1 carbohydrate binding site, altering the glycan-binding affinity and specificity of galectin-1, as well as increasing the apoptotic activity of galectin-1 on CD8+ T cells. |
| ArticleNumber | 1415 |
| Author | Sanjurjo, Lucía Touarin, Pauline Aanhane, Ed Castricum, Kitty C. M. Griffioen, Arjan W. Schulkens, Iris A. Nilsson, Ulf J. Elantak, Latifa Heusschen, Roy Thijssen, Victor L. J. L. De Gruijl, Tanja D. Leffler, Hakon Koenen, Rory R. |
| Author_xml | – sequence: 1 givenname: Lucía orcidid: 0000-0003-4006-8010 surname: Sanjurjo fullname: Sanjurjo, Lucía organization: Amsterdam UMC location VUmc, Department of Medical Oncology, Cancer Center Amsterdam – sequence: 2 givenname: Iris A. surname: Schulkens fullname: Schulkens, Iris A. organization: Amsterdam UMC location VUmc, Department of Medical Oncology, Cancer Center Amsterdam – sequence: 3 givenname: Pauline surname: Touarin fullname: Touarin, Pauline organization: Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), CNRS - Aix-Marseille Université – sequence: 4 givenname: Roy surname: Heusschen fullname: Heusschen, Roy organization: Amsterdam UMC location VUmc, Department of Medical Oncology, Cancer Center Amsterdam – sequence: 5 givenname: Ed surname: Aanhane fullname: Aanhane, Ed organization: Amsterdam UMC location VUmc, Department of Medical Oncology, Cancer Center Amsterdam – sequence: 6 givenname: Kitty C. M. surname: Castricum fullname: Castricum, Kitty C. M. organization: Amsterdam UMC location VUmc, Department of Radiation Oncology, Cancer Center Amsterdam – sequence: 7 givenname: Tanja D. surname: De Gruijl fullname: De Gruijl, Tanja D. organization: Amsterdam UMC location VUmc, Department of Medical Oncology, Cancer Center Amsterdam – sequence: 8 givenname: Ulf J. orcidid: 0000-0001-5815-9522 surname: Nilsson fullname: Nilsson, Ulf J. organization: Lund University, Department of Chemistry, Centre for Analysis and Synthesis – sequence: 9 givenname: Hakon orcidid: 0000-0003-4482-8945 surname: Leffler fullname: Leffler, Hakon organization: Lund University, Department of Laboratory Medicine, Section MIG – sequence: 10 givenname: Arjan W. surname: Griffioen fullname: Griffioen, Arjan W. organization: Amsterdam UMC location VUmc, Department of Medical Oncology, Cancer Center Amsterdam – sequence: 11 givenname: Latifa surname: Elantak fullname: Elantak, Latifa organization: Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), CNRS - Aix-Marseille Université – sequence: 12 givenname: Rory R. surname: Koenen fullname: Koenen, Rory R. organization: Maastricht University, Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM) – sequence: 13 givenname: Victor L. J. L. orcidid: 0000-0002-6146-1842 surname: Thijssen fullname: Thijssen, Victor L. J. L. email: v.thijssen@amsterdamumc.nl organization: Amsterdam UMC location VUmc, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC location VUmc, Department of Radiation Oncology, Cancer Center Amsterdam |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34931005$$D View this record in MEDLINE/PubMed https://hal.science/hal-03453605$$DView record in HAL |
| BookMark | eNp9Uktv0zAcj9AQG2NfgAOKxAUOAb_i2hekqQI2qRJCgrPl2P-kLold7KSo3x73wVh72CHyI7-X7d_L4sIHD0XxGqMPGFHxMTGCEK0QwfmThFTsWXFFqJQV5YxcPJpfFjcprRBCWErJKXtRXFImKUaoviq-z5cwhF_OQyqHYKdej1B2_dZoXzbOW-e7Untbjkso3TBMPkTodqgQt6U2o9u4cVuGtux0D3np06vieav7BDfH8br4-eXzj_ldtfj29X5-u6gM52ysJBNAUYsk4ZaimbZGzJgBLWea1cQgCrbFtMF53rQWMVtTUrectTPSMJ3zXxf3B10b9Eqtoxt03KqgndpvhNgpHUdnelCGC9syImwjGQNtJSKIzDQhuqVcIpa19EEr_YH11JyorUMcda8iJNDRLFU_qQQqo3pn9OiCTwpyVi4FU23NkGIUEyVnHKscOKduOdCaZo9PB49MHcAa8GPMuidWJ3-8W6oubJTgQjBCssD7g8DyjHZ3u1C7PURZTTmqNzhj3x3NYvg9QRrV4JKBvtcewpQU4ZhQIen-7G_PoKswRZ-fbofCgmBai4x68zj9g_-_JmUAOQBMDClFaB8gGKldY9WhsSo3Vu0bq3be4oxk3Li_1HwDrn-aSo9Pln18B_F_7CdYfwGDQf8m |
| CitedBy_id | crossref_primary_10_3390_ijms26188844 crossref_primary_10_1016_j_biotechadv_2025_108681 crossref_primary_10_1038_s41598_022_22758_0 crossref_primary_10_3390_medicina61061020 crossref_primary_10_1007_s00281_024_01014_9 crossref_primary_10_1016_j_biopha_2023_115709 crossref_primary_10_1097_IM9_0000000000000151 crossref_primary_10_1016_j_celrep_2024_114541 crossref_primary_10_3390_biom12091286 crossref_primary_10_3390_cancers14235790 crossref_primary_10_1146_annurev_biochem_030122_044347 crossref_primary_10_3390_ijms241310925 |
| Cites_doi | 10.1124/jpet.112.199646 10.1038/s41467-017-00925-6 10.4049/jimmunol.165.5.2331 10.1038/378736a0 10.1042/bj3540233 10.1038/ni1482 10.1016/j.coi.2015.10.009 10.1016/j.jmb.2015.09.014 10.1038/nri.2017.49 10.1016/j.jmb.2010.02.033 10.1038/nrd4591 10.4049/jimmunol.163.7.3801 10.1042/BCJ20170658 10.1039/b907931a 10.1021/bi1009584 10.1074/jbc.M800523200 10.1038/nature20554 10.4049/jimmunol.1103433 10.1093/glycob/cwm026 10.1093/glycob/cwt005 10.1126/science.1688470 10.1002/prot.20449 10.1016/j.cell.2017.01.017 10.1073/pnas.0603883103 10.4161/cbt.29114 10.1172/JCI119429 10.1074/jbc.M112.395152 10.1002/eji.200939703 10.4049/jimmunol.179.4.2584 10.3390/molecules22081357 10.1093/jnci/82.10.848 10.1016/j.cell.2014.01.043 10.1182/blood-2003-11-3994 10.1002/cmdc.202000742 10.1038/ncomms7194 10.1093/glycob/cwn089 10.1096/fj.07-9524com 10.1038/nm.1898 10.1021/jm300014q 10.4049/jimmunol.176.2.778 10.3324/haematol.2012.065607 10.1182/blood-2004-06-2475 10.1016/j.ab.2004.06.042 10.1016/j.immuni.2012.03.004 10.1016/j.jmb.2004.08.078 10.1038/s41416-018-0328-y 10.1371/journal.pone.0244736 10.1002/eji.201747195 10.1016/j.canlet.2018.11.017 10.1016/j.immuni.2012.05.008 10.1128/MCB.00348-14 10.1074/jbc.C111.229096 10.1038/nm.4278 10.1016/S0021-9258(18)54333-7 10.1183/13993003.02559-2020 10.15252/embr.201947852 10.1016/j.bbcan.2015.03.003 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| CorporateAuthor | LUCC: Lunds universitets cancercentrum Övriga starka forskningsmiljöer Centre for Analysis and Synthesis Lunds universitet Naturvetenskapliga fakulteten Profile areas and other strong research environments Faculty of Science Department of Laboratory Medicine Lund University Division of Microbiology, Immunology and Glycobiology - MIG Institutionen för laboratoriemedicin Department of Chemistry Kemiska institutionen Centrum för analys och syntes Other Strong Research Environments Faculty of Medicine LUCC: Lund University Cancer Centre Medicinska fakulteten Profilområden och andra starka forskningsmiljöer Avdelningen för mikrobiologi, immunologi och glykobiologi - MIG |
| CorporateAuthor_xml | – name: Övriga starka forskningsmiljöer – name: Faculty of Medicine – name: Medicinska fakulteten – name: Naturvetenskapliga fakulteten – name: Other Strong Research Environments – name: Department of Chemistry – name: LUCC: Lund University Cancer Centre – name: Department of Laboratory Medicine – name: Kemiska institutionen – name: Division of Microbiology, Immunology and Glycobiology - MIG – name: Faculty of Science – name: Lunds universitet – name: Centrum för analys och syntes – name: Profilområden och andra starka forskningsmiljöer – name: Lund University – name: Institutionen för laboratoriemedicin – name: Avdelningen för mikrobiologi, immunologi och glykobiologi - MIG – name: Profile areas and other strong research environments – name: Centre for Analysis and Synthesis – name: LUCC: Lunds universitets cancercentrum |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES 5PM ADTPV AGCHP AOWAS D8T D95 ZZAVC DOA |
| DOI | 10.1038/s42003-021-02922-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) SwePub SWEPUB Lunds universitet full text SwePub Articles SWEPUB Freely available online SWEPUB Lunds universitet SwePub Articles full text DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2399-3642 |
| EndPage | 11 |
| ExternalDocumentID | oai_doaj_org_article_c68df428db944ead902027a22af36904 oai_portal_research_lu_se_publications_eedf6984_f540_4312_9761_25f532f6e353 PMC8688422 oai:HAL:hal-03453605v1 34931005 10_1038_s42003_021_02922_4 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: KWF Kankerbestrijding (Dutch Cancer Society) grantid: KWF11040 funderid: https://doi.org/10.13039/501100004622 – fundername: ; grantid: KWF11040 |
| GroupedDBID | 0R~ 53G 88I AAJSJ ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BBNVY BCNDV BENPR BHPHI C6C CCPQU DWQXO EBLON EBS GNUQQ GROUPED_DOAJ HCIFZ HYE M2P M7P M~E NAO O9- OK1 PGMZT PIMPY RNT RPM SNYQT AASML AAYXX CITATION CGR CUY CVF ECM EIF NPM PHGZM PHGZT PQGLB 3V. 7XB 8FE 8FH 8FK AARCD LK8 PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 PUEGO 1XC EJD H13 VOOES 5PM ADTPV AFFHD AGCHP AOWAS D8T D95 ZZAVC |
| ID | FETCH-LOGICAL-c664t-948e30f0926d307adc874cea97a452c03edf13b152cbfd04d5325f64f72b4a493 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732959100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2399-3642 |
| IngestDate | Fri Oct 03 12:53:07 EDT 2025 Tue Nov 04 15:49:09 EST 2025 Tue Nov 04 01:33:59 EST 2025 Tue Oct 14 19:57:53 EDT 2025 Sat Sep 27 21:18:34 EDT 2025 Wed Aug 13 02:49:52 EDT 2025 Mon Jul 21 06:09:31 EDT 2025 Tue Nov 18 21:54:29 EST 2025 Sat Nov 29 04:16:54 EST 2025 Fri Feb 21 02:40:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2021. The Author(s). Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c664t-948e30f0926d307adc874cea97a452c03edf13b152cbfd04d5325f64f72b4a493 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5815-9522 0000-0002-6146-1842 0000-0003-4482-8945 0000-0003-4006-8010 0000-0002-4090-9441 |
| OpenAccessLink | https://doaj.org/article/c68df428db944ead902027a22af36904 |
| PMID | 34931005 |
| PQID | 2611821358 |
| PQPubID | 4669726 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c68df428db944ead902027a22af36904 swepub_primary_oai_portal_research_lu_se_publications_eedf6984_f540_4312_9761_25f532f6e353 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8688422 hal_primary_oai_HAL_hal_03453605v1 proquest_miscellaneous_2612389304 proquest_journals_2611821358 pubmed_primary_34931005 crossref_primary_10_1038_s42003_021_02922_4 crossref_citationtrail_10_1038_s42003_021_02922_4 springer_journals_10_1038_s42003_021_02922_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-20 |
| PublicationDateYYYYMMDD | 2021-12-20 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Communications biology |
| PublicationTitleAbbrev | Commun Biol |
| PublicationTitleAlternate | Commun Biol |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Salomonsson (CR9) 2010; 49 Romero, Trujillo, Estrin, Rabinovich, Di Lella (CR20) 2016; 26 Stillman (CR25) 2006; 176 Liang (CR46) 2013; 98 CR37 Dings (CR21) 2012; 55 Munn, Bronte (CR40) 2016; 39 Miller (CR49) 2018; 475 Crome (CR42) 2017; 23 Maione (CR33) 1990; 247 Deng (CR44) 2019; 443 de la Fuente (CR30) 2014; 34 Eslin (CR36) 2004; 104 Nesmelova (CR18) 2010; 397 CR2 CR3 Sörme, Kahl-Knutsson, Huflejt, Nilsson, Leffler (CR54) 2004; 334 De Henau (CR43) 2016; 539 Ermakova (CR23) 2013; 23 Perillo, Pace, Seilhamer, Baum (CR12) 1995; 378 Toscano (CR10) 2007; 8 Croci (CR32) 2014; 156 Nishi (CR55) 2008; 18 Chien, Ho, Lin, Hsu (CR19) 2017; 22 Bi, Earl, Jacobs, Baum (CR11) 2008; 283 Carlsson (CR53) 2007; 17 Gao (CR45) 2014; 15 Nagarsheth, Wicha, Zou (CR13) 2017; 17 Pacienza (CR35) 2008; 22 Bonzi (CR7) 2015; 6 Kasper (CR47) 2010; 40 Mahoney, Rennert, Freeman (CR39) 2015; 14 Sharpe, Byers, Scott, Bauer, Maione (CR34) 1990; 82 Rabinovich, Croci (CR14) 2012; 36 Thijssen (CR4) 2006; 103 Elantak (CR6) 2012; 287 Pace, Lee, Stewart, Baum (CR28) 1999; 163 Gordon-Alonso, Hirsch, Wildmann, van der Bruggen (CR16) 2017; 8 Dings (CR22) 2013; 344 Zlotnik, Yoshie (CR15) 2012; 36 López-Lucendo (CR17) 2004; 343 Dickhout (CR8) 2021; 16 Sharma, Hu-Lieskovan, Wargo, Ribas (CR41) 2017; 168 Vranken (CR56) 2005; 59 Griffioen (CR58) 2001; 354 Cummings (CR1) 2009; 5 von Hundelshausen (CR50) 2005; 105 Pace, Hahn, Pang, Nguyen, Baum (CR27) 2000; 165 Affandi (CR31) 2018; 48 Kasper, Brandt, Brandau, Petersen (CR48) 2007; 179 Salomonsson, Thijssen, Griffioen, Nilsson, Leffler (CR5) 2011; 286 Miller (CR24) 2021; 16 Hirabayashi, Kasai (CR52) 1991; 266 van Zundert (CR57) 2016; 428 Wada, Ota, Kumar, Wallner, Kanwar (CR26) 1997; 99 Berraondo (CR38) 2019; 120 Koenen (CR51) 2009; 15 Cedeno-Laurent, Opperman, Barthel, Kuchroo, Dimitroff (CR29) 2012; 188 S Deng (2922_CR44) 2019; 443 MC Miller (2922_CR49) 2018; 475 S Carlsson (2922_CR53) 2007; 17 MF López-Lucendo (2922_CR17) 2004; 343 KE Pace (2922_CR27) 2000; 165 SQ Crome (2922_CR42) 2017; 23 O De Henau (2922_CR43) 2016; 539 J Gao (2922_CR45) 2014; 15 JM Romero (2922_CR20) 2016; 26 J Bonzi (2922_CR7) 2015; 6 A Zlotnik (2922_CR15) 2012; 36 RD Cummings (2922_CR1) 2009; 5 MC Miller (2922_CR24) 2021; 16 P von Hundelshausen (2922_CR50) 2005; 105 AW Griffioen (2922_CR58) 2001; 354 NL Perillo (2922_CR12) 1995; 378 RJ Sharpe (2922_CR34) 1990; 82 2922_CR37 KM Mahoney (2922_CR39) 2015; 14 E Salomonsson (2922_CR5) 2011; 286 WF Vranken (2922_CR56) 2005; 59 H de la Fuente (2922_CR30) 2014; 34 L Elantak (2922_CR6) 2012; 287 J Wada (2922_CR26) 1997; 99 KE Pace (2922_CR28) 1999; 163 RPM Dings (2922_CR22) 2013; 344 TE Maione (2922_CR33) 1990; 247 CH Chien (2922_CR19) 2017; 22 P Sharma (2922_CR41) 2017; 168 N Nishi (2922_CR55) 2008; 18 VL Thijssen (2922_CR4) 2006; 103 RPM Dings (2922_CR21) 2012; 55 J Hirabayashi (2922_CR52) 1991; 266 DE Eslin (2922_CR36) 2004; 104 E Salomonsson (2922_CR9) 2010; 49 DO Croci (2922_CR32) 2014; 156 N Nagarsheth (2922_CR13) 2017; 17 2922_CR3 MA Toscano (2922_CR10) 2007; 8 GCP van Zundert (2922_CR57) 2016; 428 2922_CR2 AJ Affandi (2922_CR31) 2018; 48 B Kasper (2922_CR47) 2010; 40 GA Rabinovich (2922_CR14) 2012; 36 P Liang (2922_CR46) 2013; 98 P Berraondo (2922_CR38) 2019; 120 M Gordon-Alonso (2922_CR16) 2017; 8 B Kasper (2922_CR48) 2007; 179 IV Nesmelova (2922_CR18) 2010; 397 E Ermakova (2922_CR23) 2013; 23 S Bi (2922_CR11) 2008; 283 A Dickhout (2922_CR8) 2021; 16 N Pacienza (2922_CR35) 2008; 22 BN Stillman (2922_CR25) 2006; 176 RR Koenen (2922_CR51) 2009; 15 DH Munn (2922_CR40) 2016; 39 F Cedeno-Laurent (2922_CR29) 2012; 188 P Sörme (2922_CR54) 2004; 334 |
| References_xml | – volume: 344 start-page: 589 year: 2013 end-page: 599 ident: CR22 article-title: Structure-based optimization of angiostatic agent 6DBF7, an allosteric antagonist of Galectin-1 publication-title: J. Pharm. Exp. Ther. doi: 10.1124/jpet.112.199646 – volume: 8 year: 2017 ident: CR16 article-title: Galectin-3 captures interferon-gamma in the tumor matrix reducing chemokine gradient production and T-cell tumor infiltration publication-title: Nat. Commun. doi: 10.1038/s41467-017-00925-6 – volume: 165 start-page: 2331 year: 2000 end-page: 2334 ident: CR27 article-title: CD7 delivers a pro-apoptotic signal during galectin-1-induced T cell death publication-title: J. Immunol. doi: 10.4049/jimmunol.165.5.2331 – volume: 378 start-page: 736 year: 1995 end-page: 739 ident: CR12 article-title: Apoptosis of T cells mediated by galectin-1 publication-title: Nature doi: 10.1038/378736a0 – volume: 354 start-page: 233 year: 2001 end-page: 242 ident: CR58 article-title: Anginex, a designed peptide that inhibits angiogenesis publication-title: Biochem J. doi: 10.1042/bj3540233 – volume: 8 start-page: 825 year: 2007 end-page: 834 ident: CR10 article-title: Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death publication-title: Nat. Immunol. doi: 10.1038/ni1482 – volume: 39 start-page: 1 year: 2016 end-page: 6 ident: CR40 article-title: Immune suppressive mechanisms in the tumor microenvironment publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2015.10.009 – volume: 428 start-page: 720 year: 2016 end-page: 725 ident: CR57 article-title: The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2015.09.014 – volume: 17 start-page: 559 year: 2017 end-page: 572 ident: CR13 article-title: Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2017.49 – volume: 26 start-page: 1317 year: 2016 end-page: 1327 ident: CR20 article-title: Impact of human galectin-1 binding to saccharide ligands on dimer dissociation kinetics and structure publication-title: Glycobiology – volume: 397 start-page: 1209 year: 2010 end-page: 1230 ident: CR18 article-title: Lactose binding to galectin-1 modulates structural dynamics, increases conformational entropy, and occurs with apparent negative cooperativity publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2010.02.033 – volume: 14 start-page: 561 year: 2015 end-page: 584 ident: CR39 article-title: Combination cancer immunotherapy and new immunomodulatory targets publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4591 – volume: 163 start-page: 3801 year: 1999 end-page: 3811 ident: CR28 article-title: Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1 publication-title: J. Immunol. doi: 10.4049/jimmunol.163.7.3801 – volume: 475 start-page: 1003 year: 2018 end-page: 1018 ident: CR49 article-title: Adhesion/growth-regulatory galectins tested in combination: evidence for formation of hybrids as heterodimers publication-title: Biochem J. doi: 10.1042/BCJ20170658 – volume: 5 start-page: 1087 year: 2009 end-page: 1104 ident: CR1 article-title: The repertoire of glycan determinants in the human glycome publication-title: Mol. Biosyst. doi: 10.1039/b907931a – volume: 49 start-page: 9518 year: 2010 end-page: 9532 ident: CR9 article-title: Monovalent interactions of galectin-1 publication-title: Biochemistry doi: 10.1021/bi1009584 – volume: 283 start-page: 12248 year: 2008 end-page: 12258 ident: CR11 article-title: Structural features of galectin-9 and galectin-1 that determine distinct T cell death pathways publication-title: J. Biol. Chem. doi: 10.1074/jbc.M800523200 – volume: 539 start-page: 443 year: 2016 end-page: 447 ident: CR43 article-title: Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells publication-title: Nature doi: 10.1038/nature20554 – volume: 188 start-page: 3127 year: 2012 end-page: 3137 ident: CR29 article-title: Galectin-1 triggers an immunoregulatory signature in Th cells functionally defined by IL-10 expression publication-title: J. Immunol. doi: 10.4049/jimmunol.1103433 – volume: 17 start-page: 663 year: 2007 end-page: 676 ident: CR53 article-title: Affinity of galectin-8 and its carbohydrate recognition domains for ligands in solution and at the cell surface publication-title: Glycobiology doi: 10.1093/glycob/cwm026 – volume: 23 start-page: 508 year: 2013 end-page: 523 ident: CR23 article-title: Lactose binding to human galectin-7 (p53-induced gene 1) induces long-range effects through the protein resulting in increased dimer stability and evidence for positive cooperativity publication-title: Glycobiology doi: 10.1093/glycob/cwt005 – volume: 247 start-page: 77 year: 1990 end-page: 79 ident: CR33 article-title: Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides publication-title: Science doi: 10.1126/science.1688470 – volume: 59 start-page: 687 year: 2005 end-page: 696 ident: CR56 article-title: The CCPN data model for NMR spectroscopy: development of a software pipeline publication-title: Proteins doi: 10.1002/prot.20449 – volume: 168 start-page: 707 year: 2017 end-page: 723 ident: CR41 article-title: Primary, adaptive, and acquired resistance to cancer immunotherapy publication-title: Cell doi: 10.1016/j.cell.2017.01.017 – volume: 103 start-page: 15975 year: 2006 end-page: 15980 ident: CR4 article-title: Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0603883103 – volume: 15 start-page: 982 year: 2014 end-page: 991 ident: CR45 article-title: Activation of p38-MAPK by CXCL4/CXCR3 axis contributes to p53-dependent intestinal apoptosis initiated by 5-fluorouracil publication-title: Cancer Biol. Ther. doi: 10.4161/cbt.29114 – volume: 99 start-page: 2452 year: 1997 end-page: 2461 ident: CR26 article-title: Developmental regulation, expression, and apoptotic potential of galectin-9, a beta-galactoside binding lectin publication-title: J. Clin. Invest. doi: 10.1172/JCI119429 – volume: 287 start-page: 44703 year: 2012 end-page: 44713 ident: CR6 article-title: Structural basis for galectin-1-dependent pre-B cell receptor (pre-BCR) activation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.395152 – volume: 40 start-page: 1162 year: 2010 end-page: 1173 ident: CR47 article-title: CXCL4-induced monocyte survival, cytokine expression, and oxygen radical formation is regulated by sphingosine kinase 1 publication-title: Eur. J. Immunol. doi: 10.1002/eji.200939703 – volume: 179 start-page: 2584 year: 2007 end-page: 2591 ident: CR48 article-title: Platelet factor 4 (CXC chemokine ligand 4) differentially regulates respiratory burst, survival, and cytokine expression of human monocytes by using distinct signaling pathways publication-title: J. Immunol. doi: 10.4049/jimmunol.179.4.2584 – volume: 22 start-page: E1357 year: 2017 ident: CR19 article-title: Lactose binding induces opposing dynamics changes in human galectins revealed by NMR-based hydrogen-deuterium exchange publication-title: Molecules doi: 10.3390/molecules22081357 – volume: 82 start-page: 848 year: 1990 end-page: 853 ident: CR34 article-title: Growth inhibition of murine melanoma and human colon carcinoma by recombinant human platelet factor 4 publication-title: J. Natl Cancer Inst. doi: 10.1093/jnci/82.10.848 – volume: 156 start-page: 744 year: 2014 end-page: 758 ident: CR32 article-title: Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in Anti-VEGF refractory tumors publication-title: Cell doi: 10.1016/j.cell.2014.01.043 – ident: CR2 – ident: CR37 – volume: 104 start-page: 3173 year: 2004 end-page: 3180 ident: CR36 article-title: Transgenic mice studies demonstrate a role for platelet factor 4 in thrombosis: dissociation between anticoagulant and antithrombotic effect of heparin publication-title: Blood doi: 10.1182/blood-2003-11-3994 – volume: 16 start-page: 713 year: 2021 end-page: 723 ident: CR24 article-title: Targeting the CRD F-face of Human Galectin-3 and allosterically modulating glycan binding by angiostatic PTX008 and a structurally optimized derivative publication-title: ChemMedChem doi: 10.1002/cmdc.202000742 – volume: 6 year: 2015 ident: CR7 article-title: Pre-B cell receptor binding to galectin-1 modifies galectin-1/carbohydrate affinity to modulate specific galectin-1/glycan lattice interactions publication-title: Nat. Commun. doi: 10.1038/ncomms7194 – volume: 18 start-page: 1065 year: 2008 end-page: 1073 ident: CR55 article-title: Functional and structural bases of a cysteine-less mutant as a long-lasting substitute for galectin-1 publication-title: Glycobiology doi: 10.1093/glycob/cwn089 – volume: 22 start-page: 1113 year: 2008 end-page: 1123 ident: CR35 article-title: The immunoregulatory glycan-binding protein galectin-1 triggers human platelet activation publication-title: Faseb J. doi: 10.1096/fj.07-9524com – volume: 15 start-page: 97 year: 2009 end-page: 103 ident: CR51 article-title: Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice publication-title: Nat. Med. doi: 10.1038/nm.1898 – volume: 55 start-page: 5121 year: 2012 end-page: 5129 ident: CR21 article-title: Antitumor agent calixarene 0118 targets human galectin-1 as an allosteric inhibitor of carbohydrate binding publication-title: J. Med Chem. doi: 10.1021/jm300014q – volume: 176 start-page: 778 year: 2006 end-page: 789 ident: CR25 article-title: Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death publication-title: J. Immunol. doi: 10.4049/jimmunol.176.2.778 – volume: 98 start-page: 288 year: 2013 end-page: 295 ident: CR46 article-title: Platelet factor 4 induces cell apoptosis by inhibition of STAT3 via up-regulation of SOCS3 expression in multiple myeloma publication-title: Haematologica doi: 10.3324/haematol.2012.065607 – volume: 105 start-page: 924 year: 2005 end-page: 930 ident: CR50 article-title: Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium publication-title: Blood doi: 10.1182/blood-2004-06-2475 – volume: 334 start-page: 36 year: 2004 end-page: 47 ident: CR54 article-title: Fluorescence polarization as an analytical tool to evaluate galectin-ligand interactions publication-title: Anal. Biochem doi: 10.1016/j.ab.2004.06.042 – volume: 36 start-page: 322 year: 2012 end-page: 335 ident: CR14 article-title: Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer publication-title: Immunity doi: 10.1016/j.immuni.2012.03.004 – volume: 343 start-page: 957 year: 2004 end-page: 970 ident: CR17 article-title: Growth-regulatory human galectin-1: crystallographic characterisation of the structural changes induced by single-site mutations and their impact on the thermodynamics of ligand binding publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.08.078 – volume: 120 start-page: 6 year: 2019 end-page: 15 ident: CR38 article-title: Cytokines in clinical cancer immunotherapy publication-title: Br. J. Cancer doi: 10.1038/s41416-018-0328-y – volume: 16 start-page: e0244736 year: 2021 ident: CR8 article-title: Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro publication-title: PLoS One doi: 10.1371/journal.pone.0244736 – ident: CR3 – volume: 48 start-page: 522 year: 2018 end-page: 531 ident: CR31 article-title: CXCL4 is a novel inducer of human Th17 cells and correlates with IL-17 and IL-22 in psoriatic arthritis publication-title: Eur. J. Immunol. doi: 10.1002/eji.201747195 – volume: 443 start-page: 1 year: 2019 end-page: 12 ident: CR44 article-title: Non-platelet-derived CXCL4 differentially regulates cytotoxic and regulatory T cells through CXCR3 to suppress the immune response to colon cancer publication-title: Cancer Lett. doi: 10.1016/j.canlet.2018.11.017 – volume: 36 start-page: 705 year: 2012 end-page: 716 ident: CR15 article-title: The chemokine superfamily revisited publication-title: Immunity doi: 10.1016/j.immuni.2012.05.008 – volume: 34 start-page: 2479 year: 2014 end-page: 2487 ident: CR30 article-title: The leukocyte activation receptor CD69 controls T cell differentiation through its interaction with galectin-1 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00348-14 – volume: 286 start-page: 13801 year: 2011 end-page: 13804 ident: CR5 article-title: The anti-angiogenic peptide anginex greatly enhances galectin-1 binding affinity for glycoproteins publication-title: J. Biol. Chem. doi: 10.1074/jbc.C111.229096 – volume: 23 start-page: 368 year: 2017 end-page: 375 ident: CR42 article-title: A distinct innate lymphoid cell population regulates tumor-associated T cells publication-title: Nat. Med. doi: 10.1038/nm.4278 – volume: 266 start-page: 23648 year: 1991 end-page: 23653 ident: CR52 article-title: Effect of amino acid substitution by sited-directed mutagenesis on the carbohydrate recognition and stability of human 14-kDa beta-galactoside-binding lectin publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)54333-7 – volume: 40 start-page: 1162 year: 2010 ident: 2922_CR47 publication-title: Eur. J. Immunol. doi: 10.1002/eji.200939703 – volume: 22 start-page: E1357 year: 2017 ident: 2922_CR19 publication-title: Molecules doi: 10.3390/molecules22081357 – volume: 539 start-page: 443 year: 2016 ident: 2922_CR43 publication-title: Nature doi: 10.1038/nature20554 – volume: 8 year: 2017 ident: 2922_CR16 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00925-6 – volume: 26 start-page: 1317 year: 2016 ident: 2922_CR20 publication-title: Glycobiology – volume: 8 start-page: 825 year: 2007 ident: 2922_CR10 publication-title: Nat. Immunol. doi: 10.1038/ni1482 – volume: 165 start-page: 2331 year: 2000 ident: 2922_CR27 publication-title: J. Immunol. doi: 10.4049/jimmunol.165.5.2331 – volume: 22 start-page: 1113 year: 2008 ident: 2922_CR35 publication-title: Faseb J. doi: 10.1096/fj.07-9524com – volume: 15 start-page: 982 year: 2014 ident: 2922_CR45 publication-title: Cancer Biol. Ther. doi: 10.4161/cbt.29114 – volume: 266 start-page: 23648 year: 1991 ident: 2922_CR52 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)54333-7 – volume: 286 start-page: 13801 year: 2011 ident: 2922_CR5 publication-title: J. Biol. Chem. doi: 10.1074/jbc.C111.229096 – volume: 14 start-page: 561 year: 2015 ident: 2922_CR39 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4591 – volume: 343 start-page: 957 year: 2004 ident: 2922_CR17 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.08.078 – volume: 344 start-page: 589 year: 2013 ident: 2922_CR22 publication-title: J. Pharm. Exp. Ther. doi: 10.1124/jpet.112.199646 – volume: 18 start-page: 1065 year: 2008 ident: 2922_CR55 publication-title: Glycobiology doi: 10.1093/glycob/cwn089 – volume: 34 start-page: 2479 year: 2014 ident: 2922_CR30 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00348-14 – ident: 2922_CR37 doi: 10.1183/13993003.02559-2020 – volume: 168 start-page: 707 year: 2017 ident: 2922_CR41 publication-title: Cell doi: 10.1016/j.cell.2017.01.017 – volume: 17 start-page: 663 year: 2007 ident: 2922_CR53 publication-title: Glycobiology doi: 10.1093/glycob/cwm026 – volume: 475 start-page: 1003 year: 2018 ident: 2922_CR49 publication-title: Biochem J. doi: 10.1042/BCJ20170658 – volume: 104 start-page: 3173 year: 2004 ident: 2922_CR36 publication-title: Blood doi: 10.1182/blood-2003-11-3994 – volume: 16 start-page: 713 year: 2021 ident: 2922_CR24 publication-title: ChemMedChem doi: 10.1002/cmdc.202000742 – volume: 39 start-page: 1 year: 2016 ident: 2922_CR40 publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2015.10.009 – volume: 428 start-page: 720 year: 2016 ident: 2922_CR57 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2015.09.014 – volume: 15 start-page: 97 year: 2009 ident: 2922_CR51 publication-title: Nat. Med. doi: 10.1038/nm.1898 – volume: 6 year: 2015 ident: 2922_CR7 publication-title: Nat. Commun. doi: 10.1038/ncomms7194 – volume: 105 start-page: 924 year: 2005 ident: 2922_CR50 publication-title: Blood doi: 10.1182/blood-2004-06-2475 – volume: 49 start-page: 9518 year: 2010 ident: 2922_CR9 publication-title: Biochemistry doi: 10.1021/bi1009584 – volume: 23 start-page: 368 year: 2017 ident: 2922_CR42 publication-title: Nat. Med. doi: 10.1038/nm.4278 – volume: 283 start-page: 12248 year: 2008 ident: 2922_CR11 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M800523200 – volume: 55 start-page: 5121 year: 2012 ident: 2922_CR21 publication-title: J. Med Chem. doi: 10.1021/jm300014q – ident: 2922_CR3 doi: 10.15252/embr.201947852 – volume: 98 start-page: 288 year: 2013 ident: 2922_CR46 publication-title: Haematologica doi: 10.3324/haematol.2012.065607 – volume: 103 start-page: 15975 year: 2006 ident: 2922_CR4 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0603883103 – volume: 354 start-page: 233 year: 2001 ident: 2922_CR58 publication-title: Biochem J. doi: 10.1042/bj3540233 – volume: 48 start-page: 522 year: 2018 ident: 2922_CR31 publication-title: Eur. J. Immunol. doi: 10.1002/eji.201747195 – volume: 287 start-page: 44703 year: 2012 ident: 2922_CR6 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.395152 – volume: 59 start-page: 687 year: 2005 ident: 2922_CR56 publication-title: Proteins doi: 10.1002/prot.20449 – volume: 17 start-page: 559 year: 2017 ident: 2922_CR13 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2017.49 – volume: 5 start-page: 1087 year: 2009 ident: 2922_CR1 publication-title: Mol. Biosyst. doi: 10.1039/b907931a – volume: 36 start-page: 322 year: 2012 ident: 2922_CR14 publication-title: Immunity doi: 10.1016/j.immuni.2012.03.004 – volume: 378 start-page: 736 year: 1995 ident: 2922_CR12 publication-title: Nature doi: 10.1038/378736a0 – volume: 176 start-page: 778 year: 2006 ident: 2922_CR25 publication-title: J. Immunol. doi: 10.4049/jimmunol.176.2.778 – volume: 156 start-page: 744 year: 2014 ident: 2922_CR32 publication-title: Cell doi: 10.1016/j.cell.2014.01.043 – volume: 443 start-page: 1 year: 2019 ident: 2922_CR44 publication-title: Cancer Lett. doi: 10.1016/j.canlet.2018.11.017 – volume: 23 start-page: 508 year: 2013 ident: 2922_CR23 publication-title: Glycobiology doi: 10.1093/glycob/cwt005 – volume: 179 start-page: 2584 year: 2007 ident: 2922_CR48 publication-title: J. Immunol. doi: 10.4049/jimmunol.179.4.2584 – volume: 188 start-page: 3127 year: 2012 ident: 2922_CR29 publication-title: J. Immunol. doi: 10.4049/jimmunol.1103433 – volume: 99 start-page: 2452 year: 1997 ident: 2922_CR26 publication-title: J. Clin. Invest. doi: 10.1172/JCI119429 – volume: 16 start-page: e0244736 year: 2021 ident: 2922_CR8 publication-title: PLoS One doi: 10.1371/journal.pone.0244736 – volume: 120 start-page: 6 year: 2019 ident: 2922_CR38 publication-title: Br. J. Cancer doi: 10.1038/s41416-018-0328-y – volume: 334 start-page: 36 year: 2004 ident: 2922_CR54 publication-title: Anal. Biochem doi: 10.1016/j.ab.2004.06.042 – volume: 397 start-page: 1209 year: 2010 ident: 2922_CR18 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2010.02.033 – ident: 2922_CR2 doi: 10.1016/j.bbcan.2015.03.003 – volume: 36 start-page: 705 year: 2012 ident: 2922_CR15 publication-title: Immunity doi: 10.1016/j.immuni.2012.05.008 – volume: 163 start-page: 3801 year: 1999 ident: 2922_CR28 publication-title: J. Immunol. doi: 10.4049/jimmunol.163.7.3801 – volume: 82 start-page: 848 year: 1990 ident: 2922_CR34 publication-title: J. Natl Cancer Inst. doi: 10.1093/jnci/82.10.848 – volume: 247 start-page: 77 year: 1990 ident: 2922_CR33 publication-title: Science doi: 10.1126/science.1688470 |
| SSID | ssj0001999634 |
| Score | 2.2519333 |
| Snippet | Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of... Sanjurjo et al investigate the role of galectins in immunomodulation, reporting that chemokines can control galectin immunomodulatory function through a... |
| SourceID | doaj swepub pubmedcentral hal proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1415 |
| SubjectTerms | 13/2 13/21 13/31 631/250/1932 631/535/878/1263 631/80/221 82/103 82/58 Affinity Apoptosis Basic Medicine Binding sites Biology Biomedical and Life Sciences CD4 antigen CD8 antigen Chemokine CXCL5 - metabolism Chemokines Cytokines Galectin 1 - metabolism Galectin-1 Galectin-9 Galectins - metabolism Humans Immunologi inom det medicinska området (Här ingår: Cell- och immunterapi) Immunology in the Medical Area (including Cell and Immunotherapy) Immunomodulation Immunoregulation Jurkat Cells Life Sciences Lymphocytes Lymphocytes T Medical and Health Sciences Medicin och hälsovetenskap Medicinska och farmaceutiska grundvetenskaper Platelet Factor 4 - metabolism Polysaccharides - metabolism |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdggMQL34PAQAHxBtEc20nsJzQQ0x7QNCSQJl4sxx9rRUlK007qf8-dk7aESXvhsYkbJ77z-Xfn8_0IeWuUDTV1dVbXtsiEF1VmZKCZMCwHKRvqjYlkE9XpqTw_V2dDwK0b0io3NjEaatdajJEfAtIHKJzzQn6Y_86QNQp3VwcKjZvkFlZJ4DF172wXY0E0z8VwVoZyediJmIyFeQmUKfDDxGg9imX7YZWZYFLkVcR5NXFyu3v6T6XRuDod3__f73pA7g24ND3qFekhueGbR-ROz1S5fky-YmGB9ifmyKe_WoecXz69mK1BMGk9jSdjUtO4FOBkOsUjJ-2iJ7lvF-sUz04gRUXahhQXJPjZdE_I9-PP3z6dZAMbQ2bLUiwzJaTnNFDFSgeGwTgrK2G9UZURBbOUexdyXgMesHVwVLiCsyKUIlSsFkYovk_2mrbxz0iaG2asBeRUOYdUHwZQiy9KA96yz4VXCck3MtF2KFWOjBkzHbfMudS9HDXIUUc5apGQd9v_zPtCHde2_oii3rbEItvxQru40MOc1baULoB75molBMw4RTFSZBgzgZeKwkPegKKMnnFy9EXjNcpFwcFTvMwTcrCRux7MQ6d3Qk_I6-1tmNi4W2Ma365iG4ZoEvt52qvdtisOw5mD_UxINVLI0buM7zTTSSweLkspBWMJeb9R3d1rXTdeP3r1HvcQPUQ9lKWa6NlKd17P_4o3a4BgoVRS6ACugQa0yjQA4FyDaoB-hNLzgj-_fohekLsMJ2zOwKQfkL3lYuVfktv2cjntFq_ijP8DSk5dfQ priority: 102 providerName: ProQuest |
| Title | Chemokines modulate glycan binding and the immunoregulatory activity of galectins |
| URI | https://link.springer.com/article/10.1038/s42003-021-02922-4 https://www.ncbi.nlm.nih.gov/pubmed/34931005 https://www.proquest.com/docview/2611821358 https://www.proquest.com/docview/2612389304 https://hal.science/hal-03453605 https://pubmed.ncbi.nlm.nih.gov/PMC8688422 https://doaj.org/article/c68df428db944ead902027a22af36904 |
| Volume | 4 |
| WOSCitedRecordID | wos000732959100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2399-3642 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999634 issn: 2399-3642 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2399-3642 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999634 issn: 2399-3642 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaggMQF8SZQVgZxg6iO7ST2sUVbFYmuFgRS4WI5fnRXLEm1j0p74bczdrLLhkrlwsVSYidO5pH5Jh7PIPRGS-MrYqu0qkyecsfLVAtPUq5pBlzWxGkdi02Uo5E4O5PjnVJfISasTQ_cEu7AFMJ6wMi2kpzDa0sS3HVNqfYMPLuYCRRQz44zFf-uBBzPeLdLhjBxsOAxDCtEJBAqwQPjPUsUE_aDfZmEcMirWPNqyOR23fSvHKPRLh3fR_c6QIkP2xd5gG64-iG605aYXD9Cn0JGgOZHCG7HPxsbinU5fD5bA0VxNY1bWrCuLQYciKdhr0gzb6vTN_M1DpseQm0J3HgcLAkc1ovH6Ovx8Mv7k7Qro5CaouDLVHLhGPFE0sKCRmtrRMmN07LUPKeGMGd9xiow5KbylnCbM5r7gvuSVlxzyZ6gvbqp3TOEM021MQB5SmtDjQ4NcMPlhQY312XcyQRlG5Iq0-UYD6UuZiqudTOhWjYoYIOKbFA8QW-311y0GTauHX0UOLUdGbJjxxMgM6qTGfUvmUnQa-Bz7x4nhx9VOEcYzxm4eJdZgvY3YqA6vV4o8DfBIctYLhL0atsNGhmWWXTtmlUcQwMMDPM8baVmOxUDcmbw4UtQ2ZOn3rP0e-rpJGb9FoUQnNIEvdtI3p_Huo5e31vp7M8QXTvV5ZOaqNlKLZy62PlRrAA7-UIKrjxgegUwkypArpkC0QD58IVjOXv-P5jxAt2lQSszCl_sfbS3nK_cS3TbXC6ni_kA3SzPxADdOhqOxp8HUcmhPaXj0Jax_TWE_vGH0_G33zc2VnE |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamDgQv3C-FAQHBE0RLbCdxHhAal6nVuqpIQ9p4MY4vbUVJSi9D_VP8Rs5J0pYyqW974DGJEyfO53O-Y58LIS9Vql0WmMzPMh353PLEV8IFPlc0hL-sAqtUWWwi6XbF6Wna2yG_l7Ew6Fa5lImloDaFxjXyfWD6QIVDFol3458-Vo3C3dVlCY0KFkd28QtMtunb9kf4v68oPfx08qHl11UFfB3HfOanXFgWuCClsQGAK6NFwrVVaaJ4RHXArHEhy0Cv6cyZgJuI0cjF3CU044pj8iUQ-bscwC4aZLfXPu6drVd10H5gvI7OCZjYn_LS_Qs9IQKaguXHNzRgWSgA9NoA3TAvctyLrpqr_dp_cpuW-vDw5v82krfIjZp5ewfVVLlNdmx-h1ytanEu7pLPmDqh-I5RAN6PwmBVM-v1RwuAnpcNy9gfT-XGA8LsDTGoppjYPrYqJgsPo0OwCIdXOA9VLhzm03vky6V8z33SyIvcPiReqKjSGrhhYgwWM1HAy2wUKyaYDblNmyRcYkDqOhk71gQZydIpgAlZ4UYCbmSJG8mb5PXqnnGVimRr6_cIrVVLTCNenigmfVlLJaljYRwYoCZLOQeZkga4FqYoVY7FaQAPeQHA3HhG66Aj8VzAeMTAFj4Pm2RviTNZC8CpXIOsSZ6vLoPowv0oldtiXrahyJexnwcVzFddMRjOEDREkyQbE2DjXTav5MNBmR5dxEJwSpvkzXKqrF9r23h9rabTZg-lDSzrxFsDOZrLqZXjv1bUJZBMF6eCSwfGjwQ-TiVQ_FACNAAfLrYsYo-2D9Ezcq11ctyRnXb36DG5TlFYhBQU2B5pzCZz-4Rc0eez4XTytJY3Hvl22RPzDyTBu5I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemokines+modulate+glycan+binding+and+the+immunoregulatory+activity+of+galectins&rft.jtitle=Communications+biology&rft.au=Sanjurjo%2C+Luc%C3%ADa&rft.au=Schulkens%2C+Iris+A.&rft.au=Touarin%2C+Pauline&rft.au=Heusschen%2C+Roy&rft.date=2021-12-20&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2399-3642&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1038%2Fs42003-021-02922-4&rft.externalDocID=10_1038_s42003_021_02922_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3642&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3642&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3642&client=summon |