The hidden brain-state dynamics of tACS aftereffects

•Hidden Markov Models (HMMs) decomposed MEG signals into transient brain-states.•Transcranial alternating current stimulation (tACS) affected only specific states.•tACS affected alpha power in these specific states, but not their occurrence.•The pattern of effects is consistent across two independen...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:NeuroImage (Orlando, Fla.) Ročník 264; s. 119713
Hlavní autori: Kasten, Florian H., Herrmann, Christoph S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Inc 01.12.2022
Elsevier Limited
Elsevier
Predmet:
ISSN:1053-8119, 1095-9572, 1095-9572
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Hidden Markov Models (HMMs) decomposed MEG signals into transient brain-states.•Transcranial alternating current stimulation (tACS) affected only specific states.•tACS affected alpha power in these specific states, but not their occurrence.•The pattern of effects is consistent across two independent datasets.•HMMs may offer a powerful tool to gain novel insights to neuromodulation techniques. Non-invasive techniques to electrically stimulate the brain such as transcranial direct and alternating current stimulation (tDCS/tACS) are increasingly used in human neuroscience and offer potential new avenues to treat brain disorders. Previous research has shown that stimulation effects may depend on brain-states. However, this work mostly focused on experimentally induced brain-states over the course of several minutes. Besides such global, long-term changes in brain-states, previous research suggests, that the brain is likely to spontaneously alternate between states in sub-second ranges, which is much closer to the time scale at which it is generally believed to operate. Here, we utilized Hidden Markov Models (HMM) to decompose magnetoencephalography data obtained before and after tACS into spontaneous, transient brain-states with distinct spatial, spectral and connectivity profiles. Only one out of four spontaneous brain-states, likely reflecting default mode network activity, showed evidence for an effect of tACS on the power of spontaneous α-oscillations. The identified state appears to disproportionally drive the overall (non-state resolved) tACS effect. No or only marginal effects were found in the remaining states. We found no evidence that tACS influenced the time spent in each state. Although stimulation was applied continuously, our results indicate that spontaneous brain-states and their underlying functional networks differ in their susceptibility to tACS. Global stimulation aftereffects may be disproportionally driven by distinct time periods during which the susceptible state is active. Our results may pave the ground for future work to understand which features make a specific brain-state susceptible to electrical stimulation.
AbstractList Non-invasive techniques to electrically stimulate the brain such as transcranial direct and alternating current stimulation (tDCS/tACS) are increasingly used in human neuroscience and offer potential new avenues to treat brain disorders. Previous research has shown that stimulation effects may depend on brain-states. However, this work mostly focused on experimentally induced brain-states over the course of several minutes. Besides such global, long-term changes in brain-states, previous research suggests, that the brain is likely to spontaneously alternate between states in sub-second ranges, which is much closer to the time scale at which it is generally believed to operate. Here, we utilized Hidden Markov Models (HMM) to decompose magnetoencephalography data obtained before and after tACS into spontaneous, transient brain-states with distinct spatial, spectral and connectivity profiles. Only one out of four spontaneous brain-states, likely reflecting default mode network activity, showed evidence for an effect of tACS on the power of spontaneous α-oscillations. The identified state appears to disproportionally drive the overall (non-state resolved) tACS effect. No or only marginal effects were found in the remaining states. We found no evidence that tACS influenced the time spent in each state. Although stimulation was applied continuously, our results indicate that spontaneous brain-states and their underlying functional networks differ in their susceptibility to tACS. Global stimulation aftereffects may be disproportionally driven by distinct time periods during which the susceptible state is active. Our results may pave the ground for future work to understand which features make a specific brain-state susceptible to electrical stimulation.Non-invasive techniques to electrically stimulate the brain such as transcranial direct and alternating current stimulation (tDCS/tACS) are increasingly used in human neuroscience and offer potential new avenues to treat brain disorders. Previous research has shown that stimulation effects may depend on brain-states. However, this work mostly focused on experimentally induced brain-states over the course of several minutes. Besides such global, long-term changes in brain-states, previous research suggests, that the brain is likely to spontaneously alternate between states in sub-second ranges, which is much closer to the time scale at which it is generally believed to operate. Here, we utilized Hidden Markov Models (HMM) to decompose magnetoencephalography data obtained before and after tACS into spontaneous, transient brain-states with distinct spatial, spectral and connectivity profiles. Only one out of four spontaneous brain-states, likely reflecting default mode network activity, showed evidence for an effect of tACS on the power of spontaneous α-oscillations. The identified state appears to disproportionally drive the overall (non-state resolved) tACS effect. No or only marginal effects were found in the remaining states. We found no evidence that tACS influenced the time spent in each state. Although stimulation was applied continuously, our results indicate that spontaneous brain-states and their underlying functional networks differ in their susceptibility to tACS. Global stimulation aftereffects may be disproportionally driven by distinct time periods during which the susceptible state is active. Our results may pave the ground for future work to understand which features make a specific brain-state susceptible to electrical stimulation.
Non-invasive techniques to electrically stimulate the brain such as transcranial direct and alternating current stimulation (tDCS/tACS) are increasingly used in human neuroscience and offer potential new avenues to treat brain disorders. Previous research has shown that stimulation effects may depend on brain-states. However, this work mostly focused on experimentally induced brain-states over the course of several minutes. Besides such global, long-term changes in brain-states, previous research suggests, that the brain is likely to spontaneously alternate between states in sub-second ranges, which is much closer to the time scale at which it is generally believed to operate. Here, we utilized Hidden Markov Models (HMM) to decompose magnetoencephalography data obtained before and after tACS into spontaneous, transient brain-states with distinct spatial, spectral and connectivity profiles. Only one out of four spontaneous brain-states, likely reflecting default mode network activity, showed evidence for an effect of tACS on the power of spontaneous α-oscillations. The identified state appears to disproportionally drive the overall (non-state resolved) tACS effect. No or only marginal effects were found in the remaining states. We found no evidence that tACS influenced the time spent in each state. Although stimulation was applied continuously, our results indicate that spontaneous brain-states and their underlying functional networks differ in their susceptibility to tACS. Global stimulation aftereffects may be disproportionally driven by distinct time periods during which the susceptible state is active. Our results may pave the ground for future work to understand which features make a specific brain-state susceptible to electrical stimulation.
•Hidden Markov Models (HMMs) decomposed MEG signals into transient brain-states.•Transcranial alternating current stimulation (tACS) affected only specific states.•tACS affected alpha power in these specific states, but not their occurrence.•The pattern of effects is consistent across two independent datasets.•HMMs may offer a powerful tool to gain novel insights to neuromodulation techniques. Non-invasive techniques to electrically stimulate the brain such as transcranial direct and alternating current stimulation (tDCS/tACS) are increasingly used in human neuroscience and offer potential new avenues to treat brain disorders. Previous research has shown that stimulation effects may depend on brain-states. However, this work mostly focused on experimentally induced brain-states over the course of several minutes. Besides such global, long-term changes in brain-states, previous research suggests, that the brain is likely to spontaneously alternate between states in sub-second ranges, which is much closer to the time scale at which it is generally believed to operate. Here, we utilized Hidden Markov Models (HMM) to decompose magnetoencephalography data obtained before and after tACS into spontaneous, transient brain-states with distinct spatial, spectral and connectivity profiles. Only one out of four spontaneous brain-states, likely reflecting default mode network activity, showed evidence for an effect of tACS on the power of spontaneous α-oscillations. The identified state appears to disproportionally drive the overall (non-state resolved) tACS effect. No or only marginal effects were found in the remaining states. We found no evidence that tACS influenced the time spent in each state. Although stimulation was applied continuously, our results indicate that spontaneous brain-states and their underlying functional networks differ in their susceptibility to tACS. Global stimulation aftereffects may be disproportionally driven by distinct time periods during which the susceptible state is active. Our results may pave the ground for future work to understand which features make a specific brain-state susceptible to electrical stimulation.
ArticleNumber 119713
Author Kasten, Florian H.
Herrmann, Christoph S.
Author_xml – sequence: 1
  givenname: Florian H.
  surname: Kasten
  fullname: Kasten, Florian H.
  organization: Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4All”, Carl von Ossietzky University, Oldenburg, Germany
– sequence: 2
  givenname: Christoph S.
  orcidid: 0000-0003-0323-2272
  surname: Herrmann
  fullname: Herrmann, Christoph S.
  email: christoph.herrmann@uni-oldenburg.de
  organization: Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4All”, Carl von Ossietzky University, Oldenburg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36309333$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03842436$$DView record in HAL
BookMark eNqNkU2P0zAQhiO0iP2Av4AicYFDyvgjjn1BlArYlSpxYDlbjj3ZuqTOYqcr9d_jkF0QPfVky37nGXuey-IsDAGLoiSwIEDE--0i4D4OfmfucEGB0gUhqiHsWXFBQNWVqht6Nu1rVsl8dV5cprQFAEW4fFGcM8FAMcYuCn67wXLjncNQttH4UKXRjFi6QzA7b1M5dOW4XH0vTTdixK5DO6aXxfPO9AlfPa5XxY8vn29X19X629eb1XJdWSHYWCmo29paAkBbxrFlSgGh0inKkQOvOyeskRKkaAVrsCUMHHLmXIOMQCvZVXEzc91gtvo-5v_Ggx6M138OhninTRy97VHTJjNbyS2lkjdAZcuFBXCq4xyahmXWu5m1Mf1_qOvlWk9nwCSnnIkHkrNv5-x9HH7tMY1655PFvjcBh33KzRgwIkQDOfrmKLod9jHkqUxPklRIReqcev2Y2rc7dH_7P3nIgQ9zwMYhpTxnbX324IcwZim9JqAn8Xqr_4nXk3g9i88AeQR46nFC6ae5FLPKB49RJ-sxWHQ-Ztt51v4UyMcjiO198Nb0P_FwGuI3_lveag
CitedBy_id crossref_primary_10_1134_S0022093023050113
crossref_primary_10_1093_cercor_bhae098
crossref_primary_10_1016_j_brs_2024_05_015
crossref_primary_10_1016_j_neuroimage_2024_120572
crossref_primary_10_1016_j_neuroimage_2025_121350
crossref_primary_10_1016_j_ijchp_2023_100378
crossref_primary_10_1002_mds_29969
crossref_primary_10_3758_s13415_024_01204_w
crossref_primary_10_1016_j_brs_2024_07_007
crossref_primary_10_1002_hbm_26559
crossref_primary_10_1523_ENEURO_0449_24_2025
crossref_primary_10_3389_fnhum_2025_1548478
crossref_primary_10_3389_fnetp_2025_1621283
crossref_primary_10_1016_j_bbr_2023_114770
crossref_primary_10_3390_biomedicines11071813
crossref_primary_10_1016_j_neubiorev_2025_106312
crossref_primary_10_1016_j_neuroimage_2024_120647
Cites_doi 10.1073/pnas.1815958116
10.1155/2011/156869
10.1038/s41398-019-0439-0
10.1016/j.neuroimage.2012.11.058
10.1126/sciadv.aaz2747
10.1523/JNEUROSCI.0236-16.2016
10.3389/fnhum.2016.00245
10.1016/j.neuroimage.2017.07.010
10.3389/fpsyg.2018.02108
10.1088/0031-9155/48/22/002
10.1038/s41593-019-0371-x
10.1109/10.623056
10.1016/j.neuroimage.2018.10.025
10.1016/j.neuron.2010.06.005
10.3390/brainsci10120932
10.1088/0031-9155/51/7/008
10.1007/s002210100682
10.1016/j.neuroimage.2015.11.047
10.1016/j.neuroimage.2017.11.023
10.3389/fnhum.2013.00279
10.1016/j.brs.2015.05.002
10.1523/JNEUROSCI.1414-13.2013
10.7554/eLife.01867
10.1016/j.jneumeth.2007.03.024
10.1038/s41467-018-05316-z
10.3389/fnhum.2013.00161
10.1371/journal.pbio.1002424
10.3389/fpsyt.2012.00083
10.1214/aoms/1177697196
10.1007/s10548-019-00745-5
10.3389/fnhum.2017.00002
10.1016/j.neuroimage.2016.02.012
10.1109/TSP.2005.853302
10.1016/j.clinph.2012.03.080
10.1016/j.ijpsycho.2015.02.003
10.1016/j.brainres.2011.05.052
10.1016/j.neuropsychologia.2014.11.021
10.1016/j.brs.2015.01.400
10.1016/j.neuroimage.2015.09.067
10.1016/0028-3932(71)90067-4
10.1007/s10548-019-00727-7
10.1016/j.neuroimage.2017.06.077
10.3389/fnhum.2018.00211
10.1007/s13253-017-0283-8
10.1093/cercor/bhy160
10.1371/journal.pone.0013766
10.1016/j.neuroimage.2016.03.065
10.1016/j.brs.2018.04.006
10.1113/jphysiol.2010.190314
10.1016/j.neuroimage.2018.05.068
10.1038/s41598-020-68992-2
10.1016/j.eurpsy.2018.01.004
10.1038/s41467-019-13417-6
10.1038/s41467-017-01045-x
10.1038/s41467-018-02928-3
10.1523/ENEURO.0069-18.2018
10.3389/fncel.2015.00477
10.1016/j.neuroimage.2015.03.071
10.1016/j.brs.2020.04.012
10.1523/JNEUROSCI.4250-04.2005
10.1038/s41598-019-49166-1
10.1016/j.brs.2014.12.004
10.1073/pnas.2110868119
10.1038/srep27138
10.1016/j.neuroimage.2016.11.022
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier Inc.
Copyright Elsevier Limited Dec 1, 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Dec 1, 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
1XC
VOOES
DOA
DOI 10.1016/j.neuroimage.2022.119713
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest One Psychology



MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Psychology
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_274e4b84c22847028b46c00d9f440773
oai:HAL:hal-03842436v1
36309333
10_1016_j_neuroimage_2022_119713
S1053811922008345
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States--US
Germany
Finland
GeographicLocations_xml – name: Finland
– name: United States--US
– name: Germany
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SNS
ZA5
29N
53G
9DU
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AFFHD
AGHFR
AGQPQ
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFLBG
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
SEW
WUQ
XPP
ZMT
0SF
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
1XC
VOOES
ID FETCH-LOGICAL-c663t-905b5cc1002b34eb3990128d924e4045fd6ca88086b637eb130de43dd7e310b83
IEDL.DBID DOA
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000886063700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8119
1095-9572
IngestDate Fri Oct 03 12:42:14 EDT 2025
Sat Oct 25 06:45:32 EDT 2025
Sun Sep 28 10:57:57 EDT 2025
Tue Oct 07 07:03:29 EDT 2025
Wed Feb 19 02:26:08 EST 2025
Tue Nov 18 21:57:25 EST 2025
Sat Nov 29 07:07:36 EST 2025
Fri Feb 23 02:34:59 EST 2024
Tue Oct 14 19:35:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Non-invasive brain stimulation
Brain-states
Aftereffects
Hidden Markov Models
Transcranial alternating current stimulation
Brain oscillations
Language English
License This is an open access article under the CC BY license.
Copyright © 2022. Published by Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c663t-905b5cc1002b34eb3990128d924e4045fd6ca88086b637eb130de43dd7e310b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0323-2272
OpenAccessLink https://doaj.org/article/274e4b84c22847028b46c00d9f440773
PMID 36309333
PQID 2748268915
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_274e4b84c22847028b46c00d9f440773
hal_primary_oai_HAL_hal_03842436v1
proquest_miscellaneous_2730316670
proquest_journals_2748268915
pubmed_primary_36309333
crossref_citationtrail_10_1016_j_neuroimage_2022_119713
crossref_primary_10_1016_j_neuroimage_2022_119713
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2022_119713
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2022_119713
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2022
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Noury, Siegel (bib0045) 2018; 167
Taulu, Simola (bib0057) 2006; 51
Zaehle, Rach, Herrmann (bib0069) 2010; 5
Bergmann, Hartwigsen (bib0006) 2020
Mellin, Alagapan, Lustenberger, Lugo, Alexander, Gilmore, Jarskog, Fröhlich (bib0037) 2018; 51
Johnson, Alekseichuk, Krieg, Doyle, Yu, Vitek, Johnson, Opitz (bib0022) 2020; 6
Herrmann, Strüber, Helfrich, Engel (bib0019) 2016; 103
Boyle, Frohlich (bib0008) 2013
Kasten, Wendeln, Stecher, Herrmann (bib0030) 2020; 10
Schutter (bib0056) 2016; 140
Wischnewski, Engelhardt, Salehinejad, Schutter, Kuo, Nitsche (bib0067) 2019; 29
Lafon, Henin, Huang, Friedman, Melloni, Thesen, Doyle, Buzsáki, Devinsky, Parra, Liu (bib0035) 2017; 8
Neuling, Wagner, Wolters, Zaehle, Herrmann (bib0042) 2012; 3
Noury, Hipp, Siegel (bib0044) 2016; 140
Herrmann (bib0016) 2001; 137
Kasten, Dowsett, Herrmann (bib0023) 2016; 10
Pohle, Langrock, van Beest, Schmidt (bib0050) 2017; 22
Noury, Siegel (bib0046) 2017; 158
Vossen, Gross, Thut (bib0065) 2015; 8
Kasten, Negahbani, Fröhlich, Herrmann (bib0029) 2018; 179
Kasten, Herrmann (bib0025) 2020
Vidaurre, Quinn, Baker, Dupret, Tejero-Cantero, Woolrich (bib0063) 2016; 126
Baker, Brookes, Rezek, Smith, Behrens, Probert Smith, Woolrich (bib0003) 2014; 3
Knyazev, Slobodskoj-Plusnin, Bocharov, Pylkova (bib0032) 2011; 1402
Veniero, Vossen, Gross, Thut (bib0060) 2015; 9
Horvath, Forte, Carter (bib0020) 2015; 66
Kasten, Herrmann (bib0027) 2017; 11
Laakso, Tanaka, Koyama, De Santis, Hirata (bib0034) 2015; 8
Vidaurre, Hunt, Quinn, Hunt, Brookes, Nobre, Woolrich (bib0062) 2018; 9
Neuling, Ruhnau, Weisz, Herrmann, Demarchi (bib0041) 2017; 147
Oldfield (bib0047) 1971; 9
Wöstmann, Vosskuhl, Obleser, Herrmann (bib0068) 2018; 11
Gebodh, Esmaeilpour, Adair, Chelette, Dmochowski, Woods, Kappenman, Parra, Bikson (bib0015) 2019; 185
Ruhnau, Neuling, Fuscá, Herrmann, Demarchi, Weisz (bib0055) 2016; 6
Feurra, Blagovechtchenski, Nikulin, Nazarova, Lebedeva, Pozdeeva, Yurevich, Rossi (bib0012) 2019; 9
Ridding, Ziemann (bib0053) 2010; 588
Alexander, Alagapan, Lugo, Mellin, Lustenberger, Rubinow, Fröhlich (bib0002) 2019; 9
Kasten, Herrmann (bib0026) 2019; 32
Vidaurre, Abeysuriya, Becker, Quinn, Alfaro-Almagro, Smith, Woolrich (bib0061) 2018; 180
Herrmann, Rach, Neuling, Strüber (bib0018) 2013; 7
Oostenveld, Fries, Maris, Schoffelen (bib0048) 2011; 2011
Horvath, Forte, Carter (bib0021) 2015; 8
Colclough, Brookes, Smith, Woolrich (bib0010) 2015; 117
Herrmann, Murray, Ionta, Hutt, Lefebvre (bib0017) 2016; 36
Neuling, Rach, Herrmann (bib0040) 2013; 7
Vöröslakos, Takeuchi, Brinyiczki, Zombori, Oliva, Fernández-Ruiz, Kozák, Kincses, Iványi, Buzsáki, Berényi (bib0064) 2018; 9
Kasten, Duecker, Maack, Meiser, Herrmann (bib0024) 2019; 10
Quinn, van Ede, Brookes, Heideman, Nowak, Seedat, Vidaurre, Zich, Nobre, Woolrich (bib0051) 2019; 32
Baum, Petrie, Soules, Weiss (bib0004) 1970; 41
Bergmann, Karabanov, Hartwigsen, Thielscher, Siebner (bib0007) 2016; 140
Clancy, Andrzejewski, You, Li (bib0009) 2022; 119
Fröhlich, McCormick (bib0014) 2010; 67
Vosskuhl, Strüber, Herrmann (bib0066) 2018; 12
Riddle, McPherson, Atkins, Walker, Ahn, Frohlich (bib0054) 2020; 13
Taulu, Simola, Kajola (bib0058) 2005; 53
Nolte (bib0043) 2003; 48
Maris, Oostenveld (bib0036) 2007; 164
Krause, Vieira, Csorba, Pilly, Pack (bib0033) 2019; 116
Feurra, Pasqualetti, Bianco, Santarnecchi, Rossi, Rossi (bib0013) 2013; 33
Reinhart, Nguyen (bib0052) 2019; 22
Mo, Liu, Huang, Ding (bib0038) 2013; 68
Bergmann (bib0005) 2018; 9
Palva (bib0049) 2005; 25
Van Veen, Van Drongelen, Yuchtman, Suzuki (bib0059) 1997; 44
Klink, Paßmann, Kasten, Peter (bib0031) 2020; 10
Elyamany, Leicht, Herrmann, Mulert (bib0011) 2020
Kasten, Maess, Herrmann (bib0028) 2018; 5
Alagapan, Schmidt, Lefebvre, Hadar, Shin, Frӧhlich (bib0001) 2016; 14
Nenonen, Nurminen, Kičić, Bikmullina, Lioumis, Jousmäki, Taulu, Parkkonen, Putaala, Kähkönen (bib0039) 2012; 123
Van Veen (10.1016/j.neuroimage.2022.119713_bib0059) 1997; 44
Bergmann (10.1016/j.neuroimage.2022.119713_bib0006) 2020
Krause (10.1016/j.neuroimage.2022.119713_bib0033) 2019; 116
Herrmann (10.1016/j.neuroimage.2022.119713_bib0019) 2016; 103
Vossen (10.1016/j.neuroimage.2022.119713_bib0065) 2015; 8
Veniero (10.1016/j.neuroimage.2022.119713_bib0060) 2015; 9
Noury (10.1016/j.neuroimage.2022.119713_bib0045) 2018; 167
Oostenveld (10.1016/j.neuroimage.2022.119713_bib0048) 2011; 2011
Boyle (10.1016/j.neuroimage.2022.119713_bib0008) 2013
Pohle (10.1016/j.neuroimage.2022.119713_bib0050) 2017; 22
Vidaurre (10.1016/j.neuroimage.2022.119713_bib0063) 2016; 126
Nenonen (10.1016/j.neuroimage.2022.119713_bib0039) 2012; 123
Zaehle (10.1016/j.neuroimage.2022.119713_bib0069) 2010; 5
Wöstmann (10.1016/j.neuroimage.2022.119713_bib0068) 2018; 11
Schutter (10.1016/j.neuroimage.2022.119713_bib0056) 2016; 140
Lafon (10.1016/j.neuroimage.2022.119713_bib0035) 2017; 8
Kasten (10.1016/j.neuroimage.2022.119713_bib0023) 2016; 10
Clancy (10.1016/j.neuroimage.2022.119713_bib0009) 2022; 119
Reinhart (10.1016/j.neuroimage.2022.119713_bib0052) 2019; 22
Neuling (10.1016/j.neuroimage.2022.119713_bib0042) 2012; 3
Taulu (10.1016/j.neuroimage.2022.119713_bib0057) 2006; 51
Kasten (10.1016/j.neuroimage.2022.119713_bib0025) 2020
Baker (10.1016/j.neuroimage.2022.119713_bib0003) 2014; 3
Vidaurre (10.1016/j.neuroimage.2022.119713_bib0061) 2018; 180
Wischnewski (10.1016/j.neuroimage.2022.119713_bib0067) 2019; 29
Alexander (10.1016/j.neuroimage.2022.119713_bib0002) 2019; 9
Neuling (10.1016/j.neuroimage.2022.119713_bib0040) 2013; 7
Feurra (10.1016/j.neuroimage.2022.119713_bib0012) 2019; 9
Maris (10.1016/j.neuroimage.2022.119713_bib0036) 2007; 164
Feurra (10.1016/j.neuroimage.2022.119713_bib0013) 2013; 33
Herrmann (10.1016/j.neuroimage.2022.119713_bib0016) 2001; 137
Herrmann (10.1016/j.neuroimage.2022.119713_bib0017) 2016; 36
Alagapan (10.1016/j.neuroimage.2022.119713_bib0001) 2016; 14
Fröhlich (10.1016/j.neuroimage.2022.119713_bib0014) 2010; 67
Kasten (10.1016/j.neuroimage.2022.119713_bib0030) 2020; 10
Gebodh (10.1016/j.neuroimage.2022.119713_bib0015) 2019; 185
Vidaurre (10.1016/j.neuroimage.2022.119713_bib0062) 2018; 9
Elyamany (10.1016/j.neuroimage.2022.119713_bib0011) 2020
Kasten (10.1016/j.neuroimage.2022.119713_bib0029) 2018; 179
Noury (10.1016/j.neuroimage.2022.119713_bib0044) 2016; 140
Palva (10.1016/j.neuroimage.2022.119713_bib0049) 2005; 25
Johnson (10.1016/j.neuroimage.2022.119713_bib0022) 2020; 6
Kasten (10.1016/j.neuroimage.2022.119713_bib0027) 2017; 11
Bergmann (10.1016/j.neuroimage.2022.119713_bib0007) 2016; 140
Kasten (10.1016/j.neuroimage.2022.119713_bib0028) 2018; 5
Oldfield (10.1016/j.neuroimage.2022.119713_bib0047) 1971; 9
Ridding (10.1016/j.neuroimage.2022.119713_bib0053) 2010; 588
Mo (10.1016/j.neuroimage.2022.119713_bib0038) 2013; 68
Vosskuhl (10.1016/j.neuroimage.2022.119713_bib0066) 2018; 12
Vöröslakos (10.1016/j.neuroimage.2022.119713_bib0064) 2018; 9
Taulu (10.1016/j.neuroimage.2022.119713_bib0058) 2005; 53
Neuling (10.1016/j.neuroimage.2022.119713_bib0041) 2017; 147
Herrmann (10.1016/j.neuroimage.2022.119713_bib0018) 2013; 7
Riddle (10.1016/j.neuroimage.2022.119713_bib0054) 2020; 13
Horvath (10.1016/j.neuroimage.2022.119713_bib0020) 2015; 66
Nolte (10.1016/j.neuroimage.2022.119713_bib0043) 2003; 48
Klink (10.1016/j.neuroimage.2022.119713_bib0031) 2020; 10
Horvath (10.1016/j.neuroimage.2022.119713_bib0021) 2015; 8
Kasten (10.1016/j.neuroimage.2022.119713_bib0024) 2019; 10
Bergmann (10.1016/j.neuroimage.2022.119713_bib0005) 2018; 9
Quinn (10.1016/j.neuroimage.2022.119713_bib0051) 2019; 32
Ruhnau (10.1016/j.neuroimage.2022.119713_bib0055) 2016; 6
Noury (10.1016/j.neuroimage.2022.119713_bib0046) 2017; 158
Baum (10.1016/j.neuroimage.2022.119713_bib0004) 1970; 41
Knyazev (10.1016/j.neuroimage.2022.119713_bib0032) 2011; 1402
Laakso (10.1016/j.neuroimage.2022.119713_bib0034) 2015; 8
Kasten (10.1016/j.neuroimage.2022.119713_bib0026) 2019; 32
Mellin (10.1016/j.neuroimage.2022.119713_bib0037) 2018; 51
Colclough (10.1016/j.neuroimage.2022.119713_bib0010) 2015; 117
References_xml – volume: 140
  start-page: 83
  year: 2016
  end-page: 88
  ident: bib0056
  article-title: Cutaneous retinal activation and neural entrainment in transcranial alternating current stimulation: a systematic review
  publication-title: Neuroimage
– volume: 9
  start-page: 483
  year: 2018
  ident: bib0064
  article-title: Direct effects of transcranial electric stimulation on brain circuits in rats and humans
  publication-title: Nat. Commun.
– volume: 9
  year: 2015
  ident: bib0060
  article-title: Lasting EEG/MEG aftereffects of rhythmic transcranial brain stimulation: level of control over oscillatory network activity
  publication-title: Front. Cell. Neurosci.
– volume: 68
  start-page: 112
  year: 2013
  end-page: 118
  ident: bib0038
  article-title: Coupling between visual alpha oscillations and default mode activity
  publication-title: Neuroimage
– volume: 44
  start-page: 867
  year: 1997
  end-page: 880
  ident: bib0059
  article-title: Localization of brain electrical activity via linearly constrained minimum variance spatial filtering
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 11
  year: 2017
  ident: bib0027
  article-title: Transcranial alternating current stimulation (tACS) enhances mental rotation performance during and after stimulation
  publication-title: Front. Hum. Neurosci.
– volume: 10
  start-page: 12270
  year: 2020
  ident: bib0030
  article-title: Hemisphere-specific, differential effects of lateralized, occipital–parietal α- versus γ-tACS on endogenous but not exogenous visual-spatial attention
  publication-title: Sci. Rep.
– volume: 36
  start-page: 5328
  year: 2016
  end-page: 5337
  ident: bib0017
  article-title: Shaping intrinsic neural oscillations with periodic stimulation
  publication-title: J. Neurosci.
– volume: 8
  start-page: 535
  year: 2015
  end-page: 550
  ident: bib0021
  article-title: Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS)
  publication-title: Brain Stimul.
– volume: 32
  start-page: 1013
  year: 2019
  end-page: 1019
  ident: bib0026
  article-title: Recovering brain dynamics during concurrent tACS-M/EEG: an overview of analysis approaches and their methodological and interpretational pitfalls
  publication-title: Brain Topogr.
– start-page: 1
  year: 2020
  end-page: 12
  ident: bib0006
  article-title: Inferring causality from noninvasive brain stimulation in cognitive neuroscience
  publication-title: J. Cogn. Neurosci.
– volume: 8
  start-page: 906
  year: 2015
  end-page: 913
  ident: bib0034
  article-title: Inter-subject variability in electric fields of motor cortical tDCS
  publication-title: Brain Stimul.
– volume: 140
  start-page: 4
  year: 2016
  end-page: 19
  ident: bib0007
  article-title: Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives
  publication-title: Neuroimage
– volume: 66
  start-page: 213
  year: 2015
  end-page: 236
  ident: bib0020
  article-title: Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review
  publication-title: Neuropsychologia
– volume: 29
  start-page: 2924
  year: 2019
  end-page: 2931
  ident: bib0067
  article-title: NMDA receptor-mediated motor cortex plasticity after 20 Hz transcranial alternating current stimulation
  publication-title: Cereb. Cortex
– volume: 126
  start-page: 81
  year: 2016
  end-page: 95
  ident: bib0063
  article-title: Spectrally resolved fast transient brain states in electrophysiological data
  publication-title: Neuroimage
– volume: 5
  year: 2018
  ident: bib0028
  article-title: Facilitated event-related power modulations during transcranial alternating current stimulation (tACS) revealed by concurrent tACS-MEG
  publication-title: eNeuro
– volume: 3
  year: 2012
  ident: bib0042
  article-title: Finite-element model predicts current density distribution for clinical applications of tDCS and tACS
  publication-title: Front. Psychiatry
– volume: 48
  start-page: 3637
  year: 2003
  end-page: 3652
  ident: bib0043
  article-title: The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors
  publication-title: Phys. Med. Biol.
– volume: 9
  start-page: 97
  year: 1971
  end-page: 113
  ident: bib0047
  article-title: The assessment and analysis of handedness: the Edinburgh inventory
  publication-title: Neuropsychologia
– volume: 41
  start-page: 164
  year: 1970
  end-page: 171
  ident: bib0004
  article-title: A Maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
  publication-title: Ann. Math. Stat.
– volume: 32
  start-page: 1020
  year: 2019
  end-page: 1034
  ident: bib0051
  article-title: Unpacking transient event dynamics in electrophysiological power spectra
  publication-title: Brain Topogr.
– volume: 180
  start-page: 646
  year: 2018
  end-page: 656
  ident: bib0061
  article-title: Discovering dynamic brain networks from big data in rest and task
  publication-title: Neuroimage
– volume: 137
  start-page: 346
  year: 2001
  end-page: 353
  ident: bib0016
  article-title: Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena
  publication-title: Exp. Brain Res.
– volume: 8
  start-page: 1199
  year: 2017
  ident: bib0035
  article-title: Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings
  publication-title: Nat. Commun.
– year: 2020
  ident: bib0011
  article-title: Transcranial alternating current stimulation (tACS): from basic mechanisms towards first applications in psychiatry
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
– volume: 147
  start-page: 960
  year: 2017
  end-page: 963
  ident: bib0041
  article-title: Faith and oscillations recovered: on analyzing EEG/MEG signals during tACS
  publication-title: Neuroimage
– volume: 167
  start-page: 53
  year: 2018
  end-page: 61
  ident: bib0045
  article-title: Analyzing EEG and MEG signals recorded during tES, a reply
  publication-title: Neuroimage
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 9
  ident: bib0048
  article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Comput. Intell. Neurosci.
– volume: 53
  start-page: 3359
  year: 2005
  end-page: 3372
  ident: bib0058
  article-title: Applications of the signal space separation method
  publication-title: IEEE Trans. Signal Process.
– start-page: 140
  year: 2013
  end-page: 143
  ident: bib0008
  article-title: EEG feedback-controlled transcranial alternating current stimulation
  publication-title: Procedings of the 6th International IEEE/EMBS Conference on Neural Engineering (NER)
– volume: 14
  year: 2016
  ident: bib0001
  article-title: Modulation of cortical oscillations by low-frequency direct cortical stimulation is state-dependent
  publication-title: PLoS Biol.
– year: 2020
  ident: bib0025
  article-title: Discrete sampling in perception via neuronal oscillations—evidence from rhythmic, non-invasive brain stimulation
  publication-title: Eur. J. Neurosci.
– volume: 116
  start-page: 5747
  year: 2019
  end-page: 5755
  ident: bib0033
  article-title: Transcranial alternating current stimulation entrains single-neuron activity in the primate brain
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 158
  start-page: 406
  year: 2017
  end-page: 416
  ident: bib0046
  article-title: Phase properties of transcranial electrical stimulation artifacts in electrophysiological recordings
  publication-title: Neuroimage
– volume: 117
  start-page: 439
  year: 2015
  end-page: 448
  ident: bib0010
  article-title: A symmetric multivariate leakage correction for MEG connectomes
  publication-title: Neuroimage
– volume: 7
  year: 2013
  ident: bib0040
  article-title: Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states
  publication-title: Front. Hum. Neurosci.
– volume: 3
  start-page: e01867
  year: 2014
  ident: bib0003
  article-title: Fast transient networks in spontaneous human brain activity
  publication-title: eLife
– volume: 103
  start-page: 12
  year: 2016
  end-page: 21
  ident: bib0019
  article-title: EEG oscillations: from correlation to causality
  publication-title: Int. J. Psychophysiol.
– volume: 185
  start-page: 408
  year: 2019
  end-page: 424
  ident: bib0015
  article-title: Inherent physiological artifacts in EEG during tDCS
  publication-title: Neuroimage
– volume: 9
  start-page: 2987
  year: 2018
  ident: bib0062
  article-title: Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks
  publication-title: Nat. Commun.
– volume: 179
  start-page: 134
  year: 2018
  end-page: 143
  ident: bib0029
  article-title: Non-linear transfer characteristics of stimulation and recording hardware account for spurious low-frequency artifacts during amplitude modulated transcranial alternating current stimulation (AM-tACS)
  publication-title: Neuroimage
– volume: 123
  start-page: 2180
  year: 2012
  end-page: 2191
  ident: bib0039
  article-title: Validation of head movement correction and spatiotemporal signal space separation in magnetoencephalography
  publication-title: Clin. Neurophysiol.
– volume: 33
  start-page: 17483
  year: 2013
  end-page: 17489
  ident: bib0013
  article-title: State-dependent effects of transcranial oscillatory currents on the motor system: what you think matters
  publication-title: J. Neurosci.
– volume: 22
  start-page: 270
  year: 2017
  end-page: 293
  ident: bib0050
  article-title: Selecting the number of states in hidden markov models: pragmatic solutions illustrated using animal movement
  publication-title: JABES
– volume: 51
  start-page: 1759
  year: 2006
  end-page: 1768
  ident: bib0057
  article-title: Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements
  publication-title: Phys. Med. Biol.
– volume: 13
  start-page: 998
  year: 2020
  end-page: 999
  ident: bib0054
  article-title: Brain-derived neurotrophic factor (BDNF) polymorphism may influence the efficacy of tACS to modulate neural oscillations
  publication-title: Brain Stimul.
– volume: 588
  start-page: 2291
  year: 2010
  end-page: 2304
  ident: bib0053
  article-title: Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects: induction of cortical plasticity by non-invasive brain stimulation
  publication-title: J. Physiol.
– volume: 6
  start-page: eaaz2747
  year: 2020
  ident: bib0022
  article-title: Dose-dependent effects of transcranial alternating current stimulation on spike timing in awake nonhuman primates
  publication-title: Sci. Adv.
– volume: 1402
  start-page: 67
  year: 2011
  end-page: 79
  ident: bib0032
  article-title: The default mode network and EEG alpha oscillations: an independent component analysis
  publication-title: Brain Res.
– volume: 119
  year: 2022
  ident: bib0009
  article-title: Transcranial stimulation of alpha oscillations up-regulates the default mode network
  publication-title: Proc. Natl. Acad. Sci.
– volume: 25
  start-page: 3962
  year: 2005
  end-page: 3972
  ident: bib0049
  article-title: Phase synchrony among neuronal oscillations in the human cortex
  publication-title: J. Neurosci.
– volume: 9
  year: 2018
  ident: bib0005
  article-title: Brain state-dependent brain stimulation
  publication-title: Front. Psychol.
– volume: 11
  start-page: 752
  year: 2018
  end-page: 758
  ident: bib0068
  article-title: Opposite effects of lateralised transcranial alpha versus gamma stimulation on auditory spatial attention
  publication-title: Brain Stimul.
– volume: 140
  start-page: 99
  year: 2016
  end-page: 109
  ident: bib0044
  article-title: Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation
  publication-title: Neuroimage
– volume: 5
  start-page: e13766
  year: 2010
  ident: bib0069
  article-title: Transcranial alternating current stimulation enhances individual alpha activity in human EEG
  publication-title: PLoS One
– volume: 9
  start-page: 12858
  year: 2019
  ident: bib0012
  article-title: State-dependent effects of transcranial oscillatory currents on the motor system during action observation
  publication-title: Sci. Rep.
– volume: 10
  start-page: 932
  year: 2020
  ident: bib0031
  article-title: The modulation of cognitive performance with transcranial alternating current stimulation: a systematic review of frequency-specific effects
  publication-title: Brain Sci.
– volume: 67
  start-page: 129
  year: 2010
  end-page: 143
  ident: bib0014
  article-title: Endogenous electric fields may guide neocortical network activity
  publication-title: Neuron
– volume: 10
  year: 2016
  ident: bib0023
  article-title: Sustained aftereffect of α-tACS lasts up to 70 min after stimulation
  publication-title: Front. Hum. Neurosci.
– volume: 9
  start-page: 106
  year: 2019
  ident: bib0002
  article-title: Double-blind, randomized pilot clinical trial targeting alpha oscillations with transcranial alternating current stimulation (tACS) for the treatment of major depressive disorder (MDD)
  publication-title: Transl. Psychiatry
– volume: 164
  start-page: 177
  year: 2007
  end-page: 190
  ident: bib0036
  article-title: Nonparametric statistical testing of EEG- and MEG-data
  publication-title: J. Neurosci. Methods
– volume: 12
  start-page: 211
  year: 2018
  ident: bib0066
  article-title: Non-invasive brain stimulation: a paradigm shift in understanding brain oscillations
  publication-title: Front. Hum. Neurosci.
– volume: 51
  start-page: 25
  year: 2018
  end-page: 33
  ident: bib0037
  article-title: Randomized trial of transcranial alternating current stimulation for treatment of auditory hallucinations in schizophrenia
  publication-title: Eur. Psychiatr.
– volume: 22
  start-page: 820
  year: 2019
  end-page: 827
  ident: bib0052
  article-title: Working memory revived in older adults by synchronizing rhythmic brain circuits
  publication-title: Nat. Neurosci.
– volume: 8
  start-page: 499
  year: 2015
  end-page: 508
  ident: bib0065
  article-title: Alpha power increase after transcranial alternating current stimulation at alpha frequency (α-tACS) reflects plastic changes rather than entrainment
  publication-title: Brain Stimul.
– volume: 7
  year: 2013
  ident: bib0018
  article-title: Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes
  publication-title: Front. Hum. Neurosci.
– volume: 10
  start-page: 5427
  year: 2019
  ident: bib0024
  article-title: Integrating electric field modeling and neuroimaging to explain inter-individual variability of tACS effects
  publication-title: Nat. Commun.
– volume: 6
  start-page: 27138
  year: 2016
  ident: bib0055
  article-title: Eyes wide shut: transcranial alternating current stimulation drives alpha rhythm in a state dependent manner
  publication-title: Sci. Rep.
– volume: 116
  start-page: 5747
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119713_bib0033
  article-title: Transcranial alternating current stimulation entrains single-neuron activity in the primate brain
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1815958116
– volume: 2011
  start-page: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2022.119713_bib0048
  article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/156869
– volume: 9
  start-page: 106
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119713_bib0002
  article-title: Double-blind, randomized pilot clinical trial targeting alpha oscillations with transcranial alternating current stimulation (tACS) for the treatment of major depressive disorder (MDD)
  publication-title: Transl. Psychiatry
  doi: 10.1038/s41398-019-0439-0
– volume: 68
  start-page: 112
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119713_bib0038
  article-title: Coupling between visual alpha oscillations and default mode activity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.11.058
– volume: 6
  start-page: eaaz2747
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119713_bib0022
  article-title: Dose-dependent effects of transcranial alternating current stimulation on spike timing in awake nonhuman primates
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz2747
– volume: 36
  start-page: 5328
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119713_bib0017
  article-title: Shaping intrinsic neural oscillations with periodic stimulation
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0236-16.2016
– volume: 10
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119713_bib0023
  article-title: Sustained aftereffect of α-tACS lasts up to 70 min after stimulation
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2016.00245
– volume: 158
  start-page: 406
  year: 2017
  ident: 10.1016/j.neuroimage.2022.119713_bib0046
  article-title: Phase properties of transcranial electrical stimulation artifacts in electrophysiological recordings
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.07.010
– volume: 9
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119713_bib0005
  article-title: Brain state-dependent brain stimulation
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2018.02108
– volume: 48
  start-page: 3637
  year: 2003
  ident: 10.1016/j.neuroimage.2022.119713_bib0043
  article-title: The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/48/22/002
– volume: 22
  start-page: 820
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119713_bib0052
  article-title: Working memory revived in older adults by synchronizing rhythmic brain circuits
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0371-x
– volume: 44
  start-page: 867
  year: 1997
  ident: 10.1016/j.neuroimage.2022.119713_bib0059
  article-title: Localization of brain electrical activity via linearly constrained minimum variance spatial filtering
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.623056
– volume: 185
  start-page: 408
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119713_bib0015
  article-title: Inherent physiological artifacts in EEG during tDCS
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.10.025
– volume: 67
  start-page: 129
  year: 2010
  ident: 10.1016/j.neuroimage.2022.119713_bib0014
  article-title: Endogenous electric fields may guide neocortical network activity
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.06.005
– volume: 10
  start-page: 932
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119713_bib0031
  article-title: The modulation of cognitive performance with transcranial alternating current stimulation: a systematic review of frequency-specific effects
  publication-title: Brain Sci.
  doi: 10.3390/brainsci10120932
– volume: 51
  start-page: 1759
  year: 2006
  ident: 10.1016/j.neuroimage.2022.119713_bib0057
  article-title: Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/51/7/008
– volume: 137
  start-page: 346
  year: 2001
  ident: 10.1016/j.neuroimage.2022.119713_bib0016
  article-title: Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena
  publication-title: Exp. Brain Res.
  doi: 10.1007/s002210100682
– volume: 126
  start-page: 81
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119713_bib0063
  article-title: Spectrally resolved fast transient brain states in electrophysiological data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.11.047
– volume: 167
  start-page: 53
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119713_bib0045
  article-title: Analyzing EEG and MEG signals recorded during tES, a reply
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.11.023
– volume: 7
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119713_bib0018
  article-title: Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00279
– volume: 8
  start-page: 906
  year: 2015
  ident: 10.1016/j.neuroimage.2022.119713_bib0034
  article-title: Inter-subject variability in electric fields of motor cortical tDCS
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2015.05.002
– volume: 33
  start-page: 17483
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119713_bib0013
  article-title: State-dependent effects of transcranial oscillatory currents on the motor system: what you think matters
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1414-13.2013
– volume: 3
  start-page: e01867
  year: 2014
  ident: 10.1016/j.neuroimage.2022.119713_bib0003
  article-title: Fast transient networks in spontaneous human brain activity
  publication-title: eLife
  doi: 10.7554/eLife.01867
– volume: 164
  start-page: 177
  year: 2007
  ident: 10.1016/j.neuroimage.2022.119713_bib0036
  article-title: Nonparametric statistical testing of EEG- and MEG-data
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.03.024
– volume: 9
  start-page: 2987
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119713_bib0062
  article-title: Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05316-z
– volume: 7
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119713_bib0040
  article-title: Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00161
– year: 2020
  ident: 10.1016/j.neuroimage.2022.119713_bib0011
  article-title: Transcranial alternating current stimulation (tACS): from basic mechanisms towards first applications in psychiatry
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
– volume: 14
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119713_bib0001
  article-title: Modulation of cortical oscillations by low-frequency direct cortical stimulation is state-dependent
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1002424
– volume: 3
  year: 2012
  ident: 10.1016/j.neuroimage.2022.119713_bib0042
  article-title: Finite-element model predicts current density distribution for clinical applications of tDCS and tACS
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2012.00083
– volume: 41
  start-page: 164
  year: 1970
  ident: 10.1016/j.neuroimage.2022.119713_bib0004
  article-title: A Maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177697196
– volume: 32
  start-page: 1020
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119713_bib0051
  article-title: Unpacking transient event dynamics in electrophysiological power spectra
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-019-00745-5
– volume: 11
  year: 2017
  ident: 10.1016/j.neuroimage.2022.119713_bib0027
  article-title: Transcranial alternating current stimulation (tACS) enhances mental rotation performance during and after stimulation
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2017.00002
– volume: 140
  start-page: 4
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119713_bib0007
  article-title: Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.02.012
– volume: 53
  start-page: 3359
  year: 2005
  ident: 10.1016/j.neuroimage.2022.119713_bib0058
  article-title: Applications of the signal space separation method
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2005.853302
– volume: 123
  start-page: 2180
  year: 2012
  ident: 10.1016/j.neuroimage.2022.119713_bib0039
  article-title: Validation of head movement correction and spatiotemporal signal space separation in magnetoencephalography
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2012.03.080
– volume: 103
  start-page: 12
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119713_bib0019
  article-title: EEG oscillations: from correlation to causality
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2015.02.003
– volume: 1402
  start-page: 67
  year: 2011
  ident: 10.1016/j.neuroimage.2022.119713_bib0032
  article-title: The default mode network and EEG alpha oscillations: an independent component analysis
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2011.05.052
– volume: 66
  start-page: 213
  year: 2015
  ident: 10.1016/j.neuroimage.2022.119713_bib0020
  article-title: Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2014.11.021
– volume: 8
  start-page: 535
  year: 2015
  ident: 10.1016/j.neuroimage.2022.119713_bib0021
  article-title: Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS)
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2015.01.400
– volume: 140
  start-page: 83
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119713_bib0056
  article-title: Cutaneous retinal activation and neural entrainment in transcranial alternating current stimulation: a systematic review
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.09.067
– volume: 9
  start-page: 97
  year: 1971
  ident: 10.1016/j.neuroimage.2022.119713_bib0047
  article-title: The assessment and analysis of handedness: the Edinburgh inventory
  publication-title: Neuropsychologia
  doi: 10.1016/0028-3932(71)90067-4
– volume: 32
  start-page: 1013
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119713_bib0026
  article-title: Recovering brain dynamics during concurrent tACS-M/EEG: an overview of analysis approaches and their methodological and interpretational pitfalls
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-019-00727-7
– volume: 180
  start-page: 646
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119713_bib0061
  article-title: Discovering dynamic brain networks from big data in rest and task
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.06.077
– volume: 12
  start-page: 211
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119713_bib0066
  article-title: Non-invasive brain stimulation: a paradigm shift in understanding brain oscillations
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2018.00211
– volume: 22
  start-page: 270
  year: 2017
  ident: 10.1016/j.neuroimage.2022.119713_bib0050
  article-title: Selecting the number of states in hidden markov models: pragmatic solutions illustrated using animal movement
  publication-title: JABES
  doi: 10.1007/s13253-017-0283-8
– volume: 29
  start-page: 2924
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119713_bib0067
  article-title: NMDA receptor-mediated motor cortex plasticity after 20 Hz transcranial alternating current stimulation
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhy160
– volume: 5
  start-page: e13766
  year: 2010
  ident: 10.1016/j.neuroimage.2022.119713_bib0069
  article-title: Transcranial alternating current stimulation enhances individual alpha activity in human EEG
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0013766
– volume: 140
  start-page: 99
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119713_bib0044
  article-title: Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.03.065
– volume: 11
  start-page: 752
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119713_bib0068
  article-title: Opposite effects of lateralised transcranial alpha versus gamma stimulation on auditory spatial attention
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2018.04.006
– volume: 588
  start-page: 2291
  year: 2010
  ident: 10.1016/j.neuroimage.2022.119713_bib0053
  article-title: Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects: induction of cortical plasticity by non-invasive brain stimulation
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2010.190314
– volume: 179
  start-page: 134
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119713_bib0029
  article-title: Non-linear transfer characteristics of stimulation and recording hardware account for spurious low-frequency artifacts during amplitude modulated transcranial alternating current stimulation (AM-tACS)
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.05.068
– volume: 10
  start-page: 12270
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119713_bib0030
  article-title: Hemisphere-specific, differential effects of lateralized, occipital–parietal α- versus γ-tACS on endogenous but not exogenous visual-spatial attention
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-68992-2
– volume: 51
  start-page: 25
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119713_bib0037
  article-title: Randomized trial of transcranial alternating current stimulation for treatment of auditory hallucinations in schizophrenia
  publication-title: Eur. Psychiatr.
  doi: 10.1016/j.eurpsy.2018.01.004
– volume: 10
  start-page: 5427
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119713_bib0024
  article-title: Integrating electric field modeling and neuroimaging to explain inter-individual variability of tACS effects
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13417-6
– volume: 8
  start-page: 1199
  year: 2017
  ident: 10.1016/j.neuroimage.2022.119713_bib0035
  article-title: Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01045-x
– volume: 9
  start-page: 483
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119713_bib0064
  article-title: Direct effects of transcranial electric stimulation on brain circuits in rats and humans
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-02928-3
– volume: 5
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119713_bib0028
  article-title: Facilitated event-related power modulations during transcranial alternating current stimulation (tACS) revealed by concurrent tACS-MEG
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0069-18.2018
– year: 2020
  ident: 10.1016/j.neuroimage.2022.119713_bib0025
  article-title: Discrete sampling in perception via neuronal oscillations—evidence from rhythmic, non-invasive brain stimulation
  publication-title: Eur. J. Neurosci.
– volume: 9
  year: 2015
  ident: 10.1016/j.neuroimage.2022.119713_bib0060
  article-title: Lasting EEG/MEG aftereffects of rhythmic transcranial brain stimulation: level of control over oscillatory network activity
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2015.00477
– volume: 117
  start-page: 439
  year: 2015
  ident: 10.1016/j.neuroimage.2022.119713_bib0010
  article-title: A symmetric multivariate leakage correction for MEG connectomes
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.03.071
– volume: 13
  start-page: 998
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119713_bib0054
  article-title: Brain-derived neurotrophic factor (BDNF) polymorphism may influence the efficacy of tACS to modulate neural oscillations
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2020.04.012
– start-page: 1
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119713_bib0006
  article-title: Inferring causality from noninvasive brain stimulation in cognitive neuroscience
  publication-title: J. Cogn. Neurosci.
– volume: 25
  start-page: 3962
  year: 2005
  ident: 10.1016/j.neuroimage.2022.119713_bib0049
  article-title: Phase synchrony among neuronal oscillations in the human cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4250-04.2005
– volume: 9
  start-page: 12858
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119713_bib0012
  article-title: State-dependent effects of transcranial oscillatory currents on the motor system during action observation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-49166-1
– volume: 8
  start-page: 499
  year: 2015
  ident: 10.1016/j.neuroimage.2022.119713_bib0065
  article-title: Alpha power increase after transcranial alternating current stimulation at alpha frequency (α-tACS) reflects plastic changes rather than entrainment
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2014.12.004
– start-page: 140
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119713_bib0008
  article-title: EEG feedback-controlled transcranial alternating current stimulation
– volume: 119
  year: 2022
  ident: 10.1016/j.neuroimage.2022.119713_bib0009
  article-title: Transcranial stimulation of alpha oscillations up-regulates the default mode network
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2110868119
– volume: 6
  start-page: 27138
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119713_bib0055
  article-title: Eyes wide shut: transcranial alternating current stimulation drives alpha rhythm in a state dependent manner
  publication-title: Sci. Rep.
  doi: 10.1038/srep27138
– volume: 147
  start-page: 960
  year: 2017
  ident: 10.1016/j.neuroimage.2022.119713_bib0041
  article-title: Faith and oscillations recovered: on analyzing EEG/MEG signals during tACS
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.11.022
SSID ssj0009148
Score 2.5214872
Snippet •Hidden Markov Models (HMMs) decomposed MEG signals into transient brain-states.•Transcranial alternating current stimulation (tACS) affected only specific...
Non-invasive techniques to electrically stimulate the brain such as transcranial direct and alternating current stimulation (tDCS/tACS) are increasingly used...
SourceID doaj
hal
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119713
SubjectTerms Aftereffects
Brain - physiology
Brain oscillations
Brain research
Brain-states
Cognitive science
Electric Stimulation
Electrical stimuli
Experiments
Hidden Markov Models
Humans
Magnetoencephalography
Markov chains
Nervous system
Neural networks
Neuroscience
Non-invasive brain stimulation
Oscillations
Psychology
Transcranial alternating current stimulation
Transcranial Direct Current Stimulation - methods
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoQYgLb0qgoIC4GuLYcRxxQEtF1UOpKvFQb1b8CF1Ek7K77e9nxnay2gNoJa5J7DiZ8fgbz_gbQt5Y64XivqVSmo6KxjHacmVoUbTO18oVXaBr-n5cn5yos7PmNG24LVNa5WgTg6F2g8U98nfgPQESVg2rPlz-plg1CqOrqYTGDrmJLAk8pO6drkl3mYhH4SpOFWNNyuSJ-V2BL3J-AbMWvMSyfIvxNMY3lqfA4r-xSu2cY7rk37BoWJMO7_3v19wndxMazWdRfR6QG75_SG5_TvH2R0SAFuXnyDLS5waLSdBwACl3sY79Mh-6fDU7-JKHUuMpN-Qx-Xb46evBEU11FqgFvLGiTVGZylokYzVcgHeNsbJSOXDNvADI1zlpW5jnShrJazDuvHBecOdqD-DQKP6E7PZD75-SnFfeAuCx4LYYUdZd05bOOmSA6aQHY5GRevy92iYScqyF8UuP2WY_9VowGgWjo2AywqaWl5GIY4s2H1GC0_NIpR0uDIsfOs1MDaLwwihhS1ypAW4ZIW1RuKYT4OzW0Ekzyl-Pp1XBvkJH8y0G8H5qmxBNRCpbtn4N6rYx-qPZscZrBVeiFFxes4zsjxqmk_lZ6rV6ZeTVdBsMB0aD2t4PV_gMoBcmZV1kZC9q8fQqLjFAzvmzf3f-nNzB4cbsnn2yu1pc-Rfklr1ezZeLl2Eu_gEJzzhC
  priority: 102
  providerName: ProQuest
Title The hidden brain-state dynamics of tACS aftereffects
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811922008345
https://dx.doi.org/10.1016/j.neuroimage.2022.119713
https://www.ncbi.nlm.nih.gov/pubmed/36309333
https://www.proquest.com/docview/2748268915
https://www.proquest.com/docview/2730316670
https://hal.science/hal-03842436
https://doaj.org/article/274e4b84c22847028b46c00d9f440773
Volume 264
WOSCitedRecordID wos000886063700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIEXJ
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M7P
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M2M
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RghAXVN6BsgqIayCJvbYjTtuqVQ_d1YqX9mbFj6iL2izqbvv7mbGTwB4q9sDFhyRO7PGM_Y1m8g3AB2s9V8zXmRCmyXjliqxmymR5XjsvlcubQNf041zOZmqxqOZ_lfqinLBIDxwF9wm9Js-N4rakjRRPQ8OFzXNXNRx9ERl4PhH19M5UT7eLKL_L24nZXIEdcnmFNoo-YVl-pOhZwbYOo8DZv3Um7V1QcuRdyDOcQKcH8LiDjukkDvkJ3PPtU3g47YLjz4DjkqcXRAnSpoYqP2Thb6HUxaLz63TVpJvJ8dc01AXvEjmew_fTk2_HZ1lXFCGzCA42WZWPzdhaYk41jKMrTIGtUjn0ozxHfNY4YWs0SiWMYBJ3YpY7z5lz0iOSM4q9gP121fpXkLKxt4hOLPoYhpeyqerSWUd0LY3waNkJyF462naM4VS44lL3qWE_9R-5apKrjnJNoBh6_oqsGTv0OaIFGJ4n3utwAbVBd9qg_6UNCVT98un-11LcDPFFyx0G8Hno28GPCCt27P0etWVr9GeTc03XcqZ4yZm4LRI47JVJd3vFmuaEPp6qinEC74bbaOUUuqlbv7qhZxBqFELIPIGXUQmHTzFB0WzGXv8PAb6BRzSpmLBzCPub6xv_Fh7Y281yfT2CPbmQoVUjuH90Mpt_GQXDw3ZaTqmV89-X6Su4
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BVEuvAsLBQKCYyCJHccRQmgpVFt1d4VEqXoz8SN0EU3K7raof4rfyExeqz2A9tID1yR2rPjzzDfx5xmAF8Y4LpnLfCF07vPUhn7GpPaDILMukTbIq3RNh8NkPJZHR-mnNfjdnoUhWWVrEytDbUtD_8hfY_SETFimYfzu9KdPVaNod7UtoVHDYt9d_MKQbfZ27wPO78so2v14sDPwm6oCvkHvOvfTINaxMZR6VDOOsSTtDEXSYiDiOBKc3AqTIaql0IIlaMpYYB1n1iYOqZCWDPtdhyscIyEqFTGKRoskvyGvj97FzJdhmDbKoVpPVuWnnJyglcCoNIpe0f5dyJbcYVU1YMkrrh-TPPNv3Lfygbs3_7evdwtuNGzb69fL4zasueIOXBs1eoK7wHGVeMeURaXwNBXL8KsDVp69KLKTiZl5Ze7N-zufvaqUeqN9uQdfLmXMW7BRlIV7AB6LnUFCZzAs0zxK8jSLrLGU4SYXDo1hD5J2OpVpkqxTrY8fqlXTfVcLICgCgqqB0IOwa3laJxpZoc17Qkz3PKUKry6U02-qsTwKp95xLbmJiIkgndRcmCCwaU4QTrCTtMWbak_jov_AjiYrDOBN17ZhbDUTW7H1c4T30ugH_aGiawGTPOJMnIc92G4RrRrzOlMLOPfgWXcbDSPtdmWFK8_oGWRnoRBJ0IP79arpXsUECQAYe_jvzp_C5uBgNFTDvfH-I7hOQ6-VTNuwMZ-eucdw1ZzPJ7Ppk8oOePD1spfOH7PSkvQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61BVVceD8MBQyCo6ntXa_XQgiFlqhVQxSJh3pb7N01DaJOSdKi_rX-us6sH1EOoFx64Gp716v4m5lvst_OALzS2nLJbB4IUZQBz0wU5EwWQRjmxqbShKUr1_RtkA6H8vAwG63BRXsWhmSVrU90jtpMNP1Hvo3ZEzJhmUXJdtnIIka7_fcnvwPqIEU7rW07jRoiB_b8D6Zvs3f7u_itX8dx_-OXnb2g6TAQaIy08yALkyLRmsqQFoxjXkm7RLE0mJRYjmSnNELniHApCsFSdGssNJYzY1KLtKiQDOddh2spFS13ssHRouBvxOtjeAkLZBRljYqo1pa5WpXjY_QYmKHG8Rvay4vYUmh0HQSWIuT6EUk1_8aDXTzs3_qff8nbcLNh4X6vNps7sGaru7D5qdEZ3AOO1uMfUXWVyi-oiUbgDl755rzKj8d65k9Kf97b-ey7FuuNJuY-fL2SNT-AjWpS2Ufgs8RqJHoa07WCx2mZ5bHRhirflMKik_QgbT-t0k3xdeoB8ku1KrufagEKRaBQNSg8iLqRJ3UBkhXGfCD0dM9TCXF3YTL9oRqPpBAGlheS65gYCtLMggsdhiYrOSb5KU6StdhT7SldjCs40XiFBbztxjZMrmZoK45-iVBfWv1eb6DoWsgkjzkTZ5EHWy26VeN2Z2oBbQ9edLfRYdIuWF7ZySk9g6wtEiINPXhYW1D3KiZIGMDY439P_hw20WLUYH948ARu0MprgdMWbMynp_YpXNdn8_Fs-sy5BB--X7XlXAIfeZvF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+hidden+brain-state+dynamics+of+tACS+aftereffects&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Kasten%2C+Florian+H&rft.au=Herrmann%2C+Christoph+S&rft.date=2022-12-01&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=264&rft.spage=119713&rft_id=info:doi/10.1016%2Fj.neuroimage.2022.119713&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon