The hidden brain-state dynamics of tACS aftereffects
•Hidden Markov Models (HMMs) decomposed MEG signals into transient brain-states.•Transcranial alternating current stimulation (tACS) affected only specific states.•tACS affected alpha power in these specific states, but not their occurrence.•The pattern of effects is consistent across two independen...
Uložené v:
| Vydané v: | NeuroImage (Orlando, Fla.) Ročník 264; s. 119713 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Inc
01.12.2022
Elsevier Limited Elsevier |
| Predmet: | |
| ISSN: | 1053-8119, 1095-9572, 1095-9572 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Hidden Markov Models (HMMs) decomposed MEG signals into transient brain-states.•Transcranial alternating current stimulation (tACS) affected only specific states.•tACS affected alpha power in these specific states, but not their occurrence.•The pattern of effects is consistent across two independent datasets.•HMMs may offer a powerful tool to gain novel insights to neuromodulation techniques.
Non-invasive techniques to electrically stimulate the brain such as transcranial direct and alternating current stimulation (tDCS/tACS) are increasingly used in human neuroscience and offer potential new avenues to treat brain disorders. Previous research has shown that stimulation effects may depend on brain-states. However, this work mostly focused on experimentally induced brain-states over the course of several minutes. Besides such global, long-term changes in brain-states, previous research suggests, that the brain is likely to spontaneously alternate between states in sub-second ranges, which is much closer to the time scale at which it is generally believed to operate. Here, we utilized Hidden Markov Models (HMM) to decompose magnetoencephalography data obtained before and after tACS into spontaneous, transient brain-states with distinct spatial, spectral and connectivity profiles. Only one out of four spontaneous brain-states, likely reflecting default mode network activity, showed evidence for an effect of tACS on the power of spontaneous α-oscillations. The identified state appears to disproportionally drive the overall (non-state resolved) tACS effect. No or only marginal effects were found in the remaining states. We found no evidence that tACS influenced the time spent in each state. Although stimulation was applied continuously, our results indicate that spontaneous brain-states and their underlying functional networks differ in their susceptibility to tACS. Global stimulation aftereffects may be disproportionally driven by distinct time periods during which the susceptible state is active. Our results may pave the ground for future work to understand which features make a specific brain-state susceptible to electrical stimulation. |
|---|---|
| AbstractList | Non-invasive techniques to electrically stimulate the brain such as transcranial direct and alternating current stimulation (tDCS/tACS) are increasingly used in human neuroscience and offer potential new avenues to treat brain disorders. Previous research has shown that stimulation effects may depend on brain-states. However, this work mostly focused on experimentally induced brain-states over the course of several minutes. Besides such global, long-term changes in brain-states, previous research suggests, that the brain is likely to spontaneously alternate between states in sub-second ranges, which is much closer to the time scale at which it is generally believed to operate. Here, we utilized Hidden Markov Models (HMM) to decompose magnetoencephalography data obtained before and after tACS into spontaneous, transient brain-states with distinct spatial, spectral and connectivity profiles. Only one out of four spontaneous brain-states, likely reflecting default mode network activity, showed evidence for an effect of tACS on the power of spontaneous α-oscillations. The identified state appears to disproportionally drive the overall (non-state resolved) tACS effect. No or only marginal effects were found in the remaining states. We found no evidence that tACS influenced the time spent in each state. Although stimulation was applied continuously, our results indicate that spontaneous brain-states and their underlying functional networks differ in their susceptibility to tACS. Global stimulation aftereffects may be disproportionally driven by distinct time periods during which the susceptible state is active. Our results may pave the ground for future work to understand which features make a specific brain-state susceptible to electrical stimulation.Non-invasive techniques to electrically stimulate the brain such as transcranial direct and alternating current stimulation (tDCS/tACS) are increasingly used in human neuroscience and offer potential new avenues to treat brain disorders. Previous research has shown that stimulation effects may depend on brain-states. However, this work mostly focused on experimentally induced brain-states over the course of several minutes. Besides such global, long-term changes in brain-states, previous research suggests, that the brain is likely to spontaneously alternate between states in sub-second ranges, which is much closer to the time scale at which it is generally believed to operate. Here, we utilized Hidden Markov Models (HMM) to decompose magnetoencephalography data obtained before and after tACS into spontaneous, transient brain-states with distinct spatial, spectral and connectivity profiles. Only one out of four spontaneous brain-states, likely reflecting default mode network activity, showed evidence for an effect of tACS on the power of spontaneous α-oscillations. The identified state appears to disproportionally drive the overall (non-state resolved) tACS effect. No or only marginal effects were found in the remaining states. We found no evidence that tACS influenced the time spent in each state. Although stimulation was applied continuously, our results indicate that spontaneous brain-states and their underlying functional networks differ in their susceptibility to tACS. Global stimulation aftereffects may be disproportionally driven by distinct time periods during which the susceptible state is active. Our results may pave the ground for future work to understand which features make a specific brain-state susceptible to electrical stimulation. Non-invasive techniques to electrically stimulate the brain such as transcranial direct and alternating current stimulation (tDCS/tACS) are increasingly used in human neuroscience and offer potential new avenues to treat brain disorders. Previous research has shown that stimulation effects may depend on brain-states. However, this work mostly focused on experimentally induced brain-states over the course of several minutes. Besides such global, long-term changes in brain-states, previous research suggests, that the brain is likely to spontaneously alternate between states in sub-second ranges, which is much closer to the time scale at which it is generally believed to operate. Here, we utilized Hidden Markov Models (HMM) to decompose magnetoencephalography data obtained before and after tACS into spontaneous, transient brain-states with distinct spatial, spectral and connectivity profiles. Only one out of four spontaneous brain-states, likely reflecting default mode network activity, showed evidence for an effect of tACS on the power of spontaneous α-oscillations. The identified state appears to disproportionally drive the overall (non-state resolved) tACS effect. No or only marginal effects were found in the remaining states. We found no evidence that tACS influenced the time spent in each state. Although stimulation was applied continuously, our results indicate that spontaneous brain-states and their underlying functional networks differ in their susceptibility to tACS. Global stimulation aftereffects may be disproportionally driven by distinct time periods during which the susceptible state is active. Our results may pave the ground for future work to understand which features make a specific brain-state susceptible to electrical stimulation. •Hidden Markov Models (HMMs) decomposed MEG signals into transient brain-states.•Transcranial alternating current stimulation (tACS) affected only specific states.•tACS affected alpha power in these specific states, but not their occurrence.•The pattern of effects is consistent across two independent datasets.•HMMs may offer a powerful tool to gain novel insights to neuromodulation techniques. Non-invasive techniques to electrically stimulate the brain such as transcranial direct and alternating current stimulation (tDCS/tACS) are increasingly used in human neuroscience and offer potential new avenues to treat brain disorders. Previous research has shown that stimulation effects may depend on brain-states. However, this work mostly focused on experimentally induced brain-states over the course of several minutes. Besides such global, long-term changes in brain-states, previous research suggests, that the brain is likely to spontaneously alternate between states in sub-second ranges, which is much closer to the time scale at which it is generally believed to operate. Here, we utilized Hidden Markov Models (HMM) to decompose magnetoencephalography data obtained before and after tACS into spontaneous, transient brain-states with distinct spatial, spectral and connectivity profiles. Only one out of four spontaneous brain-states, likely reflecting default mode network activity, showed evidence for an effect of tACS on the power of spontaneous α-oscillations. The identified state appears to disproportionally drive the overall (non-state resolved) tACS effect. No or only marginal effects were found in the remaining states. We found no evidence that tACS influenced the time spent in each state. Although stimulation was applied continuously, our results indicate that spontaneous brain-states and their underlying functional networks differ in their susceptibility to tACS. Global stimulation aftereffects may be disproportionally driven by distinct time periods during which the susceptible state is active. Our results may pave the ground for future work to understand which features make a specific brain-state susceptible to electrical stimulation. |
| ArticleNumber | 119713 |
| Author | Kasten, Florian H. Herrmann, Christoph S. |
| Author_xml | – sequence: 1 givenname: Florian H. surname: Kasten fullname: Kasten, Florian H. organization: Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4All”, Carl von Ossietzky University, Oldenburg, Germany – sequence: 2 givenname: Christoph S. orcidid: 0000-0003-0323-2272 surname: Herrmann fullname: Herrmann, Christoph S. email: christoph.herrmann@uni-oldenburg.de organization: Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4All”, Carl von Ossietzky University, Oldenburg, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36309333$$D View this record in MEDLINE/PubMed https://hal.science/hal-03842436$$DView record in HAL |
| BookMark | eNqNkU2P0zAQhiO0iP2Av4AicYFDyvgjjn1BlArYlSpxYDlbjj3ZuqTOYqcr9d_jkF0QPfVky37nGXuey-IsDAGLoiSwIEDE--0i4D4OfmfucEGB0gUhqiHsWXFBQNWVqht6Nu1rVsl8dV5cprQFAEW4fFGcM8FAMcYuCn67wXLjncNQttH4UKXRjFi6QzA7b1M5dOW4XH0vTTdixK5DO6aXxfPO9AlfPa5XxY8vn29X19X629eb1XJdWSHYWCmo29paAkBbxrFlSgGh0inKkQOvOyeskRKkaAVrsCUMHHLmXIOMQCvZVXEzc91gtvo-5v_Ggx6M138OhninTRy97VHTJjNbyS2lkjdAZcuFBXCq4xyahmXWu5m1Mf1_qOvlWk9nwCSnnIkHkrNv5-x9HH7tMY1655PFvjcBh33KzRgwIkQDOfrmKLod9jHkqUxPklRIReqcev2Y2rc7dH_7P3nIgQ9zwMYhpTxnbX324IcwZim9JqAn8Xqr_4nXk3g9i88AeQR46nFC6ae5FLPKB49RJ-sxWHQ-Ztt51v4UyMcjiO198Nb0P_FwGuI3_lveag |
| CitedBy_id | crossref_primary_10_1134_S0022093023050113 crossref_primary_10_1093_cercor_bhae098 crossref_primary_10_1016_j_brs_2024_05_015 crossref_primary_10_1016_j_neuroimage_2024_120572 crossref_primary_10_1016_j_neuroimage_2025_121350 crossref_primary_10_1016_j_ijchp_2023_100378 crossref_primary_10_1002_mds_29969 crossref_primary_10_3758_s13415_024_01204_w crossref_primary_10_1016_j_brs_2024_07_007 crossref_primary_10_1002_hbm_26559 crossref_primary_10_1523_ENEURO_0449_24_2025 crossref_primary_10_3389_fnhum_2025_1548478 crossref_primary_10_3389_fnetp_2025_1621283 crossref_primary_10_1016_j_bbr_2023_114770 crossref_primary_10_3390_biomedicines11071813 crossref_primary_10_1016_j_neubiorev_2025_106312 crossref_primary_10_1016_j_neuroimage_2024_120647 |
| Cites_doi | 10.1073/pnas.1815958116 10.1155/2011/156869 10.1038/s41398-019-0439-0 10.1016/j.neuroimage.2012.11.058 10.1126/sciadv.aaz2747 10.1523/JNEUROSCI.0236-16.2016 10.3389/fnhum.2016.00245 10.1016/j.neuroimage.2017.07.010 10.3389/fpsyg.2018.02108 10.1088/0031-9155/48/22/002 10.1038/s41593-019-0371-x 10.1109/10.623056 10.1016/j.neuroimage.2018.10.025 10.1016/j.neuron.2010.06.005 10.3390/brainsci10120932 10.1088/0031-9155/51/7/008 10.1007/s002210100682 10.1016/j.neuroimage.2015.11.047 10.1016/j.neuroimage.2017.11.023 10.3389/fnhum.2013.00279 10.1016/j.brs.2015.05.002 10.1523/JNEUROSCI.1414-13.2013 10.7554/eLife.01867 10.1016/j.jneumeth.2007.03.024 10.1038/s41467-018-05316-z 10.3389/fnhum.2013.00161 10.1371/journal.pbio.1002424 10.3389/fpsyt.2012.00083 10.1214/aoms/1177697196 10.1007/s10548-019-00745-5 10.3389/fnhum.2017.00002 10.1016/j.neuroimage.2016.02.012 10.1109/TSP.2005.853302 10.1016/j.clinph.2012.03.080 10.1016/j.ijpsycho.2015.02.003 10.1016/j.brainres.2011.05.052 10.1016/j.neuropsychologia.2014.11.021 10.1016/j.brs.2015.01.400 10.1016/j.neuroimage.2015.09.067 10.1016/0028-3932(71)90067-4 10.1007/s10548-019-00727-7 10.1016/j.neuroimage.2017.06.077 10.3389/fnhum.2018.00211 10.1007/s13253-017-0283-8 10.1093/cercor/bhy160 10.1371/journal.pone.0013766 10.1016/j.neuroimage.2016.03.065 10.1016/j.brs.2018.04.006 10.1113/jphysiol.2010.190314 10.1016/j.neuroimage.2018.05.068 10.1038/s41598-020-68992-2 10.1016/j.eurpsy.2018.01.004 10.1038/s41467-019-13417-6 10.1038/s41467-017-01045-x 10.1038/s41467-018-02928-3 10.1523/ENEURO.0069-18.2018 10.3389/fncel.2015.00477 10.1016/j.neuroimage.2015.03.071 10.1016/j.brs.2020.04.012 10.1523/JNEUROSCI.4250-04.2005 10.1038/s41598-019-49166-1 10.1016/j.brs.2014.12.004 10.1073/pnas.2110868119 10.1038/srep27138 10.1016/j.neuroimage.2016.11.022 |
| ContentType | Journal Article |
| Copyright | 2022 Copyright © 2022. Published by Elsevier Inc. Copyright Elsevier Limited Dec 1, 2022 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Dec 1, 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 1XC VOOES DOA |
| DOI | 10.1016/j.neuroimage.2022.119713 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Psychology |
| EISSN | 1095-9572 |
| ExternalDocumentID | oai_doaj_org_article_274e4b84c22847028b46c00d9f440773 oai:HAL:hal-03842436v1 36309333 10_1016_j_neuroimage_2022_119713 S1053811922008345 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | United States--US Germany Finland |
| GeographicLocations_xml | – name: Finland – name: United States--US – name: Germany |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- ~HD 6I. AACTN AADPK AAFTH AAIAV AAQFI ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR NCXOZ SNS ZA5 29N 53G 9DU AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AFFHD AGHFR AGQPQ AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF EFLBG EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- SEW WUQ XPP ZMT 0SF ALIPV CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 1XC VOOES |
| ID | FETCH-LOGICAL-c663t-905b5cc1002b34eb3990128d924e4045fd6ca88086b637eb130de43dd7e310b83 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000886063700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Fri Oct 03 12:42:14 EDT 2025 Sat Oct 25 06:45:32 EDT 2025 Sun Sep 28 10:57:57 EDT 2025 Tue Oct 07 07:03:29 EDT 2025 Wed Feb 19 02:26:08 EST 2025 Tue Nov 18 21:57:25 EST 2025 Sat Nov 29 07:07:36 EST 2025 Fri Feb 23 02:34:59 EST 2024 Tue Oct 14 19:35:53 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Non-invasive brain stimulation Brain-states Aftereffects Hidden Markov Models Transcranial alternating current stimulation Brain oscillations |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2022. Published by Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c663t-905b5cc1002b34eb3990128d924e4045fd6ca88086b637eb130de43dd7e310b83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0323-2272 |
| OpenAccessLink | https://doaj.org/article/274e4b84c22847028b46c00d9f440773 |
| PMID | 36309333 |
| PQID | 2748268915 |
| PQPubID | 2031077 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_274e4b84c22847028b46c00d9f440773 hal_primary_oai_HAL_hal_03842436v1 proquest_miscellaneous_2730316670 proquest_journals_2748268915 pubmed_primary_36309333 crossref_citationtrail_10_1016_j_neuroimage_2022_119713 crossref_primary_10_1016_j_neuroimage_2022_119713 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2022_119713 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2022_119713 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc Elsevier Limited Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
| References | Noury, Siegel (bib0045) 2018; 167 Taulu, Simola (bib0057) 2006; 51 Zaehle, Rach, Herrmann (bib0069) 2010; 5 Bergmann, Hartwigsen (bib0006) 2020 Mellin, Alagapan, Lustenberger, Lugo, Alexander, Gilmore, Jarskog, Fröhlich (bib0037) 2018; 51 Johnson, Alekseichuk, Krieg, Doyle, Yu, Vitek, Johnson, Opitz (bib0022) 2020; 6 Herrmann, Strüber, Helfrich, Engel (bib0019) 2016; 103 Boyle, Frohlich (bib0008) 2013 Kasten, Wendeln, Stecher, Herrmann (bib0030) 2020; 10 Schutter (bib0056) 2016; 140 Wischnewski, Engelhardt, Salehinejad, Schutter, Kuo, Nitsche (bib0067) 2019; 29 Lafon, Henin, Huang, Friedman, Melloni, Thesen, Doyle, Buzsáki, Devinsky, Parra, Liu (bib0035) 2017; 8 Neuling, Wagner, Wolters, Zaehle, Herrmann (bib0042) 2012; 3 Noury, Hipp, Siegel (bib0044) 2016; 140 Herrmann (bib0016) 2001; 137 Kasten, Dowsett, Herrmann (bib0023) 2016; 10 Pohle, Langrock, van Beest, Schmidt (bib0050) 2017; 22 Noury, Siegel (bib0046) 2017; 158 Vossen, Gross, Thut (bib0065) 2015; 8 Kasten, Negahbani, Fröhlich, Herrmann (bib0029) 2018; 179 Kasten, Herrmann (bib0025) 2020 Vidaurre, Quinn, Baker, Dupret, Tejero-Cantero, Woolrich (bib0063) 2016; 126 Baker, Brookes, Rezek, Smith, Behrens, Probert Smith, Woolrich (bib0003) 2014; 3 Knyazev, Slobodskoj-Plusnin, Bocharov, Pylkova (bib0032) 2011; 1402 Veniero, Vossen, Gross, Thut (bib0060) 2015; 9 Horvath, Forte, Carter (bib0020) 2015; 66 Kasten, Herrmann (bib0027) 2017; 11 Laakso, Tanaka, Koyama, De Santis, Hirata (bib0034) 2015; 8 Vidaurre, Hunt, Quinn, Hunt, Brookes, Nobre, Woolrich (bib0062) 2018; 9 Neuling, Ruhnau, Weisz, Herrmann, Demarchi (bib0041) 2017; 147 Oldfield (bib0047) 1971; 9 Wöstmann, Vosskuhl, Obleser, Herrmann (bib0068) 2018; 11 Gebodh, Esmaeilpour, Adair, Chelette, Dmochowski, Woods, Kappenman, Parra, Bikson (bib0015) 2019; 185 Ruhnau, Neuling, Fuscá, Herrmann, Demarchi, Weisz (bib0055) 2016; 6 Feurra, Blagovechtchenski, Nikulin, Nazarova, Lebedeva, Pozdeeva, Yurevich, Rossi (bib0012) 2019; 9 Ridding, Ziemann (bib0053) 2010; 588 Alexander, Alagapan, Lugo, Mellin, Lustenberger, Rubinow, Fröhlich (bib0002) 2019; 9 Kasten, Herrmann (bib0026) 2019; 32 Vidaurre, Abeysuriya, Becker, Quinn, Alfaro-Almagro, Smith, Woolrich (bib0061) 2018; 180 Herrmann, Rach, Neuling, Strüber (bib0018) 2013; 7 Oostenveld, Fries, Maris, Schoffelen (bib0048) 2011; 2011 Horvath, Forte, Carter (bib0021) 2015; 8 Colclough, Brookes, Smith, Woolrich (bib0010) 2015; 117 Herrmann, Murray, Ionta, Hutt, Lefebvre (bib0017) 2016; 36 Neuling, Rach, Herrmann (bib0040) 2013; 7 Vöröslakos, Takeuchi, Brinyiczki, Zombori, Oliva, Fernández-Ruiz, Kozák, Kincses, Iványi, Buzsáki, Berényi (bib0064) 2018; 9 Kasten, Duecker, Maack, Meiser, Herrmann (bib0024) 2019; 10 Quinn, van Ede, Brookes, Heideman, Nowak, Seedat, Vidaurre, Zich, Nobre, Woolrich (bib0051) 2019; 32 Baum, Petrie, Soules, Weiss (bib0004) 1970; 41 Bergmann, Karabanov, Hartwigsen, Thielscher, Siebner (bib0007) 2016; 140 Clancy, Andrzejewski, You, Li (bib0009) 2022; 119 Fröhlich, McCormick (bib0014) 2010; 67 Vosskuhl, Strüber, Herrmann (bib0066) 2018; 12 Riddle, McPherson, Atkins, Walker, Ahn, Frohlich (bib0054) 2020; 13 Taulu, Simola, Kajola (bib0058) 2005; 53 Nolte (bib0043) 2003; 48 Maris, Oostenveld (bib0036) 2007; 164 Krause, Vieira, Csorba, Pilly, Pack (bib0033) 2019; 116 Feurra, Pasqualetti, Bianco, Santarnecchi, Rossi, Rossi (bib0013) 2013; 33 Reinhart, Nguyen (bib0052) 2019; 22 Mo, Liu, Huang, Ding (bib0038) 2013; 68 Bergmann (bib0005) 2018; 9 Palva (bib0049) 2005; 25 Van Veen, Van Drongelen, Yuchtman, Suzuki (bib0059) 1997; 44 Klink, Paßmann, Kasten, Peter (bib0031) 2020; 10 Elyamany, Leicht, Herrmann, Mulert (bib0011) 2020 Kasten, Maess, Herrmann (bib0028) 2018; 5 Alagapan, Schmidt, Lefebvre, Hadar, Shin, Frӧhlich (bib0001) 2016; 14 Nenonen, Nurminen, Kičić, Bikmullina, Lioumis, Jousmäki, Taulu, Parkkonen, Putaala, Kähkönen (bib0039) 2012; 123 Van Veen (10.1016/j.neuroimage.2022.119713_bib0059) 1997; 44 Bergmann (10.1016/j.neuroimage.2022.119713_bib0006) 2020 Krause (10.1016/j.neuroimage.2022.119713_bib0033) 2019; 116 Herrmann (10.1016/j.neuroimage.2022.119713_bib0019) 2016; 103 Vossen (10.1016/j.neuroimage.2022.119713_bib0065) 2015; 8 Veniero (10.1016/j.neuroimage.2022.119713_bib0060) 2015; 9 Noury (10.1016/j.neuroimage.2022.119713_bib0045) 2018; 167 Oostenveld (10.1016/j.neuroimage.2022.119713_bib0048) 2011; 2011 Boyle (10.1016/j.neuroimage.2022.119713_bib0008) 2013 Pohle (10.1016/j.neuroimage.2022.119713_bib0050) 2017; 22 Vidaurre (10.1016/j.neuroimage.2022.119713_bib0063) 2016; 126 Nenonen (10.1016/j.neuroimage.2022.119713_bib0039) 2012; 123 Zaehle (10.1016/j.neuroimage.2022.119713_bib0069) 2010; 5 Wöstmann (10.1016/j.neuroimage.2022.119713_bib0068) 2018; 11 Schutter (10.1016/j.neuroimage.2022.119713_bib0056) 2016; 140 Lafon (10.1016/j.neuroimage.2022.119713_bib0035) 2017; 8 Kasten (10.1016/j.neuroimage.2022.119713_bib0023) 2016; 10 Clancy (10.1016/j.neuroimage.2022.119713_bib0009) 2022; 119 Reinhart (10.1016/j.neuroimage.2022.119713_bib0052) 2019; 22 Neuling (10.1016/j.neuroimage.2022.119713_bib0042) 2012; 3 Taulu (10.1016/j.neuroimage.2022.119713_bib0057) 2006; 51 Kasten (10.1016/j.neuroimage.2022.119713_bib0025) 2020 Baker (10.1016/j.neuroimage.2022.119713_bib0003) 2014; 3 Vidaurre (10.1016/j.neuroimage.2022.119713_bib0061) 2018; 180 Wischnewski (10.1016/j.neuroimage.2022.119713_bib0067) 2019; 29 Alexander (10.1016/j.neuroimage.2022.119713_bib0002) 2019; 9 Neuling (10.1016/j.neuroimage.2022.119713_bib0040) 2013; 7 Feurra (10.1016/j.neuroimage.2022.119713_bib0012) 2019; 9 Maris (10.1016/j.neuroimage.2022.119713_bib0036) 2007; 164 Feurra (10.1016/j.neuroimage.2022.119713_bib0013) 2013; 33 Herrmann (10.1016/j.neuroimage.2022.119713_bib0016) 2001; 137 Herrmann (10.1016/j.neuroimage.2022.119713_bib0017) 2016; 36 Alagapan (10.1016/j.neuroimage.2022.119713_bib0001) 2016; 14 Fröhlich (10.1016/j.neuroimage.2022.119713_bib0014) 2010; 67 Kasten (10.1016/j.neuroimage.2022.119713_bib0030) 2020; 10 Gebodh (10.1016/j.neuroimage.2022.119713_bib0015) 2019; 185 Vidaurre (10.1016/j.neuroimage.2022.119713_bib0062) 2018; 9 Elyamany (10.1016/j.neuroimage.2022.119713_bib0011) 2020 Kasten (10.1016/j.neuroimage.2022.119713_bib0029) 2018; 179 Noury (10.1016/j.neuroimage.2022.119713_bib0044) 2016; 140 Palva (10.1016/j.neuroimage.2022.119713_bib0049) 2005; 25 Johnson (10.1016/j.neuroimage.2022.119713_bib0022) 2020; 6 Kasten (10.1016/j.neuroimage.2022.119713_bib0027) 2017; 11 Bergmann (10.1016/j.neuroimage.2022.119713_bib0007) 2016; 140 Kasten (10.1016/j.neuroimage.2022.119713_bib0028) 2018; 5 Oldfield (10.1016/j.neuroimage.2022.119713_bib0047) 1971; 9 Ridding (10.1016/j.neuroimage.2022.119713_bib0053) 2010; 588 Mo (10.1016/j.neuroimage.2022.119713_bib0038) 2013; 68 Vosskuhl (10.1016/j.neuroimage.2022.119713_bib0066) 2018; 12 Vöröslakos (10.1016/j.neuroimage.2022.119713_bib0064) 2018; 9 Taulu (10.1016/j.neuroimage.2022.119713_bib0058) 2005; 53 Neuling (10.1016/j.neuroimage.2022.119713_bib0041) 2017; 147 Herrmann (10.1016/j.neuroimage.2022.119713_bib0018) 2013; 7 Riddle (10.1016/j.neuroimage.2022.119713_bib0054) 2020; 13 Horvath (10.1016/j.neuroimage.2022.119713_bib0020) 2015; 66 Nolte (10.1016/j.neuroimage.2022.119713_bib0043) 2003; 48 Klink (10.1016/j.neuroimage.2022.119713_bib0031) 2020; 10 Horvath (10.1016/j.neuroimage.2022.119713_bib0021) 2015; 8 Kasten (10.1016/j.neuroimage.2022.119713_bib0024) 2019; 10 Bergmann (10.1016/j.neuroimage.2022.119713_bib0005) 2018; 9 Quinn (10.1016/j.neuroimage.2022.119713_bib0051) 2019; 32 Ruhnau (10.1016/j.neuroimage.2022.119713_bib0055) 2016; 6 Noury (10.1016/j.neuroimage.2022.119713_bib0046) 2017; 158 Baum (10.1016/j.neuroimage.2022.119713_bib0004) 1970; 41 Knyazev (10.1016/j.neuroimage.2022.119713_bib0032) 2011; 1402 Laakso (10.1016/j.neuroimage.2022.119713_bib0034) 2015; 8 Kasten (10.1016/j.neuroimage.2022.119713_bib0026) 2019; 32 Mellin (10.1016/j.neuroimage.2022.119713_bib0037) 2018; 51 Colclough (10.1016/j.neuroimage.2022.119713_bib0010) 2015; 117 |
| References_xml | – volume: 140 start-page: 83 year: 2016 end-page: 88 ident: bib0056 article-title: Cutaneous retinal activation and neural entrainment in transcranial alternating current stimulation: a systematic review publication-title: Neuroimage – volume: 9 start-page: 483 year: 2018 ident: bib0064 article-title: Direct effects of transcranial electric stimulation on brain circuits in rats and humans publication-title: Nat. Commun. – volume: 9 year: 2015 ident: bib0060 article-title: Lasting EEG/MEG aftereffects of rhythmic transcranial brain stimulation: level of control over oscillatory network activity publication-title: Front. Cell. Neurosci. – volume: 68 start-page: 112 year: 2013 end-page: 118 ident: bib0038 article-title: Coupling between visual alpha oscillations and default mode activity publication-title: Neuroimage – volume: 44 start-page: 867 year: 1997 end-page: 880 ident: bib0059 article-title: Localization of brain electrical activity via linearly constrained minimum variance spatial filtering publication-title: IEEE Trans. Biomed. Eng. – volume: 11 year: 2017 ident: bib0027 article-title: Transcranial alternating current stimulation (tACS) enhances mental rotation performance during and after stimulation publication-title: Front. Hum. Neurosci. – volume: 10 start-page: 12270 year: 2020 ident: bib0030 article-title: Hemisphere-specific, differential effects of lateralized, occipital–parietal α- versus γ-tACS on endogenous but not exogenous visual-spatial attention publication-title: Sci. Rep. – volume: 36 start-page: 5328 year: 2016 end-page: 5337 ident: bib0017 article-title: Shaping intrinsic neural oscillations with periodic stimulation publication-title: J. Neurosci. – volume: 8 start-page: 535 year: 2015 end-page: 550 ident: bib0021 article-title: Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS) publication-title: Brain Stimul. – volume: 32 start-page: 1013 year: 2019 end-page: 1019 ident: bib0026 article-title: Recovering brain dynamics during concurrent tACS-M/EEG: an overview of analysis approaches and their methodological and interpretational pitfalls publication-title: Brain Topogr. – start-page: 1 year: 2020 end-page: 12 ident: bib0006 article-title: Inferring causality from noninvasive brain stimulation in cognitive neuroscience publication-title: J. Cogn. Neurosci. – volume: 8 start-page: 906 year: 2015 end-page: 913 ident: bib0034 article-title: Inter-subject variability in electric fields of motor cortical tDCS publication-title: Brain Stimul. – volume: 140 start-page: 4 year: 2016 end-page: 19 ident: bib0007 article-title: Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives publication-title: Neuroimage – volume: 66 start-page: 213 year: 2015 end-page: 236 ident: bib0020 article-title: Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review publication-title: Neuropsychologia – volume: 29 start-page: 2924 year: 2019 end-page: 2931 ident: bib0067 article-title: NMDA receptor-mediated motor cortex plasticity after 20 Hz transcranial alternating current stimulation publication-title: Cereb. Cortex – volume: 126 start-page: 81 year: 2016 end-page: 95 ident: bib0063 article-title: Spectrally resolved fast transient brain states in electrophysiological data publication-title: Neuroimage – volume: 5 year: 2018 ident: bib0028 article-title: Facilitated event-related power modulations during transcranial alternating current stimulation (tACS) revealed by concurrent tACS-MEG publication-title: eNeuro – volume: 3 year: 2012 ident: bib0042 article-title: Finite-element model predicts current density distribution for clinical applications of tDCS and tACS publication-title: Front. Psychiatry – volume: 48 start-page: 3637 year: 2003 end-page: 3652 ident: bib0043 article-title: The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors publication-title: Phys. Med. Biol. – volume: 9 start-page: 97 year: 1971 end-page: 113 ident: bib0047 article-title: The assessment and analysis of handedness: the Edinburgh inventory publication-title: Neuropsychologia – volume: 41 start-page: 164 year: 1970 end-page: 171 ident: bib0004 article-title: A Maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains publication-title: Ann. Math. Stat. – volume: 32 start-page: 1020 year: 2019 end-page: 1034 ident: bib0051 article-title: Unpacking transient event dynamics in electrophysiological power spectra publication-title: Brain Topogr. – volume: 180 start-page: 646 year: 2018 end-page: 656 ident: bib0061 article-title: Discovering dynamic brain networks from big data in rest and task publication-title: Neuroimage – volume: 137 start-page: 346 year: 2001 end-page: 353 ident: bib0016 article-title: Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena publication-title: Exp. Brain Res. – volume: 8 start-page: 1199 year: 2017 ident: bib0035 article-title: Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings publication-title: Nat. Commun. – year: 2020 ident: bib0011 article-title: Transcranial alternating current stimulation (tACS): from basic mechanisms towards first applications in psychiatry publication-title: Eur. Arch. Psychiatry Clin. Neurosci. – volume: 147 start-page: 960 year: 2017 end-page: 963 ident: bib0041 article-title: Faith and oscillations recovered: on analyzing EEG/MEG signals during tACS publication-title: Neuroimage – volume: 167 start-page: 53 year: 2018 end-page: 61 ident: bib0045 article-title: Analyzing EEG and MEG signals recorded during tES, a reply publication-title: Neuroimage – volume: 2011 start-page: 1 year: 2011 end-page: 9 ident: bib0048 article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Comput. Intell. Neurosci. – volume: 53 start-page: 3359 year: 2005 end-page: 3372 ident: bib0058 article-title: Applications of the signal space separation method publication-title: IEEE Trans. Signal Process. – start-page: 140 year: 2013 end-page: 143 ident: bib0008 article-title: EEG feedback-controlled transcranial alternating current stimulation publication-title: Procedings of the 6th International IEEE/EMBS Conference on Neural Engineering (NER) – volume: 14 year: 2016 ident: bib0001 article-title: Modulation of cortical oscillations by low-frequency direct cortical stimulation is state-dependent publication-title: PLoS Biol. – year: 2020 ident: bib0025 article-title: Discrete sampling in perception via neuronal oscillations—evidence from rhythmic, non-invasive brain stimulation publication-title: Eur. J. Neurosci. – volume: 116 start-page: 5747 year: 2019 end-page: 5755 ident: bib0033 article-title: Transcranial alternating current stimulation entrains single-neuron activity in the primate brain publication-title: Proc. Natl. Acad. Sci. USA – volume: 158 start-page: 406 year: 2017 end-page: 416 ident: bib0046 article-title: Phase properties of transcranial electrical stimulation artifacts in electrophysiological recordings publication-title: Neuroimage – volume: 117 start-page: 439 year: 2015 end-page: 448 ident: bib0010 article-title: A symmetric multivariate leakage correction for MEG connectomes publication-title: Neuroimage – volume: 7 year: 2013 ident: bib0040 article-title: Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states publication-title: Front. Hum. Neurosci. – volume: 3 start-page: e01867 year: 2014 ident: bib0003 article-title: Fast transient networks in spontaneous human brain activity publication-title: eLife – volume: 103 start-page: 12 year: 2016 end-page: 21 ident: bib0019 article-title: EEG oscillations: from correlation to causality publication-title: Int. J. Psychophysiol. – volume: 185 start-page: 408 year: 2019 end-page: 424 ident: bib0015 article-title: Inherent physiological artifacts in EEG during tDCS publication-title: Neuroimage – volume: 9 start-page: 2987 year: 2018 ident: bib0062 article-title: Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks publication-title: Nat. Commun. – volume: 179 start-page: 134 year: 2018 end-page: 143 ident: bib0029 article-title: Non-linear transfer characteristics of stimulation and recording hardware account for spurious low-frequency artifacts during amplitude modulated transcranial alternating current stimulation (AM-tACS) publication-title: Neuroimage – volume: 123 start-page: 2180 year: 2012 end-page: 2191 ident: bib0039 article-title: Validation of head movement correction and spatiotemporal signal space separation in magnetoencephalography publication-title: Clin. Neurophysiol. – volume: 33 start-page: 17483 year: 2013 end-page: 17489 ident: bib0013 article-title: State-dependent effects of transcranial oscillatory currents on the motor system: what you think matters publication-title: J. Neurosci. – volume: 22 start-page: 270 year: 2017 end-page: 293 ident: bib0050 article-title: Selecting the number of states in hidden markov models: pragmatic solutions illustrated using animal movement publication-title: JABES – volume: 51 start-page: 1759 year: 2006 end-page: 1768 ident: bib0057 article-title: Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements publication-title: Phys. Med. Biol. – volume: 13 start-page: 998 year: 2020 end-page: 999 ident: bib0054 article-title: Brain-derived neurotrophic factor (BDNF) polymorphism may influence the efficacy of tACS to modulate neural oscillations publication-title: Brain Stimul. – volume: 588 start-page: 2291 year: 2010 end-page: 2304 ident: bib0053 article-title: Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects: induction of cortical plasticity by non-invasive brain stimulation publication-title: J. Physiol. – volume: 6 start-page: eaaz2747 year: 2020 ident: bib0022 article-title: Dose-dependent effects of transcranial alternating current stimulation on spike timing in awake nonhuman primates publication-title: Sci. Adv. – volume: 1402 start-page: 67 year: 2011 end-page: 79 ident: bib0032 article-title: The default mode network and EEG alpha oscillations: an independent component analysis publication-title: Brain Res. – volume: 119 year: 2022 ident: bib0009 article-title: Transcranial stimulation of alpha oscillations up-regulates the default mode network publication-title: Proc. Natl. Acad. Sci. – volume: 25 start-page: 3962 year: 2005 end-page: 3972 ident: bib0049 article-title: Phase synchrony among neuronal oscillations in the human cortex publication-title: J. Neurosci. – volume: 9 year: 2018 ident: bib0005 article-title: Brain state-dependent brain stimulation publication-title: Front. Psychol. – volume: 11 start-page: 752 year: 2018 end-page: 758 ident: bib0068 article-title: Opposite effects of lateralised transcranial alpha versus gamma stimulation on auditory spatial attention publication-title: Brain Stimul. – volume: 140 start-page: 99 year: 2016 end-page: 109 ident: bib0044 article-title: Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation publication-title: Neuroimage – volume: 5 start-page: e13766 year: 2010 ident: bib0069 article-title: Transcranial alternating current stimulation enhances individual alpha activity in human EEG publication-title: PLoS One – volume: 9 start-page: 12858 year: 2019 ident: bib0012 article-title: State-dependent effects of transcranial oscillatory currents on the motor system during action observation publication-title: Sci. Rep. – volume: 10 start-page: 932 year: 2020 ident: bib0031 article-title: The modulation of cognitive performance with transcranial alternating current stimulation: a systematic review of frequency-specific effects publication-title: Brain Sci. – volume: 67 start-page: 129 year: 2010 end-page: 143 ident: bib0014 article-title: Endogenous electric fields may guide neocortical network activity publication-title: Neuron – volume: 10 year: 2016 ident: bib0023 article-title: Sustained aftereffect of α-tACS lasts up to 70 min after stimulation publication-title: Front. Hum. Neurosci. – volume: 9 start-page: 106 year: 2019 ident: bib0002 article-title: Double-blind, randomized pilot clinical trial targeting alpha oscillations with transcranial alternating current stimulation (tACS) for the treatment of major depressive disorder (MDD) publication-title: Transl. Psychiatry – volume: 164 start-page: 177 year: 2007 end-page: 190 ident: bib0036 article-title: Nonparametric statistical testing of EEG- and MEG-data publication-title: J. Neurosci. Methods – volume: 12 start-page: 211 year: 2018 ident: bib0066 article-title: Non-invasive brain stimulation: a paradigm shift in understanding brain oscillations publication-title: Front. Hum. Neurosci. – volume: 51 start-page: 25 year: 2018 end-page: 33 ident: bib0037 article-title: Randomized trial of transcranial alternating current stimulation for treatment of auditory hallucinations in schizophrenia publication-title: Eur. Psychiatr. – volume: 22 start-page: 820 year: 2019 end-page: 827 ident: bib0052 article-title: Working memory revived in older adults by synchronizing rhythmic brain circuits publication-title: Nat. Neurosci. – volume: 8 start-page: 499 year: 2015 end-page: 508 ident: bib0065 article-title: Alpha power increase after transcranial alternating current stimulation at alpha frequency (α-tACS) reflects plastic changes rather than entrainment publication-title: Brain Stimul. – volume: 7 year: 2013 ident: bib0018 article-title: Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes publication-title: Front. Hum. Neurosci. – volume: 10 start-page: 5427 year: 2019 ident: bib0024 article-title: Integrating electric field modeling and neuroimaging to explain inter-individual variability of tACS effects publication-title: Nat. Commun. – volume: 6 start-page: 27138 year: 2016 ident: bib0055 article-title: Eyes wide shut: transcranial alternating current stimulation drives alpha rhythm in a state dependent manner publication-title: Sci. Rep. – volume: 116 start-page: 5747 year: 2019 ident: 10.1016/j.neuroimage.2022.119713_bib0033 article-title: Transcranial alternating current stimulation entrains single-neuron activity in the primate brain publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1815958116 – volume: 2011 start-page: 1 year: 2011 ident: 10.1016/j.neuroimage.2022.119713_bib0048 article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/156869 – volume: 9 start-page: 106 year: 2019 ident: 10.1016/j.neuroimage.2022.119713_bib0002 article-title: Double-blind, randomized pilot clinical trial targeting alpha oscillations with transcranial alternating current stimulation (tACS) for the treatment of major depressive disorder (MDD) publication-title: Transl. Psychiatry doi: 10.1038/s41398-019-0439-0 – volume: 68 start-page: 112 year: 2013 ident: 10.1016/j.neuroimage.2022.119713_bib0038 article-title: Coupling between visual alpha oscillations and default mode activity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.11.058 – volume: 6 start-page: eaaz2747 year: 2020 ident: 10.1016/j.neuroimage.2022.119713_bib0022 article-title: Dose-dependent effects of transcranial alternating current stimulation on spike timing in awake nonhuman primates publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz2747 – volume: 36 start-page: 5328 year: 2016 ident: 10.1016/j.neuroimage.2022.119713_bib0017 article-title: Shaping intrinsic neural oscillations with periodic stimulation publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0236-16.2016 – volume: 10 year: 2016 ident: 10.1016/j.neuroimage.2022.119713_bib0023 article-title: Sustained aftereffect of α-tACS lasts up to 70 min after stimulation publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2016.00245 – volume: 158 start-page: 406 year: 2017 ident: 10.1016/j.neuroimage.2022.119713_bib0046 article-title: Phase properties of transcranial electrical stimulation artifacts in electrophysiological recordings publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.07.010 – volume: 9 year: 2018 ident: 10.1016/j.neuroimage.2022.119713_bib0005 article-title: Brain state-dependent brain stimulation publication-title: Front. Psychol. doi: 10.3389/fpsyg.2018.02108 – volume: 48 start-page: 3637 year: 2003 ident: 10.1016/j.neuroimage.2022.119713_bib0043 article-title: The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/48/22/002 – volume: 22 start-page: 820 year: 2019 ident: 10.1016/j.neuroimage.2022.119713_bib0052 article-title: Working memory revived in older adults by synchronizing rhythmic brain circuits publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0371-x – volume: 44 start-page: 867 year: 1997 ident: 10.1016/j.neuroimage.2022.119713_bib0059 article-title: Localization of brain electrical activity via linearly constrained minimum variance spatial filtering publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.623056 – volume: 185 start-page: 408 year: 2019 ident: 10.1016/j.neuroimage.2022.119713_bib0015 article-title: Inherent physiological artifacts in EEG during tDCS publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.10.025 – volume: 67 start-page: 129 year: 2010 ident: 10.1016/j.neuroimage.2022.119713_bib0014 article-title: Endogenous electric fields may guide neocortical network activity publication-title: Neuron doi: 10.1016/j.neuron.2010.06.005 – volume: 10 start-page: 932 year: 2020 ident: 10.1016/j.neuroimage.2022.119713_bib0031 article-title: The modulation of cognitive performance with transcranial alternating current stimulation: a systematic review of frequency-specific effects publication-title: Brain Sci. doi: 10.3390/brainsci10120932 – volume: 51 start-page: 1759 year: 2006 ident: 10.1016/j.neuroimage.2022.119713_bib0057 article-title: Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/51/7/008 – volume: 137 start-page: 346 year: 2001 ident: 10.1016/j.neuroimage.2022.119713_bib0016 article-title: Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena publication-title: Exp. Brain Res. doi: 10.1007/s002210100682 – volume: 126 start-page: 81 year: 2016 ident: 10.1016/j.neuroimage.2022.119713_bib0063 article-title: Spectrally resolved fast transient brain states in electrophysiological data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.11.047 – volume: 167 start-page: 53 year: 2018 ident: 10.1016/j.neuroimage.2022.119713_bib0045 article-title: Analyzing EEG and MEG signals recorded during tES, a reply publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.11.023 – volume: 7 year: 2013 ident: 10.1016/j.neuroimage.2022.119713_bib0018 article-title: Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00279 – volume: 8 start-page: 906 year: 2015 ident: 10.1016/j.neuroimage.2022.119713_bib0034 article-title: Inter-subject variability in electric fields of motor cortical tDCS publication-title: Brain Stimul. doi: 10.1016/j.brs.2015.05.002 – volume: 33 start-page: 17483 year: 2013 ident: 10.1016/j.neuroimage.2022.119713_bib0013 article-title: State-dependent effects of transcranial oscillatory currents on the motor system: what you think matters publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1414-13.2013 – volume: 3 start-page: e01867 year: 2014 ident: 10.1016/j.neuroimage.2022.119713_bib0003 article-title: Fast transient networks in spontaneous human brain activity publication-title: eLife doi: 10.7554/eLife.01867 – volume: 164 start-page: 177 year: 2007 ident: 10.1016/j.neuroimage.2022.119713_bib0036 article-title: Nonparametric statistical testing of EEG- and MEG-data publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.03.024 – volume: 9 start-page: 2987 year: 2018 ident: 10.1016/j.neuroimage.2022.119713_bib0062 article-title: Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks publication-title: Nat. Commun. doi: 10.1038/s41467-018-05316-z – volume: 7 year: 2013 ident: 10.1016/j.neuroimage.2022.119713_bib0040 article-title: Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00161 – year: 2020 ident: 10.1016/j.neuroimage.2022.119713_bib0011 article-title: Transcranial alternating current stimulation (tACS): from basic mechanisms towards first applications in psychiatry publication-title: Eur. Arch. Psychiatry Clin. Neurosci. – volume: 14 year: 2016 ident: 10.1016/j.neuroimage.2022.119713_bib0001 article-title: Modulation of cortical oscillations by low-frequency direct cortical stimulation is state-dependent publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1002424 – volume: 3 year: 2012 ident: 10.1016/j.neuroimage.2022.119713_bib0042 article-title: Finite-element model predicts current density distribution for clinical applications of tDCS and tACS publication-title: Front. Psychiatry doi: 10.3389/fpsyt.2012.00083 – volume: 41 start-page: 164 year: 1970 ident: 10.1016/j.neuroimage.2022.119713_bib0004 article-title: A Maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177697196 – volume: 32 start-page: 1020 year: 2019 ident: 10.1016/j.neuroimage.2022.119713_bib0051 article-title: Unpacking transient event dynamics in electrophysiological power spectra publication-title: Brain Topogr. doi: 10.1007/s10548-019-00745-5 – volume: 11 year: 2017 ident: 10.1016/j.neuroimage.2022.119713_bib0027 article-title: Transcranial alternating current stimulation (tACS) enhances mental rotation performance during and after stimulation publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2017.00002 – volume: 140 start-page: 4 year: 2016 ident: 10.1016/j.neuroimage.2022.119713_bib0007 article-title: Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.02.012 – volume: 53 start-page: 3359 year: 2005 ident: 10.1016/j.neuroimage.2022.119713_bib0058 article-title: Applications of the signal space separation method publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2005.853302 – volume: 123 start-page: 2180 year: 2012 ident: 10.1016/j.neuroimage.2022.119713_bib0039 article-title: Validation of head movement correction and spatiotemporal signal space separation in magnetoencephalography publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2012.03.080 – volume: 103 start-page: 12 year: 2016 ident: 10.1016/j.neuroimage.2022.119713_bib0019 article-title: EEG oscillations: from correlation to causality publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2015.02.003 – volume: 1402 start-page: 67 year: 2011 ident: 10.1016/j.neuroimage.2022.119713_bib0032 article-title: The default mode network and EEG alpha oscillations: an independent component analysis publication-title: Brain Res. doi: 10.1016/j.brainres.2011.05.052 – volume: 66 start-page: 213 year: 2015 ident: 10.1016/j.neuroimage.2022.119713_bib0020 article-title: Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2014.11.021 – volume: 8 start-page: 535 year: 2015 ident: 10.1016/j.neuroimage.2022.119713_bib0021 article-title: Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS) publication-title: Brain Stimul. doi: 10.1016/j.brs.2015.01.400 – volume: 140 start-page: 83 year: 2016 ident: 10.1016/j.neuroimage.2022.119713_bib0056 article-title: Cutaneous retinal activation and neural entrainment in transcranial alternating current stimulation: a systematic review publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.09.067 – volume: 9 start-page: 97 year: 1971 ident: 10.1016/j.neuroimage.2022.119713_bib0047 article-title: The assessment and analysis of handedness: the Edinburgh inventory publication-title: Neuropsychologia doi: 10.1016/0028-3932(71)90067-4 – volume: 32 start-page: 1013 year: 2019 ident: 10.1016/j.neuroimage.2022.119713_bib0026 article-title: Recovering brain dynamics during concurrent tACS-M/EEG: an overview of analysis approaches and their methodological and interpretational pitfalls publication-title: Brain Topogr. doi: 10.1007/s10548-019-00727-7 – volume: 180 start-page: 646 year: 2018 ident: 10.1016/j.neuroimage.2022.119713_bib0061 article-title: Discovering dynamic brain networks from big data in rest and task publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.06.077 – volume: 12 start-page: 211 year: 2018 ident: 10.1016/j.neuroimage.2022.119713_bib0066 article-title: Non-invasive brain stimulation: a paradigm shift in understanding brain oscillations publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2018.00211 – volume: 22 start-page: 270 year: 2017 ident: 10.1016/j.neuroimage.2022.119713_bib0050 article-title: Selecting the number of states in hidden markov models: pragmatic solutions illustrated using animal movement publication-title: JABES doi: 10.1007/s13253-017-0283-8 – volume: 29 start-page: 2924 year: 2019 ident: 10.1016/j.neuroimage.2022.119713_bib0067 article-title: NMDA receptor-mediated motor cortex plasticity after 20 Hz transcranial alternating current stimulation publication-title: Cereb. Cortex doi: 10.1093/cercor/bhy160 – volume: 5 start-page: e13766 year: 2010 ident: 10.1016/j.neuroimage.2022.119713_bib0069 article-title: Transcranial alternating current stimulation enhances individual alpha activity in human EEG publication-title: PLoS One doi: 10.1371/journal.pone.0013766 – volume: 140 start-page: 99 year: 2016 ident: 10.1016/j.neuroimage.2022.119713_bib0044 article-title: Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.03.065 – volume: 11 start-page: 752 year: 2018 ident: 10.1016/j.neuroimage.2022.119713_bib0068 article-title: Opposite effects of lateralised transcranial alpha versus gamma stimulation on auditory spatial attention publication-title: Brain Stimul. doi: 10.1016/j.brs.2018.04.006 – volume: 588 start-page: 2291 year: 2010 ident: 10.1016/j.neuroimage.2022.119713_bib0053 article-title: Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects: induction of cortical plasticity by non-invasive brain stimulation publication-title: J. Physiol. doi: 10.1113/jphysiol.2010.190314 – volume: 179 start-page: 134 year: 2018 ident: 10.1016/j.neuroimage.2022.119713_bib0029 article-title: Non-linear transfer characteristics of stimulation and recording hardware account for spurious low-frequency artifacts during amplitude modulated transcranial alternating current stimulation (AM-tACS) publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.05.068 – volume: 10 start-page: 12270 year: 2020 ident: 10.1016/j.neuroimage.2022.119713_bib0030 article-title: Hemisphere-specific, differential effects of lateralized, occipital–parietal α- versus γ-tACS on endogenous but not exogenous visual-spatial attention publication-title: Sci. Rep. doi: 10.1038/s41598-020-68992-2 – volume: 51 start-page: 25 year: 2018 ident: 10.1016/j.neuroimage.2022.119713_bib0037 article-title: Randomized trial of transcranial alternating current stimulation for treatment of auditory hallucinations in schizophrenia publication-title: Eur. Psychiatr. doi: 10.1016/j.eurpsy.2018.01.004 – volume: 10 start-page: 5427 year: 2019 ident: 10.1016/j.neuroimage.2022.119713_bib0024 article-title: Integrating electric field modeling and neuroimaging to explain inter-individual variability of tACS effects publication-title: Nat. Commun. doi: 10.1038/s41467-019-13417-6 – volume: 8 start-page: 1199 year: 2017 ident: 10.1016/j.neuroimage.2022.119713_bib0035 article-title: Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings publication-title: Nat. Commun. doi: 10.1038/s41467-017-01045-x – volume: 9 start-page: 483 year: 2018 ident: 10.1016/j.neuroimage.2022.119713_bib0064 article-title: Direct effects of transcranial electric stimulation on brain circuits in rats and humans publication-title: Nat. Commun. doi: 10.1038/s41467-018-02928-3 – volume: 5 year: 2018 ident: 10.1016/j.neuroimage.2022.119713_bib0028 article-title: Facilitated event-related power modulations during transcranial alternating current stimulation (tACS) revealed by concurrent tACS-MEG publication-title: eNeuro doi: 10.1523/ENEURO.0069-18.2018 – year: 2020 ident: 10.1016/j.neuroimage.2022.119713_bib0025 article-title: Discrete sampling in perception via neuronal oscillations—evidence from rhythmic, non-invasive brain stimulation publication-title: Eur. J. Neurosci. – volume: 9 year: 2015 ident: 10.1016/j.neuroimage.2022.119713_bib0060 article-title: Lasting EEG/MEG aftereffects of rhythmic transcranial brain stimulation: level of control over oscillatory network activity publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2015.00477 – volume: 117 start-page: 439 year: 2015 ident: 10.1016/j.neuroimage.2022.119713_bib0010 article-title: A symmetric multivariate leakage correction for MEG connectomes publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.03.071 – volume: 13 start-page: 998 year: 2020 ident: 10.1016/j.neuroimage.2022.119713_bib0054 article-title: Brain-derived neurotrophic factor (BDNF) polymorphism may influence the efficacy of tACS to modulate neural oscillations publication-title: Brain Stimul. doi: 10.1016/j.brs.2020.04.012 – start-page: 1 year: 2020 ident: 10.1016/j.neuroimage.2022.119713_bib0006 article-title: Inferring causality from noninvasive brain stimulation in cognitive neuroscience publication-title: J. Cogn. Neurosci. – volume: 25 start-page: 3962 year: 2005 ident: 10.1016/j.neuroimage.2022.119713_bib0049 article-title: Phase synchrony among neuronal oscillations in the human cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4250-04.2005 – volume: 9 start-page: 12858 year: 2019 ident: 10.1016/j.neuroimage.2022.119713_bib0012 article-title: State-dependent effects of transcranial oscillatory currents on the motor system during action observation publication-title: Sci. Rep. doi: 10.1038/s41598-019-49166-1 – volume: 8 start-page: 499 year: 2015 ident: 10.1016/j.neuroimage.2022.119713_bib0065 article-title: Alpha power increase after transcranial alternating current stimulation at alpha frequency (α-tACS) reflects plastic changes rather than entrainment publication-title: Brain Stimul. doi: 10.1016/j.brs.2014.12.004 – start-page: 140 year: 2013 ident: 10.1016/j.neuroimage.2022.119713_bib0008 article-title: EEG feedback-controlled transcranial alternating current stimulation – volume: 119 year: 2022 ident: 10.1016/j.neuroimage.2022.119713_bib0009 article-title: Transcranial stimulation of alpha oscillations up-regulates the default mode network publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2110868119 – volume: 6 start-page: 27138 year: 2016 ident: 10.1016/j.neuroimage.2022.119713_bib0055 article-title: Eyes wide shut: transcranial alternating current stimulation drives alpha rhythm in a state dependent manner publication-title: Sci. Rep. doi: 10.1038/srep27138 – volume: 147 start-page: 960 year: 2017 ident: 10.1016/j.neuroimage.2022.119713_bib0041 article-title: Faith and oscillations recovered: on analyzing EEG/MEG signals during tACS publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.11.022 |
| SSID | ssj0009148 |
| Score | 2.5214872 |
| Snippet | •Hidden Markov Models (HMMs) decomposed MEG signals into transient brain-states.•Transcranial alternating current stimulation (tACS) affected only specific... Non-invasive techniques to electrically stimulate the brain such as transcranial direct and alternating current stimulation (tDCS/tACS) are increasingly used... |
| SourceID | doaj hal proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 119713 |
| SubjectTerms | Aftereffects Brain - physiology Brain oscillations Brain research Brain-states Cognitive science Electric Stimulation Electrical stimuli Experiments Hidden Markov Models Humans Magnetoencephalography Markov chains Nervous system Neural networks Neuroscience Non-invasive brain stimulation Oscillations Psychology Transcranial alternating current stimulation Transcranial Direct Current Stimulation - methods |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoQYgLb0qgoIC4GuLYcRxxQEtF1UOpKvFQb1b8CF1Ek7K77e9nxnay2gNoJa5J7DiZ8fgbz_gbQt5Y64XivqVSmo6KxjHacmVoUbTO18oVXaBr-n5cn5yos7PmNG24LVNa5WgTg6F2g8U98nfgPQESVg2rPlz-plg1CqOrqYTGDrmJLAk8pO6drkl3mYhH4SpOFWNNyuSJ-V2BL3J-AbMWvMSyfIvxNMY3lqfA4r-xSu2cY7rk37BoWJMO7_3v19wndxMazWdRfR6QG75_SG5_TvH2R0SAFuXnyDLS5waLSdBwACl3sY79Mh-6fDU7-JKHUuMpN-Qx-Xb46evBEU11FqgFvLGiTVGZylokYzVcgHeNsbJSOXDNvADI1zlpW5jnShrJazDuvHBecOdqD-DQKP6E7PZD75-SnFfeAuCx4LYYUdZd05bOOmSA6aQHY5GRevy92iYScqyF8UuP2WY_9VowGgWjo2AywqaWl5GIY4s2H1GC0_NIpR0uDIsfOs1MDaLwwihhS1ypAW4ZIW1RuKYT4OzW0Ekzyl-Pp1XBvkJH8y0G8H5qmxBNRCpbtn4N6rYx-qPZscZrBVeiFFxes4zsjxqmk_lZ6rV6ZeTVdBsMB0aD2t4PV_gMoBcmZV1kZC9q8fQqLjFAzvmzf3f-nNzB4cbsnn2yu1pc-Rfklr1ezZeLl2Eu_gEJzzhC priority: 102 providerName: ProQuest |
| Title | The hidden brain-state dynamics of tACS aftereffects |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811922008345 https://dx.doi.org/10.1016/j.neuroimage.2022.119713 https://www.ncbi.nlm.nih.gov/pubmed/36309333 https://www.proquest.com/docview/2748268915 https://www.proquest.com/docview/2730316670 https://hal.science/hal-03842436 https://doaj.org/article/274e4b84c22847028b46c00d9f440773 |
| Volume | 264 |
| WOSCitedRecordID | wos000886063700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIEXJ dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M7P dateStart: 19980501 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M2M dateStart: 20020801 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RghAXVN6BsgqIayCJvbYjTtuqVQ_d1YqX9mbFj6iL2izqbvv7mbGTwB4q9sDFhyRO7PGM_Y1m8g3AB2s9V8zXmRCmyXjliqxmymR5XjsvlcubQNf041zOZmqxqOZ_lfqinLBIDxwF9wm9Js-N4rakjRRPQ8OFzXNXNRx9ERl4PhH19M5UT7eLKL_L24nZXIEdcnmFNoo-YVl-pOhZwbYOo8DZv3Um7V1QcuRdyDOcQKcH8LiDjukkDvkJ3PPtU3g47YLjz4DjkqcXRAnSpoYqP2Thb6HUxaLz63TVpJvJ8dc01AXvEjmew_fTk2_HZ1lXFCGzCA42WZWPzdhaYk41jKMrTIGtUjn0ozxHfNY4YWs0SiWMYBJ3YpY7z5lz0iOSM4q9gP121fpXkLKxt4hOLPoYhpeyqerSWUd0LY3waNkJyF462naM4VS44lL3qWE_9R-5apKrjnJNoBh6_oqsGTv0OaIFGJ4n3utwAbVBd9qg_6UNCVT98un-11LcDPFFyx0G8Hno28GPCCt27P0etWVr9GeTc03XcqZ4yZm4LRI47JVJd3vFmuaEPp6qinEC74bbaOUUuqlbv7qhZxBqFELIPIGXUQmHTzFB0WzGXv8PAb6BRzSpmLBzCPub6xv_Fh7Y281yfT2CPbmQoVUjuH90Mpt_GQXDw3ZaTqmV89-X6Su4 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BVEuvAsLBQKCYyCJHccRQmgpVFt1d4VEqXoz8SN0EU3K7raof4rfyExeqz2A9tID1yR2rPjzzDfx5xmAF8Y4LpnLfCF07vPUhn7GpPaDILMukTbIq3RNh8NkPJZHR-mnNfjdnoUhWWVrEytDbUtD_8hfY_SETFimYfzu9KdPVaNod7UtoVHDYt9d_MKQbfZ27wPO78so2v14sDPwm6oCvkHvOvfTINaxMZR6VDOOsSTtDEXSYiDiOBKc3AqTIaql0IIlaMpYYB1n1iYOqZCWDPtdhyscIyEqFTGKRoskvyGvj97FzJdhmDbKoVpPVuWnnJyglcCoNIpe0f5dyJbcYVU1YMkrrh-TPPNv3Lfygbs3_7evdwtuNGzb69fL4zasueIOXBs1eoK7wHGVeMeURaXwNBXL8KsDVp69KLKTiZl5Ze7N-zufvaqUeqN9uQdfLmXMW7BRlIV7AB6LnUFCZzAs0zxK8jSLrLGU4SYXDo1hD5J2OpVpkqxTrY8fqlXTfVcLICgCgqqB0IOwa3laJxpZoc17Qkz3PKUKry6U02-qsTwKp95xLbmJiIkgndRcmCCwaU4QTrCTtMWbak_jov_AjiYrDOBN17ZhbDUTW7H1c4T30ugH_aGiawGTPOJMnIc92G4RrRrzOlMLOPfgWXcbDSPtdmWFK8_oGWRnoRBJ0IP79arpXsUECQAYe_jvzp_C5uBgNFTDvfH-I7hOQ6-VTNuwMZ-eucdw1ZzPJ7Ppk8oOePD1spfOH7PSkvQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61BVVceD8MBQyCo6ntXa_XQgiFlqhVQxSJh3pb7N01DaJOSdKi_rX-us6sH1EOoFx64Gp716v4m5lvst_OALzS2nLJbB4IUZQBz0wU5EwWQRjmxqbShKUr1_RtkA6H8vAwG63BRXsWhmSVrU90jtpMNP1Hvo3ZEzJhmUXJdtnIIka7_fcnvwPqIEU7rW07jRoiB_b8D6Zvs3f7u_itX8dx_-OXnb2g6TAQaIy08yALkyLRmsqQFoxjXkm7RLE0mJRYjmSnNELniHApCsFSdGssNJYzY1KLtKiQDOddh2spFS13ssHRouBvxOtjeAkLZBRljYqo1pa5WpXjY_QYmKHG8Rvay4vYUmh0HQSWIuT6EUk1_8aDXTzs3_qff8nbcLNh4X6vNps7sGaru7D5qdEZ3AOO1uMfUXWVyi-oiUbgDl755rzKj8d65k9Kf97b-ey7FuuNJuY-fL2SNT-AjWpS2Ufgs8RqJHoa07WCx2mZ5bHRhirflMKik_QgbT-t0k3xdeoB8ku1KrufagEKRaBQNSg8iLqRJ3UBkhXGfCD0dM9TCXF3YTL9oRqPpBAGlheS65gYCtLMggsdhiYrOSb5KU6StdhT7SldjCs40XiFBbztxjZMrmZoK45-iVBfWv1eb6DoWsgkjzkTZ5EHWy26VeN2Z2oBbQ9edLfRYdIuWF7ZySk9g6wtEiINPXhYW1D3KiZIGMDY439P_hw20WLUYH948ARu0MprgdMWbMynp_YpXNdn8_Fs-sy5BB--X7XlXAIfeZvF |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+hidden+brain-state+dynamics+of+tACS+aftereffects&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Kasten%2C+Florian+H&rft.au=Herrmann%2C+Christoph+S&rft.date=2022-12-01&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=264&rft.spage=119713&rft_id=info:doi/10.1016%2Fj.neuroimage.2022.119713&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |