joint graphical lasso for inverse covariance estimation across multiple classes

We consider the problem of estimating multiple related Gaussian graphical models from a high dimensional data set with observations belonging to distinct classes. We propose the joint graphical lasso, which borrows strength across the classes to estimate multiple graphical models that share certain...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the Royal Statistical Society. Series B, Statistical methodology Ročník 76; číslo 2; s. 373 - 397
Hlavní autoři: Danaher, Patrick, Wang, Pei, Witten, Daniela M
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Blackwell Publishers 01.03.2014
Blackwell Publishing Ltd
John Wiley & Sons Ltd
Oxford University Press
Témata:
ISSN:1369-7412, 1467-9868
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the problem of estimating multiple related Gaussian graphical models from a high dimensional data set with observations belonging to distinct classes. We propose the joint graphical lasso, which borrows strength across the classes to estimate multiple graphical models that share certain characteristics, such as the locations or weights of non‐zero edges. Our approach is based on maximizing a penalized log‐likelihood. We employ generalized fused lasso or group lasso penalties and implement a fast alternating directions method of multipliers algorithm to solve the corresponding convex optimization problems. The performance of the method proposed is illustrated through simulated and real data examples.
Bibliografie:http://dx.doi.org/10.1111/rssb.12033
istex:0BDA33974C3C9B708B7C4B7942FC7DEE8E50B850
'Benchmarking the two MCMC strategies for sampling the Bayesian bridge posterior distiution' and 'An empirical study of mixing rates in parameter-expanded Gibbs samplers for sparse Bayesian regression models'
ArticleID:RSSB12033
National Institutes of Health - No. 1R01GM082802; No. P01CA53996; No. U24CA086368; No. DP5OD009145
ark:/67375/WNG-T9FSVP5K-1
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1369-7412
1467-9868
DOI:10.1111/rssb.12033