Hidden Markov model speed heuristic and iterative HMM search procedure
Background Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or Forward, require considerable time to search large sequence databases. Results We have designed a series of database filtering steps, HMMERHEA...
Uloženo v:
| Vydáno v: | BMC bioinformatics Ročník 11; číslo 1; s. 431 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
BioMed Central
18.08.2010
BioMed Central Ltd Springer Nature B.V BMC |
| Témata: | |
| ISSN: | 1471-2105, 1471-2105 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Background
Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or Forward, require considerable time to search large sequence databases.
Results
We have designed a series of database filtering steps, HMMERHEAD, that are applied prior to the scoring algorithms, as implemented in the HMMER package, in an effort to reduce search time. Using this heuristic, we obtain a 20-fold decrease in Forward and a 6-fold decrease in Viterbi search time with a minimal loss in sensitivity relative to the unfiltered approaches. We then implemented an iterative profile-HMM search method, JackHMMER, which employs the HMMERHEAD heuristic. Due to our search heuristic, we eliminated the subdatabase creation that is common in current iterative profile-HMM approaches. On our benchmark, JackHMMER detects 14% more remote protein homologs than SAM's iterative method T2K.
Conclusions
Our search heuristic, HMMERHEAD, significantly reduces the time needed to score a profile-HMM against large sequence databases. This search heuristic allowed us to implement an iterative profile-HMM search method, JackHMMER, which detects significantly more remote protein homologs than SAM's T2K and NCBI's PSI-BLAST. |
|---|---|
| AbstractList | Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or Forward, require considerable time to search large sequence databases. We have designed a series of database filtering steps, HMMERHEAD, that are applied prior to the scoring algorithms, as implemented in the HMMER package, in an effort to reduce search time. Using this heuristic, we obtain a 20-fold decrease in Forward and a 6-fold decrease in Viterbi search time with a minimal loss in sensitivity relative to the unfiltered approaches. We then implemented an iterative profile-HMM search method, JackHMMER, which employs the HMMERHEAD heuristic. Due to our search heuristic, we eliminated the subdatabase creation that is common in current iterative profile-HMM approaches. On our benchmark, JackHMMER detects 14% more remote protein homologs than SAM's iterative method T2K. Our search heuristic, HMMERHEAD, significantly reduces the time needed to score a profile-HMM against large sequence databases. This search heuristic allowed us to implement an iterative profile-HMM search method, JackHMMER, which detects significantly more remote protein homologs than SAM's T2K and NCBI's PSI-BLAST. Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or Forward, require considerable time to search large sequence databases.BACKGROUNDProfile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or Forward, require considerable time to search large sequence databases.We have designed a series of database filtering steps, HMMERHEAD, that are applied prior to the scoring algorithms, as implemented in the HMMER package, in an effort to reduce search time. Using this heuristic, we obtain a 20-fold decrease in Forward and a 6-fold decrease in Viterbi search time with a minimal loss in sensitivity relative to the unfiltered approaches. We then implemented an iterative profile-HMM search method, JackHMMER, which employs the HMMERHEAD heuristic. Due to our search heuristic, we eliminated the subdatabase creation that is common in current iterative profile-HMM approaches. On our benchmark, JackHMMER detects 14% more remote protein homologs than SAM's iterative method T2K.RESULTSWe have designed a series of database filtering steps, HMMERHEAD, that are applied prior to the scoring algorithms, as implemented in the HMMER package, in an effort to reduce search time. Using this heuristic, we obtain a 20-fold decrease in Forward and a 6-fold decrease in Viterbi search time with a minimal loss in sensitivity relative to the unfiltered approaches. We then implemented an iterative profile-HMM search method, JackHMMER, which employs the HMMERHEAD heuristic. Due to our search heuristic, we eliminated the subdatabase creation that is common in current iterative profile-HMM approaches. On our benchmark, JackHMMER detects 14% more remote protein homologs than SAM's iterative method T2K.Our search heuristic, HMMERHEAD, significantly reduces the time needed to score a profile-HMM against large sequence databases. This search heuristic allowed us to implement an iterative profile-HMM search method, JackHMMER, which detects significantly more remote protein homologs than SAM's T2K and NCBI's PSI-BLAST.CONCLUSIONSOur search heuristic, HMMERHEAD, significantly reduces the time needed to score a profile-HMM against large sequence databases. This search heuristic allowed us to implement an iterative profile-HMM search method, JackHMMER, which detects significantly more remote protein homologs than SAM's T2K and NCBI's PSI-BLAST. Background Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or Forward, require considerable time to search large sequence databases. Results We have designed a series of database filtering steps, HMMERHEAD, that are applied prior to the scoring algorithms, as implemented in the HMMER package, in an effort to reduce search time. Using this heuristic, we obtain a 20-fold decrease in Forward and a 6-fold decrease in Viterbi search time with a minimal loss in sensitivity relative to the unfiltered approaches. We then implemented an iterative profile-HMM search method, JackHMMER, which employs the HMMERHEAD heuristic. Due to our search heuristic, we eliminated the subdatabase creation that is common in current iterative profile-HMM approaches. On our benchmark, JackHMMER detects 14% more remote protein homologs than SAM's iterative method T2K. Conclusions Our search heuristic, HMMERHEAD, significantly reduces the time needed to score a profile-HMM against large sequence databases. This search heuristic allowed us to implement an iterative profile-HMM search method, JackHMMER, which detects significantly more remote protein homologs than SAM's T2K and NCBI's PSI-BLAST. Abstract Background Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or Forward, require considerable time to search large sequence databases. Results We have designed a series of database filtering steps, HMMERHEAD, that are applied prior to the scoring algorithms, as implemented in the HMMER package, in an effort to reduce search time. Using this heuristic, we obtain a 20-fold decrease in Forward and a 6-fold decrease in Viterbi search time with a minimal loss in sensitivity relative to the unfiltered approaches. We then implemented an iterative profile-HMM search method, JackHMMER, which employs the HMMERHEAD heuristic. Due to our search heuristic, we eliminated the subdatabase creation that is common in current iterative profile-HMM approaches. On our benchmark, JackHMMER detects 14% more remote protein homologs than SAM's iterative method T2K. Conclusions Our search heuristic, HMMERHEAD, significantly reduces the time needed to score a profile-HMM against large sequence databases. This search heuristic allowed us to implement an iterative profile-HMM search method, JackHMMER, which detects significantly more remote protein homologs than SAM's T2K and NCBI's PSI-BLAST. Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or Forward, require considerable time to search large sequence databases. We have designed a series of database filtering steps, HMMERHEAD, that are applied prior to the scoring algorithms, as implemented in the HMMER package, in an effort to reduce search time. Using this heuristic, we obtain a 20-fold decrease in Forward and a 6-fold decrease in Viterbi search time with a minimal loss in sensitivity relative to the unfiltered approaches. We then implemented an iterative profile-HMM search method, JackHMMER, which employs the HMMERHEAD heuristic. Due to our search heuristic, we eliminated the subdatabase creation that is common in current iterative profile-HMM approaches. On our benchmark, JackHMMER detects 14% more remote protein homologs than SAM's iterative method T2K. Our search heuristic, HMMERHEAD, significantly reduces the time needed to score a profile-HMM against large sequence databases. This search heuristic allowed us to implement an iterative profile-HMM search method, JackHMMER, which detects significantly more remote protein homologs than SAM's T2K and NCBI's PSI-BLAST. Background Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or Forward, require considerable time to search large sequence databases. Results We have designed a series of database filtering steps, HMMERHEAD, that are applied prior to the scoring algorithms, as implemented in the HMMER package, in an effort to reduce search time. Using this heuristic, we obtain a 20-fold decrease in Forward and a 6-fold decrease in Viterbi search time with a minimal loss in sensitivity relative to the unfiltered approaches. We then implemented an iterative profile-HMM search method, JackHMMER, which employs the HMMERHEAD heuristic. Due to our search heuristic, we eliminated the subdatabase creation that is common in current iterative profile-HMM approaches. On our benchmark, JackHMMER detects 14% more remote protein homologs than SAM's iterative method T2K. Conclusions Our search heuristic, HMMERHEAD, significantly reduces the time needed to score a profile-HMM against large sequence databases. This search heuristic allowed us to implement an iterative profile-HMM search method, JackHMMER, which detects significantly more remote protein homologs than SAM's T2K and NCBI's PSI-BLAST. |
| ArticleNumber | 431 |
| Audience | Academic |
| Author | Portugaly, Elon Johnson, L Steven Eddy, Sean R |
| AuthorAffiliation | 2 Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA 1 Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, Missouri, USA 3 School of Computer Science & Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel |
| AuthorAffiliation_xml | – name: 3 School of Computer Science & Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel – name: 1 Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, Missouri, USA – name: 2 Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA |
| Author_xml | – sequence: 1 givenname: L Steven surname: Johnson fullname: Johnson, L Steven email: stevej@pathology.wustl.edu organization: Department of Immunology and Pathology, Washington University School of Medicine – sequence: 2 givenname: Sean R surname: Eddy fullname: Eddy, Sean R organization: Janelia Farm Research Campus, Howard Hughes Medical Institute – sequence: 3 givenname: Elon surname: Portugaly fullname: Portugaly, Elon organization: School of Computer Science & Engineering, The Hebrew University of Jerusalem |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20718988$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks9v0zAcxSM0xLbCnROK4IA4ZNhxHNsXpGlitNIqJH6cLcf-unVJ485OKvjvceg2lgkQyiHxN5_38s3TO82OOt9Blj3H6AxjXr_FFcNFiREtMC4qgh9lJ3ejo3vPx9lpjBuEMOOIPsmOS8QwF5yfZJdzZwx0-VKFb36fb72BNo87AJOvYQgu9k7nqjO56yGo3u0hny-XeQQV9DrfBa_BDAGeZo-taiM8u7nPsq-X779czIurjx8WF-dXha5r0heC1E3Jaq1JWQHmpOHCImyppsLyxlbEUktspSuFOAdVNYDAUGyahtS4ZpjMssXB13i1kbvgtir8kF45-Wvgw0qqkFZuQWpqbKkarKlGlahLAYAbCw3ltOI8fWuWvTt47YZmC0ZD1wfVTkynbzq3liu_l6UgmGKRDF7fGAR_PUDs5dZFDW2rOvBDlJwxKhj6D5JRIkTNOEnkywfkxg-hS5lKgTCnoipZgl4doJVKP-o669N-erSU5yWpKzZul6izP1DpMrB1OhXJujSfCN5MBInp4Xu_UkOMcvH505R9cT-8u9Rum5WA-gDo4GMMYKV2fSqQH7N0rcRIjhWWY0fl2NF0lKnCSYgeCG-9_yHBB0lMaLeC8Du0v2p-AhYn_f8 |
| CitedBy_id | crossref_primary_10_1111_1462_2920_16145 crossref_primary_10_1038_s41597_023_02067_5 crossref_primary_10_1186_1479_7364_5_6_691 crossref_primary_10_3389_fmicb_2023_1259241 crossref_primary_10_3389_fpls_2023_1111418 crossref_primary_10_1016_j_fsi_2022_11_036 crossref_primary_10_1007_s11816_021_00699_w crossref_primary_10_1002_prot_25377 crossref_primary_10_2142_biophysico_bppb_v22_0014 crossref_primary_10_1186_s12864_022_08735_x crossref_primary_10_1007_s10482_022_01746_4 crossref_primary_10_3389_fimmu_2020_00758 crossref_primary_10_1128_JB_00218_17 crossref_primary_10_1186_s12864_016_2486_8 crossref_primary_10_1111_tpj_16411 crossref_primary_10_1128_msystems_00161_23 crossref_primary_10_3389_fmicb_2016_01874 crossref_primary_10_3389_fmicb_2017_01020 crossref_primary_10_1128_AEM_02584_20 crossref_primary_10_1007_s00425_018_3026_3 crossref_primary_10_1186_s12864_021_08233_6 crossref_primary_10_3390_toxins9080245 crossref_primary_10_1016_j_scitotenv_2023_165152 crossref_primary_10_1128_spectrum_04298_22 crossref_primary_10_3389_fmicb_2022_799859 crossref_primary_10_1111_nph_19620 crossref_primary_10_1128_JB_06225_11 crossref_primary_10_1038_s41467_019_09364_x crossref_primary_10_56093_ijas_v90i5_104388 crossref_primary_10_1186_s12870_020_02570_6 crossref_primary_10_1038_s42004_023_00991_6 crossref_primary_10_1016_j_bpj_2022_02_027 crossref_primary_10_1371_journal_pone_0112871 crossref_primary_10_1073_pnas_1716667115 crossref_primary_10_1038_s41586_020_2461_z crossref_primary_10_1016_j_jmb_2025_169412 crossref_primary_10_1038_s41589_023_01376_5 crossref_primary_10_3390_plants12152797 crossref_primary_10_1038_s41522_023_00382_8 crossref_primary_10_1186_s12864_019_5463_1 crossref_primary_10_1093_molbev_msab094 crossref_primary_10_1038_s42003_018_0141_4 crossref_primary_10_1073_pnas_2203176119 crossref_primary_10_1371_journal_pcbi_1003889 crossref_primary_10_3389_fgene_2024_1430589 crossref_primary_10_1016_j_plantsci_2025_112689 crossref_primary_10_1186_s12864_017_4243_z crossref_primary_10_1038_s41467_023_37431_x crossref_primary_10_1371_journal_pgen_1007753 crossref_primary_10_1186_1471_2164_16_S7_S16 crossref_primary_10_1128_MRA_01151_18 crossref_primary_10_1093_molbev_msr120 crossref_primary_10_1093_molbev_msad060 crossref_primary_10_1109_ACCESS_2020_2991605 crossref_primary_10_1007_s00792_018_1015_x crossref_primary_10_1186_s40168_020_00931_9 crossref_primary_10_1016_j_ijbiomac_2023_125929 crossref_primary_10_1186_s12864_021_08002_5 crossref_primary_10_1016_j_compbiomed_2021_104389 crossref_primary_10_1111_nph_70080 crossref_primary_10_1186_s43897_024_00101_7 crossref_primary_10_1111_1755_0998_14071 crossref_primary_10_1074_jbc_M113_451500 crossref_primary_10_1016_j_immuni_2025_04_015 crossref_primary_10_3390_insects12100928 crossref_primary_10_1111_1365_2656_13969 crossref_primary_10_1002_prot_23177 crossref_primary_10_1126_science_aao6535 crossref_primary_10_3390_genes9040185 crossref_primary_10_1128_aem_00629_23 crossref_primary_10_7554_eLife_41815 crossref_primary_10_1186_s12985_025_02742_6 crossref_primary_10_1128_AEM_01993_15 crossref_primary_10_1371_journal_pone_0212248 crossref_primary_10_3390_plants12173036 crossref_primary_10_1371_journal_pone_0258443 crossref_primary_10_3389_fmicb_2024_1367658 crossref_primary_10_1002_prot_26211 crossref_primary_10_1038_srep46486 crossref_primary_10_1093_nar_gkad879 crossref_primary_10_1128_mra_01232_22 crossref_primary_10_1242_dev_182139 crossref_primary_10_1016_j_cbpa_2021_04_005 crossref_primary_10_1080_23802359_2021_2017366 crossref_primary_10_3390_genes11091032 crossref_primary_10_1002_prot_26853 crossref_primary_10_1016_j_watres_2025_124401 crossref_primary_10_1128_JB_05177_11 crossref_primary_10_1038_s41587_019_0260_6 crossref_primary_10_1007_s11240_020_01882_7 crossref_primary_10_1128_aem_00216_25 crossref_primary_10_3389_fpls_2020_536530 crossref_primary_10_1038_s41586_021_03819_2 crossref_primary_10_1038_s41598_020_63729_7 crossref_primary_10_1111_ppl_13796 crossref_primary_10_1111_mec_15504 crossref_primary_10_1002_prot_25778 crossref_primary_10_1002_prot_25779 crossref_primary_10_1128_msystems_01466_21 crossref_primary_10_3390_antibiotics11121710 crossref_primary_10_3390_genes11091046 crossref_primary_10_1128_JB_06026_11 crossref_primary_10_1007_s10482_024_02006_3 crossref_primary_10_1111_tpj_15968 crossref_primary_10_1007_s10482_025_02132_6 crossref_primary_10_1016_j_ejcb_2023_151322 crossref_primary_10_1016_j_jes_2023_12_010 crossref_primary_10_1186_s12915_019_0643_7 crossref_primary_10_1186_s40168_017_0308_0 crossref_primary_10_1155_2020_8811407 crossref_primary_10_1016_j_plgene_2017_05_004 crossref_primary_10_1007_s12275_017_6427_2 crossref_primary_10_3390_life12111893 crossref_primary_10_1099_ijsem_0_004647 crossref_primary_10_1371_journal_pone_0089323 crossref_primary_10_1016_j_meegid_2019_01_001 crossref_primary_10_3390_microorganisms12030611 crossref_primary_10_1002_prot_25792 crossref_primary_10_3390_ijms20040855 crossref_primary_10_1186_s12864_019_6245_5 crossref_primary_10_1093_nargab_lqad029 crossref_primary_10_1038_s41564_020_0779_9 crossref_primary_10_1007_s00299_023_03044_3 crossref_primary_10_1073_pnas_1605917113 crossref_primary_10_1038_s41392_023_01381_z crossref_primary_10_1002_mbo3_1042 crossref_primary_10_1093_nar_gkz280 crossref_primary_10_1021_acschembio_8b00254 crossref_primary_10_1371_journal_ppat_1007651 crossref_primary_10_1038_s41467_023_40253_6 crossref_primary_10_1186_s12862_017_1061_5 crossref_primary_10_1186_s12859_021_04276_4 crossref_primary_10_1186_1471_2105_12_275 crossref_primary_10_1111_ppl_13511 crossref_primary_10_1128_MRA_00650_23 crossref_primary_10_1242_jcs_245753 crossref_primary_10_1093_ismejo_wrae157 crossref_primary_10_1186_1471_2164_14_803 crossref_primary_10_3390_biom14121531 crossref_primary_10_1186_s12864_019_5600_x crossref_primary_10_1093_bib_bbab609 crossref_primary_10_3390_genes14071344 crossref_primary_10_3390_vaccines9030293 crossref_primary_10_1038_s43705_021_00005_3 crossref_primary_10_3390_f14081633 crossref_primary_10_1038_s41598_023_51007_1 crossref_primary_10_1074_jbc_RA118_005220 crossref_primary_10_1016_j_ympev_2016_01_008 crossref_primary_10_7554_eLife_09492 crossref_primary_10_1038_s41598_023_27813_y crossref_primary_10_1007_s42979_024_03108_5 crossref_primary_10_1016_j_virol_2014_05_013 crossref_primary_10_3390_ijms23136904 crossref_primary_10_1016_j_neucom_2018_07_053 crossref_primary_10_1007_s11427_024_2664_0 crossref_primary_10_1111_1462_2920_15236 crossref_primary_10_1073_pnas_2213771120 crossref_primary_10_1002_prot_25986 crossref_primary_10_1007_s12298_017_0421_3 crossref_primary_10_1016_j_bpj_2015_11_3519 crossref_primary_10_1371_journal_pone_0068464 crossref_primary_10_1093_gbe_evaf109 crossref_primary_10_3390_genes12040518 crossref_primary_10_1016_j_cub_2024_10_054 crossref_primary_10_3184_003685013X13683759820813 crossref_primary_10_1371_journal_pone_0209221 crossref_primary_10_3389_fmed_2022_835467 crossref_primary_10_1093_g3journal_jkab074 crossref_primary_10_1371_journal_pcbi_1009370 crossref_primary_10_1016_j_ijbiomac_2023_125304 crossref_primary_10_1016_j_vetmic_2025_110596 crossref_primary_10_1128_msystems_00736_22 crossref_primary_10_3390_plants13202940 crossref_primary_10_15212_AMM_2024_0047 crossref_primary_10_1007_s00705_021_05308_3 crossref_primary_10_1093_ismejo_wrae124 crossref_primary_10_1002_prot_26850 crossref_primary_10_1128_IAI_06062_11 crossref_primary_10_1021_acs_jcim_5c01765 crossref_primary_10_1186_s12864_023_09646_1 crossref_primary_10_1038_s41467_025_60079_8 crossref_primary_10_3389_fpls_2021_637343 crossref_primary_10_3389_fchbi_2023_1243564 crossref_primary_10_1038_s41522_024_00615_4 crossref_primary_10_1038_s41467_024_50229_9 crossref_primary_10_3390_ijms242316627 crossref_primary_10_1186_s12870_021_03278_x crossref_primary_10_3389_fvets_2021_767494 crossref_primary_10_1128_AEM_02704_20 crossref_primary_10_1186_s12870_022_03731_5 crossref_primary_10_1093_jxb_erae109 crossref_primary_10_1038_s41467_019_09467_5 crossref_primary_10_3389_fgene_2023_1141194 crossref_primary_10_1038_s41467_024_47968_0 crossref_primary_10_1186_1471_2164_14_457 crossref_primary_10_1002_prot_24615 crossref_primary_10_7554_eLife_87521_3 crossref_primary_10_3390_genes9010054 crossref_primary_10_1186_1471_2164_14_420 crossref_primary_10_1038_s42256_021_00348_5 crossref_primary_10_1007_s12026_013_8385_z crossref_primary_10_1038_srep40579 crossref_primary_10_1371_journal_pone_0094981 crossref_primary_10_1094_PDIS_06_17_0851_RE crossref_primary_10_3390_insects15070509 crossref_primary_10_1016_j_gene_2013_03_122 crossref_primary_10_1038_s41467_023_43411_y crossref_primary_10_1186_s12859_021_04264_8 crossref_primary_10_1107_S2059798324009380 crossref_primary_10_1038_nsmb_3172 crossref_primary_10_3390_plants11162092 crossref_primary_10_2217_fvl_2020_0027 crossref_primary_10_1186_s40793_022_00453_x crossref_primary_10_1016_j_cimid_2023_102038 crossref_primary_10_3389_fmicb_2018_01100 crossref_primary_10_1073_pnas_1802192115 crossref_primary_10_1016_j_bpj_2018_12_007 crossref_primary_10_1186_s12870_023_04253_4 crossref_primary_10_3389_fmicb_2016_00056 crossref_primary_10_12688_wellcomeopenres_15590_1 crossref_primary_10_1186_s13073_017_0502_5 crossref_primary_10_3389_fgene_2021_801218 crossref_primary_10_1093_hr_uhad201 crossref_primary_10_1128_spectrum_01872_21 crossref_primary_10_1016_j_meegid_2021_105077 crossref_primary_10_12688_f1000research_2_93_v2 crossref_primary_10_1093_nar_gkx1119 crossref_primary_10_12688_f1000research_2_93_v1 crossref_primary_10_1111_1462_2920_12276 crossref_primary_10_3389_fpls_2024_1488553 crossref_primary_10_1093_nar_gkr1065 crossref_primary_10_1016_j_gene_2013_10_015 crossref_primary_10_1002_pmic_201200211 crossref_primary_10_3390_plants14132038 crossref_primary_10_1107_S2052252516008113 crossref_primary_10_1099_ijsem_0_006204 crossref_primary_10_1007_s12038_015_9580_y crossref_primary_10_1080_07391102_2023_2262600 crossref_primary_10_1371_journal_pcbi_1004051 crossref_primary_10_1002_pld3_287 crossref_primary_10_1016_j_str_2015_09_005 crossref_primary_10_1016_j_cub_2021_09_004 crossref_primary_10_7717_peerj_8928 crossref_primary_10_1186_s13100_019_0177_0 crossref_primary_10_1111_jse_12516 crossref_primary_10_3390_ijms232416047 crossref_primary_10_1007_s00705_019_04491_8 crossref_primary_10_1021_jacs_2c11027 crossref_primary_10_1186_s13227_023_00210_2 crossref_primary_10_1371_journal_pone_0205267 crossref_primary_10_1093_gigascience_giad001 crossref_primary_10_1073_pnas_1420858112 crossref_primary_10_1128_IAI_01727_14 crossref_primary_10_1016_j_molp_2021_08_001 crossref_primary_10_1073_pnas_2311887121 crossref_primary_10_3389_fpls_2021_684987 crossref_primary_10_1016_j_envexpbot_2021_104597 crossref_primary_10_1016_j_str_2023_11_011 crossref_primary_10_1073_pnas_2001063117 crossref_primary_10_1126_sciadv_ady1949 crossref_primary_10_1016_j_compbiomed_2024_108815 crossref_primary_10_3390_toxins14080542 crossref_primary_10_1038_srep13592 crossref_primary_10_1186_s12859_017_1807_5 crossref_primary_10_15252_msb_20209880 crossref_primary_10_1186_s43897_024_00140_0 crossref_primary_10_1186_1471_2164_15_679 crossref_primary_10_1016_j_virs_2022_01_003 crossref_primary_10_3389_fphar_2020_01075 crossref_primary_10_1016_j_sbi_2017_04_004 crossref_primary_10_1111_gbi_12408 crossref_primary_10_1038_s41598_024_72136_1 crossref_primary_10_1038_s41598_018_37309_9 crossref_primary_10_1038_s41564_023_01473_0 crossref_primary_10_1186_1745_6150_8_15 crossref_primary_10_1186_1745_6150_8_13 crossref_primary_10_1186_s12864_020_6604_2 crossref_primary_10_1093_bioinformatics_btae397 crossref_primary_10_3390_genes10010054 crossref_primary_10_1371_journal_pone_0070396 crossref_primary_10_1109_TC_2012_187 crossref_primary_10_1371_journal_pone_0085428 crossref_primary_10_1016_j_bbabio_2022_148907 crossref_primary_10_1007_s10725_022_00851_8 crossref_primary_10_1016_j_sbi_2014_05_006 crossref_primary_10_1038_srep40728 crossref_primary_10_1371_journal_pgen_1007301 crossref_primary_10_1111_pce_15257 crossref_primary_10_1128_JB_01907_14 crossref_primary_10_1186_s12864_016_3284_z crossref_primary_10_1007_s00203_023_03531_x crossref_primary_10_1093_genetics_iyab223 crossref_primary_10_7554_eLife_96643 crossref_primary_10_1186_s40168_022_01246_7 crossref_primary_10_1371_journal_pcbi_1005375 crossref_primary_10_3389_fcimb_2021_653695 crossref_primary_10_1371_journal_pone_0172966 crossref_primary_10_1016_j_patrec_2024_10_018 crossref_primary_10_1186_s13062_018_0209_6 crossref_primary_10_1094_PHYTO_09_17_0298_R crossref_primary_10_1128_mra_00366_22 crossref_primary_10_3390_ijms20235855 crossref_primary_10_1007_s11032_024_01522_4 crossref_primary_10_1016_j_ygeno_2018_05_016 crossref_primary_10_1128_aem_01072_23 crossref_primary_10_1016_j_jhazmat_2023_131386 crossref_primary_10_1099_ijsem_0_006026 crossref_primary_10_1128_IAI_00106_11 crossref_primary_10_1016_j_jmb_2015_11_012 crossref_primary_10_1093_plphys_kiac552 crossref_primary_10_1038_s42003_020_01580_2 crossref_primary_10_1107_S1399004714024869 crossref_primary_10_1145_3264908 crossref_primary_10_1016_j_bbapap_2012_12_015 crossref_primary_10_1016_j_fsi_2016_04_015 crossref_primary_10_1016_j_mib_2024_102453 crossref_primary_10_1038_nature25985 crossref_primary_10_1109_TCBB_2022_3175905 crossref_primary_10_1186_s12915_025_02146_6 crossref_primary_10_1038_s41587_021_01179_w crossref_primary_10_3390_ijms22126333 crossref_primary_10_3389_fgene_2022_873869 crossref_primary_10_1016_j_indcrop_2022_115553 crossref_primary_10_1038_s41467_021_22738_4 crossref_primary_10_3389_fmicb_2016_02081 crossref_primary_10_1016_j_chom_2021_02_006 crossref_primary_10_1074_jbc_AC119_009749 crossref_primary_10_1016_j_psj_2025_104794 crossref_primary_10_1016_j_hpj_2023_05_023 crossref_primary_10_1126_science_adm9073 crossref_primary_10_1016_j_hpj_2021_01_009 crossref_primary_10_1261_rna_049221_114 crossref_primary_10_1126_science_abh2950 crossref_primary_10_1111_ppl_14177 crossref_primary_10_1038_s41564_017_0098_y crossref_primary_10_1093_plcell_koac357 crossref_primary_10_1093_molbev_msad232 crossref_primary_10_1038_s41564_020_00794_8 crossref_primary_10_1080_23802359_2020_1846000 crossref_primary_10_1371_journal_pcbi_1004478 crossref_primary_10_1126_science_adg9829 crossref_primary_10_1080_00275514_2018_1468201 crossref_primary_10_1128_AEM_01306_21 crossref_primary_10_1128_spectrum_02267_24 crossref_primary_10_1038_s41467_020_16182_z crossref_primary_10_1111_1462_2920_13977 crossref_primary_10_1038_s41477_025_01906_0 crossref_primary_10_3389_fpls_2022_856826 crossref_primary_10_1038_s41592_023_02130_4 crossref_primary_10_3390_antib7030026 crossref_primary_10_1128_msystems_00906_23 crossref_primary_10_1186_s12915_019_0661_5 crossref_primary_10_1186_s13059_020_01964_x crossref_primary_10_1186_s12915_021_01081_6 crossref_primary_10_1038_s41598_021_03334_4 crossref_primary_10_1038_s41598_024_69776_8 crossref_primary_10_1038_s41598_025_90828_0 crossref_primary_10_3389_fpls_2018_01900 crossref_primary_10_1093_hr_uhac165 crossref_primary_10_1002_prot_25088 crossref_primary_10_1186_s12864_015_1354_2 crossref_primary_10_1093_jambio_lxaf048 crossref_primary_10_1128_mSphere_01322_20 crossref_primary_10_3390_life12010025 crossref_primary_10_7554_eLife_108061 crossref_primary_10_1186_s12870_023_04689_8 crossref_primary_10_1021_acs_jcim_5c01084 crossref_primary_10_1038_ncomms5029 crossref_primary_10_1016_j_neuron_2018_07_033 crossref_primary_10_3390_ijms23042259 crossref_primary_10_3389_fpls_2022_975888 crossref_primary_10_1186_s12864_022_09040_3 crossref_primary_10_1007_s00425_019_03146_x crossref_primary_10_1016_j_celrep_2025_115773 crossref_primary_10_3389_fpls_2022_942969 crossref_primary_10_1371_journal_ppat_1006071 crossref_primary_10_1128_spectrum_04411_22 crossref_primary_10_3389_fmicb_2020_00037 crossref_primary_10_1016_j_cell_2025_06_014 crossref_primary_10_7554_eLife_06974 crossref_primary_10_1051_bioconf_202518202013 crossref_primary_10_1038_ncb2493 crossref_primary_10_1093_bib_bbac208 crossref_primary_10_1073_pnas_2308788121 crossref_primary_10_1371_journal_pcbi_1005983 crossref_primary_10_1016_j_bpj_2019_09_040 crossref_primary_10_1002_prot_26598 crossref_primary_10_1016_j_febslet_2011_08_006 crossref_primary_10_3389_fpls_2024_1368869 crossref_primary_10_1002_1873_3468_13652 crossref_primary_10_1016_j_tibs_2022_11_001 crossref_primary_10_1080_07391102_2020_1808531 crossref_primary_10_1016_j_xpro_2024_102961 crossref_primary_10_3389_fpls_2023_1117069 crossref_primary_10_1016_j_bbamcr_2019_118566 crossref_primary_10_1002_prot_70030 crossref_primary_10_1371_journal_pcbi_1005522 crossref_primary_10_1093_ve_veab022 crossref_primary_10_1002_prot_70033 crossref_primary_10_3390_horticulturae9111167 crossref_primary_10_3389_fgene_2021_752732 crossref_primary_10_3390_f12101385 crossref_primary_10_1007_s10123_020_00145_x crossref_primary_10_7554_eLife_87521 crossref_primary_10_1371_journal_pone_0220182 crossref_primary_10_3389_fmolb_2021_696319 crossref_primary_10_1109_TCBB_2021_3115053 crossref_primary_10_1186_s13059_023_02895_z crossref_primary_10_1371_journal_pone_0193757 crossref_primary_10_3389_fpls_2016_01842 crossref_primary_10_3390_microorganisms10020213 crossref_primary_10_1007_s11105_025_01530_4 crossref_primary_10_1038_s42003_025_08306_2 crossref_primary_10_1073_pnas_2513219122 crossref_primary_10_1016_j_chom_2025_07_004 crossref_primary_10_1016_j_chom_2014_07_007 crossref_primary_10_1093_bib_bbaa051 crossref_primary_10_1016_j_cell_2023_02_005 crossref_primary_10_12688_f1000research_21104_1 crossref_primary_10_1073_pnas_2020024118 crossref_primary_10_1371_journal_pone_0223680 crossref_primary_10_1038_s41467_024_49367_x crossref_primary_10_1073_pnas_2401622121 crossref_primary_10_1371_journal_pone_0167651 crossref_primary_10_3390_ijms25136980 crossref_primary_10_1002_ps_6481 crossref_primary_10_3390_ijms22147708 crossref_primary_10_1016_j_ygeno_2025_111072 crossref_primary_10_7554_eLife_03430 crossref_primary_10_3389_fmicb_2020_541554 crossref_primary_10_1007_s13205_022_03285_1 crossref_primary_10_3389_fgene_2022_848141 crossref_primary_10_1186_s12864_018_5078_y crossref_primary_10_1093_femsec_fix028 crossref_primary_10_3390_molecules24183387 crossref_primary_10_1016_j_cej_2024_158144 crossref_primary_10_1016_j_cell_2023_10_028 crossref_primary_10_1038_s41598_017_02171_8 crossref_primary_10_1128_mra_00246_23 crossref_primary_10_3390_ijms24010288 crossref_primary_10_3389_fmolb_2021_724947 crossref_primary_10_1016_j_gene_2013_01_058 crossref_primary_10_3390_plants10122721 crossref_primary_10_1038_nchembio_1846 crossref_primary_10_1007_s00705_019_04466_9 crossref_primary_10_1002_prot_25697 crossref_primary_10_1186_s12862_019_1488_y crossref_primary_10_1038_s41467_023_41237_2 crossref_primary_10_1099_ijsem_0_003842 crossref_primary_10_1038_s41586_023_06328_6 crossref_primary_10_1007_s00438_021_01814_w crossref_primary_10_1128_JB_00461_20 crossref_primary_10_1016_j_clim_2023_109757 crossref_primary_10_1080_07391102_2020_1782263 crossref_primary_10_1093_nar_gkz142 crossref_primary_10_1093_nar_gkz384 crossref_primary_10_1038_s41467_023_43595_3 crossref_primary_10_3389_fmicb_2020_01160 crossref_primary_10_1093_molbev_msaf138 crossref_primary_10_1371_journal_pone_0057848 crossref_primary_10_3390_ijms21124316 crossref_primary_10_1038_s42256_024_00838_2 crossref_primary_10_1073_pnas_1922873117 crossref_primary_10_1038_s41467_024_47767_7 crossref_primary_10_1091_mbc_E25_02_0089 crossref_primary_10_1016_j_psj_2025_105694 crossref_primary_10_3390_jof9121185 crossref_primary_10_3389_fmicb_2024_1448685 crossref_primary_10_3390_genes14101898 crossref_primary_10_1016_j_isci_2022_104425 crossref_primary_10_3390_ijms231810323 crossref_primary_10_1098_rsif_2024_0886 crossref_primary_10_3389_fmolb_2024_1414916 crossref_primary_10_1038_s41467_021_23099_8 crossref_primary_10_1016_j_immuni_2023_05_009 crossref_primary_10_7554_eLife_14589 crossref_primary_10_1007_s00705_019_04488_3 crossref_primary_10_1038_s41586_019_1735_9 crossref_primary_10_1016_j_patcog_2022_109134 crossref_primary_10_1111_tpj_14538 crossref_primary_10_1016_j_plaphy_2023_01_060 crossref_primary_10_1186_s12864_023_09858_5 crossref_primary_10_1002_prot_25407 crossref_primary_10_1002_prot_25405 crossref_primary_10_1007_s10791_024_09487_w crossref_primary_10_1371_journal_pone_0225808 crossref_primary_10_3389_fpls_2023_1117246 crossref_primary_10_1016_j_ymben_2023_02_006 crossref_primary_10_1038_s42003_025_07476_3 crossref_primary_10_1093_ismejo_wraf161 crossref_primary_10_1186_s12859_021_04353_8 crossref_primary_10_1038_sdata_2015_51 crossref_primary_10_1111_tpj_16919 crossref_primary_10_1080_07391102_2019_1659185 crossref_primary_10_1016_j_ygeno_2019_03_012 crossref_primary_10_1186_1471_2164_15_523 crossref_primary_10_1007_s10725_020_00623_2 crossref_primary_10_3390_ani13020288 crossref_primary_10_3390_foods11081136 crossref_primary_10_1093_hmg_ddv488 crossref_primary_10_3390_jof9040424 crossref_primary_10_3389_fgene_2023_1187597 crossref_primary_10_7554_eLife_46113 crossref_primary_10_1038_s41467_024_48787_z crossref_primary_10_1038_s41438_021_00594_z crossref_primary_10_1186_s12859_019_2660_5 crossref_primary_10_1371_journal_pcbi_1009027 crossref_primary_10_1111_tpj_13669 crossref_primary_10_3390_v17060812 crossref_primary_10_1089_crispr_2022_0054 crossref_primary_10_7717_peerj_7499 crossref_primary_10_1038_s41586_021_03566_4 crossref_primary_10_1093_jhered_esad035 crossref_primary_10_1242_jcs_260822 crossref_primary_10_3390_molecules22071057 crossref_primary_10_1038_s41564_024_01600_5 crossref_primary_10_1002_prot_25669 crossref_primary_10_1038_s42003_023_05248_5 crossref_primary_10_1038_s41597_020_0518_3 crossref_primary_10_7717_peerj_16020 crossref_primary_10_1111_mmi_70020 crossref_primary_10_3390_ijms222111691 crossref_primary_10_1186_1471_2105_15_196 crossref_primary_10_3390_v16030398 crossref_primary_10_1002_prot_25432 crossref_primary_10_1016_j_csbj_2020_11_007 crossref_primary_10_1038_s42003_024_06152_2 crossref_primary_10_1186_1471_2164_14_708 crossref_primary_10_7554_eLife_62816 crossref_primary_10_1016_j_ijpara_2011_06_001 crossref_primary_10_1038_s41598_024_68190_4 crossref_primary_10_1111_dgd_12956 crossref_primary_10_1016_j_cell_2014_06_034 crossref_primary_10_1002_lno_11257 crossref_primary_10_1016_j_cell_2016_09_010 crossref_primary_10_3390_biom14111448 crossref_primary_10_1093_ismejo_wraf139 crossref_primary_10_1038_s41586_023_05750_0 crossref_primary_10_1155_2021_8899263 crossref_primary_10_1534_genetics_119_302378 crossref_primary_10_1016_j_carbpol_2023_121039 crossref_primary_10_1016_j_csbj_2023_10_026 crossref_primary_10_1186_1471_2105_12_395 crossref_primary_10_1128_msystems_01258_24 crossref_primary_10_1128_aem_02124_24 crossref_primary_10_7554_eLife_91415 crossref_primary_10_1107_S2059798323006289 crossref_primary_10_1038_s41598_024_61566_6 crossref_primary_10_1093_nar_gkad1213 crossref_primary_10_1016_j_molp_2022_07_008 crossref_primary_10_1128_AEM_00719_14 crossref_primary_10_1093_pcp_pcaf003 crossref_primary_10_1371_journal_pone_0058505 crossref_primary_10_1007_s00248_018_1155_7 crossref_primary_10_1111_nph_19150 crossref_primary_10_7717_peerj_6366 crossref_primary_10_1186_s12864_022_08382_2 crossref_primary_10_1038_s41467_021_27235_2 crossref_primary_10_1371_journal_pone_0023590 crossref_primary_10_1016_j_envexpbot_2019_04_006 crossref_primary_10_1038_s41467_023_42771_9 crossref_primary_10_1021_acs_est_5c03342 crossref_primary_10_1128_aac_00150_25 crossref_primary_10_1074_jbc_M117_775189 crossref_primary_10_1371_journal_pbio_3002292 crossref_primary_10_1128_msystems_00703_23 crossref_primary_10_1016_j_jmb_2013_11_026 crossref_primary_10_3390_vaccines8020288 crossref_primary_10_3389_fimmu_2023_1163781 crossref_primary_10_3389_fmolb_2023_1212119 crossref_primary_10_1007_s00424_018_2197_x crossref_primary_10_7554_eLife_94948 crossref_primary_10_7554_eLife_96643_3 crossref_primary_10_1038_s41564_022_01066_3 crossref_primary_10_1093_ismejo_wrae009 crossref_primary_10_1007_s12298_022_01222_3 crossref_primary_10_1016_j_molbiopara_2016_11_001 crossref_primary_10_1093_nar_gks337 crossref_primary_10_3390_microorganisms11112794 crossref_primary_10_1016_j_csbj_2023_10_056 crossref_primary_10_1111_1758_2229_12983 crossref_primary_10_1099_mgen_0_001380 crossref_primary_10_1016_j_cell_2020_11_005 crossref_primary_10_1038_s41598_019_48913_8 crossref_primary_10_1111_jeu_12935 crossref_primary_10_1093_ismeco_ycae042 crossref_primary_10_3389_fevo_2020_550936 crossref_primary_10_1038_s41587_024_02353_6 crossref_primary_10_3390_ijms24065232 crossref_primary_10_1038_s41467_023_41847_w crossref_primary_10_1038_s43705_021_00050_y crossref_primary_10_1186_s12859_016_1059_9 crossref_primary_10_1007_s10142_022_00852_w crossref_primary_10_1186_1471_2164_14_564 crossref_primary_10_1038_s42003_023_05271_6 crossref_primary_10_1126_science_abj8754 crossref_primary_10_1371_journal_pone_0286358 crossref_primary_10_1371_journal_pone_0227396 crossref_primary_10_1038_nature20121 crossref_primary_10_1093_ismejo_wrae111 crossref_primary_10_1016_j_gene_2025_149663 crossref_primary_10_1016_j_ijpara_2012_03_001 crossref_primary_10_1038_s41564_022_01257_y crossref_primary_10_1093_ismeco_ycae059 crossref_primary_10_1002_prot_25810 crossref_primary_10_1038_s43705_022_00210_8 crossref_primary_10_1101_gad_349488_122 crossref_primary_10_1007_s12355_020_00886_z crossref_primary_10_3389_fbinf_2025_1625145 crossref_primary_10_3390_ijms26157509 crossref_primary_10_1099_ijsem_0_005676 crossref_primary_10_1371_journal_pgen_1011768 crossref_primary_10_1186_s12870_024_05971_z crossref_primary_10_1128_msystems_00349_18 crossref_primary_10_3390_ijms23168836 crossref_primary_10_1038_srep23080 crossref_primary_10_3390_cells9030633 crossref_primary_10_3390_genes13020314 crossref_primary_10_1002_prot_24979 crossref_primary_10_1016_j_compbiolchem_2022_107691 crossref_primary_10_1007_s00425_022_03931_1 crossref_primary_10_1126_science_abn8197 crossref_primary_10_1073_pnas_2403601121 crossref_primary_10_1007_s00248_014_0502_6 crossref_primary_10_1016_j_chom_2024_08_002 crossref_primary_10_1016_j_jinorgbio_2023_112364 crossref_primary_10_1073_pnas_1107498108 crossref_primary_10_1016_j_csbj_2022_04_005 crossref_primary_10_1038_s41597_024_03854_4 crossref_primary_10_1038_s41564_025_02110_8 crossref_primary_10_1371_journal_ppat_1011082 crossref_primary_10_1007_s10528_021_10113_3 crossref_primary_10_1099_mgen_0_001457 crossref_primary_10_4137_EBO_S39880 crossref_primary_10_3389_fgene_2022_887491 crossref_primary_10_1038_s41564_019_0534_2 crossref_primary_10_1038_s41598_022_14427_z crossref_primary_10_1038_s41598_017_11866_x crossref_primary_10_7554_eLife_91415_3 crossref_primary_10_3389_fpls_2025_1614169 crossref_primary_10_1016_j_gene_2022_146768 crossref_primary_10_1126_science_aba5435 crossref_primary_10_3390_genes10050360 crossref_primary_10_1371_journal_pgen_1002626 crossref_primary_10_1111_tpj_17255 crossref_primary_10_1371_journal_pone_0216294 crossref_primary_10_3390_vaccines9060658 crossref_primary_10_1038_nutd_2014_6 crossref_primary_10_1074_jbc_M115_677898 crossref_primary_10_1371_journal_pone_0315931 crossref_primary_10_3389_fpls_2024_1372127 crossref_primary_10_1093_nar_gkq1129 crossref_primary_10_1016_j_compedu_2021_104170 crossref_primary_10_1186_s12915_020_00927_9 crossref_primary_10_1038_nmicrobiol_2016_43 crossref_primary_10_1371_journal_pone_0245600 crossref_primary_10_1038_s41559_020_01299_7 crossref_primary_10_1038_s41564_019_0612_5 crossref_primary_10_1099_jgv_0_001663 crossref_primary_10_1107_S2059798317007859 crossref_primary_10_1371_journal_pgen_1009246 crossref_primary_10_1007_s00253_020_10491_5 crossref_primary_10_1007_s00248_016_0785_x crossref_primary_10_1002_pro_70141 crossref_primary_10_1007_s10142_023_01125_w crossref_primary_10_7717_peerj_5798 crossref_primary_10_1016_j_envexpbot_2020_103990 crossref_primary_10_1016_j_gene_2025_149649 crossref_primary_10_1038_s41396_020_0615_5 crossref_primary_10_1016_j_sbi_2011_03_005 crossref_primary_10_1186_s12864_023_09752_0 crossref_primary_10_1016_j_sbi_2025_102985 crossref_primary_10_7717_peerj_1183 crossref_primary_10_1038_s41564_023_01485_w crossref_primary_10_1186_1471_2148_12_220 crossref_primary_10_7717_peerj_15929 crossref_primary_10_1038_ismej_2016_59 crossref_primary_10_1007_s00299_024_03184_0 crossref_primary_10_1371_journal_pone_0321163 crossref_primary_10_1002_prot_24943 crossref_primary_10_1093_molbev_msaa235 crossref_primary_10_1002_advs_202404512 crossref_primary_10_1186_s12864_021_08162_4 crossref_primary_10_1111_trf_15476 crossref_primary_10_4161_cc_22068 crossref_primary_10_1126_sciadv_adv6898 crossref_primary_10_1016_j_febslet_2012_05_019 crossref_primary_10_1186_1471_2164_12_19 crossref_primary_10_1186_s12985_018_0923_9 crossref_primary_10_1038_s42256_022_00457_9 crossref_primary_10_1038_srep24117 crossref_primary_10_1016_j_ijbiomac_2024_131311 crossref_primary_10_1038_s42003_024_06598_4 crossref_primary_10_1021_acs_jnatprod_5c00492 crossref_primary_10_1099_ijsem_0_006371 crossref_primary_10_1093_treephys_tpx125 crossref_primary_10_1128_JVI_00952_17 crossref_primary_10_1111_jpy_12334 crossref_primary_10_1186_s12870_021_03081_8 crossref_primary_10_3390_antibiotics11070952 crossref_primary_10_7554_eLife_108061_2 crossref_primary_10_1128_AEM_02851_18 crossref_primary_10_1007_s12539_024_00626_x crossref_primary_10_1007_s13258_021_01039_6 crossref_primary_10_1371_journal_pcbi_1002195 crossref_primary_10_1371_journal_pone_0250584 crossref_primary_10_3390_ijms25158257 crossref_primary_10_3390_molecules29246061 crossref_primary_10_3390_ijms241813965 crossref_primary_10_1007_s11738_017_2393_x crossref_primary_10_1016_j_ecolind_2023_110210 crossref_primary_10_1186_s13068_015_0390_0 crossref_primary_10_1093_jxb_erae412 crossref_primary_10_1128_spectrum_00946_23 crossref_primary_10_1111_1462_2920_16082 crossref_primary_10_1128_aem_00704_23 crossref_primary_10_3390_genes16030308 crossref_primary_10_1111_tpj_16359 crossref_primary_10_1093_bib_bbad288 crossref_primary_10_1128_spectrum_02467_22 crossref_primary_10_1186_s13059_016_1126_6 crossref_primary_10_1038_ismej_2013_207 crossref_primary_10_1016_j_plantsci_2021_111088 crossref_primary_10_1038_s41467_023_37983_y crossref_primary_10_3390_v16071170 crossref_primary_10_1111_j_2041_1014_2012_00661_x crossref_primary_10_3389_fpls_2022_901128 crossref_primary_10_1007_s11103_024_01541_x crossref_primary_10_3390_ijms22115553 crossref_primary_10_1007_s12668_024_01418_9 crossref_primary_10_1016_j_heliyon_2023_e17222 crossref_primary_10_3389_fpls_2022_1006360 crossref_primary_10_3390_ijms20235948 crossref_primary_10_1128_spectrum_01035_23 crossref_primary_10_1007_s42995_020_00078_4 crossref_primary_10_1007_s11427_024_2912_8 crossref_primary_10_1074_jbc_RA119_010483 crossref_primary_10_1038_s41396_018_0332_5 crossref_primary_10_1107_S2052252517005115 crossref_primary_10_1186_s12870_024_05738_6 crossref_primary_10_1093_ve_vez013 crossref_primary_10_1186_s13062_017_0191_4 crossref_primary_10_1371_journal_pone_0021507 crossref_primary_10_1002_prot_26261 crossref_primary_10_1016_j_ijbiomac_2020_06_032 crossref_primary_10_1093_bioinformatics_btaf178 crossref_primary_10_3390_ijms24065663 crossref_primary_10_1007_s10661_014_4081_2 crossref_primary_10_1038_s42003_023_05525_3 crossref_primary_10_1371_journal_pgen_1007470 crossref_primary_10_1016_j_scienta_2024_113464 crossref_primary_10_1038_s41597_025_04835_x crossref_primary_10_1186_s12870_025_07100_w crossref_primary_10_1186_s12915_022_01442_9 crossref_primary_10_1093_bib_bbad217 crossref_primary_10_1107_S2059798321007907 crossref_primary_10_1007_s00438_018_1474_x crossref_primary_10_1128_mra_01225_23 crossref_primary_10_3389_fpls_2024_1346255 crossref_primary_10_1016_j_gene_2022_146345 crossref_primary_10_3390_cells12131752 crossref_primary_10_1016_j_sajb_2019_02_009 crossref_primary_10_1111_mpp_12505 crossref_primary_10_1111_mec_15378 crossref_primary_10_3390_agronomy13051324 crossref_primary_10_3389_fgene_2024_1349626 crossref_primary_10_1093_nar_gkv397 crossref_primary_10_1186_s40168_020_0790_7 crossref_primary_10_1038_s41586_024_08455_0 crossref_primary_10_3389_fpls_2022_898786 crossref_primary_10_1016_j_bioelechem_2022_108054 crossref_primary_10_1016_j_envpol_2020_115378 crossref_primary_10_1186_s12915_024_02017_6 |
| Cites_doi | 10.1093/nar/29.14.2994 10.1093/nar/28.1.254 10.1093/nar/gkf544 10.1002/pro.5560040613 10.1093/nar/30.1.260 10.1093/bioinformatics/14.10.846 10.1186/1471-2105-7-410 10.1089/cmb.1998.5.479 10.1073/pnas.95.11.6073 10.1093/nar/25.17.3389 10.1093/bioinformatics/14.5.423 10.1016/S0022-2836(05)80360-2 10.1093/nar/gkm960 10.1093/bioinformatics/bti627 10.1093/nar/28.1.257 |
| ContentType | Journal Article |
| Copyright | Johnson et al; licensee BioMed Central Ltd. 2010 COPYRIGHT 2010 BioMed Central Ltd. 2010 Johnson et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright ©2010 Johnson et al; licensee BioMed Central Ltd. 2010 Johnson et al; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Johnson et al; licensee BioMed Central Ltd. 2010 – notice: COPYRIGHT 2010 BioMed Central Ltd. – notice: 2010 Johnson et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright ©2010 Johnson et al; licensee BioMed Central Ltd. 2010 Johnson et al; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1186/1471-2105-11-431 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database ProQuest Biological Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Engineering Research Database Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Computer Science |
| EISSN | 1471-2105 |
| EndPage | 431 |
| ExternalDocumentID | oai_doaj_org_article_c5df2ab1c5c049629ee1bfeb585488f4 PMC2931519 2501704851 A236475193 20718988 10_1186_1471_2105_11_431 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: Howard Hughes Medical Institute – fundername: NHGRI NIH HHS grantid: R01-HG01363 |
| GroupedDBID | --- 0R~ 23N 2VQ 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR IPNFZ ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c663t-936b276cc324e183b89f01f5c59f8bf43f5f3f4c4a088ea4be0ed51dbb3616713 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 910 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000281443600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:39:36 EDT 2025 Tue Nov 04 01:55:53 EST 2025 Tue Oct 07 09:34:32 EDT 2025 Fri Sep 05 08:56:29 EDT 2025 Mon Oct 06 18:22:56 EDT 2025 Tue Nov 11 10:30:05 EST 2025 Tue Nov 04 17:05:43 EST 2025 Thu Nov 13 14:44:15 EST 2025 Thu Apr 03 07:00:03 EDT 2025 Tue Nov 18 22:30:27 EST 2025 Sat Nov 29 05:39:50 EST 2025 Sat Sep 06 07:27:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Test Database Search Time Profile Hide Markov Model Entropy Weighting Iterative Search |
| Language | English |
| License | http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c663t-936b276cc324e183b89f01f5c59f8bf43f5f3f4c4a088ea4be0ed51dbb3616713 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/901859427?pq-origsite=%requestingapplication% |
| PMID | 20718988 |
| PQID | 901859427 |
| PQPubID | 44065 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c5df2ab1c5c049629ee1bfeb585488f4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2931519 proquest_miscellaneous_877597019 proquest_miscellaneous_753996783 proquest_journals_901859427 gale_infotracmisc_A236475193 gale_infotracacademiconefile_A236475193 gale_incontextgauss_ISR_A236475193 pubmed_primary_20718988 crossref_citationtrail_10_1186_1471_2105_11_431 crossref_primary_10_1186_1471_2105_11_431 springer_journals_10_1186_1471_2105_11_431 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-08-18 |
| PublicationDateYYYYMMDD | 2010-08-18 |
| PublicationDate_xml | – month: 08 year: 2010 text: 2010-08-18 day: 18 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2010 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | 3888_CR1 GA Price (3888_CR15) 2005; 21 AA Schaffer (3888_CR6) 2001; 29 SF Altschul (3888_CR2) 1990; 3 SF Altschul (3888_CR3) 1997; 25 RD Finn (3888_CR10) 2008; 36 L Holm (3888_CR7) 1998; 14 WN Grundy (3888_CR16) 1998; 5 ED Scheeff (3888_CR5) 2006; 7 SE Brenner (3888_CR8) 1998; 95 M Madera (3888_CR13) 2002; 30 L Lo Conte (3888_CR9) 2000; 28 JM Chandonia (3888_CR12) 2002; 30 WR Pearson (3888_CR14) 1995; 4 SE Brenner (3888_CR11) 2000; 28 K Karplus (3888_CR4) 1998; 14 9773344 - J Comput Biol. 1998 Fall;5(3):479-91 7549879 - Protein Sci. 1995 Jun;4(6):1145-60 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 16970830 - BMC Bioinformatics. 2006;7:410 11452024 - Nucleic Acids Res. 2001 Jul 15;29(14):2994-3005 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 18039703 - Nucleic Acids Res. 2008 Jan;36(Database issue):D281-8 9927713 - Bioinformatics. 1998;14(10):846-56 16105900 - Bioinformatics. 2005 Oct 15;21(20):3824-31 10592239 - Nucleic Acids Res. 2000 Jan 1;28(1):254-6 9682055 - Bioinformatics. 1998 Jun;14(5):423-9 10592240 - Nucleic Acids Res. 2000 Jan 1;28(1):257-9 9600919 - Proc Natl Acad Sci U S A. 1998 May 26;95(11):6073-8 11752310 - Nucleic Acids Res. 2002 Jan 1;30(1):260-3 12364612 - Nucleic Acids Res. 2002 Oct 1;30(19):4321-8 |
| References_xml | – volume: 29 start-page: 2994 year: 2001 ident: 3888_CR6 publication-title: Nucleic Acids Res doi: 10.1093/nar/29.14.2994 – volume: 28 start-page: 254 year: 2000 ident: 3888_CR11 publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.254 – volume: 30 start-page: 4321 issue: 19 year: 2002 ident: 3888_CR13 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkf544 – volume: 4 start-page: 1145 year: 1995 ident: 3888_CR14 publication-title: Protein Sci doi: 10.1002/pro.5560040613 – ident: 3888_CR1 – volume: 30 start-page: 260 year: 2002 ident: 3888_CR12 publication-title: Nucleic Acids Res doi: 10.1093/nar/30.1.260 – volume: 14 start-page: 846 issue: 10 year: 1998 ident: 3888_CR4 publication-title: Bioinformatics doi: 10.1093/bioinformatics/14.10.846 – volume: 7 start-page: 410 year: 2006 ident: 3888_CR5 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-410 – volume: 5 start-page: 479 issue: 3 year: 1998 ident: 3888_CR16 publication-title: J Comput Biol doi: 10.1089/cmb.1998.5.479 – volume: 95 start-page: 6073 issue: 11 year: 1998 ident: 3888_CR8 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.11.6073 – volume: 25 start-page: 3389 issue: 17 year: 1997 ident: 3888_CR3 publication-title: Nucleic Acids Res doi: 10.1093/nar/25.17.3389 – volume: 14 start-page: 423 issue: 5 year: 1998 ident: 3888_CR7 publication-title: Bioinformatics doi: 10.1093/bioinformatics/14.5.423 – volume: 3 start-page: 403 year: 1990 ident: 3888_CR2 publication-title: J Mol Biol doi: 10.1016/S0022-2836(05)80360-2 – volume: 36 start-page: D281 year: 2008 ident: 3888_CR10 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm960 – volume: 21 start-page: 3824 year: 2005 ident: 3888_CR15 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti627 – volume: 28 start-page: 257 issue: 1 year: 2000 ident: 3888_CR9 publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.257 – reference: 10592239 - Nucleic Acids Res. 2000 Jan 1;28(1):254-6 – reference: 9682055 - Bioinformatics. 1998 Jun;14(5):423-9 – reference: 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 – reference: 9927713 - Bioinformatics. 1998;14(10):846-56 – reference: 12364612 - Nucleic Acids Res. 2002 Oct 1;30(19):4321-8 – reference: 16105900 - Bioinformatics. 2005 Oct 15;21(20):3824-31 – reference: 9600919 - Proc Natl Acad Sci U S A. 1998 May 26;95(11):6073-8 – reference: 18039703 - Nucleic Acids Res. 2008 Jan;36(Database issue):D281-8 – reference: 9773344 - J Comput Biol. 1998 Fall;5(3):479-91 – reference: 11452024 - Nucleic Acids Res. 2001 Jul 15;29(14):2994-3005 – reference: 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 – reference: 11752310 - Nucleic Acids Res. 2002 Jan 1;30(1):260-3 – reference: 7549879 - Protein Sci. 1995 Jun;4(6):1145-60 – reference: 16970830 - BMC Bioinformatics. 2006;7:410 – reference: 10592240 - Nucleic Acids Res. 2000 Jan 1;28(1):257-9 |
| SSID | ssj0017805 |
| Score | 2.5636966 |
| Snippet | Background
Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or... Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or Forward,... Background Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or... Abstract Background: Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms,... Abstract Background Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms,... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 431 |
| SubjectTerms | Algorithms Artificial Intelligence Base Sequence Bioinformatics Biomedical and Life Sciences Comparative genomics Computational biology Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer science Databases, Protein Genetic algorithms Hidden Markov models Iterative methods Life Sciences Markov Chains Methods Microarrays Proteins Proteins - chemistry Research Article Sequence Alignment - methods Software Studies |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9UwEA6yKPgi3q27ShBBFMppTpvb4yoejg-7iBfYt5Ckibuw9Cynpwv-e2fSi9uV1Rcf20xLOzOZ-UIm3xDyGiB4kIKz3CJ8q4oa4qDmNvexLAorJIKM1GxCHh-rkxP9-UqrL6wJ6-mBe8UtPK_j0jrmuQcwK5Y6BOZicABzwfdiYgItpB4XU8P-ATL1p3NFkuWwqOHjBqUSi-keniirSjZLSIm3_8_ofCU9XS-dvLZ_mtLS6j65N-BJetj_xwNyKzQPyZ2-w-TPR2S1RoqQhuKRnM0lTX1vaHsBKYuehq5naaa2qWnPrgyhj66Pjmjv_zRlt7rbhsfk--rjtw_rfGidkHuAELtcl8ItpfAe8FKAWeuUjgWL3HMdlYtVGXksY-UrC1Em2MqFItSc1c6VgoGFyidkr9k04RmhKlqvQTwK7yquratKrxz3VsArnWAZWYz6M37gFcf2FucmrS-UMKhxgxqHSwMaz8jb6YmLnlPjL7Lv0SSTHLJhpxvgI2bwEfMvH8nIKzSoQb6LBgtqftiubc2nr1_MYSLQRxibkTeDUNzA93s7nE8ALSBF1kzyYCYJE9LPhvdHvzFDQGgNwC7FdbWUGaHTKD6INW5N2HStkUgSDNihvFlESQkLQEDlGXna--GkGJgETGmlMiJnHjrT3HykOTtNfOKA-AD3wTvfjb78-7tvssvz_2GXfXK3L8ZQOVMHZG-37cILcttf7s7a7cs0o38BzIhKcw priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA6lKvji_TK2ShBBFIbOJckkj1Vc1ocWaVX6FpJM0hZkpuzsFPz3npOZWZ1qBX3czckQTs7lCzn5DiGvAIL7SvA8NQjfWFZDHFTcpC6UWWZEhSAjNpuoDg_lyYn6tEWK6S1MrHafriRjpI5uLcVeDmE0hQMKx5dgDJ9O34BkJ7Fdw9Hx183NAXL0T9eRf5g1Sz-Rpf_3WPxLMrpaKHnltjQmocXd_1n-PXJnhJx0f7CR-2TLNw_IraEJ5feHZLFEFpGG4qud9pLG1ji0u4CsRs98PxA5U9PUdCBghuhIlwcHdHARGhNg3a_8I_Jl8eHz-2U6dldIHaCMdapKYYtKOAeQyoNjW6lClgfuuArSBlYGHsrAHDMQiLxh1me-5nltbSly2MTyMdlu2sY_JVQG4xSIB-Es48pYVjppuTMCPmlFnpC9SenajdTj2AHjm45HECk0akejduCnBu0k5M1mxsVAu_EX2Xe4jxs5JMyOf7SrUz36n3a8DoWxueMOzkSiUN7nNngLpyUIYYEl5CVagUZKjAZrbk5N33X64_GR3o8c-4h0E_J6FAotrN-Z8QkDaAFZtGaSuzNJ8Fk3G96ZjE2PMaPTgMwkV6yoEkI3ozgRy-Aa3_adrpBHGOBFeb2IrCo4IwJwT8iTwXg3iikATkolZUKqmVnPNDcfac7PIuU4gEKAhvDNt5Nx_1z3dfvy7F-Ed8jtoS5DprncJdvrVe-fk5vucn3erV5EF_8BBMZJxQ priority: 102 providerName: Springer Nature |
| Title | Hidden Markov model speed heuristic and iterative HMM search procedure |
| URI | https://link.springer.com/article/10.1186/1471-2105-11-431 https://www.ncbi.nlm.nih.gov/pubmed/20718988 https://www.proquest.com/docview/901859427 https://www.proquest.com/docview/753996783 https://www.proquest.com/docview/877597019 https://pubmed.ncbi.nlm.nih.gov/PMC2931519 https://doaj.org/article/c5df2ab1c5c049629ee1bfeb585488f4 |
| Volume | 11 |
| WOSCitedRecordID | wos000281443600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ: Directory of Open Access Journal (DOAJ) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBhIvGwwGYaOyEBICKWrz4dh5Qhta1Qm1ijpAhRfLduxtEkq6pp3Ef8_Z-YAMbS-8REp8iRLf-e7n-Pw7hN4CBNc0IYEvLHyLRzn4wZQIX5loNBIJtSDDFZugsxlbLNKsyc2pmrTK1ic6R52Xyv4jH0LcYiSNQ_pxee3bolF2cbWpoLGFdixJQugy97JuEcHS9bcrkywZBuCHfZjhELuVLI6CXiRyhP3_uuW_4tLtnMlbC6cuHo33_vNLnqDdBoji49pynqIHuthHj-rSlL_20V5b7gE3o_8ZGk8s3UiB7fae8ga7Gjq4WkL4w5d6UzM-Y1HkuGZqBjeKJ9MprscSdpEy36z0c_R1fPrl08RvyjD4CuDI2k-jRIY0UQqwlwYPIFlqRoEhiqSGSRNHhpjIxCoW4LG0iKUe6ZwEuZRREoC2owO0XZSFfokwM0KlIG4SJWOSChlHikmiRAKPlEngoWGrEq4ajnJbKuMnd3MVlnCrRG6VCKcclOih990dy5qf4x7ZE6vlTs4ya7sL5eqCNwOVK5KbUMhAEQWTpyRMtQ6k0RKmVeDrTOyhN9ZGuOXOKGxyzoXYVBU_O5_zY0fGbyGxh941QqaE91ei2esAvWDptnqSRz1JGNyq13zY2hBvnEvFOwPyEO5a7Y02X67Q5abi1BIOAw6J7hZhlMJkEhC-h17Upt11TAi4k6WMeYj2jL7Xc_2W4urScZMDegQMCc_80A6PP-99l15e3fuRh-hxnbHB_IAdoe31aqNfo4fqZn1VrQZoiy6oO7IB2jk5nWXzgfuvAsfP1B84jwDHjPyA9uxsmn2Hs_n5t9_Sd2SG |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILhfIKLWAhEAIp2s3DiXNAqDyqXW13haBIvZnYsdtKKFk2u0X9UfxHZvKCFLW3HjjuemLZzjy-ie35AJ4jBDdxxD03JfgWDjP0gwlPXW2D4TCNYgIZFdlEPJuJg4Pk0xr8au_C0LHK1idWjjorNH0jH2DcEjwJ_fjt_IdLpFG0udoyaNRaMTGnPzFjK9-MP-DrfeH7ux_334_chlTA1Rhcl24SRMqPI60RSRjUZyUSO_Qs1zyxQtkwsNwGNtRhivZn0lCZocm4lykVRB6OPcB-r8DVMBAxmdUkdrtNC6IHaHdCRTTw0O-7mFFxuroWBl4v8lUEAf-Ggb_i4Nkzmmc2aqv4t7vxn63cbbjVAG22U1vGHVgz-SZcr6k3Tzdho6WzYI13uwu7IyqnkjO6vlScsIojiJVzDO_syKzqitYszTNWV6LGMMFG0ymr58YqJJCtFuYefL2Ued2H9bzIzUNgwqY6QXEbaRXyJFVhoIXiOo2wSxV5DgxaFZC6qcFOVCDfZZWLiUiS0khSGvwpUWkceNU9Ma_rj1wg-460qpOjyuHVH8XiUDaOSGqeWT9VnuYak8PIT4zxlDUK00b05TZ04BnppKTaIDkdPjpMV2Upx18-y52KbIAgvwMvGyFb4Ph12tzlwFWgcmI9ye2eJDov3WveanVWNs6zlJ3COsC6VnqQzgPmpliVMqaCyoizgvNFRBxjsowZjAMPalPqFsZHXC0SIRyIe0bWW7l-S358VNVeR3SMGBn7fN2a459xn_deHl04yadwY7Q_3ZN749lkC27Wp1OE64ltWF8uVuYxXNMny-Ny8aTyNgy-XbaR_gZqhbiV |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3raxQxEA9SH_jFd3Vt1SCCKCy3jySb_VgfxxXtUaxKv4Ukm7QF2T1ubwv-987sS7daQfx4l8myN5mZ_OYy-Q0hLwCCu0zwONQI31hUQBzMuQ6tT6NIiwxBRttsIlsu5fFxftj_4VYP1e7DkWR3pwFZmsrNbFX4zsWlmMUQUkNIVjjeCmN4jfoqwzJ6zNaPvo6nCMjXPxxN_mHWZCtqGft_j8u_bEwXiyYvnJy2G9L89v_-lDvkVg9F6V5nO3fJFVfeI9e75pTf75P5AtlFSoq3eapz2rbMofUKdjt66pqO4JnqsqAdMTNETbo4OKCd69B2YyyatXtAvszff367CPuuC6EF9LEJ81SYJBPWAtRy4PBG5j6KPbc899J4lnruU88s0xCgnGbGRa7gcWFMKmJY3HSbbJVV6R4RKr22OYh7YQ3juTYstdJwqwU80og4ILNhAZTtKcmxM8Y31aYmUijUjkLtwEcF2gnIq3HGqqPj-IvsG1zTUQ6JtNsvqvWJ6v1SWV74RJvYcgu5kkhy52LjnYEsCkKbZwF5jhahkCqjxFqcE93Utdo_-qT2Wu59RMABedkL-Qre3-r-agNoAdm1JpK7E0nwZTsZ3hkMT_WxpFaA2CTPWZIFhI6jOBHL40pXNbXKkF8YYEd6uYjMMsgdAdAH5GFnyKNiEoCZMpcyINnExCeam46UZ6ctFTmARYCM8MzXg6H_fO_L1uXxvwg_IzcO383Vx_3lhx1ysyvdkGEsd8nWZt24J-SaPd-c1eunref_ACIWVY0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hidden+Markov+model+speed+heuristic+and+iterative+HMM+search+procedure&rft.jtitle=BMC+bioinformatics&rft.au=Johnson%2C+L+Steven&rft.au=Eddy%2C+Sean+R&rft.au=Portugaly%2C+Elon&rft.date=2010-08-18&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=11&rft.spage=431&rft_id=info:doi/10.1186%2F1471-2105-11-431&rft.externalDBID=ISR&rft.externalDocID=A236475193 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |