Image processing for precise three-dimensional registration and stitching of thick high-resolution laser-scanning microscopy image stacks
The possible depth of imaging of laser-scanning microscopy is limited not only by the working distances of objective lenses but also by image degradation caused by attenuation and diffraction of light passing through the specimen. To tackle this problem, one can either flip the sample to record imag...
Uloženo v:
| Vydáno v: | Computers in biology and medicine Ročník 92; s. 22 - 41 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Ltd
01.01.2018
Elsevier Limited Elsevier |
| Témata: | |
| ISSN: | 0010-4825, 1879-0534, 1879-0534 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The possible depth of imaging of laser-scanning microscopy is limited not only by the working distances of objective lenses but also by image degradation caused by attenuation and diffraction of light passing through the specimen. To tackle this problem, one can either flip the sample to record images from both sides of the specimen or consecutively cut off shallow parts of the sample after taking serial images of certain thickness. Multiple image substacks acquired in these ways should be combined afterwards to generate a single stack. However, subtle movements of samples during image acquisition cause mismatch not only in the translation along x-, y-, and z-axes and rotation around z-axis but also tilting around x- and y-axes, making it difficult to register the substacks precisely. In this work, we developed a novel approach called 2D-SIFT-in-3D-Space using Scale Invariant Feature Transform (SIFT) to achieve robust three-dimensional matching of image substacks. Our method registers the substacks by separately fixing translation and rotation along x-, y-, and z-axes, through extraction and matching of stable features across two-dimensional sections of the 3D stacks. To validate the quality of registration, we developed a simulator of laser-scanning microscopy images to generate a virtual stack in which noise levels and rotation angles are controlled with known parameters. We illustrate quantitatively the performance of our approach by registering an entire brain of Drosophila melanogaster consisting of 800 sections. Our approach is also demonstrated to be extendable to other types of data that share large dimensions and need of fine registration of multiple image substacks. This method is implemented in Java and distributed as ImageJ/Fiji plugin. The source code is available via Github (http://www.creatis.insa-lyon.fr/site7/fr/MicroTools).
[Display omitted]
•A novel approach using SIFT to achieve robust three-dimensional matching of image substacks is proposed.•We illustrate quantitatively the performance of our approach by registering an entire brain of Drosophila melanogaster.•Our approach is extendable to other data that share large dimensions and need of fine registration of multiple image.•This method is implemented in Java and freely distributed as ImageJ/Fiji plugin. |
|---|---|
| AbstractList | AbstractThe possible depth of imaging of laser-scanning microscopy is limited not only by the working distances of objective lenses but also by image degradation caused by attenuation and diffraction of light passing through the specimen. To tackle this problem, one can either flip the sample to record images from both sides of the specimen or consecutively cut off shallow parts of the sample after taking serial images of certain thickness. Multiple image substacks acquired in these ways should be combined afterwards to generate a single stack. However, subtle movements of samples during image acquisition cause mismatch not only in the translation along x-, y-, and z-axes and rotation around z-axis but also tilting around x- and y-axes, making it difficult to register the substacks precisely. In this work, we developed a novel approach called 2D-SIFT-in-3D-Space using Scale Invariant Feature Transform (SIFT) to achieve robust three-dimensional matching of image substacks. Our method registers the substacks by separately fixing translation and rotation along x-, y-, and z-axes, through extraction and matching of stable features across two-dimensional sections of the 3D stacks. To validate the quality of registration, we developed a simulator of laser-scanning microscopy images to generate a virtual stack in which noise levels and rotation angles are controlled with known parameters. We illustrate quantitatively the performance of our approach by registering an entire brain of Drosophila melanogaster consisting of 800 sections. Our approach is also demonstrated to be extendable to other types of data that share large dimensions and need of fine registration of multiple image substacks. This method is implemented in Java and distributed as ImageJ/Fiji plugin. The source code is available via Github ( http://www.creatis.insa-lyon.fr/site7/fr/MicroTools). The possible depth of imaging of laser-scanning microscopy is limited not only by the working distances of objective lenses but also by image degradation caused by attenuation and diffraction of light passing through the specimen. To tackle this problem, one can either flip the sample to record images from both sides of the specimen or consecutively cut off shallow parts of the sample after taking serial images of certain thickness. Multiple image substacks acquired in these ways should be combined afterwards to generate a single stack. However, subtle movements of samples during image acquisition cause mismatch not only in the translation along x-, y-, and z-axes and rotation around z-axis but also tilting around x- and y-axes, making it difficult to register the substacks precisely. In this work, we developed a novel approach called 2D-SIFT-in-3D-Space using Scale Invariant Feature Transform (SIFT) to achieve robust three-dimensional matching of image substacks. Our method registers the substacks by separately fixing translation and rotation along x-, y-, and z-axes, through extraction and matching of stable features across two-dimensional sections of the 3D stacks. To validate the quality of registration, we developed a simulator of laser-scanning microscopy images to generate a virtual stack in which noise levels and rotation angles are controlled with known parameters. We illustrate quantitatively the performance of our approach by registering an entire brain of Drosophila melanogaster consisting of 800 sections. Our approach is also demonstrated to be extendable to other types of data that share large dimensions and need of fine registration of multiple image substacks. This method is implemented in Java and distributed as ImageJ/Fiji plugin. The source code is available via Github (http://www.creatis.insa-lyon.fr/site7/fr/MicroTools). The possible depth of imaging of laser-scanning microscopy is limited not only by the working distances of objective lenses but also by image degradation caused by attenuation and diffraction of light passing through the specimen. To tackle this problem, one can either flip the sample to record images from both sides of the specimen or consecutively cut off shallow parts of the sample after taking serial images of certain thickness. Multiple image substacks acquired in these ways should be combined afterwards to generate a single stack. However, subtle movements of samples during image acquisition cause mismatch not only in the translation along x-, y-, and z-axes and rotation around z-axis but also tilting around x- and y-axes, making it difficult to register the substacks precisely. In this work, we developed a novel approach called 2D-SIFT-in-3D-Space using Scale Invariant Feature Transform (SIFT) to achieve robust three-dimensional matching of image substacks. Our method registers the substacks by separately fixing translation and rotation along x-, y-, and z-axes, through extraction and matching of stable features across two-dimensional sections of the 3D stacks. To validate the quality of registration, we developed a simulator of laser-scanning microscopy images to generate a virtual stack in which noise levels and rotation angles are controlled with known parameters. We illustrate quantitatively the performance of our approach by registering an entire brain of Drosophila melanogaster consisting of 800 sections. Our approach is also demonstrated to be extendable to other types of data that share large dimensions and need of fine registration of multiple image substacks. This method is implemented in Java and distributed as ImageJ/Fiji plugin. The source code is available via Github (http://www.creatis.insa-lyon.fr/site7/fr/MicroTools).The possible depth of imaging of laser-scanning microscopy is limited not only by the working distances of objective lenses but also by image degradation caused by attenuation and diffraction of light passing through the specimen. To tackle this problem, one can either flip the sample to record images from both sides of the specimen or consecutively cut off shallow parts of the sample after taking serial images of certain thickness. Multiple image substacks acquired in these ways should be combined afterwards to generate a single stack. However, subtle movements of samples during image acquisition cause mismatch not only in the translation along x-, y-, and z-axes and rotation around z-axis but also tilting around x- and y-axes, making it difficult to register the substacks precisely. In this work, we developed a novel approach called 2D-SIFT-in-3D-Space using Scale Invariant Feature Transform (SIFT) to achieve robust three-dimensional matching of image substacks. Our method registers the substacks by separately fixing translation and rotation along x-, y-, and z-axes, through extraction and matching of stable features across two-dimensional sections of the 3D stacks. To validate the quality of registration, we developed a simulator of laser-scanning microscopy images to generate a virtual stack in which noise levels and rotation angles are controlled with known parameters. We illustrate quantitatively the performance of our approach by registering an entire brain of Drosophila melanogaster consisting of 800 sections. Our approach is also demonstrated to be extendable to other types of data that share large dimensions and need of fine registration of multiple image substacks. This method is implemented in Java and distributed as ImageJ/Fiji plugin. The source code is available via Github (http://www.creatis.insa-lyon.fr/site7/fr/MicroTools). The possible depth of imaging of laser-scanning microscopy is limited not only by the working distances of objective lenses but also by image degradation caused by attenuation and diffraction of light passing through the specimen. To tackle this problem, one can either flip the sample to record images from both sides of the specimen or consecutively cut off shallow parts of the sample after taking serial images of certain thickness. Multiple image substacks acquired in these ways should be combined afterwards to generate a single stack. However, subtle movements of samples during image acquisition cause mismatch not only in the translation along x-, y-, and z-axes and rotation around z-axis but also tilting around x- and y-axes, making it difficult to register the substacks precisely. In this work, we developed a novel approach called 2D-SIFT-in-3D-Space using Scale Invariant Feature Transform (SIFT) to achieve robust three-dimensional matching of image substacks. Our method registers the substacks by separately fixing translation and rotation along x-, y-, and z-axes, through extraction and matching of stable features across two-dimensional sections of the 3D stacks. To validate the quality of registration, we developed a simulator of laser-scanning microscopy images to generate a virtual stack in which noise levels and rotation angles are controlled with known parameters. We illustrate quantitatively the performance of our approach by registering an entire brain of Drosophila melanogaster consisting of 800 sections. Our approach is also demonstrated to be extendable to other types of data that share large dimensions and need of fine registration of multiple image substacks. This method is implemented in Java and distributed as ImageJ/Fiji plugin. The source code is available via Github (http://www.creatis.insa-lyon.fr/site7/fr/MicroTools). [Display omitted] •A novel approach using SIFT to achieve robust three-dimensional matching of image substacks is proposed.•We illustrate quantitatively the performance of our approach by registering an entire brain of Drosophila melanogaster.•Our approach is extendable to other data that share large dimensions and need of fine registration of multiple image.•This method is implemented in Java and freely distributed as ImageJ/Fiji plugin. The possible depth of imaging of laser-scanning microscopy is limited not only by the working distances of objective lenses but also by image degradation caused by attenuation and diffraction of light passing through the specimen. To tackle this problem, one can either flip the sample to record images from both sides of the specimen or consecutively cut off shallow parts of the sample after taking serial images of certain thickness. Multiple image substacks acquired in these ways should be combined afterwards to generate a single stack. However, subtle movements of samples during image acquisition cause mismatch not only in the translation along x-, y-, and z-axes and rotation around z-axis but also tilting around x-and y-axes, making it difficult to register the substacks precisely. In this work, we developed a novel approach called 2D-SIFT-in-3D-Space using Scale Invariant Feature Transform (SIFT) to achieve robust three-dimensional matching of image substacks. Our method registers the substacks by separately fixing translation and rotation along x-, y-, and z-axes, through extraction and matching of stable features across two-dimensional sections of the 3D stacks. To validate the quality of registration, we developed a simulator of laser-scanning microscopy images to generate a virtual stack in which noise levels and rotation angles are controlled with known parameters. We illustrate quantitatively the performance of our approach by registering an entire brain of Drosophila melanogaster consisting of 800 sections. Our approach is also demonstrated to be extendable to other types of data that share large dimensions and need of fine registration of multiple image substacks. This method is implemented in Java and distributed as ImageJ/Fiji plugin. The source code is available via Github (www.creatis.insa-lyon.fr/site7/fr/MicroTools). |
| Author | Ito, Kei Frindel, Carole Murtin, Chloé Rousseau, David |
| Author_xml | – sequence: 1 givenname: Chloé surname: Murtin fullname: Murtin, Chloé organization: Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, 113-0032 Tokyo, Japan – sequence: 2 givenname: Carole surname: Frindel fullname: Frindel, Carole organization: CREATIS, Institut National des Sciences Appliquées de Lyon (INSA Lyon), 7 Avenue J Capelle, bat. Blaise Pascal, F-69621 Villeurbanne cedex, France – sequence: 3 givenname: David surname: Rousseau fullname: Rousseau, David email: david.rousseau@univ-angers.fr organization: CREATIS, Institut National des Sciences Appliquées de Lyon (INSA Lyon), 7 Avenue J Capelle, bat. Blaise Pascal, F-69621 Villeurbanne cedex, France – sequence: 4 givenname: Kei surname: Ito fullname: Ito, Kei organization: Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, 113-0032 Tokyo, Japan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29145044$$D View this record in MEDLINE/PubMed https://hal.science/hal-01690908$$DView record in HAL |
| BookMark | eNqNktFq2zAUhsXoWNNsrzAMu9kunEmWLcs3ZV3Z1kJgF-u9kKXjRIktZZJdyCPsrScl7QqBQS6E0NF3_iN-_VfowjoLCGUELwgm7PNmodywa40bQC8KTOpYXuCifoVmhNdNjitaXqAZxgTnJS-qS3QVwgZjXGKK36DLoiFlhctyhv7cD3IF2c47BSEYu8o65-MRlAmQjWsPkGszgA3GWdlnHlYmjF6O8ZhJq7MwmlGtU6PrIm_UNlub1Tr3EFw_HbBeBvB5UNLaxA1GeReU2-0zcxgeRqm24S163ck-wLunfY4evn97uL3Llz9_3N_eLHPFWDnmNdGUUFWxtuYaaEd5xZhmWhLNW6Yq3oBUZYOrWquWQNMy3hWK6K6rFC00naNPR9m17MXOxxf4vXDSiLubpUi16G-DG8wfSWQ_Htloz-8JwigGExT0vbTgpiBIw1hBC8rriH44QTdu8tGxRPG6pqQhiXr_RE1t_Lp_85__IwLXRyBZFDx0QpnxYHb03PSCYJECIDbiJQAiBSDdxABEAX4i8DzjjNavx1aI7j8a8CIoA1aBNjEOo9DOnCNyfSKiemONkv0W9hBeTBGhEFj8ShFNCY3mYFrFNUdf_i9w3hv-Ao7r_ko |
| CitedBy_id | crossref_primary_10_1007_s00709_021_01679_1 crossref_primary_10_1093_gigascience_giaa035 crossref_primary_10_3389_feart_2020_00345 crossref_primary_10_1063_5_0233070 crossref_primary_10_1371_journal_pone_0214504 crossref_primary_10_1002_pro_3993 |
| Cites_doi | 10.1016/j.compbiomed.2016.11.020 10.1016/j.cub.2015.03.021 10.1023/A:1008045108935 10.1016/j.neucom.2007.11.032 10.3389/fnins.2010.00205 10.1093/bioinformatics/btq219 10.1007/s12021-012-9166-x 10.1073/pnas.082544799 10.1038/nmeth.1854 10.1016/j.compbiomed.2016.09.019 10.1242/dev.118.2.401 10.1023/B:VISI.0000029664.99615.94 10.1016/j.compbiomed.2015.12.013 10.1038/nature12450 10.1038/nn.2928 10.1016/S0262-8856(03)00137-9 10.1007/s12021-010-9095-5 10.1016/j.compbiomed.2016.01.009 10.7554/eLife.10566 10.1155/2013/569326 10.1038/nmeth.2929 10.1038/nmeth.2072 10.1016/j.neuron.2013.12.017 10.1093/bioinformatics/btp184 10.1364/AO.30.003563 10.1002/cne.21966 10.1007/978-1-60761-404-3_13 10.1038/nmeth0610-418 10.1038/nature12107 10.1038/nmeth.2808 10.1016/0031-3203(93)90115-D 10.1016/j.compbiomed.2016.10.008 10.1002/jemt.10369 10.1364/OE.21.009839 10.1002/cyto.a.20895 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited Jan 1, 2018 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited Jan 1, 2018 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES |
| DOI | 10.1016/j.compbiomed.2017.10.027 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database Health & Medical Collection (Alumni Edition) Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Research Library Prep MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 41 |
| ExternalDocumentID | oai:HAL:hal-01690908v1 29145044 10_1016_j_compbiomed_2017_10_027 S0010482517303530 1_s2_0_S0010482517303530 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Japan |
| GeographicLocations_xml | – name: Japan |
| GroupedDBID | --- --K --M --Z -~X .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ABMZM ABOCM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACPRK ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD ARAPS AXJTR AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 EX3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HMCUK IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 ROL RPZ RXW SCC SDF SDG SDP SEL SES SPC SPCBC SSH SSV SSZ T5K UKHRP WOW Z5R ~G- ~HD .55 .GJ 29F 3V. 53G AACTN AAQXK ABFNM ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AFCTW AFJKZ AFKWA AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN EMOBN FEDTE FGOYB G-2 HLZ HMK HMO HVGLF HZ~ M0N R2- RIG SAE SBC SEW SV3 TAE UAP WUQ X7M XPP ZGI AAIAV ABLVK ABYKQ AJBFU LCYCR 9DU AAYXX AFFHD AGQPQ AIGII APXCP CITATION CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 1XC VOOES |
| ID | FETCH-LOGICAL-c664t-71d313c56b78de3f38566d6da1d8b6c589eac49057dcb1e9b68f2c1dff5c32d3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000423640300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Tue Oct 14 20:43:07 EDT 2025 Thu Oct 02 12:11:20 EDT 2025 Sat Nov 29 14:25:26 EST 2025 Wed Feb 19 02:36:08 EST 2025 Tue Nov 18 22:14:43 EST 2025 Sat Nov 29 07:31:37 EST 2025 Fri Feb 23 02:47:56 EST 2024 Sun Feb 23 10:19:13 EST 2025 Tue Oct 14 19:33:02 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Laser-scanning microscopy Brain SIFT Registration Drosophila Stitching Connectomics |
| Language | English |
| License | Copyright © 2017 Elsevier Ltd. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c664t-71d313c56b78de3f38566d6da1d8b6c589eac49057dcb1e9b68f2c1dff5c32d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4570-0994 |
| OpenAccessLink | https://hal.science/hal-01690908 |
| PMID | 29145044 |
| PQID | 1987731917 |
| PQPubID | 1226355 |
| PageCount | 20 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01690908v1 proquest_miscellaneous_1966232387 proquest_journals_1987731917 pubmed_primary_29145044 crossref_citationtrail_10_1016_j_compbiomed_2017_10_027 crossref_primary_10_1016_j_compbiomed_2017_10_027 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2017_10_027 elsevier_clinicalkeyesjournals_1_s2_0_S0010482517303530 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2017_10_027 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-01-01 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Elsevier Limited Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited – name: Elsevier |
| References | Shih, Sporns, Yuan, Su, Lin, Chuang, Wang, Lo, Greenspan, Chiang (bib3) 2015; 25 Li, Allinson (bib24) 2008; 71 Paganelli, Peroni, Pennati, Baroni, Summers, Bellomi, Riboldi (bib29) 2012 Yang, Ding, Zhu, Wang (bib15) 2016; 79 Scovanner, Ali, Shah (bib26) 2007 Allaire, Kim, Breen, Jaffray, Pekar (bib30) 2008 Li, Lee (bib40) 1993; 26 Saalfeld, Tomancák (bib37) 2008 Fritzky, Lagunoff (bib4) 2013; 36 Preibisch, Saalfeld, Schindelin, Tomancak (bib22) 2010; 7 Graf, Boppart (bib8) 2010 Takemura, Bharioke, Lu, Nern, Vitaladevuni, Rivlin, Katz, Olbris, Plaza, Winston (bib33) 2013; 500 White, Humphrey, Hirth (bib35) 2010; 4 Chung, Wallace, Kim, Kalyanasundaram, Andalman, Davidson, Mirzabekov, Zalocusky, Mattis, Denisin (bib6) 2013; 497 Preibisch, Saalfeld, Tomancak (bib20) 2009; 25 Brown, Barrionuevo, Canty, De Paola, Hirsch, Jefferis, Lu, Snippe, Sugihara, Ascoli (bib2) 2011; 9 Economo, Clack, Arthur, Bruns, Bas, Chandrashekar (bib23) 2015 Herberich, Windoffer, Leube, Aach (bib39) 2012 Saalfeld, Cardona, Hartenstein, Tomančák (bib38) 2010; 26 Booth, Neil, Juškaitis, Wilson (bib44) 2002; 99 Lowe (bib25) 2004; 60 Song, Lee, Kang, Shin, Hong, Park, Lee, Shin (bib16) 2017; 80 Kim, Lee, Chung, Shin (bib17) 2016; 70 Savva, Economopoulos, Matsopoulos (bib18) 2016; 69 Flitton, Breckon, Bouallagu (bib27) 2010 Ni, Qu, Yang, Chui, Wong, Ho, Heng (bib31) 2008 Zitova, Flusser (bib13) 2003; 21 Busch, Selcho, Ito, Tanimoto (bib34) 2009; 513 Lindeberg (bib36) 1998; 30 Hama, Kurokawa, Kawano, Ando, Shimogori, Noda, Fukami, Sakaue-Sawano, Miyawaki (bib7) 2011; 14 Chenouard, Smal, De Chaumont, Maška, Sbalzarini, Gong, Cardinale, Carthel, Coraluppi, Winter (bib45) 2014; 11 Ito, Okada, Tanaka, Awasaki (bib5) 2003; 62 Sheppard, Gu (bib43) 1991; 30 Zheng, Yang, Li, Lv, Zhou, Wang, Qi, Li, Luo, Gong (bib10) 2013; 21 Ragan, Kadiri, Venkataraju, Bahlmann, Sutin, Taranda, Arganda-Carreras, Kim, Seung, Osten (bib9) 2012; 9 Cardona (bib11) 2013; 11 Figueiredo, Moura, Neves, Pinto, Kumar, Oliveira, Ramos (bib14) 2016; 79 Ito, Shinomiya, Ito, Armstrong, Boyan, Hartenstein, Harzsch, Heisenberg, Homberg, Jenett (bib32) 2014; 81 Rohlfing (bib19) 2011 Economo, Clack, Lavis, Gerfen, Svoboda, Myers, Chandrashekar (bib21) 2016; 5 Preibisch, Amat, Stamataki, Sarov, Singer, Myers, Tomancak (bib41) 2014; 11 Cheung, Hamarneh (bib28) 2007 Meijering (bib12) 2010; 77 Brand, Perrimon (bib1) 1993; 118 Saalfeld, Fetter, Cardona, Tomancak (bib42) 2012; 9 Flitton (10.1016/j.compbiomed.2017.10.027_bib27) 2010 Ito (10.1016/j.compbiomed.2017.10.027_bib5) 2003; 62 Herberich (10.1016/j.compbiomed.2017.10.027_bib39) 2012 Scovanner (10.1016/j.compbiomed.2017.10.027_bib26) 2007 Busch (10.1016/j.compbiomed.2017.10.027_bib34) 2009; 513 Saalfeld (10.1016/j.compbiomed.2017.10.027_bib42) 2012; 9 Meijering (10.1016/j.compbiomed.2017.10.027_bib12) 2010; 77 Economo (10.1016/j.compbiomed.2017.10.027_bib21) 2016; 5 Saalfeld (10.1016/j.compbiomed.2017.10.027_bib38) 2010; 26 Brand (10.1016/j.compbiomed.2017.10.027_bib1) 1993; 118 Yang (10.1016/j.compbiomed.2017.10.027_bib15) 2016; 79 White (10.1016/j.compbiomed.2017.10.027_bib35) 2010; 4 Booth (10.1016/j.compbiomed.2017.10.027_bib44) 2002; 99 Lowe (10.1016/j.compbiomed.2017.10.027_bib25) 2004; 60 Savva (10.1016/j.compbiomed.2017.10.027_bib18) 2016; 69 Rohlfing (10.1016/j.compbiomed.2017.10.027_bib19) 2011 Chenouard (10.1016/j.compbiomed.2017.10.027_bib45) 2014; 11 Fritzky (10.1016/j.compbiomed.2017.10.027_bib4) 2013; 36 Zitova (10.1016/j.compbiomed.2017.10.027_bib13) 2003; 21 Preibisch (10.1016/j.compbiomed.2017.10.027_bib41) 2014; 11 Ni (10.1016/j.compbiomed.2017.10.027_bib31) 2008 Li (10.1016/j.compbiomed.2017.10.027_bib24) 2008; 71 Preibisch (10.1016/j.compbiomed.2017.10.027_bib22) 2010; 7 Ito (10.1016/j.compbiomed.2017.10.027_bib32) 2014; 81 Shih (10.1016/j.compbiomed.2017.10.027_bib3) 2015; 25 Song (10.1016/j.compbiomed.2017.10.027_bib16) 2017; 80 Li (10.1016/j.compbiomed.2017.10.027_bib40) 1993; 26 Cheung (10.1016/j.compbiomed.2017.10.027_bib28) 2007 Paganelli (10.1016/j.compbiomed.2017.10.027_bib29) 2012 Hama (10.1016/j.compbiomed.2017.10.027_bib7) 2011; 14 Brown (10.1016/j.compbiomed.2017.10.027_bib2) 2011; 9 Figueiredo (10.1016/j.compbiomed.2017.10.027_bib14) 2016; 79 Economo (10.1016/j.compbiomed.2017.10.027_bib23) 2015 Takemura (10.1016/j.compbiomed.2017.10.027_bib33) 2013; 500 Graf (10.1016/j.compbiomed.2017.10.027_bib8) 2010 Lindeberg (10.1016/j.compbiomed.2017.10.027_bib36) 1998; 30 Saalfeld (10.1016/j.compbiomed.2017.10.027_bib37) 2008 Kim (10.1016/j.compbiomed.2017.10.027_bib17) 2016; 70 Sheppard (10.1016/j.compbiomed.2017.10.027_bib43) 1991; 30 Ragan (10.1016/j.compbiomed.2017.10.027_bib9) 2012; 9 Allaire (10.1016/j.compbiomed.2017.10.027_bib30) 2008 Chung (10.1016/j.compbiomed.2017.10.027_bib6) 2013; 497 Preibisch (10.1016/j.compbiomed.2017.10.027_bib20) 2009; 25 Zheng (10.1016/j.compbiomed.2017.10.027_bib10) 2013; 21 Cardona (10.1016/j.compbiomed.2017.10.027_bib11) 2013; 11 |
| References_xml | – volume: 26 start-page: i57 year: 2010 end-page: i63 ident: bib38 article-title: As-rigid-as-possible mosaicking and serial section registration of large sstem datasets publication-title: Bioinformatics – volume: 11 start-page: 31 year: 2013 end-page: 33 ident: bib11 article-title: Towards semi-automatic reconstruction of neural circuits publication-title: Neuroinformatics – volume: 11 start-page: 281 year: 2014 end-page: 289 ident: bib45 article-title: Objective comparison of particle tracking methods publication-title: Nat. Methods – volume: 30 start-page: 3563 year: 1991 end-page: 3568 ident: bib43 article-title: Aberration compensation in confocal microscopy publication-title: Appl. Opt. – volume: 79 start-page: 99 year: 2016 end-page: 109 ident: bib15 article-title: Ultrasound fusion image error correction using subject-specific liver motion model and automatic image registration publication-title: Comput. Biol. Med. – volume: 26 start-page: 617 year: 1993 end-page: 625 ident: bib40 article-title: Minimum cross entropy thresholding publication-title: Pattern Recognit. – start-page: 52 year: 2008 end-page: 60 ident: bib31 article-title: Volumetric ultrasound panorama based on 3d sift publication-title: International Conference on Medical Image Computing and Computer-assisted Intervention – volume: 36 start-page: 5 year: 2013 end-page: 17 ident: bib4 article-title: Advanced methods in fluorescence microscopy publication-title: Anal. Cell. Pathol. – volume: 500 start-page: 175 year: 2013 end-page: 181 ident: bib33 article-title: A visual motion detection circuit suggested by Drosophila connectomics publication-title: Nature – volume: 4 start-page: 205 year: 2010 ident: bib35 article-title: The dopaminergic system in the aging brain of Drosophila publication-title: Front. Neurosci. – volume: 9 start-page: 255 year: 2012 end-page: 258 ident: bib9 article-title: Serial two-photon tomography for automated ex vivo mouse brain imaging publication-title: Nat. Methods – start-page: 1 year: 2010 end-page: 12 ident: bib27 article-title: Object recognition using 3D SIFT in complex ct volumes publication-title: BMVC – volume: 79 start-page: 130 year: 2016 end-page: 143 ident: bib14 article-title: Automated retina identification based on multiscale elastic registration publication-title: Comput. Biol. Med. – volume: 69 start-page: 120 year: 2016 end-page: 133 ident: bib18 article-title: Geometry-based vs. intensity-based medical image registration: a comparative study on 3D CT data publication-title: Comput. Biol. Med. – volume: 9 start-page: 717 year: 2012 end-page: 720 ident: bib42 article-title: Elastic volume reconstruction from series of ultra-thin microscopy sections publication-title: Nat. Methods – start-page: 211 year: 2010 end-page: 227 ident: bib8 article-title: Imaging and analysis of three-dimensional cell culture models publication-title: Live Cell Imaging Methods Protoc. – volume: 77 start-page: 693 year: 2010 end-page: 704 ident: bib12 article-title: Neuron tracing in perspective publication-title: Cytom. Part A – volume: 118 start-page: 401 year: 1993 end-page: 415 ident: bib1 article-title: Targeted gene expression as a means of altering cell fates and generating dominant phenotypes publication-title: Development – volume: 71 start-page: 1771 year: 2008 end-page: 1787 ident: bib24 article-title: A comprehensive review of current local features for computer vision publication-title: Neurocomputing – volume: 62 start-page: 170 year: 2003 end-page: 186 ident: bib5 article-title: Cautionary observations on preparing and interpreting brain images using molecular biology-based staining techniques publication-title: Microsc. Res. Tech. – start-page: 1 year: 2008 end-page: 8 ident: bib30 article-title: Full orientation invariance and improved feature selectivity of 3d sift with application to medical image analysis publication-title: Computer Vision and Pattern Recognition Workshops, 2008 – volume: 81 start-page: 755 year: 2014 end-page: 765 ident: bib32 article-title: A systematic nomenclature for the insect brain publication-title: Neuron – volume: 9 start-page: 143 year: 2011 end-page: 157 ident: bib2 article-title: The diadem data sets: representative light microscopy images of neuronal morphology to advance automation of digital reconstructions publication-title: Neuroinformatics – volume: 25 start-page: 1249 year: 2015 end-page: 1258 ident: bib3 article-title: Connectomics-based analysis of information flow in the Drosophila brain publication-title: Curr. Biol. – volume: 21 start-page: 977 year: 2003 end-page: 1000 ident: bib13 article-title: Image registration methods: a survey publication-title: Image Vis. Comput. – volume: 25 start-page: 1463 year: 2009 end-page: 1465 ident: bib20 article-title: Globally optimal stitching of tiled 3D microscopic image acquisitions publication-title: Bioinformatics – start-page: 720 year: 2007 end-page: 723 ident: bib28 article-title: N-sift: N-dimensional scale invariant feature transform for matching medical images publication-title: Biomedical Imaging: from Nano to Macro, 2007 – volume: 497 start-page: 332 year: 2013 end-page: 337 ident: bib6 article-title: Structural and molecular interrogation of intact biological systems publication-title: Nature – volume: 5 year: 2016 ident: bib21 article-title: A platform for brain-wide imaging and reconstruction of individual neurons publication-title: Elife – start-page: 6543 year: 2012 end-page: 6546 ident: bib29 article-title: Scale invariant feature transform as feature tracking method in 4d imaging: a feasibility study publication-title: Engineering in Medicine and Biology Society (EMBC) – volume: 14 start-page: 1481 year: 2011 end-page: 1488 ident: bib7 article-title: Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain publication-title: Nat. Neurosci. – start-page: 357 year: 2007 end-page: 360 ident: bib26 article-title: A 3-dimensional SIFT descriptor and its application to action recognition publication-title: Proceedings of the 15th ACM International Conference on Multimedia – volume: 99 start-page: 5788 year: 2002 end-page: 5792 ident: bib44 article-title: Adaptive aberration correction in a confocal microscope publication-title: Proc. Natl. Acad. Sci. – volume: 70 start-page: 119 year: 2016 end-page: 130 ident: bib17 article-title: Locally adaptive 2D–3D registration using vascular structure model for liver catheterization publication-title: Comput. Biol. Med. – volume: 513 start-page: 643 year: 2009 end-page: 667 ident: bib34 article-title: A map of octopaminergic neurons in the Drosophila brain publication-title: J. Comp. Neurol. – volume: 30 start-page: 79 year: 1998 end-page: 116 ident: bib36 article-title: Feature detection with automatic scale selection publication-title: Int. J. Comput. Vis. – volume: 60 start-page: 91 year: 2004 end-page: 110 ident: bib25 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. – start-page: 128 year: 2008 end-page: 133 ident: bib37 article-title: Automatic landmark correspondence detection for imagej publication-title: Proceedings of the ImageJ User and Developer Conference – volume: 7 start-page: 418 year: 2010 end-page: 419 ident: bib22 article-title: Software for bead-based registration of selective plane illumination microscopy data publication-title: Nat. Methods – year: 2015 ident: bib23 article-title: Registration and resampling of large-scale 3D mosaic images publication-title: Proceedings of BioImage Informatics Conference – volume: 80 start-page: 124 year: 2017 end-page: 136 ident: bib16 article-title: Interactive registration between supine and prone scans in computed tomography colonography using band-height images publication-title: Comput. Biol. Med. – volume: 11 start-page: 645 year: 2014 end-page: 648 ident: bib41 article-title: Efficient bayesian-based multiview deconvolution publication-title: Nat. Methods – volume: 21 start-page: 9839 year: 2013 end-page: 9850 ident: bib10 article-title: Visualization of brain circuits using two-photon fluorescence micro-optical sectioning tomography publication-title: Opt. Express – year: 2011 ident: bib19 article-title: User Guide to the Computational Morphometry Toolkit – start-page: 381 year: 2012 end-page: 388 ident: bib39 article-title: Signal and noise modeling in confocal laser scanning fluorescence microscopy publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012 – volume: 80 start-page: 124 year: 2017 ident: 10.1016/j.compbiomed.2017.10.027_bib16 article-title: Interactive registration between supine and prone scans in computed tomography colonography using band-height images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.11.020 – volume: 25 start-page: 1249 issue: 10 year: 2015 ident: 10.1016/j.compbiomed.2017.10.027_bib3 article-title: Connectomics-based analysis of information flow in the Drosophila brain publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.03.021 – volume: 30 start-page: 79 issue: 2 year: 1998 ident: 10.1016/j.compbiomed.2017.10.027_bib36 article-title: Feature detection with automatic scale selection publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1008045108935 – volume: 71 start-page: 1771 issue: 10 year: 2008 ident: 10.1016/j.compbiomed.2017.10.027_bib24 article-title: A comprehensive review of current local features for computer vision publication-title: Neurocomputing doi: 10.1016/j.neucom.2007.11.032 – start-page: 52 year: 2008 ident: 10.1016/j.compbiomed.2017.10.027_bib31 article-title: Volumetric ultrasound panorama based on 3d sift – volume: 4 start-page: 205 year: 2010 ident: 10.1016/j.compbiomed.2017.10.027_bib35 article-title: The dopaminergic system in the aging brain of Drosophila publication-title: Front. Neurosci. doi: 10.3389/fnins.2010.00205 – volume: 26 start-page: i57 issue: 12 year: 2010 ident: 10.1016/j.compbiomed.2017.10.027_bib38 article-title: As-rigid-as-possible mosaicking and serial section registration of large sstem datasets publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq219 – volume: 11 start-page: 31 issue: 1 year: 2013 ident: 10.1016/j.compbiomed.2017.10.027_bib11 article-title: Towards semi-automatic reconstruction of neural circuits publication-title: Neuroinformatics doi: 10.1007/s12021-012-9166-x – volume: 99 start-page: 5788 issue: 9 year: 2002 ident: 10.1016/j.compbiomed.2017.10.027_bib44 article-title: Adaptive aberration correction in a confocal microscope publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.082544799 – volume: 9 start-page: 255 issue: 3 year: 2012 ident: 10.1016/j.compbiomed.2017.10.027_bib9 article-title: Serial two-photon tomography for automated ex vivo mouse brain imaging publication-title: Nat. Methods doi: 10.1038/nmeth.1854 – volume: 79 start-page: 130 year: 2016 ident: 10.1016/j.compbiomed.2017.10.027_bib14 article-title: Automated retina identification based on multiscale elastic registration publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.09.019 – volume: 118 start-page: 401 issue: 2 year: 1993 ident: 10.1016/j.compbiomed.2017.10.027_bib1 article-title: Targeted gene expression as a means of altering cell fates and generating dominant phenotypes publication-title: Development doi: 10.1242/dev.118.2.401 – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 10.1016/j.compbiomed.2017.10.027_bib25 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 69 start-page: 120 year: 2016 ident: 10.1016/j.compbiomed.2017.10.027_bib18 article-title: Geometry-based vs. intensity-based medical image registration: a comparative study on 3D CT data publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.12.013 – volume: 500 start-page: 175 issue: 7461 year: 2013 ident: 10.1016/j.compbiomed.2017.10.027_bib33 article-title: A visual motion detection circuit suggested by Drosophila connectomics publication-title: Nature doi: 10.1038/nature12450 – volume: 14 start-page: 1481 issue: 11 year: 2011 ident: 10.1016/j.compbiomed.2017.10.027_bib7 article-title: Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain publication-title: Nat. Neurosci. doi: 10.1038/nn.2928 – volume: 21 start-page: 977 issue: 11 year: 2003 ident: 10.1016/j.compbiomed.2017.10.027_bib13 article-title: Image registration methods: a survey publication-title: Image Vis. Comput. doi: 10.1016/S0262-8856(03)00137-9 – start-page: 720 year: 2007 ident: 10.1016/j.compbiomed.2017.10.027_bib28 article-title: N-sift: N-dimensional scale invariant feature transform for matching medical images – start-page: 1 year: 2008 ident: 10.1016/j.compbiomed.2017.10.027_bib30 article-title: Full orientation invariance and improved feature selectivity of 3d sift with application to medical image analysis – start-page: 128 year: 2008 ident: 10.1016/j.compbiomed.2017.10.027_bib37 article-title: Automatic landmark correspondence detection for imagej – volume: 9 start-page: 143 issue: 2–3 year: 2011 ident: 10.1016/j.compbiomed.2017.10.027_bib2 article-title: The diadem data sets: representative light microscopy images of neuronal morphology to advance automation of digital reconstructions publication-title: Neuroinformatics doi: 10.1007/s12021-010-9095-5 – volume: 70 start-page: 119 year: 2016 ident: 10.1016/j.compbiomed.2017.10.027_bib17 article-title: Locally adaptive 2D–3D registration using vascular structure model for liver catheterization publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.01.009 – volume: 5 year: 2016 ident: 10.1016/j.compbiomed.2017.10.027_bib21 article-title: A platform for brain-wide imaging and reconstruction of individual neurons publication-title: Elife doi: 10.7554/eLife.10566 – volume: 36 start-page: 5 issue: 1–2 year: 2013 ident: 10.1016/j.compbiomed.2017.10.027_bib4 article-title: Advanced methods in fluorescence microscopy publication-title: Anal. Cell. Pathol. doi: 10.1155/2013/569326 – volume: 11 start-page: 645 issue: 6 year: 2014 ident: 10.1016/j.compbiomed.2017.10.027_bib41 article-title: Efficient bayesian-based multiview deconvolution publication-title: Nat. Methods doi: 10.1038/nmeth.2929 – year: 2015 ident: 10.1016/j.compbiomed.2017.10.027_bib23 article-title: Registration and resampling of large-scale 3D mosaic images – start-page: 1 year: 2010 ident: 10.1016/j.compbiomed.2017.10.027_bib27 article-title: Object recognition using 3D SIFT in complex ct volumes – volume: 9 start-page: 717 issue: 7 year: 2012 ident: 10.1016/j.compbiomed.2017.10.027_bib42 article-title: Elastic volume reconstruction from series of ultra-thin microscopy sections publication-title: Nat. Methods doi: 10.1038/nmeth.2072 – start-page: 6543 year: 2012 ident: 10.1016/j.compbiomed.2017.10.027_bib29 article-title: Scale invariant feature transform as feature tracking method in 4d imaging: a feasibility study – volume: 81 start-page: 755 issue: 4 year: 2014 ident: 10.1016/j.compbiomed.2017.10.027_bib32 article-title: A systematic nomenclature for the insect brain publication-title: Neuron doi: 10.1016/j.neuron.2013.12.017 – volume: 25 start-page: 1463 issue: 11 year: 2009 ident: 10.1016/j.compbiomed.2017.10.027_bib20 article-title: Globally optimal stitching of tiled 3D microscopic image acquisitions publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp184 – volume: 30 start-page: 3563 issue: 25 year: 1991 ident: 10.1016/j.compbiomed.2017.10.027_bib43 article-title: Aberration compensation in confocal microscopy publication-title: Appl. Opt. doi: 10.1364/AO.30.003563 – volume: 513 start-page: 643 issue: 6 year: 2009 ident: 10.1016/j.compbiomed.2017.10.027_bib34 article-title: A map of octopaminergic neurons in the Drosophila brain publication-title: J. Comp. Neurol. doi: 10.1002/cne.21966 – start-page: 211 year: 2010 ident: 10.1016/j.compbiomed.2017.10.027_bib8 article-title: Imaging and analysis of three-dimensional cell culture models publication-title: Live Cell Imaging Methods Protoc. doi: 10.1007/978-1-60761-404-3_13 – volume: 7 start-page: 418 issue: 6 year: 2010 ident: 10.1016/j.compbiomed.2017.10.027_bib22 article-title: Software for bead-based registration of selective plane illumination microscopy data publication-title: Nat. Methods doi: 10.1038/nmeth0610-418 – volume: 497 start-page: 332 issue: 7449 year: 2013 ident: 10.1016/j.compbiomed.2017.10.027_bib6 article-title: Structural and molecular interrogation of intact biological systems publication-title: Nature doi: 10.1038/nature12107 – year: 2011 ident: 10.1016/j.compbiomed.2017.10.027_bib19 – volume: 11 start-page: 281 issue: 3 year: 2014 ident: 10.1016/j.compbiomed.2017.10.027_bib45 article-title: Objective comparison of particle tracking methods publication-title: Nat. Methods doi: 10.1038/nmeth.2808 – start-page: 357 year: 2007 ident: 10.1016/j.compbiomed.2017.10.027_bib26 article-title: A 3-dimensional SIFT descriptor and its application to action recognition – volume: 26 start-page: 617 issue: 4 year: 1993 ident: 10.1016/j.compbiomed.2017.10.027_bib40 article-title: Minimum cross entropy thresholding publication-title: Pattern Recognit. doi: 10.1016/0031-3203(93)90115-D – volume: 79 start-page: 99 year: 2016 ident: 10.1016/j.compbiomed.2017.10.027_bib15 article-title: Ultrasound fusion image error correction using subject-specific liver motion model and automatic image registration publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.10.008 – start-page: 381 year: 2012 ident: 10.1016/j.compbiomed.2017.10.027_bib39 article-title: Signal and noise modeling in confocal laser scanning fluorescence microscopy – volume: 62 start-page: 170 issue: 2 year: 2003 ident: 10.1016/j.compbiomed.2017.10.027_bib5 article-title: Cautionary observations on preparing and interpreting brain images using molecular biology-based staining techniques publication-title: Microsc. Res. Tech. doi: 10.1002/jemt.10369 – volume: 21 start-page: 9839 issue: 8 year: 2013 ident: 10.1016/j.compbiomed.2017.10.027_bib10 article-title: Visualization of brain circuits using two-photon fluorescence micro-optical sectioning tomography publication-title: Opt. Express doi: 10.1364/OE.21.009839 – volume: 77 start-page: 693 issue: 7 year: 2010 ident: 10.1016/j.compbiomed.2017.10.027_bib12 article-title: Neuron tracing in perspective publication-title: Cytom. Part A doi: 10.1002/cyto.a.20895 |
| SSID | ssj0004030 |
| Score | 2.208951 |
| Snippet | The possible depth of imaging of laser-scanning microscopy is limited not only by the working distances of objective lenses but also by image degradation... AbstractThe possible depth of imaging of laser-scanning microscopy is limited not only by the working distances of objective lenses but also by image... |
| SourceID | hal proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 22 |
| SubjectTerms | Algorithms Animals Axes (reference lines) Bioengineering Brain Brain - cytology Brain - diagnostic imaging Computer Simulation Connectomics Dimensional stability Drosophila Drosophila - anatomy & histology Drosophila - cytology Engineering Sciences Feasibility studies Feature extraction Image acquisition Image degradation Image processing Image resolution Imaging Imaging, Three-Dimensional - methods Insects Internal Medicine International conferences Laser-scanning microscopy Lasers Life Sciences Light diffraction Matching Medical imaging Methods Microscopy Microscopy, Confocal - methods Microtools Neuroimaging Neurons Noise Noise levels Other Registration Scanning microscopy SIFT Signal and Image processing Software Stacks Stitching Translation |
| Title | Image processing for precise three-dimensional registration and stitching of thick high-resolution laser-scanning microscopy image stacks |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482517303530 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482517303530 https://dx.doi.org/10.1016/j.compbiomed.2017.10.027 https://www.ncbi.nlm.nih.gov/pubmed/29145044 https://www.proquest.com/docview/1987731917 https://www.proquest.com/docview/1966232387 https://hal.science/hal-01690908 |
| Volume | 92 |
| WOSCitedRecordID | wos000423640300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: P5Z dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: M7P dateStart: 20030101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: K7- dateStart: 20030101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7RV dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: M2O dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfohhAvfI8VRmUQr4Y4TuJEPKCBNg2xlWpMU8WLFX9EjG1pabpJ_An819zFTvoyUCVeLKXJ1bF8Of_O_t0dIa91m_LEaOZKgG-J1ZzlOilYVMLaFNs01m342OmhHI_z6bSYhA23JtAqO5vYGmo7M7hH_hadYynQu3g__8mwahSeroYSGgOyyeOYo55_lmwVFxkJH4ICtiYBVygweTy_CynbPsQdCV7yDXK8sLbMzcvT4DvyJP8GQtvFaP_-_w7jAbkXYCjd9XrzkNxy9SNy5ygctD8mvz9dgqGhcx9GAMsbBXALl1iRx9ElKIBjFgsD-KQeFOs7dBl4aVlbihSElqZJZxVFTv05xczIDLz7oOwUcLtbsMb4qkn0EqmBGCTzi561nQNuNefNE3Kyv3fy8YCFqg3MZFmyZJJbwYVJMy1z60QlckCMNrMlt7nOTJoXYOuTAnCiNZq7Qmd5FRtuqyo1IrZii2zUs9ptE5pIixGeha64ScDzKm1sK9AtUUqwGyYaEtnNlTIhozkW1rhQHXXth1rNssJZxjswy0PCe8m5z-qxhkzRqYPqolbBzipYetaQlTfJuiYYjEZx1cQqUl_bfEkYTgyWV6QCxviulwyYyGOdNft9BXrbDxFTiR_sHir8DbPwREWUX_Mh2elUVa3ep9fTIXnZ3wbTg-dJZe1mV_hMBuAZMB8889R_Dn1XccGTNEqSZ__-8-fkLrxu7ve0dsjGcnHlXpDb5np51ixGZCCPT7GdyrbNR2Tzw954cjxqv3Noj-Iv2MoJtJP02x8woFyA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF61BVEuvB-BAguC44LXu_baQghVQJWoaYQgqnpbeR9WS2kS4rSoP4Efw39kxms7l4Jy6YFjYo_Xj3na3zdDyEtTtzyxhvkC0jfpDGeZkTmLCohNsUtiU9PH9odqNMoODvLPa-R3y4VBWGXrE2tH7aYW35G_weJYCawu3s9-MJwahV9X2xEaQS12_flPKNmqd4OP8HxfxfHOp_GHPmumCjCbpnLBFHeCC5ukRmXOi1JkkNG41BXcZSa1SZaDL5I55DHOGu5zk2ZlbLkry8SK2Ak47Dq5Am6cI4JMfdlf0jAjERgv4NokVF4NcCjAyRAhHhj1iCdTrxFShqNsLo6G64cIy_xbzlvHvp2b_9ldu0VuNEk23Q5WcZus-ckdcm2vgRHcJb8GJ-BG6SyQJCB4U0jd4SfOG_J0AertmcOxB6FlCcXpFW1_YVpMHEWARQ1CpdOSImPgmGLfZzb3rSlTqEr8nFU2zISiJwh8RArQOT2qF4es3B5X98j4Mu7DfbIxmU78Q0KlcshfzU3JrYS6snCxK8FyRKHAK9qoR1SrGto2_dpxbMh33QLzvumlUmlUKtwCStUjvJOchZ4lK8jkrfbplpMLUURDYF1BVl0k66vGHVaa6yrWkf5ad4NCsjTEFZEIuMa3nWST8YVMbsV1X4CZdJeIjdL720ON_2GPoSiPsjPeI1utZejl-XRm0SPPu83gWPFrWTHx01PcJ4XSADJa2OdBsL5uKTB-mURSPvr3wZ-Rzf54b6iHg9HuY3IdTj0Lb--2yMZifuqfkKv2bHFUzZ_WjoQSfckm-Aeb_7OR |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF61BVW98H4ECiwIjku99tprCyFUUaJGCVElKtTbyvuwaEuTEKdF_Qn8JP4dM16vcykolx44JvZ4_Zin_X0zhLzWTcsTo5krIX0TVnOWa1GwqITYFNs01g197OtIjsf50VFxsEZ-By4MwiqDT2wctZ0afEe-g8WxTLC62KlaWMTBXv_D7AfDCVL4pTWM0_AqMnSXP6F8q98P9uBZv4nj_qfDj_usnTDATJaJBZPcJjwxaaZlbl1SJTlkNzazJbe5zkyaF-CXRAE5jTWau0JneRUbbqsqNUlsEzjsOrkBQThFExtKtqRkRolnv4CbE1CFtSAiDy1DtLhn1yO2TL5FeBmOtbk6Mq5_Q4jm3_LfJg72b__Hd_AOudUm33TXW8tdsuYm98jm5xZecJ_8GpyBe6UzT56AoE4hpYefOIfI0QWovWMWxyH4ViYUp1qEvsO0nFiKwIsGnEqnFUUmwSnFftBs7oKJU6hW3JzVxs-KomcIiERq0CU9bhaHbN2c1g_I4XXch4dkYzKduMeECmmR11roihsB9WZpY1uBRSWlBG9poh6RQU2Uafu44ziR7yoA9k7UUsEUKhhuAQXrEd5JznwvkxVkiqCJKnB1IbooCLgryMqrZF3duslacVXHKlJfmi5RSKKGeAO2BNf4rpNsM0Gf4a247iswme4SsYH6_u5I4X_YeygqovyC98h2sBK1PJ_ORHrkZbcZHC5-RSsnbnqO-2RQMkCmC_s88pbYLRUXXKSREE_-ffAXZBMsT40G4-FTsgVnnvuXettkYzE_d8_ITXOxOK7nzxufQom6Zgv8A_1Iu-0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+processing+for+precise+three-dimensional+registration+and+stitching+of+thick+high-resolution+laser-scanning+microscopy+image+stacks&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Murtin%2C+Chlo%C3%A9&rft.au=Frindel%2C+Carole&rft.au=Rousseau%2C+David&rft.au=Ito%2C+Kei&rft.date=2018-01-01&rft.eissn=1879-0534&rft.volume=92&rft.spage=22&rft_id=info:doi/10.1016%2Fj.compbiomed.2017.10.027&rft_id=info%3Apmid%2F29145044&rft.externalDocID=29145044 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482517X00127%2Fcov150h.gif |