Hidden Markov model speed heuristic and iterative HMM search procedure

Background Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or Forward, require considerable time to search large sequence databases. Results We have designed a series of database filtering steps, HMMERHEA...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BMC bioinformatics Ročník 11; číslo 1; s. 431
Hlavní autori: Johnson, L Steven, Eddy, Sean R, Portugaly, Elon
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 18.08.2010
BioMed Central Ltd
Springer Nature B.V
BMC
Predmet:
ISSN:1471-2105, 1471-2105
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or Forward, require considerable time to search large sequence databases. Results We have designed a series of database filtering steps, HMMERHEAD, that are applied prior to the scoring algorithms, as implemented in the HMMER package, in an effort to reduce search time. Using this heuristic, we obtain a 20-fold decrease in Forward and a 6-fold decrease in Viterbi search time with a minimal loss in sensitivity relative to the unfiltered approaches. We then implemented an iterative profile-HMM search method, JackHMMER, which employs the HMMERHEAD heuristic. Due to our search heuristic, we eliminated the subdatabase creation that is common in current iterative profile-HMM approaches. On our benchmark, JackHMMER detects 14% more remote protein homologs than SAM's iterative method T2K. Conclusions Our search heuristic, HMMERHEAD, significantly reduces the time needed to score a profile-HMM against large sequence databases. This search heuristic allowed us to implement an iterative profile-HMM search method, JackHMMER, which detects significantly more remote protein homologs than SAM's T2K and NCBI's PSI-BLAST.
AbstractList Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or Forward, require considerable time to search large sequence databases. We have designed a series of database filtering steps, HMMERHEAD, that are applied prior to the scoring algorithms, as implemented in the HMMER package, in an effort to reduce search time. Using this heuristic, we obtain a 20-fold decrease in Forward and a 6-fold decrease in Viterbi search time with a minimal loss in sensitivity relative to the unfiltered approaches. We then implemented an iterative profile-HMM search method, JackHMMER, which employs the HMMERHEAD heuristic. Due to our search heuristic, we eliminated the subdatabase creation that is common in current iterative profile-HMM approaches. On our benchmark, JackHMMER detects 14% more remote protein homologs than SAM's iterative method T2K. Our search heuristic, HMMERHEAD, significantly reduces the time needed to score a profile-HMM against large sequence databases. This search heuristic allowed us to implement an iterative profile-HMM search method, JackHMMER, which detects significantly more remote protein homologs than SAM's T2K and NCBI's PSI-BLAST.
Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or Forward, require considerable time to search large sequence databases.BACKGROUNDProfile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or Forward, require considerable time to search large sequence databases.We have designed a series of database filtering steps, HMMERHEAD, that are applied prior to the scoring algorithms, as implemented in the HMMER package, in an effort to reduce search time. Using this heuristic, we obtain a 20-fold decrease in Forward and a 6-fold decrease in Viterbi search time with a minimal loss in sensitivity relative to the unfiltered approaches. We then implemented an iterative profile-HMM search method, JackHMMER, which employs the HMMERHEAD heuristic. Due to our search heuristic, we eliminated the subdatabase creation that is common in current iterative profile-HMM approaches. On our benchmark, JackHMMER detects 14% more remote protein homologs than SAM's iterative method T2K.RESULTSWe have designed a series of database filtering steps, HMMERHEAD, that are applied prior to the scoring algorithms, as implemented in the HMMER package, in an effort to reduce search time. Using this heuristic, we obtain a 20-fold decrease in Forward and a 6-fold decrease in Viterbi search time with a minimal loss in sensitivity relative to the unfiltered approaches. We then implemented an iterative profile-HMM search method, JackHMMER, which employs the HMMERHEAD heuristic. Due to our search heuristic, we eliminated the subdatabase creation that is common in current iterative profile-HMM approaches. On our benchmark, JackHMMER detects 14% more remote protein homologs than SAM's iterative method T2K.Our search heuristic, HMMERHEAD, significantly reduces the time needed to score a profile-HMM against large sequence databases. This search heuristic allowed us to implement an iterative profile-HMM search method, JackHMMER, which detects significantly more remote protein homologs than SAM's T2K and NCBI's PSI-BLAST.CONCLUSIONSOur search heuristic, HMMERHEAD, significantly reduces the time needed to score a profile-HMM against large sequence databases. This search heuristic allowed us to implement an iterative profile-HMM search method, JackHMMER, which detects significantly more remote protein homologs than SAM's T2K and NCBI's PSI-BLAST.
Background Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or Forward, require considerable time to search large sequence databases. Results We have designed a series of database filtering steps, HMMERHEAD, that are applied prior to the scoring algorithms, as implemented in the HMMER package, in an effort to reduce search time. Using this heuristic, we obtain a 20-fold decrease in Forward and a 6-fold decrease in Viterbi search time with a minimal loss in sensitivity relative to the unfiltered approaches. We then implemented an iterative profile-HMM search method, JackHMMER, which employs the HMMERHEAD heuristic. Due to our search heuristic, we eliminated the subdatabase creation that is common in current iterative profile-HMM approaches. On our benchmark, JackHMMER detects 14% more remote protein homologs than SAM's iterative method T2K. Conclusions Our search heuristic, HMMERHEAD, significantly reduces the time needed to score a profile-HMM against large sequence databases. This search heuristic allowed us to implement an iterative profile-HMM search method, JackHMMER, which detects significantly more remote protein homologs than SAM's T2K and NCBI's PSI-BLAST.
Abstract Background Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or Forward, require considerable time to search large sequence databases. Results We have designed a series of database filtering steps, HMMERHEAD, that are applied prior to the scoring algorithms, as implemented in the HMMER package, in an effort to reduce search time. Using this heuristic, we obtain a 20-fold decrease in Forward and a 6-fold decrease in Viterbi search time with a minimal loss in sensitivity relative to the unfiltered approaches. We then implemented an iterative profile-HMM search method, JackHMMER, which employs the HMMERHEAD heuristic. Due to our search heuristic, we eliminated the subdatabase creation that is common in current iterative profile-HMM approaches. On our benchmark, JackHMMER detects 14% more remote protein homologs than SAM's iterative method T2K. Conclusions Our search heuristic, HMMERHEAD, significantly reduces the time needed to score a profile-HMM against large sequence databases. This search heuristic allowed us to implement an iterative profile-HMM search method, JackHMMER, which detects significantly more remote protein homologs than SAM's T2K and NCBI's PSI-BLAST.
Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or Forward, require considerable time to search large sequence databases. We have designed a series of database filtering steps, HMMERHEAD, that are applied prior to the scoring algorithms, as implemented in the HMMER package, in an effort to reduce search time. Using this heuristic, we obtain a 20-fold decrease in Forward and a 6-fold decrease in Viterbi search time with a minimal loss in sensitivity relative to the unfiltered approaches. We then implemented an iterative profile-HMM search method, JackHMMER, which employs the HMMERHEAD heuristic. Due to our search heuristic, we eliminated the subdatabase creation that is common in current iterative profile-HMM approaches. On our benchmark, JackHMMER detects 14% more remote protein homologs than SAM's iterative method T2K. Our search heuristic, HMMERHEAD, significantly reduces the time needed to score a profile-HMM against large sequence databases. This search heuristic allowed us to implement an iterative profile-HMM search method, JackHMMER, which detects significantly more remote protein homologs than SAM's T2K and NCBI's PSI-BLAST.
Background Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or Forward, require considerable time to search large sequence databases. Results We have designed a series of database filtering steps, HMMERHEAD, that are applied prior to the scoring algorithms, as implemented in the HMMER package, in an effort to reduce search time. Using this heuristic, we obtain a 20-fold decrease in Forward and a 6-fold decrease in Viterbi search time with a minimal loss in sensitivity relative to the unfiltered approaches. We then implemented an iterative profile-HMM search method, JackHMMER, which employs the HMMERHEAD heuristic. Due to our search heuristic, we eliminated the subdatabase creation that is common in current iterative profile-HMM approaches. On our benchmark, JackHMMER detects 14% more remote protein homologs than SAM's iterative method T2K. Conclusions Our search heuristic, HMMERHEAD, significantly reduces the time needed to score a profile-HMM against large sequence databases. This search heuristic allowed us to implement an iterative profile-HMM search method, JackHMMER, which detects significantly more remote protein homologs than SAM's T2K and NCBI's PSI-BLAST.
ArticleNumber 431
Audience Academic
Author Portugaly, Elon
Johnson, L Steven
Eddy, Sean R
AuthorAffiliation 2 Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
1 Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
3 School of Computer Science & Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
AuthorAffiliation_xml – name: 3 School of Computer Science & Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
– name: 1 Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
– name: 2 Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
Author_xml – sequence: 1
  givenname: L Steven
  surname: Johnson
  fullname: Johnson, L Steven
  email: stevej@pathology.wustl.edu
  organization: Department of Immunology and Pathology, Washington University School of Medicine
– sequence: 2
  givenname: Sean R
  surname: Eddy
  fullname: Eddy, Sean R
  organization: Janelia Farm Research Campus, Howard Hughes Medical Institute
– sequence: 3
  givenname: Elon
  surname: Portugaly
  fullname: Portugaly, Elon
  organization: School of Computer Science & Engineering, The Hebrew University of Jerusalem
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20718988$$D View this record in MEDLINE/PubMed
BookMark eNqNks9v0zAcxSM0xLbCnROK4IA4ZNhxHNsXpGlitNIqJH6cLcf-unVJ485OKvjvceg2lgkQyiHxN5_38s3TO82OOt9Blj3H6AxjXr_FFcNFiREtMC4qgh9lJ3ejo3vPx9lpjBuEMOOIPsmOS8QwF5yfZJdzZwx0-VKFb36fb72BNo87AJOvYQgu9k7nqjO56yGo3u0hny-XeQQV9DrfBa_BDAGeZo-taiM8u7nPsq-X779czIurjx8WF-dXha5r0heC1E3Jaq1JWQHmpOHCImyppsLyxlbEUktspSuFOAdVNYDAUGyahtS4ZpjMssXB13i1kbvgtir8kF45-Wvgw0qqkFZuQWpqbKkarKlGlahLAYAbCw3ltOI8fWuWvTt47YZmC0ZD1wfVTkynbzq3liu_l6UgmGKRDF7fGAR_PUDs5dZFDW2rOvBDlJwxKhj6D5JRIkTNOEnkywfkxg-hS5lKgTCnoipZgl4doJVKP-o669N-erSU5yWpKzZul6izP1DpMrB1OhXJujSfCN5MBInp4Xu_UkOMcvH505R9cT-8u9Rum5WA-gDo4GMMYKV2fSqQH7N0rcRIjhWWY0fl2NF0lKnCSYgeCG-9_yHBB0lMaLeC8Du0v2p-AhYn_f8
CitedBy_id crossref_primary_10_1111_1462_2920_16145
crossref_primary_10_1038_s41597_023_02067_5
crossref_primary_10_1186_1479_7364_5_6_691
crossref_primary_10_3389_fmicb_2023_1259241
crossref_primary_10_3389_fpls_2023_1111418
crossref_primary_10_1016_j_fsi_2022_11_036
crossref_primary_10_1007_s11816_021_00699_w
crossref_primary_10_1002_prot_25377
crossref_primary_10_2142_biophysico_bppb_v22_0014
crossref_primary_10_1186_s12864_022_08735_x
crossref_primary_10_1007_s10482_022_01746_4
crossref_primary_10_3389_fimmu_2020_00758
crossref_primary_10_1128_JB_00218_17
crossref_primary_10_1186_s12864_016_2486_8
crossref_primary_10_1111_tpj_16411
crossref_primary_10_1128_msystems_00161_23
crossref_primary_10_3389_fmicb_2016_01874
crossref_primary_10_3389_fmicb_2017_01020
crossref_primary_10_1128_AEM_02584_20
crossref_primary_10_1007_s00425_018_3026_3
crossref_primary_10_1186_s12864_021_08233_6
crossref_primary_10_3390_toxins9080245
crossref_primary_10_1016_j_scitotenv_2023_165152
crossref_primary_10_1128_spectrum_04298_22
crossref_primary_10_3389_fmicb_2022_799859
crossref_primary_10_1111_nph_19620
crossref_primary_10_1128_JB_06225_11
crossref_primary_10_1038_s41467_019_09364_x
crossref_primary_10_56093_ijas_v90i5_104388
crossref_primary_10_1186_s12870_020_02570_6
crossref_primary_10_1038_s42004_023_00991_6
crossref_primary_10_1016_j_bpj_2022_02_027
crossref_primary_10_1371_journal_pone_0112871
crossref_primary_10_1073_pnas_1716667115
crossref_primary_10_1038_s41586_020_2461_z
crossref_primary_10_1016_j_jmb_2025_169412
crossref_primary_10_1038_s41589_023_01376_5
crossref_primary_10_3390_plants12152797
crossref_primary_10_1038_s41522_023_00382_8
crossref_primary_10_1186_s12864_019_5463_1
crossref_primary_10_1093_molbev_msab094
crossref_primary_10_1038_s42003_018_0141_4
crossref_primary_10_1073_pnas_2203176119
crossref_primary_10_1371_journal_pcbi_1003889
crossref_primary_10_3389_fgene_2024_1430589
crossref_primary_10_1016_j_plantsci_2025_112689
crossref_primary_10_1186_s12864_017_4243_z
crossref_primary_10_1038_s41467_023_37431_x
crossref_primary_10_1371_journal_pgen_1007753
crossref_primary_10_1186_1471_2164_16_S7_S16
crossref_primary_10_1128_MRA_01151_18
crossref_primary_10_1093_molbev_msr120
crossref_primary_10_1093_molbev_msad060
crossref_primary_10_1109_ACCESS_2020_2991605
crossref_primary_10_1007_s00792_018_1015_x
crossref_primary_10_1186_s40168_020_00931_9
crossref_primary_10_1016_j_ijbiomac_2023_125929
crossref_primary_10_1186_s12864_021_08002_5
crossref_primary_10_1016_j_compbiomed_2021_104389
crossref_primary_10_1111_nph_70080
crossref_primary_10_1186_s43897_024_00101_7
crossref_primary_10_1111_1755_0998_14071
crossref_primary_10_1074_jbc_M113_451500
crossref_primary_10_1016_j_immuni_2025_04_015
crossref_primary_10_3390_insects12100928
crossref_primary_10_1111_1365_2656_13969
crossref_primary_10_1002_prot_23177
crossref_primary_10_1126_science_aao6535
crossref_primary_10_3390_genes9040185
crossref_primary_10_1128_aem_00629_23
crossref_primary_10_7554_eLife_41815
crossref_primary_10_1186_s12985_025_02742_6
crossref_primary_10_1128_AEM_01993_15
crossref_primary_10_1371_journal_pone_0212248
crossref_primary_10_3390_plants12173036
crossref_primary_10_1371_journal_pone_0258443
crossref_primary_10_3389_fmicb_2024_1367658
crossref_primary_10_1002_prot_26211
crossref_primary_10_1038_srep46486
crossref_primary_10_1093_nar_gkad879
crossref_primary_10_1128_mra_01232_22
crossref_primary_10_1242_dev_182139
crossref_primary_10_1016_j_cbpa_2021_04_005
crossref_primary_10_1080_23802359_2021_2017366
crossref_primary_10_3390_genes11091032
crossref_primary_10_1002_prot_26853
crossref_primary_10_1016_j_watres_2025_124401
crossref_primary_10_1128_JB_05177_11
crossref_primary_10_1038_s41587_019_0260_6
crossref_primary_10_1007_s11240_020_01882_7
crossref_primary_10_1128_aem_00216_25
crossref_primary_10_3389_fpls_2020_536530
crossref_primary_10_1038_s41586_021_03819_2
crossref_primary_10_1038_s41598_020_63729_7
crossref_primary_10_1111_ppl_13796
crossref_primary_10_1111_mec_15504
crossref_primary_10_1002_prot_25778
crossref_primary_10_1002_prot_25779
crossref_primary_10_1128_msystems_01466_21
crossref_primary_10_3390_antibiotics11121710
crossref_primary_10_3390_genes11091046
crossref_primary_10_1128_JB_06026_11
crossref_primary_10_1007_s10482_024_02006_3
crossref_primary_10_1111_tpj_15968
crossref_primary_10_1007_s10482_025_02132_6
crossref_primary_10_1016_j_ejcb_2023_151322
crossref_primary_10_1016_j_jes_2023_12_010
crossref_primary_10_1186_s12915_019_0643_7
crossref_primary_10_1186_s40168_017_0308_0
crossref_primary_10_1155_2020_8811407
crossref_primary_10_1016_j_plgene_2017_05_004
crossref_primary_10_1007_s12275_017_6427_2
crossref_primary_10_3390_life12111893
crossref_primary_10_1099_ijsem_0_004647
crossref_primary_10_1371_journal_pone_0089323
crossref_primary_10_1016_j_meegid_2019_01_001
crossref_primary_10_3390_microorganisms12030611
crossref_primary_10_1002_prot_25792
crossref_primary_10_3390_ijms20040855
crossref_primary_10_1186_s12864_019_6245_5
crossref_primary_10_1093_nargab_lqad029
crossref_primary_10_1038_s41564_020_0779_9
crossref_primary_10_1007_s00299_023_03044_3
crossref_primary_10_1073_pnas_1605917113
crossref_primary_10_1038_s41392_023_01381_z
crossref_primary_10_1002_mbo3_1042
crossref_primary_10_1093_nar_gkz280
crossref_primary_10_1021_acschembio_8b00254
crossref_primary_10_1371_journal_ppat_1007651
crossref_primary_10_1038_s41467_023_40253_6
crossref_primary_10_1186_s12862_017_1061_5
crossref_primary_10_1186_s12859_021_04276_4
crossref_primary_10_1186_1471_2105_12_275
crossref_primary_10_1111_ppl_13511
crossref_primary_10_1128_MRA_00650_23
crossref_primary_10_1242_jcs_245753
crossref_primary_10_1093_ismejo_wrae157
crossref_primary_10_1186_1471_2164_14_803
crossref_primary_10_3390_biom14121531
crossref_primary_10_1186_s12864_019_5600_x
crossref_primary_10_1093_bib_bbab609
crossref_primary_10_3390_genes14071344
crossref_primary_10_3390_vaccines9030293
crossref_primary_10_1038_s43705_021_00005_3
crossref_primary_10_3390_f14081633
crossref_primary_10_1038_s41598_023_51007_1
crossref_primary_10_1074_jbc_RA118_005220
crossref_primary_10_1016_j_ympev_2016_01_008
crossref_primary_10_7554_eLife_09492
crossref_primary_10_1038_s41598_023_27813_y
crossref_primary_10_1007_s42979_024_03108_5
crossref_primary_10_1016_j_virol_2014_05_013
crossref_primary_10_3390_ijms23136904
crossref_primary_10_1016_j_neucom_2018_07_053
crossref_primary_10_1007_s11427_024_2664_0
crossref_primary_10_1111_1462_2920_15236
crossref_primary_10_1073_pnas_2213771120
crossref_primary_10_1002_prot_25986
crossref_primary_10_1007_s12298_017_0421_3
crossref_primary_10_1016_j_bpj_2015_11_3519
crossref_primary_10_1371_journal_pone_0068464
crossref_primary_10_1093_gbe_evaf109
crossref_primary_10_3390_genes12040518
crossref_primary_10_1016_j_cub_2024_10_054
crossref_primary_10_3184_003685013X13683759820813
crossref_primary_10_1371_journal_pone_0209221
crossref_primary_10_3389_fmed_2022_835467
crossref_primary_10_1093_g3journal_jkab074
crossref_primary_10_1371_journal_pcbi_1009370
crossref_primary_10_1016_j_ijbiomac_2023_125304
crossref_primary_10_1016_j_vetmic_2025_110596
crossref_primary_10_1128_msystems_00736_22
crossref_primary_10_3390_plants13202940
crossref_primary_10_15212_AMM_2024_0047
crossref_primary_10_1007_s00705_021_05308_3
crossref_primary_10_1093_ismejo_wrae124
crossref_primary_10_1002_prot_26850
crossref_primary_10_1128_IAI_06062_11
crossref_primary_10_1021_acs_jcim_5c01765
crossref_primary_10_1186_s12864_023_09646_1
crossref_primary_10_1038_s41467_025_60079_8
crossref_primary_10_3389_fpls_2021_637343
crossref_primary_10_3389_fchbi_2023_1243564
crossref_primary_10_1038_s41522_024_00615_4
crossref_primary_10_1038_s41467_024_50229_9
crossref_primary_10_3390_ijms242316627
crossref_primary_10_1186_s12870_021_03278_x
crossref_primary_10_3389_fvets_2021_767494
crossref_primary_10_1128_AEM_02704_20
crossref_primary_10_1186_s12870_022_03731_5
crossref_primary_10_1093_jxb_erae109
crossref_primary_10_1038_s41467_019_09467_5
crossref_primary_10_3389_fgene_2023_1141194
crossref_primary_10_1038_s41467_024_47968_0
crossref_primary_10_1186_1471_2164_14_457
crossref_primary_10_1002_prot_24615
crossref_primary_10_7554_eLife_87521_3
crossref_primary_10_3390_genes9010054
crossref_primary_10_1186_1471_2164_14_420
crossref_primary_10_1038_s42256_021_00348_5
crossref_primary_10_1007_s12026_013_8385_z
crossref_primary_10_1038_srep40579
crossref_primary_10_1371_journal_pone_0094981
crossref_primary_10_1094_PDIS_06_17_0851_RE
crossref_primary_10_3390_insects15070509
crossref_primary_10_1016_j_gene_2013_03_122
crossref_primary_10_1038_s41467_023_43411_y
crossref_primary_10_1186_s12859_021_04264_8
crossref_primary_10_1107_S2059798324009380
crossref_primary_10_1038_nsmb_3172
crossref_primary_10_3390_plants11162092
crossref_primary_10_2217_fvl_2020_0027
crossref_primary_10_1186_s40793_022_00453_x
crossref_primary_10_1016_j_cimid_2023_102038
crossref_primary_10_3389_fmicb_2018_01100
crossref_primary_10_1073_pnas_1802192115
crossref_primary_10_1016_j_bpj_2018_12_007
crossref_primary_10_1186_s12870_023_04253_4
crossref_primary_10_3389_fmicb_2016_00056
crossref_primary_10_12688_wellcomeopenres_15590_1
crossref_primary_10_1186_s13073_017_0502_5
crossref_primary_10_3389_fgene_2021_801218
crossref_primary_10_1093_hr_uhad201
crossref_primary_10_1128_spectrum_01872_21
crossref_primary_10_1016_j_meegid_2021_105077
crossref_primary_10_12688_f1000research_2_93_v2
crossref_primary_10_1093_nar_gkx1119
crossref_primary_10_12688_f1000research_2_93_v1
crossref_primary_10_1111_1462_2920_12276
crossref_primary_10_3389_fpls_2024_1488553
crossref_primary_10_1093_nar_gkr1065
crossref_primary_10_1016_j_gene_2013_10_015
crossref_primary_10_1002_pmic_201200211
crossref_primary_10_3390_plants14132038
crossref_primary_10_1107_S2052252516008113
crossref_primary_10_1099_ijsem_0_006204
crossref_primary_10_1007_s12038_015_9580_y
crossref_primary_10_1080_07391102_2023_2262600
crossref_primary_10_1371_journal_pcbi_1004051
crossref_primary_10_1002_pld3_287
crossref_primary_10_1016_j_str_2015_09_005
crossref_primary_10_1016_j_cub_2021_09_004
crossref_primary_10_7717_peerj_8928
crossref_primary_10_1186_s13100_019_0177_0
crossref_primary_10_1111_jse_12516
crossref_primary_10_3390_ijms232416047
crossref_primary_10_1007_s00705_019_04491_8
crossref_primary_10_1021_jacs_2c11027
crossref_primary_10_1186_s13227_023_00210_2
crossref_primary_10_1371_journal_pone_0205267
crossref_primary_10_1093_gigascience_giad001
crossref_primary_10_1073_pnas_1420858112
crossref_primary_10_1128_IAI_01727_14
crossref_primary_10_1016_j_molp_2021_08_001
crossref_primary_10_1073_pnas_2311887121
crossref_primary_10_3389_fpls_2021_684987
crossref_primary_10_1016_j_envexpbot_2021_104597
crossref_primary_10_1016_j_str_2023_11_011
crossref_primary_10_1073_pnas_2001063117
crossref_primary_10_1126_sciadv_ady1949
crossref_primary_10_1016_j_compbiomed_2024_108815
crossref_primary_10_3390_toxins14080542
crossref_primary_10_1038_srep13592
crossref_primary_10_1186_s12859_017_1807_5
crossref_primary_10_15252_msb_20209880
crossref_primary_10_1186_s43897_024_00140_0
crossref_primary_10_1186_1471_2164_15_679
crossref_primary_10_1016_j_virs_2022_01_003
crossref_primary_10_3389_fphar_2020_01075
crossref_primary_10_1016_j_sbi_2017_04_004
crossref_primary_10_1111_gbi_12408
crossref_primary_10_1038_s41598_024_72136_1
crossref_primary_10_1038_s41598_018_37309_9
crossref_primary_10_1038_s41564_023_01473_0
crossref_primary_10_1186_1745_6150_8_15
crossref_primary_10_1186_1745_6150_8_13
crossref_primary_10_1186_s12864_020_6604_2
crossref_primary_10_1093_bioinformatics_btae397
crossref_primary_10_3390_genes10010054
crossref_primary_10_1371_journal_pone_0070396
crossref_primary_10_1109_TC_2012_187
crossref_primary_10_1371_journal_pone_0085428
crossref_primary_10_1016_j_bbabio_2022_148907
crossref_primary_10_1007_s10725_022_00851_8
crossref_primary_10_1016_j_sbi_2014_05_006
crossref_primary_10_1038_srep40728
crossref_primary_10_1371_journal_pgen_1007301
crossref_primary_10_1111_pce_15257
crossref_primary_10_1128_JB_01907_14
crossref_primary_10_1186_s12864_016_3284_z
crossref_primary_10_1007_s00203_023_03531_x
crossref_primary_10_1093_genetics_iyab223
crossref_primary_10_7554_eLife_96643
crossref_primary_10_1186_s40168_022_01246_7
crossref_primary_10_1371_journal_pcbi_1005375
crossref_primary_10_3389_fcimb_2021_653695
crossref_primary_10_1371_journal_pone_0172966
crossref_primary_10_1016_j_patrec_2024_10_018
crossref_primary_10_1186_s13062_018_0209_6
crossref_primary_10_1094_PHYTO_09_17_0298_R
crossref_primary_10_1128_mra_00366_22
crossref_primary_10_3390_ijms20235855
crossref_primary_10_1007_s11032_024_01522_4
crossref_primary_10_1016_j_ygeno_2018_05_016
crossref_primary_10_1128_aem_01072_23
crossref_primary_10_1016_j_jhazmat_2023_131386
crossref_primary_10_1099_ijsem_0_006026
crossref_primary_10_1128_IAI_00106_11
crossref_primary_10_1016_j_jmb_2015_11_012
crossref_primary_10_1093_plphys_kiac552
crossref_primary_10_1038_s42003_020_01580_2
crossref_primary_10_1107_S1399004714024869
crossref_primary_10_1145_3264908
crossref_primary_10_1016_j_bbapap_2012_12_015
crossref_primary_10_1016_j_fsi_2016_04_015
crossref_primary_10_1016_j_mib_2024_102453
crossref_primary_10_1038_nature25985
crossref_primary_10_1109_TCBB_2022_3175905
crossref_primary_10_1186_s12915_025_02146_6
crossref_primary_10_1038_s41587_021_01179_w
crossref_primary_10_3390_ijms22126333
crossref_primary_10_3389_fgene_2022_873869
crossref_primary_10_1016_j_indcrop_2022_115553
crossref_primary_10_1038_s41467_021_22738_4
crossref_primary_10_3389_fmicb_2016_02081
crossref_primary_10_1016_j_chom_2021_02_006
crossref_primary_10_1074_jbc_AC119_009749
crossref_primary_10_1016_j_psj_2025_104794
crossref_primary_10_1016_j_hpj_2023_05_023
crossref_primary_10_1126_science_adm9073
crossref_primary_10_1016_j_hpj_2021_01_009
crossref_primary_10_1261_rna_049221_114
crossref_primary_10_1126_science_abh2950
crossref_primary_10_1111_ppl_14177
crossref_primary_10_1038_s41564_017_0098_y
crossref_primary_10_1093_plcell_koac357
crossref_primary_10_1093_molbev_msad232
crossref_primary_10_1038_s41564_020_00794_8
crossref_primary_10_1080_23802359_2020_1846000
crossref_primary_10_1371_journal_pcbi_1004478
crossref_primary_10_1126_science_adg9829
crossref_primary_10_1080_00275514_2018_1468201
crossref_primary_10_1128_AEM_01306_21
crossref_primary_10_1128_spectrum_02267_24
crossref_primary_10_1038_s41467_020_16182_z
crossref_primary_10_1111_1462_2920_13977
crossref_primary_10_1038_s41477_025_01906_0
crossref_primary_10_3389_fpls_2022_856826
crossref_primary_10_1038_s41592_023_02130_4
crossref_primary_10_3390_antib7030026
crossref_primary_10_1128_msystems_00906_23
crossref_primary_10_1186_s12915_019_0661_5
crossref_primary_10_1186_s13059_020_01964_x
crossref_primary_10_1186_s12915_021_01081_6
crossref_primary_10_1038_s41598_021_03334_4
crossref_primary_10_1038_s41598_024_69776_8
crossref_primary_10_1038_s41598_025_90828_0
crossref_primary_10_3389_fpls_2018_01900
crossref_primary_10_1093_hr_uhac165
crossref_primary_10_1002_prot_25088
crossref_primary_10_1186_s12864_015_1354_2
crossref_primary_10_1093_jambio_lxaf048
crossref_primary_10_1128_mSphere_01322_20
crossref_primary_10_3390_life12010025
crossref_primary_10_7554_eLife_108061
crossref_primary_10_1186_s12870_023_04689_8
crossref_primary_10_1021_acs_jcim_5c01084
crossref_primary_10_1038_ncomms5029
crossref_primary_10_1016_j_neuron_2018_07_033
crossref_primary_10_3390_ijms23042259
crossref_primary_10_3389_fpls_2022_975888
crossref_primary_10_1186_s12864_022_09040_3
crossref_primary_10_1007_s00425_019_03146_x
crossref_primary_10_1016_j_celrep_2025_115773
crossref_primary_10_3389_fpls_2022_942969
crossref_primary_10_1371_journal_ppat_1006071
crossref_primary_10_1128_spectrum_04411_22
crossref_primary_10_3389_fmicb_2020_00037
crossref_primary_10_1016_j_cell_2025_06_014
crossref_primary_10_7554_eLife_06974
crossref_primary_10_1051_bioconf_202518202013
crossref_primary_10_1038_ncb2493
crossref_primary_10_1093_bib_bbac208
crossref_primary_10_1073_pnas_2308788121
crossref_primary_10_1371_journal_pcbi_1005983
crossref_primary_10_1016_j_bpj_2019_09_040
crossref_primary_10_1002_prot_26598
crossref_primary_10_1016_j_febslet_2011_08_006
crossref_primary_10_3389_fpls_2024_1368869
crossref_primary_10_1002_1873_3468_13652
crossref_primary_10_1016_j_tibs_2022_11_001
crossref_primary_10_1080_07391102_2020_1808531
crossref_primary_10_1016_j_xpro_2024_102961
crossref_primary_10_3389_fpls_2023_1117069
crossref_primary_10_1016_j_bbamcr_2019_118566
crossref_primary_10_1002_prot_70030
crossref_primary_10_1371_journal_pcbi_1005522
crossref_primary_10_1093_ve_veab022
crossref_primary_10_1002_prot_70033
crossref_primary_10_3390_horticulturae9111167
crossref_primary_10_3389_fgene_2021_752732
crossref_primary_10_3390_f12101385
crossref_primary_10_1007_s10123_020_00145_x
crossref_primary_10_7554_eLife_87521
crossref_primary_10_1371_journal_pone_0220182
crossref_primary_10_3389_fmolb_2021_696319
crossref_primary_10_1109_TCBB_2021_3115053
crossref_primary_10_1186_s13059_023_02895_z
crossref_primary_10_1371_journal_pone_0193757
crossref_primary_10_3389_fpls_2016_01842
crossref_primary_10_3390_microorganisms10020213
crossref_primary_10_1007_s11105_025_01530_4
crossref_primary_10_1038_s42003_025_08306_2
crossref_primary_10_1073_pnas_2513219122
crossref_primary_10_1016_j_chom_2025_07_004
crossref_primary_10_1016_j_chom_2014_07_007
crossref_primary_10_1093_bib_bbaa051
crossref_primary_10_1016_j_cell_2023_02_005
crossref_primary_10_12688_f1000research_21104_1
crossref_primary_10_1073_pnas_2020024118
crossref_primary_10_1371_journal_pone_0223680
crossref_primary_10_1038_s41467_024_49367_x
crossref_primary_10_1073_pnas_2401622121
crossref_primary_10_1371_journal_pone_0167651
crossref_primary_10_3390_ijms25136980
crossref_primary_10_1002_ps_6481
crossref_primary_10_3390_ijms22147708
crossref_primary_10_1016_j_ygeno_2025_111072
crossref_primary_10_7554_eLife_03430
crossref_primary_10_3389_fmicb_2020_541554
crossref_primary_10_1007_s13205_022_03285_1
crossref_primary_10_3389_fgene_2022_848141
crossref_primary_10_1186_s12864_018_5078_y
crossref_primary_10_1093_femsec_fix028
crossref_primary_10_3390_molecules24183387
crossref_primary_10_1016_j_cej_2024_158144
crossref_primary_10_1016_j_cell_2023_10_028
crossref_primary_10_1038_s41598_017_02171_8
crossref_primary_10_1128_mra_00246_23
crossref_primary_10_3390_ijms24010288
crossref_primary_10_3389_fmolb_2021_724947
crossref_primary_10_1016_j_gene_2013_01_058
crossref_primary_10_3390_plants10122721
crossref_primary_10_1038_nchembio_1846
crossref_primary_10_1007_s00705_019_04466_9
crossref_primary_10_1002_prot_25697
crossref_primary_10_1186_s12862_019_1488_y
crossref_primary_10_1038_s41467_023_41237_2
crossref_primary_10_1099_ijsem_0_003842
crossref_primary_10_1038_s41586_023_06328_6
crossref_primary_10_1007_s00438_021_01814_w
crossref_primary_10_1128_JB_00461_20
crossref_primary_10_1016_j_clim_2023_109757
crossref_primary_10_1080_07391102_2020_1782263
crossref_primary_10_1093_nar_gkz142
crossref_primary_10_1093_nar_gkz384
crossref_primary_10_1038_s41467_023_43595_3
crossref_primary_10_3389_fmicb_2020_01160
crossref_primary_10_1093_molbev_msaf138
crossref_primary_10_1371_journal_pone_0057848
crossref_primary_10_3390_ijms21124316
crossref_primary_10_1038_s42256_024_00838_2
crossref_primary_10_1073_pnas_1922873117
crossref_primary_10_1038_s41467_024_47767_7
crossref_primary_10_1091_mbc_E25_02_0089
crossref_primary_10_1016_j_psj_2025_105694
crossref_primary_10_3390_jof9121185
crossref_primary_10_3389_fmicb_2024_1448685
crossref_primary_10_3390_genes14101898
crossref_primary_10_1016_j_isci_2022_104425
crossref_primary_10_3390_ijms231810323
crossref_primary_10_1098_rsif_2024_0886
crossref_primary_10_3389_fmolb_2024_1414916
crossref_primary_10_1038_s41467_021_23099_8
crossref_primary_10_1016_j_immuni_2023_05_009
crossref_primary_10_7554_eLife_14589
crossref_primary_10_1007_s00705_019_04488_3
crossref_primary_10_1038_s41586_019_1735_9
crossref_primary_10_1016_j_patcog_2022_109134
crossref_primary_10_1111_tpj_14538
crossref_primary_10_1016_j_plaphy_2023_01_060
crossref_primary_10_1186_s12864_023_09858_5
crossref_primary_10_1002_prot_25407
crossref_primary_10_1002_prot_25405
crossref_primary_10_1007_s10791_024_09487_w
crossref_primary_10_1371_journal_pone_0225808
crossref_primary_10_3389_fpls_2023_1117246
crossref_primary_10_1016_j_ymben_2023_02_006
crossref_primary_10_1038_s42003_025_07476_3
crossref_primary_10_1093_ismejo_wraf161
crossref_primary_10_1186_s12859_021_04353_8
crossref_primary_10_1038_sdata_2015_51
crossref_primary_10_1111_tpj_16919
crossref_primary_10_1080_07391102_2019_1659185
crossref_primary_10_1016_j_ygeno_2019_03_012
crossref_primary_10_1186_1471_2164_15_523
crossref_primary_10_1007_s10725_020_00623_2
crossref_primary_10_3390_ani13020288
crossref_primary_10_3390_foods11081136
crossref_primary_10_1093_hmg_ddv488
crossref_primary_10_3390_jof9040424
crossref_primary_10_3389_fgene_2023_1187597
crossref_primary_10_7554_eLife_46113
crossref_primary_10_1038_s41467_024_48787_z
crossref_primary_10_1038_s41438_021_00594_z
crossref_primary_10_1186_s12859_019_2660_5
crossref_primary_10_1371_journal_pcbi_1009027
crossref_primary_10_1111_tpj_13669
crossref_primary_10_3390_v17060812
crossref_primary_10_1089_crispr_2022_0054
crossref_primary_10_7717_peerj_7499
crossref_primary_10_1038_s41586_021_03566_4
crossref_primary_10_1093_jhered_esad035
crossref_primary_10_1242_jcs_260822
crossref_primary_10_3390_molecules22071057
crossref_primary_10_1038_s41564_024_01600_5
crossref_primary_10_1002_prot_25669
crossref_primary_10_1038_s42003_023_05248_5
crossref_primary_10_1038_s41597_020_0518_3
crossref_primary_10_7717_peerj_16020
crossref_primary_10_1111_mmi_70020
crossref_primary_10_3390_ijms222111691
crossref_primary_10_1186_1471_2105_15_196
crossref_primary_10_3390_v16030398
crossref_primary_10_1002_prot_25432
crossref_primary_10_1016_j_csbj_2020_11_007
crossref_primary_10_1038_s42003_024_06152_2
crossref_primary_10_1186_1471_2164_14_708
crossref_primary_10_7554_eLife_62816
crossref_primary_10_1016_j_ijpara_2011_06_001
crossref_primary_10_1038_s41598_024_68190_4
crossref_primary_10_1111_dgd_12956
crossref_primary_10_1016_j_cell_2014_06_034
crossref_primary_10_1002_lno_11257
crossref_primary_10_1016_j_cell_2016_09_010
crossref_primary_10_3390_biom14111448
crossref_primary_10_1093_ismejo_wraf139
crossref_primary_10_1038_s41586_023_05750_0
crossref_primary_10_1155_2021_8899263
crossref_primary_10_1534_genetics_119_302378
crossref_primary_10_1016_j_carbpol_2023_121039
crossref_primary_10_1016_j_csbj_2023_10_026
crossref_primary_10_1186_1471_2105_12_395
crossref_primary_10_1128_msystems_01258_24
crossref_primary_10_1128_aem_02124_24
crossref_primary_10_7554_eLife_91415
crossref_primary_10_1107_S2059798323006289
crossref_primary_10_1038_s41598_024_61566_6
crossref_primary_10_1093_nar_gkad1213
crossref_primary_10_1016_j_molp_2022_07_008
crossref_primary_10_1128_AEM_00719_14
crossref_primary_10_1093_pcp_pcaf003
crossref_primary_10_1371_journal_pone_0058505
crossref_primary_10_1007_s00248_018_1155_7
crossref_primary_10_1111_nph_19150
crossref_primary_10_7717_peerj_6366
crossref_primary_10_1186_s12864_022_08382_2
crossref_primary_10_1038_s41467_021_27235_2
crossref_primary_10_1371_journal_pone_0023590
crossref_primary_10_1016_j_envexpbot_2019_04_006
crossref_primary_10_1038_s41467_023_42771_9
crossref_primary_10_1021_acs_est_5c03342
crossref_primary_10_1128_aac_00150_25
crossref_primary_10_1074_jbc_M117_775189
crossref_primary_10_1371_journal_pbio_3002292
crossref_primary_10_1128_msystems_00703_23
crossref_primary_10_1016_j_jmb_2013_11_026
crossref_primary_10_3390_vaccines8020288
crossref_primary_10_3389_fimmu_2023_1163781
crossref_primary_10_3389_fmolb_2023_1212119
crossref_primary_10_1007_s00424_018_2197_x
crossref_primary_10_7554_eLife_94948
crossref_primary_10_7554_eLife_96643_3
crossref_primary_10_1038_s41564_022_01066_3
crossref_primary_10_1093_ismejo_wrae009
crossref_primary_10_1007_s12298_022_01222_3
crossref_primary_10_1016_j_molbiopara_2016_11_001
crossref_primary_10_1093_nar_gks337
crossref_primary_10_3390_microorganisms11112794
crossref_primary_10_1016_j_csbj_2023_10_056
crossref_primary_10_1111_1758_2229_12983
crossref_primary_10_1099_mgen_0_001380
crossref_primary_10_1016_j_cell_2020_11_005
crossref_primary_10_1038_s41598_019_48913_8
crossref_primary_10_1111_jeu_12935
crossref_primary_10_1093_ismeco_ycae042
crossref_primary_10_3389_fevo_2020_550936
crossref_primary_10_1038_s41587_024_02353_6
crossref_primary_10_3390_ijms24065232
crossref_primary_10_1038_s41467_023_41847_w
crossref_primary_10_1038_s43705_021_00050_y
crossref_primary_10_1186_s12859_016_1059_9
crossref_primary_10_1007_s10142_022_00852_w
crossref_primary_10_1186_1471_2164_14_564
crossref_primary_10_1038_s42003_023_05271_6
crossref_primary_10_1126_science_abj8754
crossref_primary_10_1371_journal_pone_0286358
crossref_primary_10_1371_journal_pone_0227396
crossref_primary_10_1038_nature20121
crossref_primary_10_1093_ismejo_wrae111
crossref_primary_10_1016_j_gene_2025_149663
crossref_primary_10_1016_j_ijpara_2012_03_001
crossref_primary_10_1038_s41564_022_01257_y
crossref_primary_10_1093_ismeco_ycae059
crossref_primary_10_1002_prot_25810
crossref_primary_10_1038_s43705_022_00210_8
crossref_primary_10_1101_gad_349488_122
crossref_primary_10_1007_s12355_020_00886_z
crossref_primary_10_3389_fbinf_2025_1625145
crossref_primary_10_3390_ijms26157509
crossref_primary_10_1099_ijsem_0_005676
crossref_primary_10_1371_journal_pgen_1011768
crossref_primary_10_1186_s12870_024_05971_z
crossref_primary_10_1128_msystems_00349_18
crossref_primary_10_3390_ijms23168836
crossref_primary_10_1038_srep23080
crossref_primary_10_3390_cells9030633
crossref_primary_10_3390_genes13020314
crossref_primary_10_1002_prot_24979
crossref_primary_10_1016_j_compbiolchem_2022_107691
crossref_primary_10_1007_s00425_022_03931_1
crossref_primary_10_1126_science_abn8197
crossref_primary_10_1073_pnas_2403601121
crossref_primary_10_1007_s00248_014_0502_6
crossref_primary_10_1016_j_chom_2024_08_002
crossref_primary_10_1016_j_jinorgbio_2023_112364
crossref_primary_10_1073_pnas_1107498108
crossref_primary_10_1016_j_csbj_2022_04_005
crossref_primary_10_1038_s41597_024_03854_4
crossref_primary_10_1038_s41564_025_02110_8
crossref_primary_10_1371_journal_ppat_1011082
crossref_primary_10_1007_s10528_021_10113_3
crossref_primary_10_1099_mgen_0_001457
crossref_primary_10_4137_EBO_S39880
crossref_primary_10_3389_fgene_2022_887491
crossref_primary_10_1038_s41564_019_0534_2
crossref_primary_10_1038_s41598_022_14427_z
crossref_primary_10_1038_s41598_017_11866_x
crossref_primary_10_7554_eLife_91415_3
crossref_primary_10_3389_fpls_2025_1614169
crossref_primary_10_1016_j_gene_2022_146768
crossref_primary_10_1126_science_aba5435
crossref_primary_10_3390_genes10050360
crossref_primary_10_1371_journal_pgen_1002626
crossref_primary_10_1111_tpj_17255
crossref_primary_10_1371_journal_pone_0216294
crossref_primary_10_3390_vaccines9060658
crossref_primary_10_1038_nutd_2014_6
crossref_primary_10_1074_jbc_M115_677898
crossref_primary_10_1371_journal_pone_0315931
crossref_primary_10_3389_fpls_2024_1372127
crossref_primary_10_1093_nar_gkq1129
crossref_primary_10_1016_j_compedu_2021_104170
crossref_primary_10_1186_s12915_020_00927_9
crossref_primary_10_1038_nmicrobiol_2016_43
crossref_primary_10_1371_journal_pone_0245600
crossref_primary_10_1038_s41559_020_01299_7
crossref_primary_10_1038_s41564_019_0612_5
crossref_primary_10_1099_jgv_0_001663
crossref_primary_10_1107_S2059798317007859
crossref_primary_10_1371_journal_pgen_1009246
crossref_primary_10_1007_s00253_020_10491_5
crossref_primary_10_1007_s00248_016_0785_x
crossref_primary_10_1002_pro_70141
crossref_primary_10_1007_s10142_023_01125_w
crossref_primary_10_7717_peerj_5798
crossref_primary_10_1016_j_envexpbot_2020_103990
crossref_primary_10_1016_j_gene_2025_149649
crossref_primary_10_1038_s41396_020_0615_5
crossref_primary_10_1016_j_sbi_2011_03_005
crossref_primary_10_1186_s12864_023_09752_0
crossref_primary_10_1016_j_sbi_2025_102985
crossref_primary_10_7717_peerj_1183
crossref_primary_10_1038_s41564_023_01485_w
crossref_primary_10_1186_1471_2148_12_220
crossref_primary_10_7717_peerj_15929
crossref_primary_10_1038_ismej_2016_59
crossref_primary_10_1007_s00299_024_03184_0
crossref_primary_10_1371_journal_pone_0321163
crossref_primary_10_1002_prot_24943
crossref_primary_10_1093_molbev_msaa235
crossref_primary_10_1002_advs_202404512
crossref_primary_10_1186_s12864_021_08162_4
crossref_primary_10_1111_trf_15476
crossref_primary_10_4161_cc_22068
crossref_primary_10_1126_sciadv_adv6898
crossref_primary_10_1016_j_febslet_2012_05_019
crossref_primary_10_1186_1471_2164_12_19
crossref_primary_10_1186_s12985_018_0923_9
crossref_primary_10_1038_s42256_022_00457_9
crossref_primary_10_1038_srep24117
crossref_primary_10_1016_j_ijbiomac_2024_131311
crossref_primary_10_1038_s42003_024_06598_4
crossref_primary_10_1021_acs_jnatprod_5c00492
crossref_primary_10_1099_ijsem_0_006371
crossref_primary_10_1093_treephys_tpx125
crossref_primary_10_1128_JVI_00952_17
crossref_primary_10_1111_jpy_12334
crossref_primary_10_1186_s12870_021_03081_8
crossref_primary_10_3390_antibiotics11070952
crossref_primary_10_7554_eLife_108061_2
crossref_primary_10_1128_AEM_02851_18
crossref_primary_10_1007_s12539_024_00626_x
crossref_primary_10_1007_s13258_021_01039_6
crossref_primary_10_1371_journal_pcbi_1002195
crossref_primary_10_1371_journal_pone_0250584
crossref_primary_10_3390_ijms25158257
crossref_primary_10_3390_molecules29246061
crossref_primary_10_3390_ijms241813965
crossref_primary_10_1007_s11738_017_2393_x
crossref_primary_10_1016_j_ecolind_2023_110210
crossref_primary_10_1186_s13068_015_0390_0
crossref_primary_10_1093_jxb_erae412
crossref_primary_10_1128_spectrum_00946_23
crossref_primary_10_1111_1462_2920_16082
crossref_primary_10_1128_aem_00704_23
crossref_primary_10_3390_genes16030308
crossref_primary_10_1111_tpj_16359
crossref_primary_10_1093_bib_bbad288
crossref_primary_10_1128_spectrum_02467_22
crossref_primary_10_1186_s13059_016_1126_6
crossref_primary_10_1038_ismej_2013_207
crossref_primary_10_1016_j_plantsci_2021_111088
crossref_primary_10_1038_s41467_023_37983_y
crossref_primary_10_3390_v16071170
crossref_primary_10_1111_j_2041_1014_2012_00661_x
crossref_primary_10_3389_fpls_2022_901128
crossref_primary_10_1007_s11103_024_01541_x
crossref_primary_10_3390_ijms22115553
crossref_primary_10_1007_s12668_024_01418_9
crossref_primary_10_1016_j_heliyon_2023_e17222
crossref_primary_10_3389_fpls_2022_1006360
crossref_primary_10_3390_ijms20235948
crossref_primary_10_1128_spectrum_01035_23
crossref_primary_10_1007_s42995_020_00078_4
crossref_primary_10_1007_s11427_024_2912_8
crossref_primary_10_1074_jbc_RA119_010483
crossref_primary_10_1038_s41396_018_0332_5
crossref_primary_10_1107_S2052252517005115
crossref_primary_10_1186_s12870_024_05738_6
crossref_primary_10_1093_ve_vez013
crossref_primary_10_1186_s13062_017_0191_4
crossref_primary_10_1371_journal_pone_0021507
crossref_primary_10_1002_prot_26261
crossref_primary_10_1016_j_ijbiomac_2020_06_032
crossref_primary_10_1093_bioinformatics_btaf178
crossref_primary_10_3390_ijms24065663
crossref_primary_10_1007_s10661_014_4081_2
crossref_primary_10_1038_s42003_023_05525_3
crossref_primary_10_1371_journal_pgen_1007470
crossref_primary_10_1016_j_scienta_2024_113464
crossref_primary_10_1038_s41597_025_04835_x
crossref_primary_10_1186_s12870_025_07100_w
crossref_primary_10_1186_s12915_022_01442_9
crossref_primary_10_1093_bib_bbad217
crossref_primary_10_1107_S2059798321007907
crossref_primary_10_1007_s00438_018_1474_x
crossref_primary_10_1128_mra_01225_23
crossref_primary_10_3389_fpls_2024_1346255
crossref_primary_10_1016_j_gene_2022_146345
crossref_primary_10_3390_cells12131752
crossref_primary_10_1016_j_sajb_2019_02_009
crossref_primary_10_1111_mpp_12505
crossref_primary_10_1111_mec_15378
crossref_primary_10_3390_agronomy13051324
crossref_primary_10_3389_fgene_2024_1349626
crossref_primary_10_1093_nar_gkv397
crossref_primary_10_1186_s40168_020_0790_7
crossref_primary_10_1038_s41586_024_08455_0
crossref_primary_10_3389_fpls_2022_898786
crossref_primary_10_1016_j_bioelechem_2022_108054
crossref_primary_10_1016_j_envpol_2020_115378
crossref_primary_10_1186_s12915_024_02017_6
Cites_doi 10.1093/nar/29.14.2994
10.1093/nar/28.1.254
10.1093/nar/gkf544
10.1002/pro.5560040613
10.1093/nar/30.1.260
10.1093/bioinformatics/14.10.846
10.1186/1471-2105-7-410
10.1089/cmb.1998.5.479
10.1073/pnas.95.11.6073
10.1093/nar/25.17.3389
10.1093/bioinformatics/14.5.423
10.1016/S0022-2836(05)80360-2
10.1093/nar/gkm960
10.1093/bioinformatics/bti627
10.1093/nar/28.1.257
ContentType Journal Article
Copyright Johnson et al; licensee BioMed Central Ltd. 2010
COPYRIGHT 2010 BioMed Central Ltd.
2010 Johnson et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2010 Johnson et al; licensee BioMed Central Ltd. 2010 Johnson et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Johnson et al; licensee BioMed Central Ltd. 2010
– notice: COPYRIGHT 2010 BioMed Central Ltd.
– notice: 2010 Johnson et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2010 Johnson et al; licensee BioMed Central Ltd. 2010 Johnson et al; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/1471-2105-11-431
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Engineering Research Database


Publicly Available Content Database
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Computer Science
EISSN 1471-2105
EndPage 431
ExternalDocumentID oai_doaj_org_article_c5df2ab1c5c049629ee1bfeb585488f4
PMC2931519
2501704851
A236475193
20718988
10_1186_1471_2105_11_431
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Howard Hughes Medical Institute
– fundername: NHGRI NIH HHS
  grantid: R01-HG01363
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
IPNFZ
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c663t-936b276cc324e183b89f01f5c59f8bf43f5f3f4c4a088ea4be0ed51dbb3616713
IEDL.DBID DOA
ISICitedReferencesCount 910
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000281443600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Fri Oct 03 12:39:36 EDT 2025
Tue Nov 04 01:55:53 EST 2025
Tue Oct 07 09:34:32 EDT 2025
Fri Sep 05 08:56:29 EDT 2025
Mon Oct 06 18:22:56 EDT 2025
Tue Nov 11 10:30:05 EST 2025
Tue Nov 04 17:05:43 EST 2025
Thu Nov 13 14:44:15 EST 2025
Thu Apr 03 07:00:03 EDT 2025
Tue Nov 18 22:30:27 EST 2025
Sat Nov 29 05:39:50 EST 2025
Sat Sep 06 07:27:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Test Database
Search Time
Profile Hide Markov Model
Entropy Weighting
Iterative Search
Language English
License http://creativecommons.org/licenses/by/2.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c663t-936b276cc324e183b89f01f5c59f8bf43f5f3f4c4a088ea4be0ed51dbb3616713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/c5df2ab1c5c049629ee1bfeb585488f4
PMID 20718988
PQID 901859427
PQPubID 44065
ParticipantIDs doaj_primary_oai_doaj_org_article_c5df2ab1c5c049629ee1bfeb585488f4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2931519
proquest_miscellaneous_877597019
proquest_miscellaneous_753996783
proquest_journals_901859427
gale_infotracmisc_A236475193
gale_infotracacademiconefile_A236475193
gale_incontextgauss_ISR_A236475193
pubmed_primary_20718988
crossref_citationtrail_10_1186_1471_2105_11_431
crossref_primary_10_1186_1471_2105_11_431
springer_journals_10_1186_1471_2105_11_431
PublicationCentury 2000
PublicationDate 2010-08-18
PublicationDateYYYYMMDD 2010-08-18
PublicationDate_xml – month: 08
  year: 2010
  text: 2010-08-18
  day: 18
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2010
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References 3888_CR1
GA Price (3888_CR15) 2005; 21
AA Schaffer (3888_CR6) 2001; 29
SF Altschul (3888_CR2) 1990; 3
SF Altschul (3888_CR3) 1997; 25
RD Finn (3888_CR10) 2008; 36
L Holm (3888_CR7) 1998; 14
WN Grundy (3888_CR16) 1998; 5
ED Scheeff (3888_CR5) 2006; 7
SE Brenner (3888_CR8) 1998; 95
M Madera (3888_CR13) 2002; 30
L Lo Conte (3888_CR9) 2000; 28
JM Chandonia (3888_CR12) 2002; 30
WR Pearson (3888_CR14) 1995; 4
SE Brenner (3888_CR11) 2000; 28
K Karplus (3888_CR4) 1998; 14
9773344 - J Comput Biol. 1998 Fall;5(3):479-91
7549879 - Protein Sci. 1995 Jun;4(6):1145-60
2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10
16970830 - BMC Bioinformatics. 2006;7:410
11452024 - Nucleic Acids Res. 2001 Jul 15;29(14):2994-3005
9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
18039703 - Nucleic Acids Res. 2008 Jan;36(Database issue):D281-8
9927713 - Bioinformatics. 1998;14(10):846-56
16105900 - Bioinformatics. 2005 Oct 15;21(20):3824-31
10592239 - Nucleic Acids Res. 2000 Jan 1;28(1):254-6
9682055 - Bioinformatics. 1998 Jun;14(5):423-9
10592240 - Nucleic Acids Res. 2000 Jan 1;28(1):257-9
9600919 - Proc Natl Acad Sci U S A. 1998 May 26;95(11):6073-8
11752310 - Nucleic Acids Res. 2002 Jan 1;30(1):260-3
12364612 - Nucleic Acids Res. 2002 Oct 1;30(19):4321-8
References_xml – volume: 29
  start-page: 2994
  year: 2001
  ident: 3888_CR6
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/29.14.2994
– volume: 28
  start-page: 254
  year: 2000
  ident: 3888_CR11
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.254
– volume: 30
  start-page: 4321
  issue: 19
  year: 2002
  ident: 3888_CR13
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkf544
– volume: 4
  start-page: 1145
  year: 1995
  ident: 3888_CR14
  publication-title: Protein Sci
  doi: 10.1002/pro.5560040613
– ident: 3888_CR1
– volume: 30
  start-page: 260
  year: 2002
  ident: 3888_CR12
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.1.260
– volume: 14
  start-page: 846
  issue: 10
  year: 1998
  ident: 3888_CR4
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/14.10.846
– volume: 7
  start-page: 410
  year: 2006
  ident: 3888_CR5
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-410
– volume: 5
  start-page: 479
  issue: 3
  year: 1998
  ident: 3888_CR16
  publication-title: J Comput Biol
  doi: 10.1089/cmb.1998.5.479
– volume: 95
  start-page: 6073
  issue: 11
  year: 1998
  ident: 3888_CR8
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.11.6073
– volume: 25
  start-page: 3389
  issue: 17
  year: 1997
  ident: 3888_CR3
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.17.3389
– volume: 14
  start-page: 423
  issue: 5
  year: 1998
  ident: 3888_CR7
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/14.5.423
– volume: 3
  start-page: 403
  year: 1990
  ident: 3888_CR2
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(05)80360-2
– volume: 36
  start-page: D281
  year: 2008
  ident: 3888_CR10
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm960
– volume: 21
  start-page: 3824
  year: 2005
  ident: 3888_CR15
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti627
– volume: 28
  start-page: 257
  issue: 1
  year: 2000
  ident: 3888_CR9
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.257
– reference: 10592239 - Nucleic Acids Res. 2000 Jan 1;28(1):254-6
– reference: 9682055 - Bioinformatics. 1998 Jun;14(5):423-9
– reference: 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10
– reference: 9927713 - Bioinformatics. 1998;14(10):846-56
– reference: 12364612 - Nucleic Acids Res. 2002 Oct 1;30(19):4321-8
– reference: 16105900 - Bioinformatics. 2005 Oct 15;21(20):3824-31
– reference: 9600919 - Proc Natl Acad Sci U S A. 1998 May 26;95(11):6073-8
– reference: 18039703 - Nucleic Acids Res. 2008 Jan;36(Database issue):D281-8
– reference: 9773344 - J Comput Biol. 1998 Fall;5(3):479-91
– reference: 11452024 - Nucleic Acids Res. 2001 Jul 15;29(14):2994-3005
– reference: 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
– reference: 11752310 - Nucleic Acids Res. 2002 Jan 1;30(1):260-3
– reference: 7549879 - Protein Sci. 1995 Jun;4(6):1145-60
– reference: 16970830 - BMC Bioinformatics. 2006;7:410
– reference: 10592240 - Nucleic Acids Res. 2000 Jan 1;28(1):257-9
SSID ssj0017805
Score 2.5636966
Snippet Background Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or...
Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or Forward,...
Background Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or...
Abstract Background: Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms,...
Abstract Background Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms,...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 431
SubjectTerms Algorithms
Artificial Intelligence
Base Sequence
Bioinformatics
Biomedical and Life Sciences
Comparative genomics
Computational biology
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer science
Databases, Protein
Genetic algorithms
Hidden Markov models
Iterative methods
Life Sciences
Markov Chains
Methods
Microarrays
Proteins
Proteins - chemistry
Research Article
Sequence Alignment - methods
Software
Studies
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9UwFA86FXxxOp3WTQkiiEK5t23apE8yxcsV3Bh-sbfQfG0Daa-3twP_e89J02on24uPbU5Lk_PdnPwOIS8tsw477MV2njhIUHgWC5OzuHAO3Ak4kNJ3nvv-iR8diZOT8jjU5rShrHKwid5Qm0bjP_IZ-C2Rlyzlb1c_Y2wahZuroYPGTXILQRJSX7l3PG4iIFz_sDMpilkCdjiGDCfHo2QsSyaeyAP2_2uW__JLl2smL22cen-02P7Pmdwn90IgSg96yXlAbth6h9zpW1P-2iHbQ7sHGrT_IVksEW6kpni8p7mgvocObVfg_uiZ7XrEZ1rVhvZIzWBG6fLwkPa6RL2nNN3aPiLfFh--vl_GoQ1DrCEc2cRlVqiUF1pD7GXBAihROmBsrvPSCeVY5nKXOaZZBRbLVkzZuTV5YpTKiqSAJHiXbNVNbZ8QanjFnBFaVJVmLlXKzC1jnJuqTExpXURmA0ukDhjl2Crjh_S5iigkMlEiE-FSAhMj8np8YtXjc1xD-w65PNIhsra_0axPZVBUqXPj0kolOteQPBVpaW2inFWQVoGtcywiL1BGJGJn1Ficc1p1bSs_fvksDzwYP4bEEXkViFwD36-rcNYBVgHhtiaU-xNKUG49Gd4bZEgG49LKUYAiQsdRfBDr5WrbdK3kCDgMcUh2NYngHJJJiPAj8rgX7XFhUog7RSlERPhE6CcrNx2pz888NjlEjxBDwjvfDOrx57uv4svTaye5R-72FRsiTsQ-2dqsO_uM3NYXm_N2_dxr_G8U1lwZ
  priority: 102
  providerName: ProQuest
– databaseName: Springer LINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9KVfCL78faKkEEUVh6u5vdJB-reJxgi7Ra-i3k2RZkt9zeFfrfd5J96FYr6MfbTI4wmSeZ-Q3AG0edDxP2UjfLPCYorEi5LWlaeY_uBB2IiJPnjr6w_X1-fCy-bkA-9MLEavfhSTJa6qjWvNrJ0IymmKCUoROMhtbpW-jseBjXcHB4NL4cBIz-4TnyD7sm7iei9P9ui39xRtcLJa-9lkYnNL__P8d_APf6kJPsdjLyEDZc_QjudEMoLx_DfBFQRGoSunaaCxJH45D2HL0aOXXrDsiZqNqSDoAZrSNZ7O2RTkVIdIB2vXRP4Pv807ePi7SfrpAajDJWqSgqnbPKGAypHCq25sLjfZWmFJ5rTwtf-sJTQxUaIqeodjNny8xqXVRZhbntU9ism9o9B2KZot5yw5Uy1Oda25mjlDGrRGaF8wnsDEyXpoceDxMwfsiYgvBKBu7IwB38KZE7Cbwbd5x3sBt_of0Q7nGkC4DZ8UOzPJG9_klTWp8rnZnSYE5U5cK5THunMVtCE-ZpAq-DFMgAiVGHmpsTtW5b-fnwQO5GjP0Q6SbwtifyDZ7fqL6FAbkQULQmlNsTStRZM1neGoRN9jajlRiZ8VLQnCVAxtWwMZTB1a5Zt5IFHGEML4qbSThjmCNi4J7As054R8bkGE5ywXkCbCLWE85NV-qz0wg5jkEhhob4n-8H4f557pvu5cW_EG_B3a4ug6cZ34bN1XLtXsJtc7E6a5evoopfAbxcSlQ
  priority: 102
  providerName: Springer Nature
Title Hidden Markov model speed heuristic and iterative HMM search procedure
URI https://link.springer.com/article/10.1186/1471-2105-11-431
https://www.ncbi.nlm.nih.gov/pubmed/20718988
https://www.proquest.com/docview/901859427
https://www.proquest.com/docview/753996783
https://www.proquest.com/docview/877597019
https://pubmed.ncbi.nlm.nih.gov/PMC2931519
https://doaj.org/article/c5df2ab1c5c049629ee1bfeb585488f4
Volume 11
WOSCitedRecordID wos000281443600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-2boO9jH3PbRfEGIwNTOJYtqTHdjSkbAkm3Uq2F2F9rYXilDgp7L_fSXayuqPby14Ets7GPp10v0On3wG8tdQ6X2EvtoPEYYDC0pibjMa5c-hO0IGIUHnu9DObTvl8Loprpb58TlhDD9worq8z44alSnSmEczmQ2FtopxVCHPR9lxgAh0wsQmm2v0Dz9QfzhWxJMagJttsUPK8v73nT5TRNOk4pMDb_-fqfM093UydvLF_GtzS6DE8avEkOWj-4wncsdVTeNBUmPz5DEZjTxFSEX8kZ3FFQt0bUl-iyyJndt2wNJOyMqRhV8alj4wnE9LYPwnezayX9jl8HR19-TiO29IJsUYIsYpFmqshy7VGvGRx1iouHA5GpjPhuHI0dZlLHdW0xFXGllTZgTVZYpRK8yTHwPUF7FSLyr4CYlhJneGal6WmbqiUGVhKGTOlSIywLoL-Rn9St7zivrzFhQzxBc-l17j0GsdLiRqP4P32icuGU-Mvsod-SLZyng073EAbka2NyH_ZSARv_IBKz3dR-YSaH-W6ruXxyUweBAJ9D2MjeNcKuQV-vy7b8wmoBU-R1ZHc70jihNSd7r2N3ch2Qaglwi6eCTpkEZBtr3_Q57hVdrGuJfMkwYgd0ttFOGMYACIqj-BlY4dbxeAkSLjgPALWsdCO5ro91flZ4BNHxIe4D9_5YWPLv7_7tnHZ_R_jsgcPm2QMHid8H3ZWy7V9Dff11eq8XvbgLpuz0PIe3Ds8mhazXpjl2H5icc-n6RbYFtl37C-OJ8U3vJqdnP4Co99T_g
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAioXCgVKaAELgRBI0W4SJ3YOCJXHalf7EIIW9WYSP9pKKFk2u0X9UfxHxnlBitpbDxwTTyLbmZlvJrbnA3iuqTaWYc_Vfc9ggsICl6uQupExCCcIIHHJPPd1wmYzfngYf1qDX81ZGLutsvGJpaNWubT_yHuIWzyMqc_ezn-4ljTKLq42DBqVVoz12U_M2Io3ow_4eV_4_uDj_vuhW5MKuBLBdenGQZT6LJISIwmN-pzy2GA3QxnGhqeGBiY0gaGSJmh_OqGp7msVeipNg8iLMKXD916D6zTgzJrVmLntooWlB2hWQnnU89Dvu5hRhfboGg28DvKVBAH_wsBfOHh-j-a5hdoS_wab_9nM3YHbdaBN9irLuAtrOtuCmxX15tkWbDZ0FqT2bvdgMLTlVDJijy_lp6TkCCLFHOGdHOtVVdGaJJkiVSVqhAkynE5JNTZSRgJqtdD34eBKxvUA1rM80w-BKJZQo7jkSSKp8dNU9TWljKkk9lSsjQO9RgWErGuwWyqQ76LMxXgkrNIIqzR4KVBpHHjVPjGv6o9cIvvOalUrZyuHlzfyxZGoHZGQoTJ-knoylJgcRn6stZcanWLaiL7cUAeeWZ0UtjZIZjcfHSWrohCjL5_FXkk2YEN-B17WQibH_sukPsuBs2DLiXUkdzuS6Lxkp3mn0VlRO89CtArrAGlb7YN2P2Cm81UhmC2ojHFWcLEIZwyTZcxgHNiuTKmdGB_jah5z7gDrGFln5rot2clxWXsdo2OMkfGdrxtz_NPvi77Lo0sH-RQ2hvvTiZiMZuMduFXtTuGux3dhfblY6cdwQ54uT4rFk9LbEPh21Ub6G42euSQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9RAEF-kVfFLfVZjqy4iiEK4S7LJbj7Wx3HF9ihWS78t-2wLkhyXS8H_3pm8NNUK4se7nT1ys_PMzvyGkFeOOY8T9kI3jTwkKDwJhU1ZmHkP7gQcSN5Mnjs54IuFOD3Nj7oXblVf7d5fSbY9DYjSVKwnS-tbFRfZJAKTGkKykmJXGMM26k2GZfSYrR-fDLcIiNffX03-YdfIFTWI_b_b5V8c09WiySs3p41Dmt39379yj2x1oSjda2XnPrnhigfkVjuc8vtDMpsjukhBsZunvKTNyBxaLcHb0XNXtwDPVBWWtsDMYDXp_PCQtqpDG8do65V7RL7OPn55Pw-7qQuhgehjHeZJpmOeGQOhlgOF1yL3cI6pSXMvtGeJT33imWEKDJRTTLups2lktU6yKIOcd5tsFGXhnhBquWLeCiOUMszHWtupY4xzq_LI5s4HZNIfgDQdJDlOxvgmm9REZBK5I5E78FECdwLyZtixbOE4_kL7Ds90oEMg7eaLcnUmO72UJrU-VjoyqYFcKYtz5yLtnYYsCkybZwF5iRIhESqjwFqcM1VXldw__iz3Gux9jIAD8roj8iU8v1FdawNwAdG1RpS7I0rQZTNa3ukFT3a2pJIQsYk0ZzEPCB1WcSOWxxWurCvJEV8Ywo7kehLBOeSOENAH5HEryANjYggzRS5EQPhIxEecG68UF-cNFDkEixAywm--7QX953Nfdy5P_4X4Bbl99GEmD_YXn3bInbZ0Q4SR2CUb61XtnpGb5nJ9Ua2eN5r_A-SxVhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hidden+Markov+model+speed+heuristic+and+iterative+HMM+search+procedure&rft.jtitle=BMC+bioinformatics&rft.au=Johnson%2C+L+Steven&rft.au=Eddy%2C+Sean+R&rft.au=Portugaly%2C+Elon&rft.date=2010-08-18&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=11&rft.spage=431&rft_id=info:doi/10.1186%2F1471-2105-11-431&rft.externalDBID=ISR&rft.externalDocID=A236475193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon