Classification of amyloid-positivity in controls: Comparison of visual read and quantitative approaches
An important research application of amyloid imaging with positron emission tomography (PET) is detection of the earliest evidence of fibrillar amyloid-beta (Aβ) deposition. Use of amyloid PET for this purpose, requires a reproducible method for defining a cutoff that separates individuals with no s...
Gespeichert in:
| Veröffentlicht in: | NeuroImage (Orlando, Fla.) Jg. 71; S. 207 - 215 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Inc
01.05.2013
Elsevier Limited |
| Schlagworte: | |
| ISSN: | 1053-8119, 1095-9572, 1095-9572 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | An important research application of amyloid imaging with positron emission tomography (PET) is detection of the earliest evidence of fibrillar amyloid-beta (Aβ) deposition. Use of amyloid PET for this purpose, requires a reproducible method for defining a cutoff that separates individuals with no significant Aβ deposition from those in which Aβ deposition has begun. We previously reported the iterative outlier approach (IO) for the analysis of Pittsburgh Compound-B (PiB) PET data. Developments in amyloid imaging since the initial report of IO have led us to re-examine the generalizability of this method. IO was developed using full-dynamic atrophy-corrected PiB PET data obtained from a group of control subjects with a fairly distinct separation between PiB-positive [PiB(+)] and PiB-negative [PiB(−)] subjects.
We tested the performance of IO using late-summed tissue ratio data with atrophy correction or with an automated template method without atrophy correction and tested the robustness of the method when applied to a cohort of older subjects in which separation between PiB(+) and PiB(−) subjects was not so distinct.
The IO method did not perform consistently across analyses and performed particularly poorly when separation was less clear. We found that a sparse k-means (SKM) cluster analysis approach performed significantly better; performing more consistently across methods and subject cohorts. We also compared SKM to a consensus visual read approach and found very good correspondence.
The visual read and SKM methods, applied together, may optimize the identification of early Aβ deposition. These methods have the potential to provide a standard approach to the detection of PiB-positivity that is generalizable across centers.
► Limitations of the iterative outlier method for Aβ-positive cutoffs ► Use of sparse k-means as a method for identification of Aβ-positive cutoffs ► Comparison of the above objective methods to visual reads shows good agreement. ► A combination of methods may be the best approach to identify early Aβ. |
|---|---|
| AbstractList | An important research application of amyloid imaging with positron emission tomography (PET) is detection of the earliest evidence of fibrillar amyloid-beta (Aβ) deposition. Use of amyloid PET for this purpose, requires a reproducible method for defining a cutoff that separates individuals with no significant Aβ deposition from those in which Aβ deposition has begun. We previously reported the iterative outlier approach (IO) for the analysis of Pittsburgh Compound-B (PiB) PET data. Developments in amyloid imaging since the initial report of IO have led us to re-examine the generalizability of this method. IO was developed using full-dynamic atrophy-corrected PiB PET data obtained from a group of control subjects with a fairly distinct separation between PiB-positive [PiB(+)] and PiB-negative [PiB(-)] subjects.
We tested the performance of IO using late-summed tissue ratio data with atrophy correction or with an automated template method without atrophy correction and tested the robustness of the method when applied to a cohort of older subjects in which separation between PiB(+) and PiB(-) subjects was not so distinct.
The IO method did not perform consistently across analyses and performed particularly poorly when separation was less clear. We found that a sparse k-means (SKM) cluster analysis approach performed significantly better; performing more consistently across methods and subject cohorts. We also compared SKM to a consensus visual read approach and found very good correspondence.
The visual read and SKM methods, applied together, may optimize the identification of early Aβ deposition. These methods have the potential to provide a standard approach to the detection of PiB-positivity that is generalizable across centers. An important research application of amyloid imaging with positron emission tomography (PET) is detection of the earliest evidence of fibrillar amyloid-beta (Aβ) deposition. Use of amyloid PET for this purpose, requires a reproducible method for defining a cutoff that separates individuals with no significant Aβ deposition from those in which Aβ deposition has begun. We previously reported the iterative outlier approach (IO) for the analysis of Pittsburgh Compound-B (PiB) PET data. Developments in amyloid imaging since the initial report of IO have led us to re-examine the generalizability of this method. IO was developed using full-dynamic atrophy-corrected PiB PET data obtained from a group of control subjects with a fairly distinct separation between PiB-positive [PiB(+)] and PiB-negative [PiB(−)] subjects. An important research application of amyloid imaging with positron emission tomography (PET) is detection of the earliest evidence of fibrillar amyloid-beta (Aβ) deposition. Use of amyloid PET for this purpose, requires a reproducible method for defining a cutoff that separates individuals with no significant Aβ deposition from those in which Aβ deposition has begun. We previously reported the iterative outlier approach (IO) for the analysis of Pittsburgh Compound-B (PiB) PET data. Developments in amyloid imaging since the initial report of IO have led us to re-examine the generalizability of this method. IO was developed using full-dynamic atrophy-corrected PiB PET data obtained from a group of control subjects with a fairly distinct separation between PiB-positive [PiB(+)] and PiB-negative [PiB(−)] subjects. We tested the performance of IO using late-summed tissue ratio data with atrophy correction or with an automated template method without atrophy correction and tested the robustness of the method when applied to a cohort of older subjects in which separation between PiB(+) and PiB(−) subjects was not so distinct. The IO method did not perform consistently across analyses and performed particularly poorly when separation was less clear. We found that a sparse k-means (SKM) cluster analysis approach performed significantly better; performing more consistently across methods and subject cohorts. We also compared SKM to a consensus visual read approach and found very good correspondence. The visual read and SKM methods, applied together, may optimize the identification of early Aβ deposition. These methods have the potential to provide a standard approach to the detection of PiB-positivity that is generalizable across centers. ► Limitations of the iterative outlier method for Aβ-positive cutoffs ► Use of sparse k-means as a method for identification of Aβ-positive cutoffs ► Comparison of the above objective methods to visual reads shows good agreement. ► A combination of methods may be the best approach to identify early Aβ. An important research application of amyloid imaging with positron emission tomography (PET) is detection of the earliest evidence of fibrillar amyloid-beta (Aβ) deposition. Use of amyloid PET for this purpose, requires a reproducible method for defining a cutoff that separates individuals with no significant Aβ deposition from those in which Aβ deposition has begun. We previously reported the iterative outlier approach (IO) for the analysis of Pittsburgh Compound-B (PiB) PET data. Developments in amyloid imaging since the initial report of IO have led us to re-examine the generalizability of this method. IO was developed using full-dynamic atrophy-corrected PiB PET data obtained from a group of control subjects with a fairly distinct separation between PiB-positive [PiB(+)] and PiB-negative [PiB(-)] subjects. Methods We tested the performance of IO using late-summed tissue ratio data with atrophy correction or with an automated template method without atrophy correction and tested the robustness of the method when applied to a cohort of older subjects in which separation between PiB(+) and PiB(-) subjects was not so distinct. Results The IO method did not perform consistently across analyses and performed particularly poorly when separation was less clear. We found that a sparse k-means (SKM) cluster analysis approach performed significantly better; performing more consistently across methods and subject cohorts. We also compared SKM to a consensus visual read approach and found very good correspondence. Conclusion The visual read and SKM methods, applied together, may optimize the identification of early Aβ deposition. These methods have the potential to provide a standard approach to the detection of PiB-positivity that is generalizable across centers. An important research application of amyloid imaging with positron emission tomography (PET) is detection of the earliest evidence of fibrillar amyloid-beta (Aβ) deposition. Use of amyloid PET for this purpose, requires a reproducible method for defining a cutoff that separates individuals with no significant Aβ deposition from those in which Aβ deposition has begun. We previously reported the iterative outlier approach (IO) for the analysis of Pittsburgh Compound-B (PiB) PET data. Developments in amyloid imaging since the initial report of IO have led us to re-examine the generalizability of this method. IO was developed using full-dynamic atrophy-corrected PiB PET data obtained from a group of control subjects with a fairly distinct separation between PiB-positive [PiB(+)] and PiB-negative [PiB(-)] subjects.UNLABELLEDAn important research application of amyloid imaging with positron emission tomography (PET) is detection of the earliest evidence of fibrillar amyloid-beta (Aβ) deposition. Use of amyloid PET for this purpose, requires a reproducible method for defining a cutoff that separates individuals with no significant Aβ deposition from those in which Aβ deposition has begun. We previously reported the iterative outlier approach (IO) for the analysis of Pittsburgh Compound-B (PiB) PET data. Developments in amyloid imaging since the initial report of IO have led us to re-examine the generalizability of this method. IO was developed using full-dynamic atrophy-corrected PiB PET data obtained from a group of control subjects with a fairly distinct separation between PiB-positive [PiB(+)] and PiB-negative [PiB(-)] subjects.We tested the performance of IO using late-summed tissue ratio data with atrophy correction or with an automated template method without atrophy correction and tested the robustness of the method when applied to a cohort of older subjects in which separation between PiB(+) and PiB(-) subjects was not so distinct.METHODSWe tested the performance of IO using late-summed tissue ratio data with atrophy correction or with an automated template method without atrophy correction and tested the robustness of the method when applied to a cohort of older subjects in which separation between PiB(+) and PiB(-) subjects was not so distinct.The IO method did not perform consistently across analyses and performed particularly poorly when separation was less clear. We found that a sparse k-means (SKM) cluster analysis approach performed significantly better; performing more consistently across methods and subject cohorts. We also compared SKM to a consensus visual read approach and found very good correspondence.RESULTSThe IO method did not perform consistently across analyses and performed particularly poorly when separation was less clear. We found that a sparse k-means (SKM) cluster analysis approach performed significantly better; performing more consistently across methods and subject cohorts. We also compared SKM to a consensus visual read approach and found very good correspondence.The visual read and SKM methods, applied together, may optimize the identification of early Aβ deposition. These methods have the potential to provide a standard approach to the detection of PiB-positivity that is generalizable across centers.CONCLUSIONThe visual read and SKM methods, applied together, may optimize the identification of early Aβ deposition. These methods have the potential to provide a standard approach to the detection of PiB-positivity that is generalizable across centers. An important research application of amyloid imaging with positron emission tomography (PET) is detection of the earliest evidence of fibrillar amyloid-beta (AI2) deposition. Use of amyloid PET for this purpose, requires a reproducible method for defining a cutoff that separates individuals with no significant AI2 deposition from those in which AI2 deposition has begun. We previously reported the iterative outlier approach (IO) for the analysis of Pittsburgh Compound-B (PiB) PET data. Developments in amyloid imaging since the initial report of IO have led us to re-examine the generalizability of this method. IO was developed using full-dynamic atrophy-corrected PiB PET data obtained from a group of control subjects with a fairly distinct separation between PiB-positive [PiB(+)] and PiB-negative [PiB(a)] subjects. |
| Author | Cohen, Ann D. Snitz, Beth DeKosky, Steven Aizenstein, Howard J. Williamson, Jeff Klunk, William E. Lopez, Oscar L. Mathis, Chester A. Nebes, Robert D. Price, Julie C. Weissfeld, Lisa A. Mowrey, Wenzhu McDade, Eric Saxton, Judith A. Mountz, James M. |
| AuthorAffiliation | 1 Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 6 Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 5 Sticht Center on Aging, Wake Forest University Baptist Medical Center, Winston-Salem, NC, 27157 2 Department of Biostatistics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 3 Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 4 Office of the Dean and Department of Neurology, University of Virginia, Charlottesville, VA, 22908 |
| AuthorAffiliation_xml | – name: 5 Sticht Center on Aging, Wake Forest University Baptist Medical Center, Winston-Salem, NC, 27157 – name: 3 Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 – name: 4 Office of the Dean and Department of Neurology, University of Virginia, Charlottesville, VA, 22908 – name: 1 Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 – name: 2 Department of Biostatistics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 – name: 6 Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 |
| Author_xml | – sequence: 1 givenname: Ann D. surname: Cohen fullname: Cohen, Ann D. email: cohenad@upmc.edu organization: Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA – sequence: 2 givenname: Wenzhu surname: Mowrey fullname: Mowrey, Wenzhu organization: Department of Biostatistics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA – sequence: 3 givenname: Lisa A. surname: Weissfeld fullname: Weissfeld, Lisa A. organization: Department of Biostatistics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA – sequence: 4 givenname: Howard J. surname: Aizenstein fullname: Aizenstein, Howard J. organization: Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA – sequence: 5 givenname: Eric surname: McDade fullname: McDade, Eric organization: Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA – sequence: 6 givenname: James M. surname: Mountz fullname: Mountz, James M. organization: Office of the Dean and Department of Neurology, University of Virginia, Charlottesville, VA, 22908, USA – sequence: 7 givenname: Robert D. surname: Nebes fullname: Nebes, Robert D. organization: Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA – sequence: 8 givenname: Judith A. surname: Saxton fullname: Saxton, Judith A. organization: Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA – sequence: 9 givenname: Beth surname: Snitz fullname: Snitz, Beth organization: Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA – sequence: 10 givenname: Steven surname: DeKosky fullname: DeKosky, Steven organization: Office of the Dean and Department of Neurology, University of Virginia, Charlottesville, VA, 22908, USA – sequence: 11 givenname: Jeff surname: Williamson fullname: Williamson, Jeff organization: Sticht Center on Aging, Wake Forest University Baptist Medical Center, Winston-Salem, NC, 27157, USA – sequence: 12 givenname: Oscar L. surname: Lopez fullname: Lopez, Oscar L. organization: Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA – sequence: 13 givenname: Julie C. surname: Price fullname: Price, Julie C. organization: Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA – sequence: 14 givenname: Chester A. surname: Mathis fullname: Mathis, Chester A. organization: Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA – sequence: 15 givenname: William E. surname: Klunk fullname: Klunk, William E. organization: Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23353602$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk9v1DAQxSNURP_AV0CRuHDJMo7jJMsBUVa0IFXiAmdr6oy3Xhw7tZOV9tvjsC2FvbCSJVvym5-fZ955duK8oyzLGSwYsPrdZuFoCt70uKZFCYwvgKUlnmVnDJaiWIqmPJnPghctY8vT7DzGDQAsWdW-yE5LzgWvoTzL1iuLMRptFI7Gu9zrHPud9aYrBh_NaLZm3OXG5cq7MXgb3-cr3w8YTNyrtyZOaPNA2OXouvx-QjeaMdG2lOMwBI_qjuLL7LlGG-nVw36R_bj6_H31pbj5dv11dXlTqLrmY6GpRWiIkAuNmoNmUOsSsaxBiY6wKgWQAKRKICRZQ3irKqaZ0MAqpflF9mHPHabbnjpFyTVaOYTUq7CTHo3898aZO7n2W5naIdq2TYC3D4Dg7yeKo-xNVGQtOvJTlEwANG0JVfN_KWdVA3UpRJK-OZBu_BRc6oRkSbBsOS9n4Ou_zf9x_Tiup9-p4GMMpKX63ep5NmisZCDnfMiNfMqHnPMhgaU1-2gPAI9vHFH6aV9KaXxbQ0FGZcgp6kwgNcrOm2MgHw8gyhqXwmd_0u44xC9lU_T5 |
| CitedBy_id | crossref_primary_10_1038_s41380_018_0246_7 crossref_primary_10_1038_s41598_017_15001_8 crossref_primary_10_3233_JAD_201087 crossref_primary_10_1186_s40658_021_00403_5 crossref_primary_10_1212_01_wnl_0000435301_64776_37 crossref_primary_10_1016_j_neurobiolaging_2024_03_005 crossref_primary_10_1007_s40336_017_0257_4 crossref_primary_10_1053_j_semnuclmed_2017_06_003 crossref_primary_10_1007_s00259_022_05784_y crossref_primary_10_1016_j_nicl_2015_10_007 crossref_primary_10_1016_j_neuropsychologia_2013_07_017 crossref_primary_10_1002_alz_13503 crossref_primary_10_1016_j_dadm_2018_03_006 crossref_primary_10_1016_j_jalz_2014_07_003 crossref_primary_10_1016_j_neurobiolaging_2013_09_040 crossref_primary_10_1002_alz_70121 crossref_primary_10_1016_j_mcn_2018_12_004 crossref_primary_10_1002_alz_70520 crossref_primary_10_1177_13872877241303926 crossref_primary_10_3233_JAD_230379 crossref_primary_10_1038_s41591_023_02380_x crossref_primary_10_1186_s13195_025_01803_w crossref_primary_10_3233_JAD_150113 crossref_primary_10_1016_j_jagp_2019_07_008 crossref_primary_10_1007_s11682_019_00247_9 crossref_primary_10_1155_2014_785039 crossref_primary_10_1016_j_neuroimage_2017_07_050 crossref_primary_10_1016_j_jad_2024_08_042 crossref_primary_10_1016_j_jalz_2016_02_002 crossref_primary_10_1002_dad2_12020 crossref_primary_10_1093_brain_awu271 crossref_primary_10_1016_j_jalz_2018_09_001 crossref_primary_10_1016_j_jagp_2016_12_021 crossref_primary_10_1186_s13195_018_0354_2 crossref_primary_10_1016_j_exger_2022_111776 crossref_primary_10_1016_j_jalz_2018_01_002 crossref_primary_10_1038_mp_2014_76 crossref_primary_10_1212_WNL_0000000000011214 crossref_primary_10_1007_s12149_014_0924_8 crossref_primary_10_1002_trc2_70112 crossref_primary_10_1016_j_neurobiolaging_2016_07_012 crossref_primary_10_1016_j_neurobiolaging_2017_05_019 crossref_primary_10_1016_j_jalz_2015_05_013 crossref_primary_10_1002_ana_24719 crossref_primary_10_1007_s00259_019_04595_y crossref_primary_10_1007_s12149_019_01420_2 crossref_primary_10_1016_j_jagp_2018_03_018 crossref_primary_10_1016_j_neurobiolaging_2018_07_011 crossref_primary_10_1186_s13195_019_0573_1 crossref_primary_10_1093_brain_awy103 crossref_primary_10_3390_brainsci11091180 crossref_primary_10_1002_dad2_12018 crossref_primary_10_1016_j_nicl_2016_05_004 crossref_primary_10_3233_JAD_230512 crossref_primary_10_1007_s00415_019_09203_5 crossref_primary_10_1016_j_bbi_2021_03_015 crossref_primary_10_3233_JAD_170720 crossref_primary_10_1016_j_neurobiolaging_2020_05_012 crossref_primary_10_1002_dad2_12096 crossref_primary_10_1212_WNL_0000000000010239 crossref_primary_10_1002_trc2_12096 crossref_primary_10_1038_s41398_021_01374_y crossref_primary_10_1177_13872877251340688 crossref_primary_10_1093_brain_awu173 crossref_primary_10_3389_fnagi_2021_669490 crossref_primary_10_1016_j_jagp_2024_09_015 crossref_primary_10_1007_s11682_020_00334_2 crossref_primary_10_1016_j_jagp_2022_09_011 crossref_primary_10_1016_j_neurobiolaging_2020_04_018 crossref_primary_10_1089_neur_2025_0052 crossref_primary_10_1016_j_dadm_2017_05_001 crossref_primary_10_1002_alz_13494 crossref_primary_10_1016_S1474_4422_15_00135_0 crossref_primary_10_1016_j_neurobiolaging_2018_11_020 |
| Cites_doi | 10.1016/j.csda.2006.01.019 10.1002/ana.21843 10.1001/archneur.65.11.1509 10.1212/01.wnl.0000261919.22630.ea 10.1523/JNEUROSCI.3669-09.2009 10.1093/brain/awm238 10.1093/brain/awn320 10.1212/WNL.0b013e3181d3e3e9 10.1111/j.1365-2796.2004.01388.x 10.1056/NEJMoa0806142 10.1177/0891988710363715 10.1016/0895-4356(90)90159-M 10.1016/j.neuroimage.2011.07.098 10.1016/j.neurobiolaging.2010.04.007 10.1192/bjp.125.4.341 10.1198/jasa.2010.tm09415 10.1016/j.neurobiolaging.2010.03.011 10.1212/WNL.0b013e3181c918b5 10.1093/brain/awm336 10.1016/j.neurobiolaging.2010.05.003 10.1038/sj.jcbfm.9600146 10.1212/01.wnl.0000228230.26044.a4 10.1016/j.jalz.2011.03.003 10.1212/01.wnl.0000260969.94695.56 10.1093/brain/awn016 10.1002/ana.21904 10.2307/2529310 10.2967/jnumed.106.037762 10.1177/001316446002000104 10.1212/01.wnl.0000259035.98480.ed 10.1007/s00259-010-1382-8 10.2307/2346830 10.1002/ana.20009 10.1136/jnnp.2009.194779 10.1002/ana.21164 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Inc. Copyright © 2013 Elsevier Inc. All rights reserved. Copyright Elsevier Limited May 1, 2013 2012 Elsevier Inc. All rights reserved. 2012 |
| Copyright_xml | – notice: 2013 Elsevier Inc. – notice: Copyright © 2013 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited May 1, 2013 – notice: 2012 Elsevier Inc. All rights reserved. 2012 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 5PM |
| DOI | 10.1016/j.neuroimage.2013.01.015 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
| DatabaseTitleList | MEDLINE ProQuest One Psychology MEDLINE - Academic Engineering Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| EndPage | 215 |
| ExternalDocumentID | PMC3605888 3500833991 23353602 10_1016_j_neuroimage_2013_01_015 S1053811913000621 |
| Genre | Journal Article Comparative Study Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIA NIH HHS grantid: P30 AG024827 – fundername: NIA NIH HHS grantid: P50 AG005133 – fundername: NIA NIH HHS grantid: K23 AG038479 – fundername: NIA NIH HHS grantid: RF1 AG025516 – fundername: NIA NIH HHS grantid: P01 AG025204 – fundername: NIA NIH HHS grantid: P01AG025204 – fundername: NIA NIH HHS grantid: R01 AG033042 – fundername: NIA NIH HHS grantid: K01 AG037562 – fundername: NIA NIH HHS grantid: R37 AG025516 – fundername: National Institute on Aging : NIA grantid: R01 AG033042 || AG – fundername: National Institute on Aging : NIA grantid: P01 AG025204 || AG – fundername: National Institute on Aging : NIA grantid: P50 AG005133 || AG – fundername: National Institute on Aging : NIA grantid: R37 AG025516 || AG – fundername: National Institute on Aging : NIA grantid: K01 AG037562 || AG |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- ~HD 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 HMQ LCYCR RIG SNS ZA5 29N 53G 9DU AAFWJ AAQXK AAYXX ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFFHD AFPKN AGHFR AGQPQ AIGII AKRLJ APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT AGCQF AGRNS ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 7QO 5PM |
| ID | FETCH-LOGICAL-c663t-fe8a07eea35faf30f106f2aa260c5dea4250e50ae45a0eea7eabc41f15f014cf3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 81 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316154400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Tue Nov 04 01:41:51 EST 2025 Tue Oct 07 09:23:43 EDT 2025 Thu Oct 02 19:05:40 EDT 2025 Sat Nov 29 14:59:36 EST 2025 Mon Jul 21 06:03:24 EDT 2025 Sat Nov 29 03:33:21 EST 2025 Tue Nov 18 22:36:33 EST 2025 Fri Feb 23 02:36:05 EST 2024 Tue Oct 14 19:34:57 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cluster analysis Amyloid Visual read Positron emission tomography Pittsburgh compound B |
| Language | English |
| License | Copyright © 2013 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c663t-fe8a07eea35faf30f106f2aa260c5dea4250e50ae45a0eea7eabc41f15f014cf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | http://doi.org/10.1016/j.neuroimage.2013.01.015 |
| PMID | 23353602 |
| PQID | 1625983327 |
| PQPubID | 2031077 |
| PageCount | 9 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3605888 proquest_miscellaneous_1500782047 proquest_miscellaneous_1314706255 proquest_journals_1625983327 pubmed_primary_23353602 crossref_citationtrail_10_1016_j_neuroimage_2013_01_015 crossref_primary_10_1016_j_neuroimage_2013_01_015 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2013_01_015 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2013_01_015 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-05-01 |
| PublicationDateYYYYMMDD | 2013-05-01 |
| PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2013 |
| Publisher | Elsevier Inc Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
| References | Lopresti, Klunk, Mathis, Hoge, Ziolko, Lu, Meltzer, Schimmel, Tsopelas, Dekosky, Price (bb0095) 2005; 46 Rabinovici, Furst, O'Neil, Racine, Mormino, Baker, Chetty, Patel, Pagliaro, Klunk, Mathis, Rosen, Miller, Jagust (bb0150) 2007; 68 Hartigan, Wong (bb0050) 1979; 28 Ikonomovic, Klunk, Abrahamson, Mathis, Price, Tsopelas, Lopresti, Ziolko, Bi, Paljug, Debnath, Hope, Isanski, Hamilton, DeKosky (bb0060) 2008; 131 Furst, Rabinovici, Rostomian, Steed, Alkalay, Racine, Miller, Jagust (bb0045) 2010; 33 Landis, Koch (bb0090) 1977; 33 Mormino, Brandel, Madison, Rabinovici, Marks, Baker, Jagust (bb0120) 2012; 59 Resnick, Sojkova, Zhou, An, Ye, Holt, Dannals, Mathis, Klunk, Ferrucci, Kraut, Wong (bb0165) 2010; 74 Sperling, Aisen, Beckett, Bennett, Craft, Fagan, Iwatsubo, Jack, Kaye, Montine, Park, Reiman, Rowe, Siemers, Stern, Yaffe, Carrillo, Thies, Morrison-Bogorad, Wagster, Phelps (bb0195) 2011; 7 Petersen (bb0135) 2004; 256 Rowe, Ng, Ackermann, Gong, Pike, Savage, Cowie, Dickinson, Maruff, Darby, Smith, Woodward, Merory, Tochon-Danguy, O'Keefe, Klunk, Mathis, Price, Masters, Villemagne (bb0175) 2007; 68 Klunk, Engler, Nordberg, Wang, Blomqvist, Holt, Bergström, Savitcheva, Huang, Estrada, Ausén, Debnath, Barletta, Price, Sandell, Lopresti, Wall, Koivisto, Antoni, Mathis, Långström (bb0085) 2004; 55 Rentz, Locascio, Becker, Moran, Eng, Buckner, Sperling, Johnson (bb0155) 2010; 67 Spitzer, Fleiss (bb0200) 1974; 125 Mathis, C., Kuller, L., W. K., Snitz, B., Price, J., Weissfeld, L., Rosario, B., Lopresti, B., Saxton, J., Aizenstein, H., McDade, E., Kamboh, M., DeKosky, S., Lopez, O., in press. In vivo assessment of amyloid-β deposition in nondemented very elderly subjects. Ann. Neurol. Aizenstein, Nebes, Saxton, Price, Mathis, Tsopelas, Ziolko, James, Snitz, Houck, Bi, Cohen, Lopresti, DeKosky, Halligan, Klunk (bb0005) 2008; 65 Kemppainen, Aalto, Wilson, Nagren, Helin, Bruck, Oikonen, Kailajarvi, Scheinin, Viitanen, Parkkola, Rinne (bb0075) 2007; 68 Mormino, Kluth, Madison, Rabinovici, Baker, Miller, Koeppe, Mathis, Weiner, Jagust (bb0115) 2009; 132 Schwertman, de Silva (bb0190) 2007; 51 Cohen (bb0030) 1960; 20 Tolboom, van der Flier, Boverhoff, Yaqub, Wattjes, Raijmakers, Barkhof, Scheltens, Herholz, Lammertsma, van Berckel (bb0210) 2010; 81 Price, Klunk, Lopresti, Lu, Hoge, Ziolko, Holt, Meltzer, Dekosky, Mathis (bb0145) 2005; 25 Apostolova, Hwang, Andrawis, Green, Babakchanian, Morra, Cummings, Toga, Trojanowski, Shaw, Jack, Petersen, Aisen, Jagust, Koeppe, Mathis, Weiner, Thompson (bb0010) 2010; 31 Pike, Savage, Villemagne, Ng, Moss, Maruff, Mathis, Klunk, Masters, Rowe (bb0140) 2007; 130 Cicchetti, Feinstein (bb0025) 1990; 43 Devanand, Mikhno, Pelton, Cuasay, Pradhaban, Kumar, Upton, Lai, Gunn, Libri, Liu, Heertum, Mann, Parsey (bb0040) 2010; 23 Ng, Villemagne, Berlangieri, Lee, Cherk, Gong, Ackermann, Saunder, Tochon-Danguy, Jones, Smith, O'Keefe, Masters, Rowe (bb0130) 2007; 48 Suotunen, Hirvonen, Immonen-Raiha, Aalto, Lisinen, Arponen, Teras, Koski, Sulkava, Seppanen, Rinne (bb0205) 2010; 37 Cohen, Price, Weissfeld, James, Rosario, Bi, Nebes, Saxton, Snitz, Aizenstein, Wolk, DeKosky, Mathis, Klunk (bb0035) 2009; 29 Hastie, Tibshirani, Friedman (bb0055) 2009; vol. 2 Jack, Lowe, Senjem, Weigand, Kemp, Shiung, Knopman, Boeve, Klunk, Mathis, Petersen (bb0065) 2008; 131 Johnson, Gregas, Becker, Kinnecom, Salat, Moran, Smith, Rosand, Rentz, Klunk, Mathis, Price, Dekosky, Fischman, Greenberg (bb0070) 2007; 62 Bourgeat, Chetelat, Villemagne, Fripp, Raniga, Pike, Acosta, Szoeke, Ourselin, Ames, Ellis, Martins, Masters, Rowe, Salvado (bb0020) 2010; 74 Klunk, Mathis (bb0080) 2009; vol. 1 Bi, Tseng, Weissfeld, Price (bb0015) 2011 Morris, Roe, Xiong, Fagan, Goate, Holtzman, Mintun (bb0125) 2010; 67 Rowe, Ellis, Rimajova, Bourgeat, Pike, Jones, Fripp, Tochon-Danguy, Morandeau, O'Keefe, Price, Raniga, Robins, Acosta, Lenzo, Szoeke, Salvado, Head, Martins, Masters, Ames, Villemagne (bb0180) 2010; 31 Meltzer, Kinahan, Greer (bb0105) 1999; 40 Rosario, Weissfeld, Laymon, Mathis, Klunk, Berginc, James, Hoge, Price (bb0170) 2011 Savva, Wharton, Ince, Forster, Matthews, Brayne (bb0185) 2009; 360 Mintun, Larossa, Sheline, Dence, Lee, Mach, Klunk, Mathis, DeKosky, Morris (bb0110) 2006; 67 Witten, Tibshirani (bb0215) 2010; 105 Bi (10.1016/j.neuroimage.2013.01.015_bb0015) 2011 Pike (10.1016/j.neuroimage.2013.01.015_bb0140) 2007; 130 Johnson (10.1016/j.neuroimage.2013.01.015_bb0070) 2007; 62 Aizenstein (10.1016/j.neuroimage.2013.01.015_bb0005) 2008; 65 Rosario (10.1016/j.neuroimage.2013.01.015_bb0170) 2011 Petersen (10.1016/j.neuroimage.2013.01.015_bb0135) 2004; 256 Schwertman (10.1016/j.neuroimage.2013.01.015_bb0190) 2007; 51 Kemppainen (10.1016/j.neuroimage.2013.01.015_bb0075) 2007; 68 Apostolova (10.1016/j.neuroimage.2013.01.015_bb0010) 2010; 31 Spitzer (10.1016/j.neuroimage.2013.01.015_bb0200) 1974; 125 Witten (10.1016/j.neuroimage.2013.01.015_bb0215) 2010; 105 Bourgeat (10.1016/j.neuroimage.2013.01.015_bb0020) 2010; 74 Ikonomovic (10.1016/j.neuroimage.2013.01.015_bb0060) 2008; 131 Cohen (10.1016/j.neuroimage.2013.01.015_bb0035) 2009; 29 Klunk (10.1016/j.neuroimage.2013.01.015_bb0085) 2004; 55 Price (10.1016/j.neuroimage.2013.01.015_bb0145) 2005; 25 Cicchetti (10.1016/j.neuroimage.2013.01.015_bb0025) 1990; 43 Hastie (10.1016/j.neuroimage.2013.01.015_bb0055) 2009; vol. 2 Mormino (10.1016/j.neuroimage.2013.01.015_bb0115) 2009; 132 Rowe (10.1016/j.neuroimage.2013.01.015_bb0175) 2007; 68 Devanand (10.1016/j.neuroimage.2013.01.015_bb0040) 2010; 23 Ng (10.1016/j.neuroimage.2013.01.015_bb0130) 2007; 48 Savva (10.1016/j.neuroimage.2013.01.015_bb0185) 2009; 360 Rentz (10.1016/j.neuroimage.2013.01.015_bb0155) 2010; 67 Cohen (10.1016/j.neuroimage.2013.01.015_bb0030) 1960; 20 Morris (10.1016/j.neuroimage.2013.01.015_bb0125) 2010; 67 Sperling (10.1016/j.neuroimage.2013.01.015_bb0195) 2011; 7 Tolboom (10.1016/j.neuroimage.2013.01.015_bb0210) 2010; 81 Resnick (10.1016/j.neuroimage.2013.01.015_bb0165) 2010; 74 Klunk (10.1016/j.neuroimage.2013.01.015_bb0080) 2009; vol. 1 Mormino (10.1016/j.neuroimage.2013.01.015_bb0120) 2012; 59 Rowe (10.1016/j.neuroimage.2013.01.015_bb0180) 2010; 31 Mintun (10.1016/j.neuroimage.2013.01.015_bb0110) 2006; 67 Suotunen (10.1016/j.neuroimage.2013.01.015_bb0205) 2010; 37 Landis (10.1016/j.neuroimage.2013.01.015_bb0090) 1977; 33 Jack (10.1016/j.neuroimage.2013.01.015_bb0065) 2008; 131 Furst (10.1016/j.neuroimage.2013.01.015_bb0045) 2010; 33 10.1016/j.neuroimage.2013.01.015_bb0100 Lopresti (10.1016/j.neuroimage.2013.01.015_bb0095) 2005; 46 Hartigan (10.1016/j.neuroimage.2013.01.015_bb0050) 1979; 28 Rabinovici (10.1016/j.neuroimage.2013.01.015_bb0150) 2007; 68 Meltzer (10.1016/j.neuroimage.2013.01.015_bb0105) 1999; 40 2189948 - J Clin Epidemiol. 1990;43(6):551-8 19940172 - J Neurosci. 2009 Nov 25;29(47):14770-8 21195782 - Neuroimage. 2011 Apr 1;55(3):933-41 14991808 - Ann Neurol. 2004 Mar;55(3):306-19 19474427 - N Engl J Med. 2009 May 28;360(22):2302-9 20430977 - J Geriatr Psychiatry Neurol. 2010 Sep;23(3):185-98 10616886 - J Nucl Med. 1999 Dec;40(12):2053-65 17420404 - Neurology. 2007 Apr 10;68(15):1205-12 15324362 - J Intern Med. 2004 Sep;256(3):183-94 20373347 - Ann Neurol. 2010 Mar;67(3):353-64 17928318 - Brain. 2007 Nov;130(Pt 11):2837-44 843571 - Biometrics. 1977 Mar;33(1):159-74 17401090 - J Nucl Med. 2007 Apr;48(4):547-52 21514248 - Alzheimers Dement. 2011 May;7(3):280-92 16894106 - Neurology. 2006 Aug 8;67(3):446-52 18339640 - Brain. 2008 Jun;131(Pt 6):1630-45 20543188 - J Neurol Neurosurg Psychiatry. 2010 Aug;81(8):882-4 20186853 - Ann Neurol. 2010 Jan;67(1):122-31 25356069 - IEEE Nucl Sci Symp Conf Rec (1997). 2011 Oct;2011:3108-3111 23596051 - Ann Neurol. 2013 Jun;73(6):751-61 17683091 - Ann Neurol. 2007 Sep;62(3):229-34 17485647 - Neurology. 2007 May 8;68(19):1603-6 16330558 - J Nucl Med. 2005 Dec;46(12):1959-72 15944649 - J Cereb Blood Flow Metab. 2005 Nov;25(11):1528-47 17502554 - Neurology. 2007 May 15;68(20):1718-25 20811510 - J Am Stat Assoc. 2010 Jun 1;105(490):713-726 19042931 - Brain. 2009 May;132(Pt 5):1310-23 18263627 - Brain. 2008 Mar;131(Pt 3):665-80 21884802 - Neuroimage. 2012 Jan 16;59(2):1152-60 20065247 - Neurology. 2010 Jan 12;74(2):121-7 20143064 - Eur J Nucl Med Mol Imaging. 2010 Jun;37(6):1141-7 20417582 - Neurobiol Aging. 2012 Feb;33(2):215-25 20472326 - Neurobiol Aging. 2010 Aug;31(8):1275-83 20147655 - Neurology. 2010 Mar 9;74(10):807-15 19001171 - Arch Neurol. 2008 Nov;65(11):1509-17 4425771 - Br J Psychiatry. 1974 Oct;125(0):341-7 20538372 - Neurobiol Aging. 2010 Aug;31(8):1284-303 |
| References_xml | – volume: 59 start-page: 1152 year: 2012 end-page: 1160 ident: bb0120 article-title: Not quite PIB-positive, not quite PIB-negative: slight PIB elevations in elderly normal control subjects are biologically relevant publication-title: NeuroImage – volume: 360 start-page: 2302 year: 2009 end-page: 2309 ident: bb0185 article-title: Age, neuropathology, and dementia publication-title: N. Engl. J. Med. – volume: 74 start-page: 121 year: 2010 end-page: 127 ident: bb0020 article-title: Beta-amyloid burden in the temporal neocortex is related to hippocampal atrophy in elderly subjects without dementia publication-title: Neurology – volume: 25 start-page: 1528 year: 2005 end-page: 1547 ident: bb0145 article-title: Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh compound-B publication-title: J. Cereb. Blood Flow Metab. – volume: 31 start-page: 1275 year: 2010 end-page: 1283 ident: bb0180 article-title: Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging publication-title: Neurobiol. Aging – volume: 46 start-page: 1959 year: 2005 end-page: 1972 ident: bb0095 article-title: simplified quantification of Pittsburgh compound B amyloid imaging PET studies: a comparative analysis publication-title: J. Nucl. Med. – volume: 256 start-page: 183 year: 2004 end-page: 194 ident: bb0135 article-title: Mild cognitive impairment as a diagnostic entity publication-title: J. Intern. Med. – volume: 67 start-page: 353 year: 2010 end-page: 364 ident: bb0155 article-title: Cognition, reserve, and amyloid deposition in normal aging publication-title: Ann. Neurol. – volume: 31 start-page: 1284 year: 2010 end-page: 1303 ident: bb0010 article-title: 3D PIB and CSF biomarker associations with hippocampal atrophy in ADNI subjects publication-title: Neurobiol. Aging – volume: 40 start-page: 2053 year: 1999 end-page: 2065 ident: bb0105 article-title: Comparative evaluation of MR-based partial volume correction schemes for PET publication-title: J. Nucl. Med. – volume: 65 start-page: 1509 year: 2008 end-page: 1517 ident: bb0005 article-title: Frequent amyloid deposition without significant cognitive impairment among the elderly publication-title: Arch. Neurol. – volume: 29 start-page: 14770 year: 2009 end-page: 14778 ident: bb0035 article-title: Basal cerebral metabolism may modulate the cognitive effects of a{beta} in mild cognitive impairment: an example of brain reserve publication-title: J. Neurosci. – volume: 23 start-page: 185 year: 2010 end-page: 198 ident: bb0040 article-title: Pittsburgh compound B (11C-PIB) and fluorodeoxyglucose (18F-FDG) PET in patients with Alzheimer disease, mild cognitive impairment, and healthy controls publication-title: J. Geriatr. Psychiatry Neurol. – volume: 37 start-page: 1141 year: 2010 end-page: 1147 ident: bb0205 article-title: Visual assessment of [(11)C]PIB PET in patients with cognitive impairment publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 81 start-page: 882 year: 2010 end-page: 884 ident: bb0210 article-title: Molecular imaging in the diagnosis of Alzheimer's disease: visual assessment of [11C]PIB and [18F]FDDNP PET images publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 131 start-page: 1630 year: 2008 end-page: 1645 ident: bb0060 article-title: Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's disease publication-title: Brain – year: 2011 ident: bb0170 article-title: Inter-rater reliability of manual and automated region-of-interest delineation for PiB PET – volume: 43 start-page: 551 year: 1990 end-page: 558 ident: bb0025 article-title: High agreement but low kappa: II. Resolving the paradoxes publication-title: J. Clin. Epidemiol. – volume: vol. 2 year: 2009 ident: bb0055 publication-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction – volume: 68 start-page: 1603 year: 2007 end-page: 1606 ident: bb0075 article-title: PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment publication-title: Neurology – volume: 68 start-page: 1718 year: 2007 end-page: 1725 ident: bb0175 article-title: Imaging beta-amyloid burden in aging and dementia publication-title: Neurology – volume: 132 start-page: 1310 year: 2009 end-page: 1323 ident: bb0115 article-title: Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects publication-title: Brain – volume: 130 start-page: 2837 year: 2007 end-page: 2844 ident: bb0140 article-title: β-Amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease publication-title: Brain – volume: 105 start-page: 713 year: 2010 end-page: 726 ident: bb0215 article-title: A framework for feature selection in clustering publication-title: J. Am. Stat. Assoc. – volume: 62 start-page: 229 year: 2007 end-page: 234 ident: bb0070 article-title: Imaging of amyloid burden and distribution in cerebral amyloid angiopathy publication-title: Ann. Neurol. – volume: 48 start-page: 547 year: 2007 end-page: 552 ident: bb0130 article-title: Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for detection of Alzheimer's disease publication-title: J. Nucl. Med. – volume: 74 start-page: 807 year: 2010 end-page: 815 ident: bb0165 article-title: Longitudinal cognitive decline is associated with fibrillar amyloid-beta measured by [11C]PiB publication-title: Neurology – year: 2011 ident: bb0015 article-title: Sparse clustering with resampling for subject classification in PET amyloid imaging studies publication-title: IEEE Nuclear Science Symposium Conference Record- Valencia MIC12.M-187 – volume: 68 start-page: 1205 year: 2007 end-page: 1212 ident: bb0150 article-title: C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration publication-title: Neurology – volume: 131 start-page: 665 year: 2008 end-page: 680 ident: bb0065 article-title: 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment publication-title: Brain – volume: 7 start-page: 280 year: 2011 end-page: 292 ident: bb0195 article-title: Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement – volume: vol. 1 start-page: 191 year: 2009 end-page: 245 ident: bb0080 article-title: Amyloid imaging and (what is “normal”) aging publication-title: Imaging the Aging Brain – volume: 51 start-page: 3800 year: 2007 end-page: 3810 ident: bb0190 article-title: Identifying outliers with sequential fences publication-title: Comput. Stat. Data Anal. – volume: 67 start-page: 122 year: 2010 end-page: 131 ident: bb0125 article-title: APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging publication-title: Ann. Neurol. – volume: 33 start-page: 215 year: 2010 end-page: 225 ident: bb0045 article-title: Cognition, glucose metabolism and amyloid burden in Alzheimer's disease publication-title: Neurobiol. Aging – volume: 20 start-page: 37 year: 1960 end-page: 46 ident: bb0030 article-title: A coefficient of agreement for nominal scales publication-title: Educ. Psychol. Meas. – volume: 55 start-page: 306 year: 2004 end-page: 319 ident: bb0085 article-title: Imaging brain amyloid in Alzheimer's disease with Pittsburgh compound-B publication-title: Ann. Neurol. – volume: 67 start-page: 446 year: 2006 end-page: 452 ident: bb0110 article-title: [ publication-title: Neurology – volume: 33 start-page: 159 year: 1977 end-page: 174 ident: bb0090 article-title: The measurement of observer agreement for categorical data publication-title: Biometrics – volume: 125 start-page: 341 year: 1974 end-page: 372 ident: bb0200 article-title: A re-analysis of the reliability of psychiatric diagnosis publication-title: Br. J. Psychiatry – volume: 28 start-page: 100 year: 1979 end-page: 108 ident: bb0050 article-title: A K-means clustering algorithm publication-title: Appl. Stat. – reference: Mathis, C., Kuller, L., W. K., Snitz, B., Price, J., Weissfeld, L., Rosario, B., Lopresti, B., Saxton, J., Aizenstein, H., McDade, E., Kamboh, M., DeKosky, S., Lopez, O., in press. In vivo assessment of amyloid-β deposition in nondemented very elderly subjects. Ann. Neurol. – volume: 51 start-page: 3800 issue: 8 year: 2007 ident: 10.1016/j.neuroimage.2013.01.015_bb0190 article-title: Identifying outliers with sequential fences publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2006.01.019 – volume: 67 start-page: 122 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2013.01.015_bb0125 article-title: APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging publication-title: Ann. Neurol. doi: 10.1002/ana.21843 – volume: 65 start-page: 1509 issue: 11 year: 2008 ident: 10.1016/j.neuroimage.2013.01.015_bb0005 article-title: Frequent amyloid deposition without significant cognitive impairment among the elderly publication-title: Arch. Neurol. doi: 10.1001/archneur.65.11.1509 – volume: 68 start-page: 1718 issue: 20 year: 2007 ident: 10.1016/j.neuroimage.2013.01.015_bb0175 article-title: Imaging beta-amyloid burden in aging and dementia publication-title: Neurology doi: 10.1212/01.wnl.0000261919.22630.ea – volume: 29 start-page: 14770 issue: 47 year: 2009 ident: 10.1016/j.neuroimage.2013.01.015_bb0035 article-title: Basal cerebral metabolism may modulate the cognitive effects of a{beta} in mild cognitive impairment: an example of brain reserve publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3669-09.2009 – volume: 130 start-page: 2837 issue: Pt 11 year: 2007 ident: 10.1016/j.neuroimage.2013.01.015_bb0140 article-title: β-Amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awm238 – volume: 40 start-page: 2053 year: 1999 ident: 10.1016/j.neuroimage.2013.01.015_bb0105 article-title: Comparative evaluation of MR-based partial volume correction schemes for PET publication-title: J. Nucl. Med. – volume: 132 start-page: 1310 issue: Pt 5 year: 2009 ident: 10.1016/j.neuroimage.2013.01.015_bb0115 article-title: Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects publication-title: Brain doi: 10.1093/brain/awn320 – volume: 74 start-page: 807 issue: 10 year: 2010 ident: 10.1016/j.neuroimage.2013.01.015_bb0165 article-title: Longitudinal cognitive decline is associated with fibrillar amyloid-beta measured by [11C]PiB publication-title: Neurology doi: 10.1212/WNL.0b013e3181d3e3e9 – volume: 256 start-page: 183 issue: 3 year: 2004 ident: 10.1016/j.neuroimage.2013.01.015_bb0135 article-title: Mild cognitive impairment as a diagnostic entity publication-title: J. Intern. Med. doi: 10.1111/j.1365-2796.2004.01388.x – volume: 360 start-page: 2302 issue: 22 year: 2009 ident: 10.1016/j.neuroimage.2013.01.015_bb0185 article-title: Age, neuropathology, and dementia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0806142 – volume: 23 start-page: 185 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2013.01.015_bb0040 article-title: Pittsburgh compound B (11C-PIB) and fluorodeoxyglucose (18F-FDG) PET in patients with Alzheimer disease, mild cognitive impairment, and healthy controls publication-title: J. Geriatr. Psychiatry Neurol. doi: 10.1177/0891988710363715 – volume: 43 start-page: 551 issue: 6 year: 1990 ident: 10.1016/j.neuroimage.2013.01.015_bb0025 article-title: High agreement but low kappa: II. Resolving the paradoxes publication-title: J. Clin. Epidemiol. doi: 10.1016/0895-4356(90)90159-M – volume: 59 start-page: 1152 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2013.01.015_bb0120 article-title: Not quite PIB-positive, not quite PIB-negative: slight PIB elevations in elderly normal control subjects are biologically relevant publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.07.098 – volume: vol. 1 start-page: 191 year: 2009 ident: 10.1016/j.neuroimage.2013.01.015_bb0080 article-title: Amyloid imaging and (what is “normal”) aging – volume: 31 start-page: 1275 issue: 8 year: 2010 ident: 10.1016/j.neuroimage.2013.01.015_bb0180 article-title: Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2010.04.007 – volume: 125 start-page: 341 year: 1974 ident: 10.1016/j.neuroimage.2013.01.015_bb0200 article-title: A re-analysis of the reliability of psychiatric diagnosis publication-title: Br. J. Psychiatry doi: 10.1192/bjp.125.4.341 – volume: 105 start-page: 713 issue: 490 year: 2010 ident: 10.1016/j.neuroimage.2013.01.015_bb0215 article-title: A framework for feature selection in clustering publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2010.tm09415 – volume: vol. 2 year: 2009 ident: 10.1016/j.neuroimage.2013.01.015_bb0055 – volume: 33 start-page: 215 issue: 2 year: 2010 ident: 10.1016/j.neuroimage.2013.01.015_bb0045 article-title: Cognition, glucose metabolism and amyloid burden in Alzheimer's disease publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2010.03.011 – volume: 74 start-page: 121 issue: 2 year: 2010 ident: 10.1016/j.neuroimage.2013.01.015_bb0020 article-title: Beta-amyloid burden in the temporal neocortex is related to hippocampal atrophy in elderly subjects without dementia publication-title: Neurology doi: 10.1212/WNL.0b013e3181c918b5 – volume: 131 start-page: 665 issue: Pt 3 year: 2008 ident: 10.1016/j.neuroimage.2013.01.015_bb0065 article-title: 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment publication-title: Brain doi: 10.1093/brain/awm336 – volume: 31 start-page: 1284 issue: 8 year: 2010 ident: 10.1016/j.neuroimage.2013.01.015_bb0010 article-title: 3D PIB and CSF biomarker associations with hippocampal atrophy in ADNI subjects publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2010.05.003 – volume: 25 start-page: 1528 year: 2005 ident: 10.1016/j.neuroimage.2013.01.015_bb0145 article-title: Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh compound-B publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/sj.jcbfm.9600146 – year: 2011 ident: 10.1016/j.neuroimage.2013.01.015_bb0015 article-title: Sparse clustering with resampling for subject classification in PET amyloid imaging studies – volume: 67 start-page: 446 issue: 3 year: 2006 ident: 10.1016/j.neuroimage.2013.01.015_bb0110 article-title: [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease publication-title: Neurology doi: 10.1212/01.wnl.0000228230.26044.a4 – volume: 46 start-page: 1959 issue: 12 year: 2005 ident: 10.1016/j.neuroimage.2013.01.015_bb0095 article-title: simplified quantification of Pittsburgh compound B amyloid imaging PET studies: a comparative analysis publication-title: J. Nucl. Med. – volume: 7 start-page: 280 issue: 3 year: 2011 ident: 10.1016/j.neuroimage.2013.01.015_bb0195 article-title: Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2011.03.003 – volume: 68 start-page: 1603 issue: 19 year: 2007 ident: 10.1016/j.neuroimage.2013.01.015_bb0075 article-title: PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment publication-title: Neurology doi: 10.1212/01.wnl.0000260969.94695.56 – volume: 131 start-page: 1630 issue: Pt 6 year: 2008 ident: 10.1016/j.neuroimage.2013.01.015_bb0060 article-title: Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awn016 – volume: 67 start-page: 353 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2013.01.015_bb0155 article-title: Cognition, reserve, and amyloid deposition in normal aging publication-title: Ann. Neurol. doi: 10.1002/ana.21904 – volume: 33 start-page: 159 year: 1977 ident: 10.1016/j.neuroimage.2013.01.015_bb0090 article-title: The measurement of observer agreement for categorical data publication-title: Biometrics doi: 10.2307/2529310 – volume: 48 start-page: 547 issue: 4 year: 2007 ident: 10.1016/j.neuroimage.2013.01.015_bb0130 article-title: Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for detection of Alzheimer's disease publication-title: J. Nucl. Med. doi: 10.2967/jnumed.106.037762 – volume: 20 start-page: 37 year: 1960 ident: 10.1016/j.neuroimage.2013.01.015_bb0030 article-title: A coefficient of agreement for nominal scales publication-title: Educ. Psychol. Meas. doi: 10.1177/001316446002000104 – volume: 68 start-page: 1205 issue: 15 year: 2007 ident: 10.1016/j.neuroimage.2013.01.015_bb0150 article-title: 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration publication-title: Neurology doi: 10.1212/01.wnl.0000259035.98480.ed – year: 2011 ident: 10.1016/j.neuroimage.2013.01.015_bb0170 – volume: 37 start-page: 1141 issue: 6 year: 2010 ident: 10.1016/j.neuroimage.2013.01.015_bb0205 article-title: Visual assessment of [(11)C]PIB PET in patients with cognitive impairment publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-010-1382-8 – volume: 28 start-page: 100 year: 1979 ident: 10.1016/j.neuroimage.2013.01.015_bb0050 article-title: A K-means clustering algorithm publication-title: Appl. Stat. doi: 10.2307/2346830 – volume: 55 start-page: 306 issue: 3 year: 2004 ident: 10.1016/j.neuroimage.2013.01.015_bb0085 article-title: Imaging brain amyloid in Alzheimer's disease with Pittsburgh compound-B publication-title: Ann. Neurol. doi: 10.1002/ana.20009 – volume: 81 start-page: 882 issue: 8 year: 2010 ident: 10.1016/j.neuroimage.2013.01.015_bb0210 article-title: Molecular imaging in the diagnosis of Alzheimer's disease: visual assessment of [11C]PIB and [18F]FDDNP PET images publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2009.194779 – volume: 62 start-page: 229 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2013.01.015_bb0070 article-title: Imaging of amyloid burden and distribution in cerebral amyloid angiopathy publication-title: Ann. Neurol. doi: 10.1002/ana.21164 – ident: 10.1016/j.neuroimage.2013.01.015_bb0100 – reference: 17928318 - Brain. 2007 Nov;130(Pt 11):2837-44 – reference: 17502554 - Neurology. 2007 May 15;68(20):1718-25 – reference: 2189948 - J Clin Epidemiol. 1990;43(6):551-8 – reference: 20143064 - Eur J Nucl Med Mol Imaging. 2010 Jun;37(6):1141-7 – reference: 843571 - Biometrics. 1977 Mar;33(1):159-74 – reference: 21514248 - Alzheimers Dement. 2011 May;7(3):280-92 – reference: 19042931 - Brain. 2009 May;132(Pt 5):1310-23 – reference: 16894106 - Neurology. 2006 Aug 8;67(3):446-52 – reference: 10616886 - J Nucl Med. 1999 Dec;40(12):2053-65 – reference: 15324362 - J Intern Med. 2004 Sep;256(3):183-94 – reference: 25356069 - IEEE Nucl Sci Symp Conf Rec (1997). 2011 Oct;2011:3108-3111 – reference: 20538372 - Neurobiol Aging. 2010 Aug;31(8):1284-303 – reference: 15944649 - J Cereb Blood Flow Metab. 2005 Nov;25(11):1528-47 – reference: 18339640 - Brain. 2008 Jun;131(Pt 6):1630-45 – reference: 17401090 - J Nucl Med. 2007 Apr;48(4):547-52 – reference: 20543188 - J Neurol Neurosurg Psychiatry. 2010 Aug;81(8):882-4 – reference: 18263627 - Brain. 2008 Mar;131(Pt 3):665-80 – reference: 20811510 - J Am Stat Assoc. 2010 Jun 1;105(490):713-726 – reference: 4425771 - Br J Psychiatry. 1974 Oct;125(0):341-7 – reference: 19474427 - N Engl J Med. 2009 May 28;360(22):2302-9 – reference: 20186853 - Ann Neurol. 2010 Jan;67(1):122-31 – reference: 14991808 - Ann Neurol. 2004 Mar;55(3):306-19 – reference: 21195782 - Neuroimage. 2011 Apr 1;55(3):933-41 – reference: 17683091 - Ann Neurol. 2007 Sep;62(3):229-34 – reference: 19940172 - J Neurosci. 2009 Nov 25;29(47):14770-8 – reference: 20065247 - Neurology. 2010 Jan 12;74(2):121-7 – reference: 20472326 - Neurobiol Aging. 2010 Aug;31(8):1275-83 – reference: 20373347 - Ann Neurol. 2010 Mar;67(3):353-64 – reference: 17485647 - Neurology. 2007 May 8;68(19):1603-6 – reference: 16330558 - J Nucl Med. 2005 Dec;46(12):1959-72 – reference: 20147655 - Neurology. 2010 Mar 9;74(10):807-15 – reference: 20430977 - J Geriatr Psychiatry Neurol. 2010 Sep;23(3):185-98 – reference: 21884802 - Neuroimage. 2012 Jan 16;59(2):1152-60 – reference: 17420404 - Neurology. 2007 Apr 10;68(15):1205-12 – reference: 20417582 - Neurobiol Aging. 2012 Feb;33(2):215-25 – reference: 19001171 - Arch Neurol. 2008 Nov;65(11):1509-17 – reference: 23596051 - Ann Neurol. 2013 Jun;73(6):751-61 |
| SSID | ssj0009148 |
| Score | 2.39983 |
| Snippet | An important research application of amyloid imaging with positron emission tomography (PET) is detection of the earliest evidence of fibrillar amyloid-beta... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 207 |
| SubjectTerms | Adult Aged Agreements Alzheimer's disease Amyloid Amyloid - analysis Amyloidosis - diagnostic imaging Aniline Compounds Brain - diagnostic imaging Brain - pathology Cluster Analysis Humans Methods Middle Aged Pittsburgh compound B Positron emission tomography Positron-Emission Tomography - methods Radiopharmaceuticals Retention Studies Thiazoles Visual read |
| Title | Classification of amyloid-positivity in controls: Comparison of visual read and quantitative approaches |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811913000621 https://dx.doi.org/10.1016/j.neuroimage.2013.01.015 https://www.ncbi.nlm.nih.gov/pubmed/23353602 https://www.proquest.com/docview/1625983327 https://www.proquest.com/docview/1314706255 https://www.proquest.com/docview/1500782047 https://pubmed.ncbi.nlm.nih.gov/PMC3605888 |
| Volume | 71 |
| WOSCitedRecordID | wos000316154400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 1095-9572 dateEnd: 20251011 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M7P dateStart: 19980501 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20251011 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1095-9572 dateEnd: 20251011 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1095-9572 dateEnd: 20251011 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M2M dateStart: 20020801 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbYhhAv3C-FURmJVwsntmsHHhBMm3hpVSGQ-ma5vrAglm5Lu9_PseOkDNBUCamqVOU4bXNOjs-JP38fQm-UgzrUe0HopKoI564iarKsiHC8ssHKibGd2ISczdRiUc3zA7c2wyr7nJgStVvZ-Iz8bRELdcVYKT-cX5CoGhVXV7OExh46iCwJZYLuzbekuwXvtsIJRlRRVBnJ0-G7El9kfQZ3bQR4sUTeGcVx_z09_V1-_omi_G1aOrn_v3_oAbqXC1L8sYugh-iWbx6hO9O85P4YfU-ymRFQlHyIVwGbM-jya0c6wFcUn8B1gzPovX2HjwZtw2h9Vbcb-AIoTh02jcMXG9OknW2QZ3FPae7bJ-jbyfHXo88kqzMQC1XKmgSvDJXeGyaCCYwGaC5DaQw0SFY4byAZUC-o8VwYCmbSm6XlRShEgLbMBvYU7Terxj9HGFzHlzKUS-EFt54aOLeLxIJMyQD9zwjJ3inaZuryqKDxU_cYtR96604d3alpAS8xQsUw8ryj79hhTNX7XffbUyGhaphjdhj7fhibS5iuNNlx9GEfKjqnklZv42SEXg-HIQnElR3T-NUGbFjBJQVDcYONSOUg5XCeZ13kDpekZEywCS3hQl-L6cEgkpBfP9LUp4mMnMV1daVe3PzTX6K7ZdIRiUjRQ7S_vtz4V-i2vVrX7eUY7cmFTO9qjA4-Hc_mX-DTtJyO0_38C5ZwVQw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL78dCASPB0cKJ7U0CQggVqlbtrjgUqTfjdew2qE3aZrdV_1R_I2PnsRRQtZcekPaWGWfXGc983nyeD-BNmiMOtVZSNswyKkSe0XQ4yajMRWacSYbaNGITyXic7uxk35bgvDsL42mVXU4MiTqvjP-P_F3kgXrKeZx8OjyiXjXKv13tJDSasNi0Z6e4Zas_bnzB5_s2jte-bq-u01ZVgBqsrlPqbKpZYq3m0mnHmcNNkYu1RmBvZG41BjGzkmkrpGZollg9MSJykXS4nTCO47jX4LrwR0Y9VTAezZv8RqI5eic5TaMoa5lDDZ8s9KcsDjBLeEIZD81CvRjvv8vh33D3T9bmb2Vw7e7_NoH34E4LuMnnZoXchyVbPoCbo5ZS8BB2gyyoJ0yFGCWVI_rgbL8qctoQ2ry4BilK0pL66_dktddu9NYnRT3DGyD4zokuc3I002U4uYd1hHQt2239CL5fyc98DMtlVdqnQBBWiUni4om0UhjLNI6d-8aJPE0c7u8GkHRBoEzbmt0rhOyrjoP3U83DR_nwUSzCjxxA1HseNu1JFvDJujhT3fFbLBgKa-gCvh963xaiNdBrQe-VLjRVmyprNY_LAbzuL2OS82-udGmrGdrwSCQMDeUlNjLAXSZwnCfNSumnJOZc8iGLcaIvrKHewDdZv3ilLPZCs3XueQNp-uzyr_4Kbq1vj7bU1sZ48zncjoNmimfFrsDy9HhmX8ANczIt6uOXIWMQ-HHVK-wXoZ-xRw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NDk174fujMMBI8GjhxHaTgBCCbRXToKoQSHszrmOzoC3dlnZo_xp_HefESRmgqS97QOpb7pzWuY_fNT_fATxLc8Sh1krKBllGhcgzmg4mGZW5yIwzyUCbZthEMhqle3vZeAV-tmdhPK2yjYl1oM6nxv9H_iLyQD3lHEt1F2gR463hm6Nj6idI-Tet7TiNxkR27dkPLN-q1ztb-Kyfx_Fw-_PmexomDFCDmXZGnU01S6zVXDrtOHNYILlYawT5RuZWo0EzK5m2QmqGYonVEyMiF0mHpYVxHNe9AqsJggzRg9V326Pxp0XL30g0B_Ekp2kUZYFH1LDL6m6VxSHGDE8v43XrUD-a99_J8W_w-yeH87ekOLz-P2_nDbgWoDh52_jOTVix5S1Y-xjIBrfhWz0w1FOpauslU0f04dnBtMhpQ3XzYzdIUZJA969eks1uqqOXPi2qOd4AYXlOdJmT47ku6zN9mGFI28zdVnfgy6X8zLvQK6elvQ8EAZeYJC6eSCuFsUzj2rlvqcjTxGHl14ekNQhlQtN2PzvkQLXsvO9qYUrKm5JiEX5kH6JO86hpXLKETtbanGoP5mIqUZhdl9B91ekG8NaAsiW1N1ozVSGIVmpho3142l3G8OffaenSTucowyORMBSUF8jIGggzgevca7ym25KYc8kHLMaNPudPnYBvv37-Slns123YuWcUpOmDi7_6E1hDx1Ifdka7D2E9roepeLrsBvRmJ3P7CK6a01lRnTwO4YPA18t2sV-Wl7th |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+amyloid-positivity+in+controls%3A+Comparison+of+visual+read+and+quantitative+approaches&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Cohen%2C+Ann&rft.au=Mowrey%2C+Wenzhu&rft.au=Weissfeld%2C+Lisa&rft.au=Aizenstein%2C+Howard&rft.date=2013-05-01&rft.issn=1053-8119&rft.volume=71&rft.spage=207&rft.epage=215&rft_id=info:doi/10.1016%2Fj.neuroimage.2013.01.015&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |