Chemokines modulate glycan binding and the immunoregulatory activity of galectins

Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism in which chemokines control the immunomodulatory functi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology Jg. 4; H. 1; S. 1415 - 11
Hauptverfasser: Sanjurjo, Lucía, Schulkens, Iris A., Touarin, Pauline, Heusschen, Roy, Aanhane, Ed, Castricum, Kitty C. M., De Gruijl, Tanja D., Nilsson, Ulf J., Leffler, Hakon, Griffioen, Arjan W., Elantak, Latifa, Koenen, Rory R., Thijssen, Victor L. J. L.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 20.12.2021
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2399-3642, 2399-3642
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism in which chemokines control the immunomodulatory functions of galectins. We show the existence of several specific galectin-chemokine binding pairs, including galectin-1/CXCL4. NMR analyses show that CXCL4 binding induces changes in the galectin-1 carbohydrate binding site. Consequently, CXCL4 alters the glycan-binding affinity and specificity of galectin-1. Regarding immunomodulation, CXCL4 significantly increases the apoptotic activity of galectin-1 on activated CD8 + T cells, while no effect is observed in CD4 + T cells. The opposite is found for another galectin-chemokine pair, i.e., galectin-9/CCL5. This heterodimer significantly reduces the galectin-9 induced apoptosis of CD4 + T cells and not of CD8 + T cells. Collectively, the current study describes an immunomodulatory mechanism in which specific galectin-chemokine interactions control the glycan-binding activity and immunoregulatory function of galectins. Sanjurjo et al investigate the role of galectins in immunomodulation, reporting that chemokines can control galectin immunomodulatory function through a mechanism involving galectin-chemokine binding pairs. Specifically, the authors find that CXCL4 binding changes the galectin-1 carbohydrate binding site, altering the glycan-binding affinity and specificity of galectin-1, as well as increasing the apoptotic activity of galectin-1 on CD8 + T cells.
AbstractList Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism in which chemokines control the immunomodulatory functions of galectins. We show the existence of several specific galectin-chemokine binding pairs, including galectin-1/CXCL4. NMR analyses show that CXCL4 binding induces changes in the galectin-1 carbohydrate binding site. Consequently, CXCL4 alters the glycan-binding affinity and specificity of galectin-1. Regarding immunomodulation, CXCL4 significantly increases the apoptotic activity of galectin-1 on activated CD8+ T cells, while no effect is observed in CD4+ T cells. The opposite is found for another galectin-chemokine pair, i.e., galectin-9/CCL5. This heterodimer significantly reduces the galectin-9 induced apoptosis of CD4+ T cells and not of CD8+ T cells. Collectively, the current study describes an immunomodulatory mechanism in which specific galectin-chemokine interactions control the glycan-binding activity and immunoregulatory function of galectins.Sanjurjo et al investigate the role of galectins in immunomodulation, reporting that chemokines can control galectin immunomodulatory function through a mechanism involving galectin-chemokine binding pairs. Specifically, the authors find that CXCL4 binding changes the galectin-1 carbohydrate binding site, altering the glycan-binding affinity and specificity of galectin-1, as well as increasing the apoptotic activity of galectin-1 on CD8+ T cells.
Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism in which chemokines control the immunomodulatory functions of galectins. We show the existence of several specific galectin-chemokine binding pairs, including galectin-1/CXCL4. NMR analyses show that CXCL4 binding induces changes in the galectin-1 carbohydrate binding site. Consequently, CXCL4 alters the glycan-binding affinity and specificity of galectin-1. Regarding immunomodulation, CXCL4 significantly increases the apoptotic activity of galectin-1 on activated CD8+ T cells, while no effect is observed in CD4+ T cells. The opposite is found for another galectin-chemokine pair, i.e., galectin-9/CCL5. This heterodimer significantly reduces the galectin-9 induced apoptosis of CD4+ T cells and not of CD8+ T cells. Collectively, the current study describes an immunomodulatory mechanism in which specific galectin-chemokine interactions control the glycan-binding activity and immunoregulatory function of galectins. Sanjurjo et al investigate the role of galectins in immunomodulation, reporting that chemokines can control galectin immunomodulatory function through a mechanism involving galectin-chemokine binding pairs. Specifically, the authors find that CXCL4 binding changes the galectin-1 carbohydrate binding site, altering the glycan-binding affinity and specificity of galectin-1, as well as increasing the apoptotic activity of galectin-1 on CD8+ T cells.
Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism in which chemokines control the immunomodulatory functions of galectins. We show the existence of several specific galectin-chemokine binding pairs, including galectin-1/CXCL4. NMR analyses show that CXCL4 binding induces changes in the galectin-1 carbohydrate binding site. Consequently, CXCL4 alters the glycan-binding affinity and specificity of galectin-1. Regarding immunomodulation, CXCL4 significantly increases the apoptotic activity of galectin-1 on activated CD8 + T cells, while no effect is observed in CD4 + T cells. The opposite is found for another galectin-chemokine pair, i.e., galectin-9/CCL5. This heterodimer significantly reduces the galectin-9 induced apoptosis of CD4 + T cells and not of CD8 + T cells. Collectively, the current study describes an immunomodulatory mechanism in which specific galectin-chemokine interactions control the glycan-binding activity and immunoregulatory function of galectins.
Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism in which chemokines control the immunomodulatory functions of galectins. We show the existence of several specific galectin-chemokine binding pairs, including galectin-1/CXCL4. NMR analyses show that CXCL4 binding induces changes in the galectin-1 carbohydrate binding site. Consequently, CXCL4 alters the glycan-binding affinity and specificity of galectin-1. Regarding immunomodulation, CXCL4 significantly increases the apoptotic activity of galectin-1 on activated CD8 + T cells, while no effect is observed in CD4 + T cells. The opposite is found for another galectin-chemokine pair, i.e., galectin-9/CCL5. This heterodimer significantly reduces the galectin-9 induced apoptosis of CD4 + T cells and not of CD8 + T cells. Collectively, the current study describes an immunomodulatory mechanism in which specific galectin-chemokine interactions control the glycan-binding activity and immunoregulatory function of galectins. Sanjurjo et al investigate the role of galectins in immunomodulation, reporting that chemokines can control galectin immunomodulatory function through a mechanism involving galectin-chemokine binding pairs. Specifically, the authors find that CXCL4 binding changes the galectin-1 carbohydrate binding site, altering the glycan-binding affinity and specificity of galectin-1, as well as increasing the apoptotic activity of galectin-1 on CD8 + T cells.
Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism in which chemokines control the immunomodulatory functions of galectins. We show the existence of several specific galectin-chemokine binding pairs, including galectin-1/CXCL4. NMR analyses show that CXCL4 binding induces changes in the galectin-1 carbohydrate binding site. Consequently, CXCL4 alters the glycan-binding affinity and specificity of galectin-1. Regarding immunomodulation, CXCL4 significantly increases the apoptotic activity of galectin-1 on activated CD8 T cells, while no effect is observed in CD4 T cells. The opposite is found for another galectin-chemokine pair, i.e., galectin-9/CCL5. This heterodimer significantly reduces the galectin-9 induced apoptosis of CD4 T cells and not of CD8 T cells. Collectively, the current study describes an immunomodulatory mechanism in which specific galectin-chemokine interactions control the glycan-binding activity and immunoregulatory function of galectins.
Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism in which chemokines control the immunomodulatory functions of galectins. We show the existence of several specific galectin-chemokine binding pairs, including galectin-1/CXCL4. NMR analyses show that CXCL4 binding induces changes in the galectin-1 carbohydrate binding site. Consequently, CXCL4 alters the glycan-binding affinity and specificity of galectin-1. Regarding immunomodulation, CXCL4 significantly increases the apoptotic activity of galectin-1 on activated CD8+ T cells, while no effect is observed in CD4+ T cells. The opposite is found for another galectin-chemokine pair, i.e., galectin-9/CCL5. This heterodimer significantly reduces the galectin-9 induced apoptosis of CD4+ T cells and not of CD8+ T cells. Collectively, the current study describes an immunomodulatory mechanism in which specific galectin-chemokine interactions control the glycan-binding activity and immunoregulatory function of galectins.Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism in which chemokines control the immunomodulatory functions of galectins. We show the existence of several specific galectin-chemokine binding pairs, including galectin-1/CXCL4. NMR analyses show that CXCL4 binding induces changes in the galectin-1 carbohydrate binding site. Consequently, CXCL4 alters the glycan-binding affinity and specificity of galectin-1. Regarding immunomodulation, CXCL4 significantly increases the apoptotic activity of galectin-1 on activated CD8+ T cells, while no effect is observed in CD4+ T cells. The opposite is found for another galectin-chemokine pair, i.e., galectin-9/CCL5. This heterodimer significantly reduces the galectin-9 induced apoptosis of CD4+ T cells and not of CD8+ T cells. Collectively, the current study describes an immunomodulatory mechanism in which specific galectin-chemokine interactions control the glycan-binding activity and immunoregulatory function of galectins.
Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism in which chemokines control the immunomodulatory functions of galectins. We show the existence of several specific galectin-chemokine binding pairs, including galectin-1/CXCL4. NMR analyses show that CXCL4 binding induces changes in the galectin-1 carbohydrate binding site. Consequently, CXCL4 alters the glycan-binding affinity and specificity of galectin-1. Regarding immunomodulation, CXCL4 significantly increases the apoptotic activity of galectin-1 on activated CD8+ T cells, while no effect is observed in CD4+ T cells. The opposite is found for another galectin-chemokine pair, i.e., galectin-9/CCL5. This heterodimer significantly reduces the galectin-9 induced apoptosis of CD4+ T cells and not of CD8+ T cells. Collectively, the current study describes an immunomodulatory mechanism in which specific galectin-chemokine interactions control the glycan-binding activity and immunoregulatory function of galectins.
Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism by which chemokines control the galectins immunomodulatory functions. We show the existence of several specific galectin-chemokine binding pairs, including galectin-1/CXCL4. NMR analyses show that CXCL4 binding induces changes in the galectin-1 carbohydrate binding site. Consequently, CXCL4 alters the glycan-binding affinity and specificity of galectin-1. Regarding immunomodulation, CXCL4 significantly increases the apoptotic activity of galectin-1 on activated CD8+ T cells, while no effect is observed in CD4+ T cells. The opposite is found for another galectin-chemokine pair, i.e., galectin-9/CCL5. This pair significantly reduces the galectin-9 induced apoptosis of CD4+ T cells and not of CD8+ T cells. Collectively, the current study describes an immunomodulatory mechanism in which specific galectin-chemokine interactions control the glycan-binding activity and immunoregulatory function of galectins.
Sanjurjo et al investigate the role of galectins in immunomodulation, reporting that chemokines can control galectin immunomodulatory function through a mechanism involving galectin-chemokine binding pairs. Specifically, the authors find that CXCL4 binding changes the galectin-1 carbohydrate binding site, altering the glycan-binding affinity and specificity of galectin-1, as well as increasing the apoptotic activity of galectin-1 on CD8+ T cells.
ArticleNumber 1415
Author Sanjurjo, Lucía
Touarin, Pauline
Aanhane, Ed
Castricum, Kitty C. M.
Griffioen, Arjan W.
Schulkens, Iris A.
Nilsson, Ulf J.
Elantak, Latifa
Heusschen, Roy
Thijssen, Victor L. J. L.
De Gruijl, Tanja D.
Leffler, Hakon
Koenen, Rory R.
Author_xml – sequence: 1
  givenname: Lucía
  orcidid: 0000-0003-4006-8010
  surname: Sanjurjo
  fullname: Sanjurjo, Lucía
  organization: Amsterdam UMC location VUmc, Department of Medical Oncology, Cancer Center Amsterdam
– sequence: 2
  givenname: Iris A.
  surname: Schulkens
  fullname: Schulkens, Iris A.
  organization: Amsterdam UMC location VUmc, Department of Medical Oncology, Cancer Center Amsterdam
– sequence: 3
  givenname: Pauline
  surname: Touarin
  fullname: Touarin, Pauline
  organization: Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), CNRS - Aix-Marseille Université
– sequence: 4
  givenname: Roy
  surname: Heusschen
  fullname: Heusschen, Roy
  organization: Amsterdam UMC location VUmc, Department of Medical Oncology, Cancer Center Amsterdam
– sequence: 5
  givenname: Ed
  surname: Aanhane
  fullname: Aanhane, Ed
  organization: Amsterdam UMC location VUmc, Department of Medical Oncology, Cancer Center Amsterdam
– sequence: 6
  givenname: Kitty C. M.
  surname: Castricum
  fullname: Castricum, Kitty C. M.
  organization: Amsterdam UMC location VUmc, Department of Radiation Oncology, Cancer Center Amsterdam
– sequence: 7
  givenname: Tanja D.
  surname: De Gruijl
  fullname: De Gruijl, Tanja D.
  organization: Amsterdam UMC location VUmc, Department of Medical Oncology, Cancer Center Amsterdam
– sequence: 8
  givenname: Ulf J.
  orcidid: 0000-0001-5815-9522
  surname: Nilsson
  fullname: Nilsson, Ulf J.
  organization: Lund University, Department of Chemistry, Centre for Analysis and Synthesis
– sequence: 9
  givenname: Hakon
  orcidid: 0000-0003-4482-8945
  surname: Leffler
  fullname: Leffler, Hakon
  organization: Lund University, Department of Laboratory Medicine, Section MIG
– sequence: 10
  givenname: Arjan W.
  surname: Griffioen
  fullname: Griffioen, Arjan W.
  organization: Amsterdam UMC location VUmc, Department of Medical Oncology, Cancer Center Amsterdam
– sequence: 11
  givenname: Latifa
  surname: Elantak
  fullname: Elantak, Latifa
  organization: Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), CNRS - Aix-Marseille Université
– sequence: 12
  givenname: Rory R.
  surname: Koenen
  fullname: Koenen, Rory R.
  organization: Maastricht University, Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM)
– sequence: 13
  givenname: Victor L. J. L.
  orcidid: 0000-0002-6146-1842
  surname: Thijssen
  fullname: Thijssen, Victor L. J. L.
  email: v.thijssen@amsterdamumc.nl
  organization: Amsterdam UMC location VUmc, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC location VUmc, Department of Radiation Oncology, Cancer Center Amsterdam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34931005$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03453605$$DView record in HAL
BookMark eNp9Uktv0zAcj9AQG2NfgAOKxAUOAb_i2hekqQI2qRJCgrPl2P-kLold7KSo3x73wVh72CHyI7-X7d_L4sIHD0XxGqMPGFHxMTGCEK0QwfmThFTsWXFFqJQV5YxcPJpfFjcprRBCWErJKXtRXFImKUaoviq-z5cwhF_OQyqHYKdej1B2_dZoXzbOW-e7Untbjkso3TBMPkTodqgQt6U2o9u4cVuGtux0D3np06vieav7BDfH8br4-eXzj_ldtfj29X5-u6gM52ysJBNAUYsk4ZaimbZGzJgBLWea1cQgCrbFtMF53rQWMVtTUrectTPSMJ3zXxf3B10b9Eqtoxt03KqgndpvhNgpHUdnelCGC9syImwjGQNtJSKIzDQhuqVcIpa19EEr_YH11JyorUMcda8iJNDRLFU_qQQqo3pn9OiCTwpyVi4FU23NkGIUEyVnHKscOKduOdCaZo9PB49MHcAa8GPMuidWJ3-8W6oubJTgQjBCssD7g8DyjHZ3u1C7PURZTTmqNzhj3x3NYvg9QRrV4JKBvtcewpQU4ZhQIen-7G_PoKswRZ-fbofCgmBai4x68zj9g_-_JmUAOQBMDClFaB8gGKldY9WhsSo3Vu0bq3be4oxk3Li_1HwDrn-aSo9Pln18B_F_7CdYfwGDQf8m
CitedBy_id crossref_primary_10_3390_ijms26188844
crossref_primary_10_1016_j_biotechadv_2025_108681
crossref_primary_10_1038_s41598_022_22758_0
crossref_primary_10_3390_medicina61061020
crossref_primary_10_1007_s00281_024_01014_9
crossref_primary_10_1016_j_biopha_2023_115709
crossref_primary_10_1097_IM9_0000000000000151
crossref_primary_10_1016_j_celrep_2024_114541
crossref_primary_10_3390_biom12091286
crossref_primary_10_3390_cancers14235790
crossref_primary_10_1146_annurev_biochem_030122_044347
crossref_primary_10_3390_ijms241310925
Cites_doi 10.1124/jpet.112.199646
10.1038/s41467-017-00925-6
10.4049/jimmunol.165.5.2331
10.1038/378736a0
10.1042/bj3540233
10.1038/ni1482
10.1016/j.coi.2015.10.009
10.1016/j.jmb.2015.09.014
10.1038/nri.2017.49
10.1016/j.jmb.2010.02.033
10.1038/nrd4591
10.4049/jimmunol.163.7.3801
10.1042/BCJ20170658
10.1039/b907931a
10.1021/bi1009584
10.1074/jbc.M800523200
10.1038/nature20554
10.4049/jimmunol.1103433
10.1093/glycob/cwm026
10.1093/glycob/cwt005
10.1126/science.1688470
10.1002/prot.20449
10.1016/j.cell.2017.01.017
10.1073/pnas.0603883103
10.4161/cbt.29114
10.1172/JCI119429
10.1074/jbc.M112.395152
10.1002/eji.200939703
10.4049/jimmunol.179.4.2584
10.3390/molecules22081357
10.1093/jnci/82.10.848
10.1016/j.cell.2014.01.043
10.1182/blood-2003-11-3994
10.1002/cmdc.202000742
10.1038/ncomms7194
10.1093/glycob/cwn089
10.1096/fj.07-9524com
10.1038/nm.1898
10.1021/jm300014q
10.4049/jimmunol.176.2.778
10.3324/haematol.2012.065607
10.1182/blood-2004-06-2475
10.1016/j.ab.2004.06.042
10.1016/j.immuni.2012.03.004
10.1016/j.jmb.2004.08.078
10.1038/s41416-018-0328-y
10.1371/journal.pone.0244736
10.1002/eji.201747195
10.1016/j.canlet.2018.11.017
10.1016/j.immuni.2012.05.008
10.1128/MCB.00348-14
10.1074/jbc.C111.229096
10.1038/nm.4278
10.1016/S0021-9258(18)54333-7
10.1183/13993003.02559-2020
10.15252/embr.201947852
10.1016/j.bbcan.2015.03.003
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor LUCC: Lunds universitets cancercentrum
Övriga starka forskningsmiljöer
Centre for Analysis and Synthesis
Lunds universitet
Naturvetenskapliga fakulteten
Profile areas and other strong research environments
Faculty of Science
Department of Laboratory Medicine
Lund University
Division of Microbiology, Immunology and Glycobiology - MIG
Institutionen för laboratoriemedicin
Department of Chemistry
Kemiska institutionen
Centrum för analys och syntes
Other Strong Research Environments
Faculty of Medicine
LUCC: Lund University Cancer Centre
Medicinska fakulteten
Profilområden och andra starka forskningsmiljöer
Avdelningen för mikrobiologi, immunologi och glykobiologi - MIG
CorporateAuthor_xml – name: Övriga starka forskningsmiljöer
– name: Faculty of Medicine
– name: Medicinska fakulteten
– name: Naturvetenskapliga fakulteten
– name: Other Strong Research Environments
– name: Department of Chemistry
– name: LUCC: Lund University Cancer Centre
– name: Department of Laboratory Medicine
– name: Kemiska institutionen
– name: Division of Microbiology, Immunology and Glycobiology - MIG
– name: Faculty of Science
– name: Lunds universitet
– name: Centrum för analys och syntes
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: Institutionen för laboratoriemedicin
– name: Avdelningen för mikrobiologi, immunologi och glykobiologi - MIG
– name: Profile areas and other strong research environments
– name: Centre for Analysis and Synthesis
– name: LUCC: Lunds universitets cancercentrum
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
DOA
DOI 10.1038/s42003-021-02922-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef

MEDLINE
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2399-3642
EndPage 11
ExternalDocumentID oai_doaj_org_article_c68df428db944ead902027a22af36904
oai_portal_research_lu_se_publications_eedf6984_f540_4312_9761_25f532f6e353
PMC8688422
oai:HAL:hal-03453605v1
34931005
10_1038_s42003_021_02922_4
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: KWF Kankerbestrijding (Dutch Cancer Society)
  grantid: KWF11040
  funderid: https://doi.org/10.13039/501100004622
– fundername: ;
  grantid: KWF11040
GroupedDBID 0R~
53G
88I
AAJSJ
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
C6C
CCPQU
DWQXO
EBLON
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
HYE
M2P
M7P
M~E
NAO
O9-
OK1
PGMZT
PIMPY
RNT
RPM
SNYQT
AASML
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PHGZM
PHGZT
PQGLB
3V.
7XB
8FE
8FH
8FK
AARCD
LK8
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
PUEGO
1XC
EJD
H13
VOOES
5PM
ADTPV
AFFHD
AGCHP
AOWAS
D8T
D95
ZZAVC
ID FETCH-LOGICAL-c664t-948e30f0926d307adc874cea97a452c03edf13b152cbfd04d5325f64f72b4a493
IEDL.DBID DOA
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732959100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2399-3642
IngestDate Fri Oct 03 12:53:07 EDT 2025
Tue Nov 04 15:49:09 EST 2025
Tue Nov 04 01:33:59 EST 2025
Tue Oct 14 19:57:53 EDT 2025
Sat Sep 27 21:18:34 EDT 2025
Wed Aug 13 02:49:52 EDT 2025
Mon Jul 21 06:09:31 EDT 2025
Tue Nov 18 21:54:29 EST 2025
Sat Nov 29 04:16:54 EST 2025
Fri Feb 21 02:40:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c664t-948e30f0926d307adc874cea97a452c03edf13b152cbfd04d5325f64f72b4a493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5815-9522
0000-0002-6146-1842
0000-0003-4482-8945
0000-0003-4006-8010
0000-0002-4090-9441
OpenAccessLink https://doaj.org/article/c68df428db944ead902027a22af36904
PMID 34931005
PQID 2611821358
PQPubID 4669726
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_c68df428db944ead902027a22af36904
swepub_primary_oai_portal_research_lu_se_publications_eedf6984_f540_4312_9761_25f532f6e353
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8688422
hal_primary_oai_HAL_hal_03453605v1
proquest_miscellaneous_2612389304
proquest_journals_2611821358
pubmed_primary_34931005
crossref_primary_10_1038_s42003_021_02922_4
crossref_citationtrail_10_1038_s42003_021_02922_4
springer_journals_10_1038_s42003_021_02922_4
PublicationCentury 2000
PublicationDate 2021-12-20
PublicationDateYYYYMMDD 2021-12-20
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-20
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Communications biology
PublicationTitleAbbrev Commun Biol
PublicationTitleAlternate Commun Biol
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Salomonsson (CR9) 2010; 49
Romero, Trujillo, Estrin, Rabinovich, Di Lella (CR20) 2016; 26
Stillman (CR25) 2006; 176
Liang (CR46) 2013; 98
CR37
Dings (CR21) 2012; 55
Munn, Bronte (CR40) 2016; 39
Miller (CR49) 2018; 475
Crome (CR42) 2017; 23
Maione (CR33) 1990; 247
Deng (CR44) 2019; 443
de la Fuente (CR30) 2014; 34
Eslin (CR36) 2004; 104
Nesmelova (CR18) 2010; 397
CR2
CR3
Sörme, Kahl-Knutsson, Huflejt, Nilsson, Leffler (CR54) 2004; 334
De Henau (CR43) 2016; 539
Ermakova (CR23) 2013; 23
Perillo, Pace, Seilhamer, Baum (CR12) 1995; 378
Toscano (CR10) 2007; 8
Croci (CR32) 2014; 156
Nishi (CR55) 2008; 18
Chien, Ho, Lin, Hsu (CR19) 2017; 22
Bi, Earl, Jacobs, Baum (CR11) 2008; 283
Carlsson (CR53) 2007; 17
Gao (CR45) 2014; 15
Nagarsheth, Wicha, Zou (CR13) 2017; 17
Pacienza (CR35) 2008; 22
Bonzi (CR7) 2015; 6
Kasper (CR47) 2010; 40
Mahoney, Rennert, Freeman (CR39) 2015; 14
Sharpe, Byers, Scott, Bauer, Maione (CR34) 1990; 82
Rabinovich, Croci (CR14) 2012; 36
Thijssen (CR4) 2006; 103
Elantak (CR6) 2012; 287
Pace, Lee, Stewart, Baum (CR28) 1999; 163
Gordon-Alonso, Hirsch, Wildmann, van der Bruggen (CR16) 2017; 8
Dings (CR22) 2013; 344
Zlotnik, Yoshie (CR15) 2012; 36
López-Lucendo (CR17) 2004; 343
Dickhout (CR8) 2021; 16
Sharma, Hu-Lieskovan, Wargo, Ribas (CR41) 2017; 168
Vranken (CR56) 2005; 59
Griffioen (CR58) 2001; 354
Cummings (CR1) 2009; 5
von Hundelshausen (CR50) 2005; 105
Pace, Hahn, Pang, Nguyen, Baum (CR27) 2000; 165
Affandi (CR31) 2018; 48
Kasper, Brandt, Brandau, Petersen (CR48) 2007; 179
Salomonsson, Thijssen, Griffioen, Nilsson, Leffler (CR5) 2011; 286
Miller (CR24) 2021; 16
Hirabayashi, Kasai (CR52) 1991; 266
van Zundert (CR57) 2016; 428
Wada, Ota, Kumar, Wallner, Kanwar (CR26) 1997; 99
Berraondo (CR38) 2019; 120
Koenen (CR51) 2009; 15
Cedeno-Laurent, Opperman, Barthel, Kuchroo, Dimitroff (CR29) 2012; 188
S Deng (2922_CR44) 2019; 443
MC Miller (2922_CR49) 2018; 475
S Carlsson (2922_CR53) 2007; 17
MF López-Lucendo (2922_CR17) 2004; 343
KE Pace (2922_CR27) 2000; 165
SQ Crome (2922_CR42) 2017; 23
O De Henau (2922_CR43) 2016; 539
J Gao (2922_CR45) 2014; 15
JM Romero (2922_CR20) 2016; 26
J Bonzi (2922_CR7) 2015; 6
A Zlotnik (2922_CR15) 2012; 36
RD Cummings (2922_CR1) 2009; 5
MC Miller (2922_CR24) 2021; 16
P von Hundelshausen (2922_CR50) 2005; 105
AW Griffioen (2922_CR58) 2001; 354
NL Perillo (2922_CR12) 1995; 378
RJ Sharpe (2922_CR34) 1990; 82
2922_CR37
KM Mahoney (2922_CR39) 2015; 14
E Salomonsson (2922_CR5) 2011; 286
WF Vranken (2922_CR56) 2005; 59
H de la Fuente (2922_CR30) 2014; 34
L Elantak (2922_CR6) 2012; 287
J Wada (2922_CR26) 1997; 99
KE Pace (2922_CR28) 1999; 163
RPM Dings (2922_CR22) 2013; 344
TE Maione (2922_CR33) 1990; 247
CH Chien (2922_CR19) 2017; 22
P Sharma (2922_CR41) 2017; 168
N Nishi (2922_CR55) 2008; 18
VL Thijssen (2922_CR4) 2006; 103
RPM Dings (2922_CR21) 2012; 55
J Hirabayashi (2922_CR52) 1991; 266
DE Eslin (2922_CR36) 2004; 104
E Salomonsson (2922_CR9) 2010; 49
DO Croci (2922_CR32) 2014; 156
N Nagarsheth (2922_CR13) 2017; 17
2922_CR3
MA Toscano (2922_CR10) 2007; 8
GCP van Zundert (2922_CR57) 2016; 428
2922_CR2
AJ Affandi (2922_CR31) 2018; 48
B Kasper (2922_CR47) 2010; 40
GA Rabinovich (2922_CR14) 2012; 36
P Liang (2922_CR46) 2013; 98
P Berraondo (2922_CR38) 2019; 120
M Gordon-Alonso (2922_CR16) 2017; 8
B Kasper (2922_CR48) 2007; 179
IV Nesmelova (2922_CR18) 2010; 397
E Ermakova (2922_CR23) 2013; 23
S Bi (2922_CR11) 2008; 283
A Dickhout (2922_CR8) 2021; 16
N Pacienza (2922_CR35) 2008; 22
BN Stillman (2922_CR25) 2006; 176
RR Koenen (2922_CR51) 2009; 15
DH Munn (2922_CR40) 2016; 39
F Cedeno-Laurent (2922_CR29) 2012; 188
P Sörme (2922_CR54) 2004; 334
References_xml – volume: 344
  start-page: 589
  year: 2013
  end-page: 599
  ident: CR22
  article-title: Structure-based optimization of angiostatic agent 6DBF7, an allosteric antagonist of Galectin-1
  publication-title: J. Pharm. Exp. Ther.
  doi: 10.1124/jpet.112.199646
– volume: 8
  year: 2017
  ident: CR16
  article-title: Galectin-3 captures interferon-gamma in the tumor matrix reducing chemokine gradient production and T-cell tumor infiltration
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00925-6
– volume: 165
  start-page: 2331
  year: 2000
  end-page: 2334
  ident: CR27
  article-title: CD7 delivers a pro-apoptotic signal during galectin-1-induced T cell death
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.165.5.2331
– volume: 378
  start-page: 736
  year: 1995
  end-page: 739
  ident: CR12
  article-title: Apoptosis of T cells mediated by galectin-1
  publication-title: Nature
  doi: 10.1038/378736a0
– volume: 354
  start-page: 233
  year: 2001
  end-page: 242
  ident: CR58
  article-title: Anginex, a designed peptide that inhibits angiogenesis
  publication-title: Biochem J.
  doi: 10.1042/bj3540233
– volume: 8
  start-page: 825
  year: 2007
  end-page: 834
  ident: CR10
  article-title: Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1482
– volume: 39
  start-page: 1
  year: 2016
  end-page: 6
  ident: CR40
  article-title: Immune suppressive mechanisms in the tumor microenvironment
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2015.10.009
– volume: 428
  start-page: 720
  year: 2016
  end-page: 725
  ident: CR57
  article-title: The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2015.09.014
– volume: 17
  start-page: 559
  year: 2017
  end-page: 572
  ident: CR13
  article-title: Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2017.49
– volume: 26
  start-page: 1317
  year: 2016
  end-page: 1327
  ident: CR20
  article-title: Impact of human galectin-1 binding to saccharide ligands on dimer dissociation kinetics and structure
  publication-title: Glycobiology
– volume: 397
  start-page: 1209
  year: 2010
  end-page: 1230
  ident: CR18
  article-title: Lactose binding to galectin-1 modulates structural dynamics, increases conformational entropy, and occurs with apparent negative cooperativity
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2010.02.033
– volume: 14
  start-page: 561
  year: 2015
  end-page: 584
  ident: CR39
  article-title: Combination cancer immunotherapy and new immunomodulatory targets
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd4591
– volume: 163
  start-page: 3801
  year: 1999
  end-page: 3811
  ident: CR28
  article-title: Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.163.7.3801
– volume: 475
  start-page: 1003
  year: 2018
  end-page: 1018
  ident: CR49
  article-title: Adhesion/growth-regulatory galectins tested in combination: evidence for formation of hybrids as heterodimers
  publication-title: Biochem J.
  doi: 10.1042/BCJ20170658
– volume: 5
  start-page: 1087
  year: 2009
  end-page: 1104
  ident: CR1
  article-title: The repertoire of glycan determinants in the human glycome
  publication-title: Mol. Biosyst.
  doi: 10.1039/b907931a
– volume: 49
  start-page: 9518
  year: 2010
  end-page: 9532
  ident: CR9
  article-title: Monovalent interactions of galectin-1
  publication-title: Biochemistry
  doi: 10.1021/bi1009584
– volume: 283
  start-page: 12248
  year: 2008
  end-page: 12258
  ident: CR11
  article-title: Structural features of galectin-9 and galectin-1 that determine distinct T cell death pathways
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M800523200
– volume: 539
  start-page: 443
  year: 2016
  end-page: 447
  ident: CR43
  article-title: Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells
  publication-title: Nature
  doi: 10.1038/nature20554
– volume: 188
  start-page: 3127
  year: 2012
  end-page: 3137
  ident: CR29
  article-title: Galectin-1 triggers an immunoregulatory signature in Th cells functionally defined by IL-10 expression
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1103433
– volume: 17
  start-page: 663
  year: 2007
  end-page: 676
  ident: CR53
  article-title: Affinity of galectin-8 and its carbohydrate recognition domains for ligands in solution and at the cell surface
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwm026
– volume: 23
  start-page: 508
  year: 2013
  end-page: 523
  ident: CR23
  article-title: Lactose binding to human galectin-7 (p53-induced gene 1) induces long-range effects through the protein resulting in increased dimer stability and evidence for positive cooperativity
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwt005
– volume: 247
  start-page: 77
  year: 1990
  end-page: 79
  ident: CR33
  article-title: Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides
  publication-title: Science
  doi: 10.1126/science.1688470
– volume: 59
  start-page: 687
  year: 2005
  end-page: 696
  ident: CR56
  article-title: The CCPN data model for NMR spectroscopy: development of a software pipeline
  publication-title: Proteins
  doi: 10.1002/prot.20449
– volume: 168
  start-page: 707
  year: 2017
  end-page: 723
  ident: CR41
  article-title: Primary, adaptive, and acquired resistance to cancer immunotherapy
  publication-title: Cell
  doi: 10.1016/j.cell.2017.01.017
– volume: 103
  start-page: 15975
  year: 2006
  end-page: 15980
  ident: CR4
  article-title: Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0603883103
– volume: 15
  start-page: 982
  year: 2014
  end-page: 991
  ident: CR45
  article-title: Activation of p38-MAPK by CXCL4/CXCR3 axis contributes to p53-dependent intestinal apoptosis initiated by 5-fluorouracil
  publication-title: Cancer Biol. Ther.
  doi: 10.4161/cbt.29114
– volume: 99
  start-page: 2452
  year: 1997
  end-page: 2461
  ident: CR26
  article-title: Developmental regulation, expression, and apoptotic potential of galectin-9, a beta-galactoside binding lectin
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI119429
– volume: 287
  start-page: 44703
  year: 2012
  end-page: 44713
  ident: CR6
  article-title: Structural basis for galectin-1-dependent pre-B cell receptor (pre-BCR) activation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.395152
– volume: 40
  start-page: 1162
  year: 2010
  end-page: 1173
  ident: CR47
  article-title: CXCL4-induced monocyte survival, cytokine expression, and oxygen radical formation is regulated by sphingosine kinase 1
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200939703
– volume: 179
  start-page: 2584
  year: 2007
  end-page: 2591
  ident: CR48
  article-title: Platelet factor 4 (CXC chemokine ligand 4) differentially regulates respiratory burst, survival, and cytokine expression of human monocytes by using distinct signaling pathways
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.179.4.2584
– volume: 22
  start-page: E1357
  year: 2017
  ident: CR19
  article-title: Lactose binding induces opposing dynamics changes in human galectins revealed by NMR-based hydrogen-deuterium exchange
  publication-title: Molecules
  doi: 10.3390/molecules22081357
– volume: 82
  start-page: 848
  year: 1990
  end-page: 853
  ident: CR34
  article-title: Growth inhibition of murine melanoma and human colon carcinoma by recombinant human platelet factor 4
  publication-title: J. Natl Cancer Inst.
  doi: 10.1093/jnci/82.10.848
– volume: 156
  start-page: 744
  year: 2014
  end-page: 758
  ident: CR32
  article-title: Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in Anti-VEGF refractory tumors
  publication-title: Cell
  doi: 10.1016/j.cell.2014.01.043
– ident: CR2
– ident: CR37
– volume: 104
  start-page: 3173
  year: 2004
  end-page: 3180
  ident: CR36
  article-title: Transgenic mice studies demonstrate a role for platelet factor 4 in thrombosis: dissociation between anticoagulant and antithrombotic effect of heparin
  publication-title: Blood
  doi: 10.1182/blood-2003-11-3994
– volume: 16
  start-page: 713
  year: 2021
  end-page: 723
  ident: CR24
  article-title: Targeting the CRD F-face of Human Galectin-3 and allosterically modulating glycan binding by angiostatic PTX008 and a structurally optimized derivative
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.202000742
– volume: 6
  year: 2015
  ident: CR7
  article-title: Pre-B cell receptor binding to galectin-1 modifies galectin-1/carbohydrate affinity to modulate specific galectin-1/glycan lattice interactions
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7194
– volume: 18
  start-page: 1065
  year: 2008
  end-page: 1073
  ident: CR55
  article-title: Functional and structural bases of a cysteine-less mutant as a long-lasting substitute for galectin-1
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwn089
– volume: 22
  start-page: 1113
  year: 2008
  end-page: 1123
  ident: CR35
  article-title: The immunoregulatory glycan-binding protein galectin-1 triggers human platelet activation
  publication-title: Faseb J.
  doi: 10.1096/fj.07-9524com
– volume: 15
  start-page: 97
  year: 2009
  end-page: 103
  ident: CR51
  article-title: Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice
  publication-title: Nat. Med.
  doi: 10.1038/nm.1898
– volume: 55
  start-page: 5121
  year: 2012
  end-page: 5129
  ident: CR21
  article-title: Antitumor agent calixarene 0118 targets human galectin-1 as an allosteric inhibitor of carbohydrate binding
  publication-title: J. Med Chem.
  doi: 10.1021/jm300014q
– volume: 176
  start-page: 778
  year: 2006
  end-page: 789
  ident: CR25
  article-title: Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.176.2.778
– volume: 98
  start-page: 288
  year: 2013
  end-page: 295
  ident: CR46
  article-title: Platelet factor 4 induces cell apoptosis by inhibition of STAT3 via up-regulation of SOCS3 expression in multiple myeloma
  publication-title: Haematologica
  doi: 10.3324/haematol.2012.065607
– volume: 105
  start-page: 924
  year: 2005
  end-page: 930
  ident: CR50
  article-title: Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium
  publication-title: Blood
  doi: 10.1182/blood-2004-06-2475
– volume: 334
  start-page: 36
  year: 2004
  end-page: 47
  ident: CR54
  article-title: Fluorescence polarization as an analytical tool to evaluate galectin-ligand interactions
  publication-title: Anal. Biochem
  doi: 10.1016/j.ab.2004.06.042
– volume: 36
  start-page: 322
  year: 2012
  end-page: 335
  ident: CR14
  article-title: Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.03.004
– volume: 343
  start-page: 957
  year: 2004
  end-page: 970
  ident: CR17
  article-title: Growth-regulatory human galectin-1: crystallographic characterisation of the structural changes induced by single-site mutations and their impact on the thermodynamics of ligand binding
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.08.078
– volume: 120
  start-page: 6
  year: 2019
  end-page: 15
  ident: CR38
  article-title: Cytokines in clinical cancer immunotherapy
  publication-title: Br. J. Cancer
  doi: 10.1038/s41416-018-0328-y
– volume: 16
  start-page: e0244736
  year: 2021
  ident: CR8
  article-title: Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0244736
– ident: CR3
– volume: 48
  start-page: 522
  year: 2018
  end-page: 531
  ident: CR31
  article-title: CXCL4 is a novel inducer of human Th17 cells and correlates with IL-17 and IL-22 in psoriatic arthritis
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201747195
– volume: 443
  start-page: 1
  year: 2019
  end-page: 12
  ident: CR44
  article-title: Non-platelet-derived CXCL4 differentially regulates cytotoxic and regulatory T cells through CXCR3 to suppress the immune response to colon cancer
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2018.11.017
– volume: 36
  start-page: 705
  year: 2012
  end-page: 716
  ident: CR15
  article-title: The chemokine superfamily revisited
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.05.008
– volume: 34
  start-page: 2479
  year: 2014
  end-page: 2487
  ident: CR30
  article-title: The leukocyte activation receptor CD69 controls T cell differentiation through its interaction with galectin-1
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00348-14
– volume: 286
  start-page: 13801
  year: 2011
  end-page: 13804
  ident: CR5
  article-title: The anti-angiogenic peptide anginex greatly enhances galectin-1 binding affinity for glycoproteins
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C111.229096
– volume: 23
  start-page: 368
  year: 2017
  end-page: 375
  ident: CR42
  article-title: A distinct innate lymphoid cell population regulates tumor-associated T cells
  publication-title: Nat. Med.
  doi: 10.1038/nm.4278
– volume: 266
  start-page: 23648
  year: 1991
  end-page: 23653
  ident: CR52
  article-title: Effect of amino acid substitution by sited-directed mutagenesis on the carbohydrate recognition and stability of human 14-kDa beta-galactoside-binding lectin
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)54333-7
– volume: 40
  start-page: 1162
  year: 2010
  ident: 2922_CR47
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200939703
– volume: 22
  start-page: E1357
  year: 2017
  ident: 2922_CR19
  publication-title: Molecules
  doi: 10.3390/molecules22081357
– volume: 539
  start-page: 443
  year: 2016
  ident: 2922_CR43
  publication-title: Nature
  doi: 10.1038/nature20554
– volume: 8
  year: 2017
  ident: 2922_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00925-6
– volume: 26
  start-page: 1317
  year: 2016
  ident: 2922_CR20
  publication-title: Glycobiology
– volume: 8
  start-page: 825
  year: 2007
  ident: 2922_CR10
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1482
– volume: 165
  start-page: 2331
  year: 2000
  ident: 2922_CR27
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.165.5.2331
– volume: 22
  start-page: 1113
  year: 2008
  ident: 2922_CR35
  publication-title: Faseb J.
  doi: 10.1096/fj.07-9524com
– volume: 15
  start-page: 982
  year: 2014
  ident: 2922_CR45
  publication-title: Cancer Biol. Ther.
  doi: 10.4161/cbt.29114
– volume: 266
  start-page: 23648
  year: 1991
  ident: 2922_CR52
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)54333-7
– volume: 286
  start-page: 13801
  year: 2011
  ident: 2922_CR5
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C111.229096
– volume: 14
  start-page: 561
  year: 2015
  ident: 2922_CR39
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd4591
– volume: 343
  start-page: 957
  year: 2004
  ident: 2922_CR17
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.08.078
– volume: 344
  start-page: 589
  year: 2013
  ident: 2922_CR22
  publication-title: J. Pharm. Exp. Ther.
  doi: 10.1124/jpet.112.199646
– volume: 18
  start-page: 1065
  year: 2008
  ident: 2922_CR55
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwn089
– volume: 34
  start-page: 2479
  year: 2014
  ident: 2922_CR30
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00348-14
– ident: 2922_CR37
  doi: 10.1183/13993003.02559-2020
– volume: 168
  start-page: 707
  year: 2017
  ident: 2922_CR41
  publication-title: Cell
  doi: 10.1016/j.cell.2017.01.017
– volume: 17
  start-page: 663
  year: 2007
  ident: 2922_CR53
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwm026
– volume: 475
  start-page: 1003
  year: 2018
  ident: 2922_CR49
  publication-title: Biochem J.
  doi: 10.1042/BCJ20170658
– volume: 104
  start-page: 3173
  year: 2004
  ident: 2922_CR36
  publication-title: Blood
  doi: 10.1182/blood-2003-11-3994
– volume: 16
  start-page: 713
  year: 2021
  ident: 2922_CR24
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.202000742
– volume: 39
  start-page: 1
  year: 2016
  ident: 2922_CR40
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2015.10.009
– volume: 428
  start-page: 720
  year: 2016
  ident: 2922_CR57
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2015.09.014
– volume: 15
  start-page: 97
  year: 2009
  ident: 2922_CR51
  publication-title: Nat. Med.
  doi: 10.1038/nm.1898
– volume: 6
  year: 2015
  ident: 2922_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7194
– volume: 105
  start-page: 924
  year: 2005
  ident: 2922_CR50
  publication-title: Blood
  doi: 10.1182/blood-2004-06-2475
– volume: 49
  start-page: 9518
  year: 2010
  ident: 2922_CR9
  publication-title: Biochemistry
  doi: 10.1021/bi1009584
– volume: 23
  start-page: 368
  year: 2017
  ident: 2922_CR42
  publication-title: Nat. Med.
  doi: 10.1038/nm.4278
– volume: 283
  start-page: 12248
  year: 2008
  ident: 2922_CR11
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M800523200
– volume: 55
  start-page: 5121
  year: 2012
  ident: 2922_CR21
  publication-title: J. Med Chem.
  doi: 10.1021/jm300014q
– ident: 2922_CR3
  doi: 10.15252/embr.201947852
– volume: 98
  start-page: 288
  year: 2013
  ident: 2922_CR46
  publication-title: Haematologica
  doi: 10.3324/haematol.2012.065607
– volume: 103
  start-page: 15975
  year: 2006
  ident: 2922_CR4
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0603883103
– volume: 354
  start-page: 233
  year: 2001
  ident: 2922_CR58
  publication-title: Biochem J.
  doi: 10.1042/bj3540233
– volume: 48
  start-page: 522
  year: 2018
  ident: 2922_CR31
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201747195
– volume: 287
  start-page: 44703
  year: 2012
  ident: 2922_CR6
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.395152
– volume: 59
  start-page: 687
  year: 2005
  ident: 2922_CR56
  publication-title: Proteins
  doi: 10.1002/prot.20449
– volume: 17
  start-page: 559
  year: 2017
  ident: 2922_CR13
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2017.49
– volume: 5
  start-page: 1087
  year: 2009
  ident: 2922_CR1
  publication-title: Mol. Biosyst.
  doi: 10.1039/b907931a
– volume: 36
  start-page: 322
  year: 2012
  ident: 2922_CR14
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.03.004
– volume: 378
  start-page: 736
  year: 1995
  ident: 2922_CR12
  publication-title: Nature
  doi: 10.1038/378736a0
– volume: 176
  start-page: 778
  year: 2006
  ident: 2922_CR25
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.176.2.778
– volume: 156
  start-page: 744
  year: 2014
  ident: 2922_CR32
  publication-title: Cell
  doi: 10.1016/j.cell.2014.01.043
– volume: 443
  start-page: 1
  year: 2019
  ident: 2922_CR44
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2018.11.017
– volume: 23
  start-page: 508
  year: 2013
  ident: 2922_CR23
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwt005
– volume: 179
  start-page: 2584
  year: 2007
  ident: 2922_CR48
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.179.4.2584
– volume: 188
  start-page: 3127
  year: 2012
  ident: 2922_CR29
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1103433
– volume: 99
  start-page: 2452
  year: 1997
  ident: 2922_CR26
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI119429
– volume: 16
  start-page: e0244736
  year: 2021
  ident: 2922_CR8
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0244736
– volume: 120
  start-page: 6
  year: 2019
  ident: 2922_CR38
  publication-title: Br. J. Cancer
  doi: 10.1038/s41416-018-0328-y
– volume: 334
  start-page: 36
  year: 2004
  ident: 2922_CR54
  publication-title: Anal. Biochem
  doi: 10.1016/j.ab.2004.06.042
– volume: 397
  start-page: 1209
  year: 2010
  ident: 2922_CR18
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2010.02.033
– ident: 2922_CR2
  doi: 10.1016/j.bbcan.2015.03.003
– volume: 36
  start-page: 705
  year: 2012
  ident: 2922_CR15
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.05.008
– volume: 163
  start-page: 3801
  year: 1999
  ident: 2922_CR28
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.163.7.3801
– volume: 82
  start-page: 848
  year: 1990
  ident: 2922_CR34
  publication-title: J. Natl Cancer Inst.
  doi: 10.1093/jnci/82.10.848
– volume: 247
  start-page: 77
  year: 1990
  ident: 2922_CR33
  publication-title: Science
  doi: 10.1126/science.1688470
SSID ssj0001999634
Score 2.2519333
Snippet Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of...
Sanjurjo et al investigate the role of galectins in immunomodulation, reporting that chemokines can control galectin immunomodulatory function through a...
SourceID doaj
swepub
pubmedcentral
hal
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1415
SubjectTerms 13/2
13/21
13/31
631/250/1932
631/535/878/1263
631/80/221
82/103
82/58
Affinity
Apoptosis
Basic Medicine
Binding sites
Biology
Biomedical and Life Sciences
CD4 antigen
CD8 antigen
Chemokine CXCL5 - metabolism
Chemokines
Cytokines
Galectin 1 - metabolism
Galectin-1
Galectin-9
Galectins - metabolism
Humans
Immunologi inom det medicinska området (Här ingår: Cell- och immunterapi)
Immunology in the Medical Area (including Cell and Immunotherapy)
Immunomodulation
Immunoregulation
Jurkat Cells
Life Sciences
Lymphocytes
Lymphocytes T
Medical and Health Sciences
Medicin och hälsovetenskap
Medicinska och farmaceutiska grundvetenskaper
Platelet Factor 4 - metabolism
Polysaccharides - metabolism
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdggMQL34PAQAHxBtEc20nsJzQQ0x7QNCSQJl4sxx9rRUlK007qf8-dk7aESXvhsYkbJ77z-Xfn8_0IeWuUDTV1dVbXtsiEF1VmZKCZMCwHKRvqjYlkE9XpqTw_V2dDwK0b0io3NjEaatdajJEfAtIHKJzzQn6Y_86QNQp3VwcKjZvkFlZJ4DF172wXY0E0z8VwVoZyediJmIyFeQmUKfDDxGg9imX7YZWZYFLkVcR5NXFyu3v6T6XRuDod3__f73pA7g24ND3qFekhueGbR-ROz1S5fky-YmGB9ifmyKe_WoecXz69mK1BMGk9jSdjUtO4FOBkOsUjJ-2iJ7lvF-sUz04gRUXahhQXJPjZdE_I9-PP3z6dZAMbQ2bLUiwzJaTnNFDFSgeGwTgrK2G9UZURBbOUexdyXgMesHVwVLiCsyKUIlSsFkYovk_2mrbxz0iaG2asBeRUOYdUHwZQiy9KA96yz4VXCck3MtF2KFWOjBkzHbfMudS9HDXIUUc5apGQd9v_zPtCHde2_oii3rbEItvxQru40MOc1baULoB75molBMw4RTFSZBgzgZeKwkPegKKMnnFy9EXjNcpFwcFTvMwTcrCRux7MQ6d3Qk_I6-1tmNi4W2Ma365iG4ZoEvt52qvdtisOw5mD_UxINVLI0buM7zTTSSweLkspBWMJeb9R3d1rXTdeP3r1HvcQPUQ9lKWa6NlKd17P_4o3a4BgoVRS6ACugQa0yjQA4FyDaoB-hNLzgj-_fohekLsMJ2zOwKQfkL3lYuVfktv2cjntFq_ijP8DSk5dfQ
  priority: 102
  providerName: ProQuest
Title Chemokines modulate glycan binding and the immunoregulatory activity of galectins
URI https://link.springer.com/article/10.1038/s42003-021-02922-4
https://www.ncbi.nlm.nih.gov/pubmed/34931005
https://www.proquest.com/docview/2611821358
https://www.proquest.com/docview/2612389304
https://hal.science/hal-03453605
https://pubmed.ncbi.nlm.nih.gov/PMC8688422
https://doaj.org/article/c68df428db944ead902027a22af36904
Volume 4
WOSCitedRecordID wos000732959100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2399-3642
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999634
  issn: 2399-3642
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2399-3642
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999634
  issn: 2399-3642
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaggMQF8SZQVgZxg6iO7ST2sUVbFYmuFgRS4WI5fnRXLEm1j0p74bczdrLLhkrlwsVSYidO5pH5Jh7PIPRGS-MrYqu0qkyecsfLVAtPUq5pBlzWxGkdi02Uo5E4O5PjnVJfISasTQ_cEu7AFMJ6wMi2kpzDa0sS3HVNqfYMPLuYCRRQz44zFf-uBBzPeLdLhjBxsOAxDCtEJBAqwQPjPUsUE_aDfZmEcMirWPNqyOR23fSvHKPRLh3fR_c6QIkP2xd5gG64-iG605aYXD9Cn0JGgOZHCG7HPxsbinU5fD5bA0VxNY1bWrCuLQYciKdhr0gzb6vTN_M1DpseQm0J3HgcLAkc1ovH6Ovx8Mv7k7Qro5CaouDLVHLhGPFE0sKCRmtrRMmN07LUPKeGMGd9xiow5KbylnCbM5r7gvuSVlxzyZ6gvbqp3TOEM021MQB5SmtDjQ4NcMPlhQY312XcyQRlG5Iq0-UYD6UuZiqudTOhWjYoYIOKbFA8QW-311y0GTauHX0UOLUdGbJjxxMgM6qTGfUvmUnQa-Bz7x4nhx9VOEcYzxm4eJdZgvY3YqA6vV4o8DfBIctYLhL0atsNGhmWWXTtmlUcQwMMDPM8baVmOxUDcmbw4UtQ2ZOn3rP0e-rpJGb9FoUQnNIEvdtI3p_Huo5e31vp7M8QXTvV5ZOaqNlKLZy62PlRrAA7-UIKrjxgegUwkypArpkC0QD58IVjOXv-P5jxAt2lQSszCl_sfbS3nK_cS3TbXC6ni_kA3SzPxADdOhqOxp8HUcmhPaXj0Jax_TWE_vGH0_G33zc2VnE
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamDgQv3C-FAQHBE0RLbCdxHhAal6nVuqpIQ9p4MY4vbUVJSi9D_VP8Rs5J0pYyqW974DGJEyfO53O-Y58LIS9Vql0WmMzPMh353PLEV8IFPlc0hL-sAqtUWWwi6XbF6Wna2yG_l7Ew6Fa5lImloDaFxjXyfWD6QIVDFol3458-Vo3C3dVlCY0KFkd28QtMtunb9kf4v68oPfx08qHl11UFfB3HfOanXFgWuCClsQGAK6NFwrVVaaJ4RHXArHEhy0Cv6cyZgJuI0cjF3CU044pj8iUQ-bscwC4aZLfXPu6drVd10H5gvI7OCZjYn_LS_Qs9IQKaguXHNzRgWSgA9NoA3TAvctyLrpqr_dp_cpuW-vDw5v82krfIjZp5ewfVVLlNdmx-h1ytanEu7pLPmDqh-I5RAN6PwmBVM-v1RwuAnpcNy9gfT-XGA8LsDTGoppjYPrYqJgsPo0OwCIdXOA9VLhzm03vky6V8z33SyIvcPiReqKjSGrhhYgwWM1HAy2wUKyaYDblNmyRcYkDqOhk71gQZydIpgAlZ4UYCbmSJG8mb5PXqnnGVimRr6_cIrVVLTCNenigmfVlLJaljYRwYoCZLOQeZkga4FqYoVY7FaQAPeQHA3HhG66Aj8VzAeMTAFj4Pm2RviTNZC8CpXIOsSZ6vLoPowv0oldtiXrahyJexnwcVzFddMRjOEDREkyQbE2DjXTav5MNBmR5dxEJwSpvkzXKqrF9r23h9rabTZg-lDSzrxFsDOZrLqZXjv1bUJZBMF6eCSwfGjwQ-TiVQ_FACNAAfLrYsYo-2D9Ezcq11ctyRnXb36DG5TlFYhBQU2B5pzCZz-4Rc0eez4XTytJY3Hvl22RPzDyTBu5I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemokines+modulate+glycan+binding+and+the+immunoregulatory+activity+of+galectins&rft.jtitle=Communications+biology&rft.au=Sanjurjo%2C+Luc%C3%ADa&rft.au=Schulkens%2C+Iris+A.&rft.au=Touarin%2C+Pauline&rft.au=Heusschen%2C+Roy&rft.date=2021-12-20&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2399-3642&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1038%2Fs42003-021-02922-4&rft.externalDocID=10_1038_s42003_021_02922_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3642&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3642&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3642&client=summon