Within-subject template estimation for unbiased longitudinal image analysis
Longitudinal image analysis has become increasingly important in clinical studies of normal aging and neurodegenerative disorders. Furthermore, there is a growing appreciation of the potential utility of longitudinally acquired structural images and reliable image processing to evaluate disease modi...
Uloženo v:
| Vydáno v: | NeuroImage (Orlando, Fla.) Ročník 61; číslo 4; s. 1402 - 1418 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Inc
16.07.2012
Elsevier Limited |
| Témata: | |
| ISSN: | 1053-8119, 1095-9572, 1095-9572 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Longitudinal image analysis has become increasingly important in clinical studies of normal aging and neurodegenerative disorders. Furthermore, there is a growing appreciation of the potential utility of longitudinally acquired structural images and reliable image processing to evaluate disease modifying therapies. Challenges have been related to the variability that is inherent in the available cross-sectional processing tools, to the introduction of bias in longitudinal processing and to potential over-regularization. In this paper we introduce a novel longitudinal image processing framework, based on unbiased, robust, within-subject template creation, for automatic surface reconstruction and segmentation of brain MRI of arbitrarily many time points. We demonstrate that it is essential to treat all input images exactly the same as removing only interpolation asymmetries is not sufficient to remove processing bias. We successfully reduce variability and avoid over-regularization by initializing the processing in each time point with common information from the subject template. The presented results show a significant increase in precision and discrimination power while preserving the ability to detect large anatomical deviations; as such they hold great potential in clinical applications, e.g. allowing for smaller sample sizes or shorter trials to establish disease specific biomarkers or to quantify drug effects.
► We introduce unbiased longitudinal processing of brain MRI of several time points. ► We demonstrate that inerpolation asymmetries are not the only source of bias. ► We create a robust within-subject template to initialize all time points. ► Reliability is significantly increased, while over-regularization is avoided. ► Precision allows for smaller sample sizes in clinical trials to assess biomarkers. |
|---|---|
| AbstractList | Longitudinal image analysis has become increasingly important in clinical studies of normal aging and neurodegenerative disorders. Furthermore, there is a growing appreciation of the potential utility of longitudinally acquired structural images and reliable image processing to evaluate disease modifying therapies. Challenges have been related to the variability that is inherent in the available cross-sectional processing tools, to the introduction of bias in longitudinal processing and to potential over-regularization. In this paper we introduce a novel longitudinal image processing framework, based on unbiased, robust, within-subject template creation, for automatic surface reconstruction and segmentation of brain MRI of arbitrarily many time points. We demonstrate that it is essential to treat all input images exactly the same as removing only interpolation asymmetries is not sufficient to remove processing bias. We successfully reduce variability and avoid over-regularization by initializing the processing in each time point with common information from the subject template. The presented results show a significant increase in precision and discrimination power while preserving the ability to detect large anatomical deviations; as such they hold great potential in clinical applications, e.g. allowing for smaller sample sizes or shorter trials to establish disease specific biomarkers or to quantify drug effects. Longitudinal image analysis has become increasingly important in clinical studies of normal aging and neurodegenerative disorders. Furthermore, there is a growing appreciation of the potential utility of longitudinally acquired structural images and reliable image processing to evaluate disease modifying therapies. Challenges have been related to the variability that is inherent in the available cross-sectional processing tools, to the introduction of bias in longitudinal processing and to potential over-regularization. In this paper we introduce a novel longitudinal image processing framework, based on unbiased, robust, within-subject template creation, for automatic surface reconstruction and segmentation of brain MRI of arbitrarily many time points. We demonstrate that it is essential to treat all input images exactly the same as removing only interpolation asymmetries is not sufficient to remove processing bias. We successfully reduce variability and avoid over-regularization by initializing the processing in each time point with common information from the subject template. The presented results show a significant increase in precision and discrimination power while preserving the ability to detect large anatomical deviations; as such they hold great potential in clinical applications, e.g. allowing for smaller sample sizes or shorter trials to establish disease specific biomarkers or to quantify drug effects. ► We introduce unbiased longitudinal processing of brain MRI of several time points. ► We demonstrate that inerpolation asymmetries are not the only source of bias. ► We create a robust within-subject template to initialize all time points. ► Reliability is significantly increased, while over-regularization is avoided. ► Precision allows for smaller sample sizes in clinical trials to assess biomarkers. Longitudinal image analysis has become increasingly important in clinical studies of normal aging and neurodegenerative disorders. Furthermore, there is a growing appreciation of the potential utility of longitudinally acquired structural images and reliable image processing to evaluate disease modifying therapies. Challenges have been related to thevariabilitythat is inherent in the available cross-sectional processing tools, to the introduction ofbiasin longitudinal processing and to potentialover-regularization. In this paper we introduce a novel longitudinal image processing framework, based on unbiased, robust, within-subject template creation, for automatic surface reconstruction and segmentation of brain MRI of arbitrarily many time points. We demonstrate that it is essential to treat all input images exactly the same as removing only interpolation asymmetries is not sufficient to remove processing bias. We successfully reduce variability and avoid over-regularization by initializing the processing in each time point with common information from the subject template. The presented results show a significant increase in precision and discrimination power while preserving the ability to detect large anatomical deviations; as such they hold great potential in clinical applications, e.g. allowing for smaller sample sizes or shorter trials to establish disease specific biomarkers or to quantify drug effects. Longitudinal image analysis has become increasingly important in clinical studies of normal aging and neurodegenerative disorders. Furthermore, there is a growing appreciation of the potential utility of longitudinally acquired structural images and reliable image processing to evaluate disease modifying therapies. Challenges have been related to the variability that is inherent in the available cross-sectional processing tools, to the introduction of bias in longitudinal processing and to potential over-regularization. In this paper we introduce a novel longitudinal image processing framework, based on unbiased, robust, within-subject template creation, for automatic surface reconstruction and segmentation of brain MRI of arbitrarily many time points. We demonstrate that it is essential to treat all input images exactly the same as removing only interpolation asymmetries is not sufficient to remove processing bias. We successfully reduce variability and avoid over-regularization by initializing the processing in each time point with common information from the subject template. The presented results show a significant increase in precision and discrimination power while preserving the ability to detect large anatomical deviations; as such they hold great potential in clinical applications, e.g. allowing for smaller sample sizes or shorter trials to establish disease specific biomarkers or to quantify drug effects.Longitudinal image analysis has become increasingly important in clinical studies of normal aging and neurodegenerative disorders. Furthermore, there is a growing appreciation of the potential utility of longitudinally acquired structural images and reliable image processing to evaluate disease modifying therapies. Challenges have been related to the variability that is inherent in the available cross-sectional processing tools, to the introduction of bias in longitudinal processing and to potential over-regularization. In this paper we introduce a novel longitudinal image processing framework, based on unbiased, robust, within-subject template creation, for automatic surface reconstruction and segmentation of brain MRI of arbitrarily many time points. We demonstrate that it is essential to treat all input images exactly the same as removing only interpolation asymmetries is not sufficient to remove processing bias. We successfully reduce variability and avoid over-regularization by initializing the processing in each time point with common information from the subject template. The presented results show a significant increase in precision and discrimination power while preserving the ability to detect large anatomical deviations; as such they hold great potential in clinical applications, e.g. allowing for smaller sample sizes or shorter trials to establish disease specific biomarkers or to quantify drug effects. |
| Author | Fischl, Bruce Reuter, Martin Rosas, H. Diana Schmansky, Nicholas J. |
| AuthorAffiliation | b Martinos Center for Biomedical Imaging, 143 13th Street, Charlestown, MA, USA c MIT Computer Science and AI Lab, Cambridge, MA, USA a Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA |
| AuthorAffiliation_xml | – name: c MIT Computer Science and AI Lab, Cambridge, MA, USA – name: a Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA – name: b Martinos Center for Biomedical Imaging, 143 13th Street, Charlestown, MA, USA |
| Author_xml | – sequence: 1 givenname: Martin surname: Reuter fullname: Reuter, Martin email: mreuter@nmr.mgh.harvard.edu organization: Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA – sequence: 2 givenname: Nicholas J. surname: Schmansky fullname: Schmansky, Nicholas J. organization: Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA – sequence: 3 givenname: H. Diana surname: Rosas fullname: Rosas, H. Diana organization: Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA – sequence: 4 givenname: Bruce surname: Fischl fullname: Fischl, Bruce organization: Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22430496$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk2LFDEQhoOsuB_6F6TBi5ce89HpTi6iu7iruOBlwWNI0tWzGTPJmKQX5t-b2Q9X5zRQkEDeeqoq9Z6ioxADINQQvCCY9B9WiwBzim6tl7CgmNAFriG6F-iEYMlbyQd6tLtz1gpC5DE6zXmFMZakE6_QMaUdw53sT9D3n67cutDm2azAlqbAeuN1gQZyqfjiYmimmJo5GKczjI2PYenKPLqgfXPfQKPrdZtdfo1eTtpnePN4nqGbyy83F1_b6x9X3y4-X7e271lphcZUDxMVhvBusqQnhgitRyP4NE6GAqYGD4SYgTBp-cTwQHsrNXAQZgB2hj4-YDezWcNoIZSkvdqk2k3aqqid-v8luFu1jHeKMSG7HlfA-0dAir_nOqhau2zBex0gzlkRzASXQmJygJRiwWjPd9J3e9JVnFP9mqriuBcDlZ2oqrf_Nv-366eNPE9nU8w5waSsK_d7qLM4XyuqnQXUSj1bQO0soHAN0VWA2AM81Tgg9fwhFer27hwkla2DYGF0qZpDjdEdAvm0B7HeBWe1_wXbwxB_ANxr6V8 |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2022_108578 crossref_primary_10_1038_s41380_018_0202_6 crossref_primary_10_1186_s13034_016_0093_8 crossref_primary_10_1177_0271678X19874790 crossref_primary_10_1016_j_jaac_2015_07_009 crossref_primary_10_1016_j_neurobiolaging_2020_05_009 crossref_primary_10_1016_j_neucli_2021_12_003 crossref_primary_10_1016_j_neurobiolaging_2020_05_008 crossref_primary_10_3390_biomedicines12040896 crossref_primary_10_1109_ACCESS_2017_2773359 crossref_primary_10_1016_j_neurobiolaging_2023_03_005 crossref_primary_10_1186_s13195_023_01173_1 crossref_primary_10_1017_S0954579418001475 crossref_primary_10_1093_scan_nst183 crossref_primary_10_1371_journal_pone_0168652 crossref_primary_10_1249_MSS_0000000000002666 crossref_primary_10_1186_s13550_018_0416_2 crossref_primary_10_1136_bjsports_2020_102002 crossref_primary_10_1016_j_neuroimage_2014_12_035 crossref_primary_10_1016_j_neurobiolaging_2014_08_031 crossref_primary_10_1016_j_neurobiolaging_2017_06_022 crossref_primary_10_1038_s41598_018_29017_1 crossref_primary_10_1136_jnnp_2021_326630 crossref_primary_10_1177_13524585231204710 crossref_primary_10_1016_j_neurobiolaging_2015_10_020 crossref_primary_10_3390_biomedicines12092081 crossref_primary_10_1016_j_neuroimage_2023_120237 crossref_primary_10_1093_scan_nsu022 crossref_primary_10_3233_JAD_210159 crossref_primary_10_1148_radiol_13131041 crossref_primary_10_1002_brb3_369 crossref_primary_10_1002_hbm_25455 crossref_primary_10_1038_s41380_021_01380_y crossref_primary_10_1038_s41598_022_10202_2 crossref_primary_10_1177_0271678X19874770 crossref_primary_10_1002_hipo_23411 crossref_primary_10_1016_j_drugalcdep_2021_108630 crossref_primary_10_1016_j_pneurobio_2014_02_004 crossref_primary_10_1016_j_jagp_2013_01_043 crossref_primary_10_1176_appi_ajp_2018_17070777 crossref_primary_10_1038_s41598_025_99326_9 crossref_primary_10_1016_j_nicl_2016_09_013 crossref_primary_10_1016_j_jaac_2016_02_009 crossref_primary_10_1002_dneu_22906 crossref_primary_10_1038_srep20482 crossref_primary_10_1212_WNL_0000000000209148 crossref_primary_10_1016_j_neuroimage_2014_12_006 crossref_primary_10_1002_hbm_23267 crossref_primary_10_3389_fnagi_2023_1193283 crossref_primary_10_1007_s11682_018_9826_z crossref_primary_10_1016_j_ntt_2016_09_005 crossref_primary_10_1016_j_arr_2016_01_003 crossref_primary_10_1016_j_tjfa_2024_100006 crossref_primary_10_1212_WNL_0000000000005551 crossref_primary_10_1016_j_neurad_2013_11_004 crossref_primary_10_1159_000442443 crossref_primary_10_1177_1971400917731301 crossref_primary_10_1016_j_ynirp_2022_100086 crossref_primary_10_1002_trc2_12121 crossref_primary_10_1002_hbm_25865 crossref_primary_10_1177_1352458514560928 crossref_primary_10_1016_j_neurobiolaging_2020_12_010 crossref_primary_10_1152_japplphysiol_00081_2019 crossref_primary_10_1002_hbm_25860 crossref_primary_10_1016_j_nicl_2019_101652 crossref_primary_10_1162_jocn_a_01375 crossref_primary_10_3389_fncom_2021_769982 crossref_primary_10_1007_s00259_019_04446_w crossref_primary_10_1016_j_nicl_2020_102178 crossref_primary_10_3389_fpsyt_2024_1404594 crossref_primary_10_1007_s12021_012_9156_z crossref_primary_10_1016_j_neuroimage_2014_05_044 crossref_primary_10_1016_j_tine_2019_100123 crossref_primary_10_3390_jpm12101555 crossref_primary_10_1002_hbm_26709 crossref_primary_10_1016_j_nicl_2020_102182 crossref_primary_10_3233_JAD_221238 crossref_primary_10_1016_j_neuroimage_2020_116563 crossref_primary_10_1038_npp_2013_273 crossref_primary_10_1016_j_ejrad_2024_111660 crossref_primary_10_1007_s00259_014_2704_z crossref_primary_10_1038_s43587_021_00070_2 crossref_primary_10_1002_hbm_25412 crossref_primary_10_1148_radiol_13122542 crossref_primary_10_1016_j_heliyon_2023_e22199 crossref_primary_10_1093_cercor_bht352 crossref_primary_10_1016_j_ijpsycho_2022_08_006 crossref_primary_10_1186_s13195_025_01835_2 crossref_primary_10_1016_j_nbd_2025_107078 crossref_primary_10_3233_JAD_160621 crossref_primary_10_3389_fpsyt_2025_1641745 crossref_primary_10_1080_21678421_2017_1407795 crossref_primary_10_1038_s41467_024_48015_8 crossref_primary_10_1016_j_neuroimage_2013_08_022 crossref_primary_10_1038_s41598_020_76528_x crossref_primary_10_1016_j_bandl_2018_12_002 crossref_primary_10_1016_j_neuroimage_2017_01_029 crossref_primary_10_1016_j_cortex_2014_04_018 crossref_primary_10_1016_j_parkreldis_2020_08_004 crossref_primary_10_1111_jne_13270 crossref_primary_10_1212_WNL_0000000000002490 crossref_primary_10_1109_TFUZZ_2022_3161729 crossref_primary_10_1177_1545968319899911 crossref_primary_10_1038_s41598_022_11636_4 crossref_primary_10_1016_j_neuroimage_2017_12_033 crossref_primary_10_1093_brain_awv266 crossref_primary_10_1002_hbm_25877 crossref_primary_10_1038_s41467_023_38910_x crossref_primary_10_1016_j_neuroimage_2017_12_037 crossref_primary_10_1212_WNL_0000000000005523 crossref_primary_10_1162_neco_a_01196 crossref_primary_10_1016_j_neurobiolaging_2012_10_018 crossref_primary_10_1016_j_neurobiolaging_2023_05_012 crossref_primary_10_1016_j_jad_2016_03_003 crossref_primary_10_1016_j_dcn_2022_101181 crossref_primary_10_1038_s41598_021_81355_9 crossref_primary_10_1002_hbm_24975 crossref_primary_10_1007_s10044_015_0492_0 crossref_primary_10_1093_cercor_bhab368 crossref_primary_10_1016_j_neuroimage_2019_116073 crossref_primary_10_1111_ene_12948 crossref_primary_10_1016_j_biopsych_2021_09_008 crossref_primary_10_1016_j_jpsychires_2013_05_008 crossref_primary_10_1089_neu_2017_5124 crossref_primary_10_1016_j_neurobiolaging_2019_07_015 crossref_primary_10_1016_j_brs_2022_10_007 crossref_primary_10_1038_s41398_020_0809_7 crossref_primary_10_1093_cercor_bhab379 crossref_primary_10_1016_j_visres_2023_108209 crossref_primary_10_1111_bdi_12771 crossref_primary_10_1176_appi_ajp_20220380 crossref_primary_10_3389_fncom_2019_00054 crossref_primary_10_1016_j_jpsychires_2020_01_013 crossref_primary_10_1212_01_wnl_0000438220_16190_42 crossref_primary_10_1159_000506133 crossref_primary_10_1155_2020_8836925 crossref_primary_10_1007_s00429_018_1777_z crossref_primary_10_1523_JNEUROSCI_1522_23_2024 crossref_primary_10_1002_hbm_23672 crossref_primary_10_1007_s00234_016_1740_8 crossref_primary_10_1016_j_dadm_2017_08_001 crossref_primary_10_1016_j_msard_2025_106411 crossref_primary_10_1016_j_eurpsy_2014_09_353 crossref_primary_10_1523_JNEUROSCI_1468_18_2019 crossref_primary_10_1016_j_eurpsy_2014_09_352 crossref_primary_10_3389_fnhum_2020_563415 crossref_primary_10_3389_fnagi_2016_00226 crossref_primary_10_3389_fninf_2021_689675 crossref_primary_10_1016_j_neuroimage_2019_116091 crossref_primary_10_1002_hbm_24513 crossref_primary_10_1186_s12877_018_0730_6 crossref_primary_10_1002_dev_22010 crossref_primary_10_3389_fnagi_2018_00325 crossref_primary_10_1002_jmri_25866 crossref_primary_10_1016_j_neuroimage_2014_03_072 crossref_primary_10_1016_j_pnpbp_2020_110180 crossref_primary_10_3389_fncir_2018_00079 crossref_primary_10_1016_j_neulet_2024_137943 crossref_primary_10_1017_S1366728923000445 crossref_primary_10_1111_ejn_14617 crossref_primary_10_1371_journal_pone_0244893 crossref_primary_10_1177_2055217319863122 crossref_primary_10_3389_fpsyt_2022_929306 crossref_primary_10_1002_nbm_5235 crossref_primary_10_1016_j_neuroimage_2022_118966 crossref_primary_10_1186_s11689_023_09477_x crossref_primary_10_1007_s12094_018_1903_7 crossref_primary_10_1080_02699052_2018_1494852 crossref_primary_10_3389_fnagi_2021_645258 crossref_primary_10_1080_02699052_2018_1494854 crossref_primary_10_1016_j_neuroimage_2014_10_023 crossref_primary_10_1002_hbm_24507 crossref_primary_10_1093_cercor_bhac244 crossref_primary_10_1016_j_neuroimage_2019_116037 crossref_primary_10_1017_S0033291723000387 crossref_primary_10_3389_fnins_2020_00754 crossref_primary_10_1002_hipo_23039 crossref_primary_10_1016_j_dcn_2024_101385 crossref_primary_10_1016_j_nicl_2022_103200 crossref_primary_10_3389_fnagi_2016_00297 crossref_primary_10_1002_dad2_12511 crossref_primary_10_1038_s41593_025_02037_7 crossref_primary_10_3389_fneur_2022_923988 crossref_primary_10_1111_bdi_12722 crossref_primary_10_1016_j_neuroimage_2014_10_059 crossref_primary_10_1016_j_media_2025_103540 crossref_primary_10_1177_1352458517722645 crossref_primary_10_1007_s11682_020_00372_w crossref_primary_10_1038_s41598_019_56923_9 crossref_primary_10_1192_bjp_bp_114_156588 crossref_primary_10_3389_fnagi_2016_00277 crossref_primary_10_1073_pnas_1508831112 crossref_primary_10_1186_s13195_021_00879_4 crossref_primary_10_1152_japplphysiol_00846_2016 crossref_primary_10_1016_j_patcog_2022_109076 crossref_primary_10_1002_hbm_24928 crossref_primary_10_1186_s10194_025_02009_z crossref_primary_10_1371_journal_pone_0277322 crossref_primary_10_1177_1756286419838673 crossref_primary_10_1016_j_neuroimage_2021_117793 crossref_primary_10_1016_j_neuroimage_2020_117012 crossref_primary_10_1038_s41467_025_55830_0 crossref_primary_10_3389_fnagi_2015_00014 crossref_primary_10_1177_20552173221144230 crossref_primary_10_3389_fnimg_2024_1355402 crossref_primary_10_1002_cne_24858 crossref_primary_10_1093_cercor_bhz053 crossref_primary_10_1002_mp_16655 crossref_primary_10_3390_jpm11080702 crossref_primary_10_3389_fnins_2025_1430185 crossref_primary_10_1159_000522654 crossref_primary_10_1038_s41598_018_33530_8 crossref_primary_10_1038_s41598_021_84549_3 crossref_primary_10_1016_j_msard_2024_106172 crossref_primary_10_1038_s41598_022_17727_6 crossref_primary_10_1007_s11604_019_00895_3 crossref_primary_10_1016_j_rehab_2021_101599 crossref_primary_10_1155_2019_3709402 crossref_primary_10_1186_s13195_018_0436_1 crossref_primary_10_1016_j_neuroimage_2018_09_006 crossref_primary_10_1093_brain_awaa106 crossref_primary_10_1038_s44294_024_00023_1 crossref_primary_10_1016_j_dcn_2017_10_001 crossref_primary_10_1038_s41597_021_00823_z crossref_primary_10_3389_frai_2023_1334613 crossref_primary_10_1016_j_neuroimage_2013_06_033 crossref_primary_10_3389_fpsyt_2018_00699 crossref_primary_10_1016_j_jtcvs_2018_08_116 crossref_primary_10_1016_j_neuroimage_2014_01_058 crossref_primary_10_1212_NXI_0000000000000374 crossref_primary_10_1523_JNEUROSCI_1745_22_2023 crossref_primary_10_3389_fnhum_2020_00307 crossref_primary_10_1016_j_neuroimage_2020_116932 crossref_primary_10_1503_jpn_230017 crossref_primary_10_7554_eLife_69995 crossref_primary_10_1371_journal_pone_0298235 crossref_primary_10_1016_j_biopsych_2018_08_021 crossref_primary_10_3389_fneur_2017_00615 crossref_primary_10_1016_j_bandl_2019_104654 crossref_primary_10_1007_s00521_021_05721_4 crossref_primary_10_1186_s12987_015_0004_z crossref_primary_10_1007_s00415_023_12172_5 crossref_primary_10_1016_j_cortex_2017_06_003 crossref_primary_10_1016_j_neuroimage_2015_11_054 crossref_primary_10_1186_s13195_024_01612_7 crossref_primary_10_1016_j_nicl_2019_102028 crossref_primary_10_3389_fnhum_2021_728993 crossref_primary_10_1002_alz_13158 crossref_primary_10_1007_s00394_025_03664_3 crossref_primary_10_1016_j_compbiomed_2023_107614 crossref_primary_10_1016_j_nicl_2023_103531 crossref_primary_10_1186_s12888_015_0546_2 crossref_primary_10_1016_j_bbi_2023_06_027 crossref_primary_10_1016_j_neuroimage_2016_04_011 crossref_primary_10_1016_j_bpsc_2019_02_003 crossref_primary_10_1111_ejn_15411 crossref_primary_10_1016_j_soard_2023_02_022 crossref_primary_10_1371_journal_pone_0207885 crossref_primary_10_1016_j_jaac_2022_03_026 crossref_primary_10_1002_hbm_22859 crossref_primary_10_1177_09727531221117633 crossref_primary_10_7554_eLife_66466 crossref_primary_10_1016_j_neuroimage_2016_04_004 crossref_primary_10_1016_j_mri_2019_04_002 crossref_primary_10_1002_hbm_22856 crossref_primary_10_1073_pnas_1601443113 crossref_primary_10_1016_j_neuroimage_2022_119770 crossref_primary_10_1371_journal_pone_0158036 crossref_primary_10_1111_ene_15289 crossref_primary_10_3389_fnagi_2025_1542857 crossref_primary_10_3390_brainsci13111582 crossref_primary_10_1007_s11682_018_9887_z crossref_primary_10_1186_s13195_019_0506_z crossref_primary_10_1016_j_neuroimage_2021_118142 crossref_primary_10_3389_fneur_2021_640696 crossref_primary_10_1016_j_neurobiolaging_2018_03_024 crossref_primary_10_1016_j_schres_2025_08_007 crossref_primary_10_3389_fnagi_2016_00328 crossref_primary_10_3389_fpsyt_2021_664811 crossref_primary_10_1089_neu_2014_3534 crossref_primary_10_1523_JNEUROSCI_2733_16_2016 crossref_primary_10_1038_s41398_020_00962_8 crossref_primary_10_1002_dad2_70089 crossref_primary_10_1007_s00330_022_08907_z crossref_primary_10_1016_j_pscychresns_2022_111494 crossref_primary_10_1007_s00415_023_12087_1 crossref_primary_10_3389_fnagi_2015_00081 crossref_primary_10_1016_j_ebiom_2020_102910 crossref_primary_10_1016_j_ijbiomac_2025_142887 crossref_primary_10_1016_j_neuroimage_2021_118114 crossref_primary_10_3389_fnagi_2015_00087 crossref_primary_10_1016_j_neuroimage_2021_118113 crossref_primary_10_1093_brain_awad126 crossref_primary_10_1016_j_archger_2022_104846 crossref_primary_10_1016_j_nicl_2019_102063 crossref_primary_10_1186_s12888_015_0457_2 crossref_primary_10_1186_s13195_025_01742_6 crossref_primary_10_3390_life12040514 crossref_primary_10_3389_fnins_2016_00236 crossref_primary_10_1016_j_nicl_2014_08_017 crossref_primary_10_1109_TCBB_2022_3202707 crossref_primary_10_1016_j_neuroimage_2018_09_060 crossref_primary_10_1038_s41598_020_78471_3 crossref_primary_10_1016_j_bpsgos_2022_02_003 crossref_primary_10_1371_journal_pone_0210641 crossref_primary_10_3389_fnhum_2025_1613993 crossref_primary_10_1038_tp_2017_131 crossref_primary_10_1523_JNEUROSCI_1522_21_2021 crossref_primary_10_1007_s10548_017_0544_4 crossref_primary_10_1186_2045_5380_4_4 crossref_primary_10_1016_j_neuroimage_2016_04_058 crossref_primary_10_1016_j_neuron_2015_12_018 crossref_primary_10_1007_s10334_025_01276_w crossref_primary_10_1093_brain_awad113 crossref_primary_10_1212_WNL_0000000000001502 crossref_primary_10_1093_cercor_bhy126 crossref_primary_10_1016_j_expneurol_2021_113853 crossref_primary_10_3389_fnagi_2022_795764 crossref_primary_10_1523_JNEUROSCI_2028_17_2017 crossref_primary_10_1007_s00429_024_02885_2 crossref_primary_10_1016_j_yebeh_2022_108560 crossref_primary_10_1016_j_jneumeth_2022_109662 crossref_primary_10_1016_j_jad_2020_01_033 crossref_primary_10_1016_j_jpsychires_2020_03_013 crossref_primary_10_1038_s41597_022_01231_7 crossref_primary_10_1093_brain_awad100 crossref_primary_10_1371_journal_pone_0239021 crossref_primary_10_1002_jmri_27568 crossref_primary_10_1016_j_yebeh_2021_108272 crossref_primary_10_1016_j_jneumeth_2025_110517 crossref_primary_10_1016_j_pscychresns_2022_111462 crossref_primary_10_1177_1087054716682336 crossref_primary_10_1016_j_pscychresns_2015_06_014 crossref_primary_10_1001_jamanetworkopen_2021_25166 crossref_primary_10_1016_j_nicl_2022_103292 crossref_primary_10_1186_s12877_023_03849_7 crossref_primary_10_1016_j_nicl_2019_102081 crossref_primary_10_3233_JPD_212691 crossref_primary_10_1016_j_cortex_2015_12_001 crossref_primary_10_1016_j_bpsc_2018_09_006 crossref_primary_10_1038_s41467_024_44863_6 crossref_primary_10_1093_brain_awv211 crossref_primary_10_1002_ana_26572 crossref_primary_10_1002_cjs_11521 crossref_primary_10_1016_j_jneuroling_2016_10_004 crossref_primary_10_1017_S1355617715000673 crossref_primary_10_1007_s11682_021_00627_0 crossref_primary_10_1017_nws_2019_9 crossref_primary_10_1007_s10545_018_0162_7 crossref_primary_10_1093_eurheartj_ehab003 crossref_primary_10_1038_s41380_020_0757_x crossref_primary_10_1016_j_pscychresns_2022_111446 crossref_primary_10_3389_fneur_2023_1112865 crossref_primary_10_1162_imag_a_00016 crossref_primary_10_3389_fnins_2021_666000 crossref_primary_10_3389_fphys_2021_643725 crossref_primary_10_1111_jon_12816 crossref_primary_10_1002_hbm_26388 crossref_primary_10_1186_s40814_024_01495_3 crossref_primary_10_1080_10255842_2021_1927000 crossref_primary_10_1038_mp_2016_19 crossref_primary_10_1038_s41398_019_0440_7 crossref_primary_10_1016_j_bpsc_2025_01_010 crossref_primary_10_1371_journal_pone_0147774 crossref_primary_10_1002_sim_9442 crossref_primary_10_1038_s41531_021_00164_z crossref_primary_10_1007_s00429_020_02172_w crossref_primary_10_1016_j_pscychresns_2020_111232 crossref_primary_10_1016_j_neuroimage_2020_116991 crossref_primary_10_1097_YCT_0000000000000985 crossref_primary_10_1371_journal_pone_0170547 crossref_primary_10_1002_hbm_70056 crossref_primary_10_1016_j_jns_2019_02_002 crossref_primary_10_1016_j_biopsych_2019_05_017 crossref_primary_10_3389_fneur_2021_620198 crossref_primary_10_1186_s41983_023_00662_2 crossref_primary_10_1007_s12640_019_00158_z crossref_primary_10_1038_s41598_025_98399_w crossref_primary_10_1016_j_neuroimage_2016_02_003 crossref_primary_10_1016_j_clinph_2021_10_008 crossref_primary_10_1016_j_neubiorev_2018_04_018 crossref_primary_10_1002_hbm_25473 crossref_primary_10_1038_mp_2016_35 crossref_primary_10_1002_hbm_23299 crossref_primary_10_1002_jcv2_12210 crossref_primary_10_1002_brb3_1197 crossref_primary_10_1002_acn3_51142 crossref_primary_10_1002_mds_30325 crossref_primary_10_1002_da_23229 crossref_primary_10_1002_jmri_28009 crossref_primary_10_1371_journal_pone_0287921 crossref_primary_10_1016_j_neurobiolaging_2015_05_021 crossref_primary_10_1002_mds_28473 crossref_primary_10_1159_000362685 crossref_primary_10_1016_j_media_2022_102576 crossref_primary_10_1002_hbm_23289 crossref_primary_10_1002_jnr_24142 crossref_primary_10_1002_dad2_12195 crossref_primary_10_1002_acn3_51158 crossref_primary_10_1016_j_nicl_2018_10_019 crossref_primary_10_1097_YCT_0000000000000930 crossref_primary_10_1016_j_drugalcdep_2018_02_007 crossref_primary_10_1093_sleep_zsaa054 crossref_primary_10_1523_JNEUROSCI_2330_22_2023 crossref_primary_10_1111_head_14360 crossref_primary_10_1016_j_neuroimage_2013_06_058 crossref_primary_10_1111_joa_13318 crossref_primary_10_1016_j_ebiom_2024_105523 crossref_primary_10_1186_s12888_024_05749_5 crossref_primary_10_1111_pcn_13626 crossref_primary_10_1016_j_neuroimage_2020_116946 crossref_primary_10_1016_j_inffus_2020_01_001 crossref_primary_10_1016_j_neuroimage_2016_02_034 crossref_primary_10_1177_0271678X241237624 crossref_primary_10_1007_s41465_018_0077_0 crossref_primary_10_1093_brain_awae034 crossref_primary_10_1007_s00401_013_1236_0 crossref_primary_10_1038_s41398_019_0618_z crossref_primary_10_1177_1352458517748474 crossref_primary_10_1155_2020_5894021 crossref_primary_10_3233_JAD_190875 crossref_primary_10_1007_s40520_025_03062_z crossref_primary_10_1016_j_nicl_2019_102008 crossref_primary_10_1016_j_jagp_2024_03_001 crossref_primary_10_1371_journal_pone_0186071 crossref_primary_10_1016_j_neurobiolaging_2015_05_011 crossref_primary_10_3389_fpsyt_2022_1092784 crossref_primary_10_1093_brain_awae024 crossref_primary_10_1002_ana_25214 crossref_primary_10_1017_S0033291713001712 crossref_primary_10_1186_s43045_020_00025_0 crossref_primary_10_1016_j_jalz_2014_05_1754 crossref_primary_10_1002_brb3_3330 crossref_primary_10_1002_brb3_3334 crossref_primary_10_1016_j_neuroimage_2015_07_087 crossref_primary_10_1016_j_pscychresns_2018_06_002 crossref_primary_10_1097_WNN_0000000000000318 crossref_primary_10_1503_jpn_190029 crossref_primary_10_1016_j_nicl_2019_101958 crossref_primary_10_1016_j_parkreldis_2016_06_019 crossref_primary_10_3389_fneur_2019_00234 crossref_primary_10_1093_brain_awx354 crossref_primary_10_1016_j_neuroimage_2024_120865 crossref_primary_10_1016_j_neurobiolaging_2015_09_018 crossref_primary_10_1038_mp_2016_4 crossref_primary_10_1016_j_jpsychires_2020_07_034 crossref_primary_10_1109_TMI_2020_2971422 crossref_primary_10_7554_eLife_35082 crossref_primary_10_1016_j_jpsychires_2025_08_005 crossref_primary_10_1016_j_drugalcdep_2014_09_016 crossref_primary_10_1016_j_jpain_2021_07_010 crossref_primary_10_1016_j_neuroimage_2018_12_038 crossref_primary_10_1016_j_bbr_2018_06_013 crossref_primary_10_1093_cercor_bhaa322 crossref_primary_10_1523_JNEUROSCI_1216_14_2014 crossref_primary_10_3390_biomedicines11010233 crossref_primary_10_1016_j_bbih_2021_100376 crossref_primary_10_1016_j_dcn_2015_08_003 crossref_primary_10_1016_j_ntt_2016_11_003 crossref_primary_10_1038_s41380_023_02318_2 crossref_primary_10_1002_hbm_23397 crossref_primary_10_1016_j_neurobiolaging_2016_12_002 crossref_primary_10_1093_brain_awx371 crossref_primary_10_1016_j_media_2017_02_007 crossref_primary_10_1109_TMI_2012_2224879 crossref_primary_10_1016_j_dcn_2024_101448 crossref_primary_10_1016_j_neurobiolaging_2019_02_030 crossref_primary_10_1162_imag_a_00500 crossref_primary_10_1016_j_neuroimage_2018_12_003 crossref_primary_10_1016_j_biopsych_2018_05_019 crossref_primary_10_1093_cercor_bhaa332 crossref_primary_10_1002_cjs_11588 crossref_primary_10_1007_s11682_017_9746_3 crossref_primary_10_1002_brb3_2490 crossref_primary_10_1002_hbm_25560 crossref_primary_10_1148_radiol_2017162403 crossref_primary_10_1111_jon_12781 crossref_primary_10_3389_fneur_2022_871421 crossref_primary_10_1016_j_jocn_2019_02_007 crossref_primary_10_1186_s12967_015_0679_6 crossref_primary_10_1016_j_ijmedinf_2024_105549 crossref_primary_10_1016_j_nicl_2021_102781 crossref_primary_10_1159_000502977 crossref_primary_10_3390_ijerph19106078 crossref_primary_10_1038_s41598_024_68050_1 crossref_primary_10_1038_s41598_024_71965_4 crossref_primary_10_1111_sms_13015 crossref_primary_10_1016_j_biopsych_2018_05_008 crossref_primary_10_1007_s00415_021_10560_3 crossref_primary_10_1016_j_neuroimage_2018_03_023 crossref_primary_10_1016_j_neuropsychologia_2023_108494 crossref_primary_10_1016_j_schres_2023_03_021 crossref_primary_10_1016_j_alcohol_2023_08_011 crossref_primary_10_1038_s41467_023_42588_6 crossref_primary_10_1148_radiol_2017161981 crossref_primary_10_3233_JAD_180570 crossref_primary_10_1007_s11682_016_9636_0 crossref_primary_10_1038_s41467_024_54022_6 crossref_primary_10_1523_JNEUROSCI_1459_13_2013 crossref_primary_10_1038_s41562_021_01141_5 crossref_primary_10_1016_j_seizure_2022_09_006 crossref_primary_10_1080_02699052_2020_1858345 crossref_primary_10_1186_s12888_017_1457_1 crossref_primary_10_1016_j_nicl_2016_02_005 crossref_primary_10_1016_j_brs_2017_05_005 crossref_primary_10_1177_0706743720904598 crossref_primary_10_1038_s41597_025_05740_z crossref_primary_10_3390_brainsci7120164 crossref_primary_10_3389_fpsyt_2022_935043 crossref_primary_10_1038_s41526_025_00497_6 crossref_primary_10_3233_JAD_201525 crossref_primary_10_1016_j_brainres_2024_148777 crossref_primary_10_1371_journal_pone_0166785 crossref_primary_10_1038_s41597_022_01171_2 crossref_primary_10_1136_jnnp_2019_321767 crossref_primary_10_25259_SNI_787_2021 crossref_primary_10_1016_j_neurobiolaging_2019_11_020 crossref_primary_10_1002_hbm_23350 crossref_primary_10_1177_15459683211062897 crossref_primary_10_1186_alzrt144 crossref_primary_10_1016_j_neuroimage_2015_12_003 crossref_primary_10_1038_s42003_021_01863_2 crossref_primary_10_1145_3387131 crossref_primary_10_1109_ACCESS_2022_3230688 crossref_primary_10_1111_neup_70000 crossref_primary_10_3389_fpsyt_2024_1365159 crossref_primary_10_1111_acer_13882 crossref_primary_10_1093_cercor_bhs379 crossref_primary_10_1212_WNL_0000000000005415 crossref_primary_10_1016_j_dcn_2024_101407 crossref_primary_10_1212_NXI_0000000000200125 crossref_primary_10_3233_JAD_160504 crossref_primary_10_1111_ene_15918 crossref_primary_10_1186_s12888_019_2141_4 crossref_primary_10_1007_s11682_019_00245_x crossref_primary_10_1016_j_compbiomed_2017_03_028 crossref_primary_10_1093_schbul_sbaf049 crossref_primary_10_1002_da_22524 crossref_primary_10_1038_npp_2015_90 crossref_primary_10_3233_JAD_230080 crossref_primary_10_1016_j_media_2024_103193 crossref_primary_10_3389_fnagi_2018_00076 crossref_primary_10_1177_15500594211050487 crossref_primary_10_1016_j_pnpbp_2019_109824 crossref_primary_10_1093_cercor_bhy028 crossref_primary_10_1097_HJH_0000000000000531 crossref_primary_10_1186_s13195_022_01081_w crossref_primary_10_1016_j_bpsc_2024_07_012 crossref_primary_10_1038_s41467_023_43251_w crossref_primary_10_1007_s00234_022_03019_3 crossref_primary_10_1371_journal_pone_0093715 crossref_primary_10_1371_journal_pone_0233670 crossref_primary_10_1212_WNL_0000000000000187 crossref_primary_10_1089_brain_2014_0235 crossref_primary_10_1093_cercor_bhad421 crossref_primary_10_1002_cnm_3225 crossref_primary_10_1007_s00234_018_2017_1 crossref_primary_10_1016_j_nicl_2018_07_015 crossref_primary_10_1016_j_jshs_2023_09_001 crossref_primary_10_1210_clinem_dgae014 crossref_primary_10_1038_s41467_021_26713_x crossref_primary_10_1089_neu_2017_5002 crossref_primary_10_1016_j_neuroimage_2019_01_045 crossref_primary_10_1093_brain_awaa443 crossref_primary_10_3389_fnagi_2021_787654 crossref_primary_10_3389_fnins_2021_669194 crossref_primary_10_1016_j_jneumeth_2018_06_021 crossref_primary_10_2217_3dp_2021_0018 crossref_primary_10_3390_brainsci12111522 crossref_primary_10_1002_mds_30182 crossref_primary_10_1038_s41598_022_06651_4 crossref_primary_10_1001_jama_2022_21680 crossref_primary_10_1038_s41467_023_37463_3 crossref_primary_10_1016_j_neuropsychologia_2016_01_012 crossref_primary_10_1016_j_nicl_2018_07_008 crossref_primary_10_1038_s41598_022_25503_9 crossref_primary_10_1109_TMI_2023_3330576 crossref_primary_10_1016_j_jpsychires_2023_11_040 crossref_primary_10_1016_j_neurobiolaging_2013_08_027 crossref_primary_10_1016_j_schres_2020_02_005 crossref_primary_10_1038_s41598_022_18129_4 crossref_primary_10_1007_s00234_020_02611_9 crossref_primary_10_1016_j_nicl_2017_08_014 crossref_primary_10_1162_jocn_a_01430 crossref_primary_10_1371_journal_pone_0175674 crossref_primary_10_1111_psyg_12475 crossref_primary_10_3389_fnagi_2016_00336 crossref_primary_10_1016_j_biopsych_2020_08_008 crossref_primary_10_1016_j_nicl_2019_101902 crossref_primary_10_1007_s00330_018_5710_x crossref_primary_10_1523_JNEUROSCI_3470_17_2018 crossref_primary_10_1111_sjop_12705 crossref_primary_10_1109_TKDE_2018_2816029 crossref_primary_10_1371_journal_pone_0176519 crossref_primary_10_1371_journal_pone_0269649 crossref_primary_10_1002_hbm_25957 crossref_primary_10_1016_j_neurobiolaging_2022_04_010 crossref_primary_10_3389_fpsyg_2022_917189 crossref_primary_10_1007_s00429_019_01829_5 crossref_primary_10_1016_j_exger_2020_111049 crossref_primary_10_1016_j_msard_2015_10_006 crossref_primary_10_1002_jmri_25538 crossref_primary_10_1016_j_media_2014_06_007 crossref_primary_10_3233_BPL_190087 crossref_primary_10_1016_j_neuroimage_2021_118514 crossref_primary_10_1016_j_ynirp_2022_100121 crossref_primary_10_3389_fneur_2023_1257886 crossref_primary_10_1371_journal_pone_0117785 crossref_primary_10_1016_j_dcn_2013_12_002 crossref_primary_10_1016_j_celrep_2023_113432 crossref_primary_10_1177_09622802211022404 crossref_primary_10_1038_s41598_021_87434_1 crossref_primary_10_1038_s41467_019_13599_z crossref_primary_10_1016_j_neuroimage_2018_01_020 crossref_primary_10_1016_j_nicl_2019_101927 crossref_primary_10_3389_fnagi_2021_752575 crossref_primary_10_1016_j_neuroimage_2019_116162 crossref_primary_10_1016_j_neuroimage_2020_117373 crossref_primary_10_1002_alz_13352 crossref_primary_10_1016_j_neuroimage_2023_120176 crossref_primary_10_1007_s10548_018_0659_2 crossref_primary_10_3389_fneur_2020_575611 crossref_primary_10_1007_s11682_019_00089_5 crossref_primary_10_1016_j_clineuro_2024_108342 crossref_primary_10_1016_j_neuroimage_2018_01_032 crossref_primary_10_1186_s12974_022_02476_0 crossref_primary_10_1186_s40708_023_00189_5 crossref_primary_10_1089_neu_2023_0336 crossref_primary_10_3233_JAD_180152 crossref_primary_10_1016_j_cortex_2017_07_007 crossref_primary_10_1177_1352458515604383 crossref_primary_10_1016_j_euroneuro_2017_12_009 crossref_primary_10_1016_j_jalz_2018_12_003 crossref_primary_10_3389_fpsyt_2020_00784 crossref_primary_10_1016_j_dcn_2021_100997 crossref_primary_10_1016_j_euroneuro_2020_01_002 crossref_primary_10_1111_ejn_15624 crossref_primary_10_1162_netn_a_00453 crossref_primary_10_1017_S0033291724000394 crossref_primary_10_1038_s41598_024_80153_3 crossref_primary_10_1016_j_dadm_2019_04_010 crossref_primary_10_1016_j_dcn_2024_101498 crossref_primary_10_3233_JAD_181016 crossref_primary_10_3233_JAD_150780 crossref_primary_10_1162_jocn_a_00549 crossref_primary_10_1002_jmri_27636 crossref_primary_10_1093_cercor_bhac053 crossref_primary_10_1186_s13098_021_00691_y crossref_primary_10_1016_j_neucli_2024_102965 crossref_primary_10_1109_ACCESS_2021_3121609 crossref_primary_10_1093_cercor_bhw246 crossref_primary_10_1177_1352458516656808 crossref_primary_10_3389_fnhum_2017_00590 crossref_primary_10_1016_j_psychres_2021_113772 crossref_primary_10_1038_s41467_024_51443_1 crossref_primary_10_1016_j_neuroscience_2017_07_070 crossref_primary_10_3389_fnana_2018_00111 crossref_primary_10_1111_acps_12314 crossref_primary_10_1007_s11357_024_01483_8 crossref_primary_10_1016_j_ymgme_2021_04_006 crossref_primary_10_1093_schbul_sbu150 crossref_primary_10_3233_JAD_230458 crossref_primary_10_1007_s12035_022_03132_7 crossref_primary_10_1016_j_bpsc_2021_07_002 crossref_primary_10_1038_srep38366 crossref_primary_10_1111_ejn_13340 crossref_primary_10_1016_j_orcp_2021_08_002 crossref_primary_10_3389_fneur_2020_00952 crossref_primary_10_1038_s41380_022_01842_x crossref_primary_10_1016_j_neuroimage_2014_08_038 crossref_primary_10_1016_j_jnha_2024_100432 crossref_primary_10_3233_JAD_215289 crossref_primary_10_1007_s12603_023_2020_z crossref_primary_10_1186_s10194_021_01216_8 crossref_primary_10_1016_j_bandl_2019_04_008 crossref_primary_10_1016_j_neurobiolaging_2024_09_004 crossref_primary_10_1016_j_nicl_2023_103421 crossref_primary_10_1162_imag_a_00180 crossref_primary_10_1186_s12937_024_00935_3 crossref_primary_10_1016_j_neuroimage_2021_118498 crossref_primary_10_1016_j_ijrobp_2021_12_172 crossref_primary_10_1080_24725579_2017_1423419 crossref_primary_10_1038_s41598_022_06459_2 crossref_primary_10_1007_s00429_014_0947_x crossref_primary_10_1016_j_biopsych_2018_01_016 crossref_primary_10_1162_imag_a_00188 crossref_primary_10_1212_WNL_0000000000207882 crossref_primary_10_3389_fnhum_2024_1188533 crossref_primary_10_1007_s10334_025_01262_2 crossref_primary_10_1016_j_neuroimage_2023_119950 crossref_primary_10_1038_s41380_024_02592_8 crossref_primary_10_1016_j_yebeh_2019_106516 crossref_primary_10_1177_13872877251328941 crossref_primary_10_1371_journal_pone_0295069 crossref_primary_10_1002_jnr_25135 crossref_primary_10_1016_j_neurobiolaging_2014_05_038 crossref_primary_10_1038_s41598_020_62263_w crossref_primary_10_7554_eLife_95823 crossref_primary_10_1089_brain_2020_1003 crossref_primary_10_1038_s41398_021_01628_9 crossref_primary_10_1016_j_compbiomed_2022_105271 crossref_primary_10_1371_journal_pone_0170018 crossref_primary_10_3390_geriatrics2040034 crossref_primary_10_1002_jcsm_13396 crossref_primary_10_1038_s41598_023_31819_x crossref_primary_10_1093_cercor_bhx131 crossref_primary_10_1111_jsr_13538 crossref_primary_10_1002_art_42755 crossref_primary_10_1111_pcn_13362 crossref_primary_10_1111_1753_0407_12773 crossref_primary_10_1002_ana_25150 crossref_primary_10_1093_cercor_bhx137 crossref_primary_10_1016_j_neurobiolaging_2017_01_014 crossref_primary_10_1016_j_neurobiolaging_2017_01_013 crossref_primary_10_1186_s13195_024_01381_3 crossref_primary_10_1007_s00415_021_10512_x crossref_primary_10_1210_clinem_dgaa023 crossref_primary_10_3390_cells9040895 crossref_primary_10_1002_mds_25240 crossref_primary_10_1007_s11682_018_9931_z crossref_primary_10_1038_s41537_022_00296_y crossref_primary_10_1002_hbm_26039 crossref_primary_10_1016_j_neucom_2020_05_087 crossref_primary_10_1016_j_neuroimage_2015_03_035 crossref_primary_10_1038_s41598_024_68002_9 crossref_primary_10_1016_j_jaac_2017_08_008 crossref_primary_10_1016_j_mri_2021_09_004 crossref_primary_10_3389_fnut_2022_846148 crossref_primary_10_1002_jmri_70052 crossref_primary_10_3390_brainsci14111066 crossref_primary_10_1016_j_neuroimage_2021_118009 crossref_primary_10_1016_j_bandc_2023_105960 crossref_primary_10_1016_j_neurobiolaging_2014_05_011 crossref_primary_10_3389_fnhum_2017_00157 crossref_primary_10_1016_j_neuroimage_2021_118004 crossref_primary_10_1016_j_neuroimage_2021_118489 crossref_primary_10_1016_j_reia_2025_202689 crossref_primary_10_1007_s12311_018_0943_4 crossref_primary_10_1002_alz_14160 crossref_primary_10_1007_s10549_022_06597_1 crossref_primary_10_1016_j_schres_2022_12_001 crossref_primary_10_1093_cercor_bhx157 crossref_primary_10_1038_s41386_024_01836_z crossref_primary_10_1016_j_jalz_2014_12_005 crossref_primary_10_1016_j_neuroimage_2021_118450 crossref_primary_10_3233_JAD_150270 crossref_primary_10_1007_s00259_019_04519_w crossref_primary_10_1192_bjpo_bp_115_002444 crossref_primary_10_1002_jnr_25176 crossref_primary_10_1038_s41598_020_72654_8 crossref_primary_10_1016_j_neuroimage_2022_119616 crossref_primary_10_1186_s12868_023_00783_7 crossref_primary_10_1016_j_neuroimage_2023_119909 crossref_primary_10_1007_s11336_023_09910_z crossref_primary_10_1080_23279095_2019_1710509 crossref_primary_10_1016_j_nicl_2023_103472 crossref_primary_10_1016_j_neurol_2024_02_387 crossref_primary_10_3390_s24248152 crossref_primary_10_1002_epi4_12754 crossref_primary_10_1002_hbm_25159 crossref_primary_10_1002_hbm_26003 crossref_primary_10_1111_jon_12716 crossref_primary_10_1016_j_psyneuen_2020_104779 crossref_primary_10_1016_j_nicl_2020_102545 crossref_primary_10_1038_s41598_022_18805_5 crossref_primary_10_1212_WN9_0000000000000013 crossref_primary_10_1016_j_jneumeth_2022_109563 crossref_primary_10_1093_cercor_bhv307 crossref_primary_10_1016_j_jneumeth_2023_110032 crossref_primary_10_1016_j_brainres_2015_10_002 crossref_primary_10_1016_j_neuroimage_2022_119239 crossref_primary_10_1177_0271678X211067455 crossref_primary_10_1038_s41562_021_01247_w crossref_primary_10_1038_s41398_020_01090_z crossref_primary_10_1111_acps_13259 crossref_primary_10_1007_s10072_019_03817_3 crossref_primary_10_1016_j_euroneuro_2017_08_433 crossref_primary_10_1038_npp_2017_5 crossref_primary_10_3233_JAD_180943 crossref_primary_10_1002_mds_29633 crossref_primary_10_1093_brain_awac187 crossref_primary_10_1007_s11065_024_09655_1 crossref_primary_10_1089_neu_2015_4253 crossref_primary_10_1016_j_neuroimage_2015_01_032 crossref_primary_10_1016_j_nicl_2021_102804 crossref_primary_10_1038_s41593_024_01741_0 crossref_primary_10_1162_imag_a_00108 crossref_primary_10_1016_j_neurad_2021_11_007 crossref_primary_10_1016_j_cortex_2014_11_019 crossref_primary_10_3171_2022_1_JNS212943 crossref_primary_10_1093_scan_nsx003 crossref_primary_10_1007_s00259_023_06196_2 crossref_primary_10_1038_s41380_020_00975_1 crossref_primary_10_1192_bjp_2025_10302 crossref_primary_10_1002_ana_25145 crossref_primary_10_1136_jnnp_2017_317443 crossref_primary_10_1159_000447744 crossref_primary_10_3389_fnana_2020_00020 crossref_primary_10_1371_journal_pone_0102312 crossref_primary_10_1016_j_neuroimage_2016_09_011 crossref_primary_10_1155_2021_6628036 crossref_primary_10_1177_1877718X241308141 crossref_primary_10_1016_j_neuroimage_2020_116864 crossref_primary_10_1016_j_nicl_2015_09_003 crossref_primary_10_1016_j_pscychresns_2020_111100 crossref_primary_10_3389_fnins_2022_1058137 crossref_primary_10_1016_j_ins_2020_05_001 crossref_primary_10_1038_s41598_018_25377_w crossref_primary_10_1016_j_bbi_2025_01_028 crossref_primary_10_1111_jsr_70086 crossref_primary_10_1177_1352458519831400 crossref_primary_10_1017_S0033291714000877 crossref_primary_10_1523_JNEUROSCI_0203_14_2014 crossref_primary_10_1007_s00234_024_03516_7 crossref_primary_10_1038_srep25007 crossref_primary_10_3389_fninf_2023_1104508 crossref_primary_10_1523_JNEUROSCI_3302_16_2017 crossref_primary_10_1016_j_dcn_2018_02_008 crossref_primary_10_7554_eLife_66968 crossref_primary_10_1038_s41537_022_00230_2 crossref_primary_10_3389_fneur_2018_00107 crossref_primary_10_1016_j_clinph_2020_04_168 crossref_primary_10_1016_j_dcn_2015_04_006 crossref_primary_10_1016_j_neuroimage_2013_11_010 crossref_primary_10_1080_21678421_2018_1517180 crossref_primary_10_1007_s11227_020_03154_9 crossref_primary_10_1159_000362328 crossref_primary_10_1002_ana_26894 crossref_primary_10_1016_j_neuroimage_2021_118076 crossref_primary_10_3389_frai_2023_1286266 crossref_primary_10_1016_j_media_2023_102744 crossref_primary_10_5114_pjr_2023_124433 crossref_primary_10_1007_s11845_023_03528_x crossref_primary_10_1161_STROKEAHA_120_030256 crossref_primary_10_3390_brainsci14121266 crossref_primary_10_1097_QAD_0000000000002436 crossref_primary_10_1016_j_cortex_2021_08_010 crossref_primary_10_1038_s41598_020_65957_3 crossref_primary_10_7717_peerj_2442 crossref_primary_10_1038_s41598_023_32754_7 crossref_primary_10_1002_ana_25556 crossref_primary_10_1371_journal_pone_0114721 crossref_primary_10_1093_cercor_bhaf145 crossref_primary_10_1186_s12883_021_02446_8 crossref_primary_10_1684_epd_2020_1163 crossref_primary_10_1002_ana_24240 crossref_primary_10_1002_da_22471 crossref_primary_10_1002_hbm_24287 crossref_primary_10_1162_imag_a_00547 crossref_primary_10_1002_mp_18039 crossref_primary_10_1007_s00415_012_6762_5 crossref_primary_10_1016_j_schres_2013_03_028 crossref_primary_10_1038_s41398_020_00965_5 crossref_primary_10_1016_j_neuroimage_2025_121183 crossref_primary_10_1371_journal_pcbi_1005209 crossref_primary_10_3233_JAD_200175 crossref_primary_10_3171_2018_2_PEDS17671 crossref_primary_10_1016_j_nicl_2018_05_030 crossref_primary_10_1016_j_cortex_2015_08_002 crossref_primary_10_1080_17470919_2017_1361864 crossref_primary_10_1186_s12887_017_0905_x crossref_primary_10_1002_mds_29219 crossref_primary_10_1002_acn3_615 crossref_primary_10_1002_dad2_12288 crossref_primary_10_1016_j_brs_2025_06_007 crossref_primary_10_1016_j_neuroimage_2021_118067 crossref_primary_10_1136_jnnp_2017_315676 crossref_primary_10_1002_hbm_26521 crossref_primary_10_1016_j_nicl_2022_102949 crossref_primary_10_1016_j_pnpbp_2022_110551 crossref_primary_10_1111_jon_12676 crossref_primary_10_1093_gigascience_giw011 crossref_primary_10_1002_alz_12970 crossref_primary_10_1073_pnas_2203039119 crossref_primary_10_1111_gbb_12182 crossref_primary_10_1093_gerona_glaf124 crossref_primary_10_1016_j_bandc_2020_105517 crossref_primary_10_1080_09273972_2017_1418898 crossref_primary_10_1016_j_jneumeth_2014_04_020 crossref_primary_10_1002_acn3_70010 crossref_primary_10_1038_s41386_020_0665_4 crossref_primary_10_1089_brain_2017_0487 crossref_primary_10_1038_s42003_021_02294_9 crossref_primary_10_1016_j_neuroimage_2014_04_015 crossref_primary_10_1016_j_neuroscience_2020_10_031 crossref_primary_10_1016_j_cortex_2019_06_008 crossref_primary_10_1162_IMAG_a_48 crossref_primary_10_1016_j_neuroimage_2012_10_086 crossref_primary_10_1038_srep33596 crossref_primary_10_1016_j_neurobiolaging_2025_07_007 crossref_primary_10_1038_s41598_021_88918_w crossref_primary_10_1186_s10194_025_02118_9 crossref_primary_10_1016_j_dcn_2023_101294 crossref_primary_10_1016_j_ajcnut_2023_06_008 crossref_primary_10_12688_wellcomeopenres_17731_1 crossref_primary_10_1016_j_biopsych_2014_05_023 crossref_primary_10_3389_fnagi_2022_896191 crossref_primary_10_1016_j_bbr_2020_113023 crossref_primary_10_1186_s12877_025_05778_z crossref_primary_10_3389_fnins_2023_1196087 crossref_primary_10_1073_pnas_2001228117 crossref_primary_10_1111_epi_12694 crossref_primary_10_1002_hbm_24360 crossref_primary_10_1016_j_neuroimage_2019_05_017 crossref_primary_10_1088_2057_1976_ad72f9 crossref_primary_10_1016_j_neuroimage_2016_07_020 crossref_primary_10_3389_fneur_2017_00084 crossref_primary_10_1016_j_bandl_2013_03_005 crossref_primary_10_1152_jn_00172_2023 crossref_primary_10_1016_j_neuroimage_2020_117684 crossref_primary_10_1016_j_bpsc_2020_08_006 crossref_primary_10_1186_s12887_017_0793_0 crossref_primary_10_2196_49933 crossref_primary_10_1002_hbm_25680 crossref_primary_10_1161_STROKEAHA_124_047739 crossref_primary_10_1212_WNL_0000000000004475 crossref_primary_10_1371_journal_pone_0135974 crossref_primary_10_3389_fnagi_2018_00161 crossref_primary_10_1016_j_neuroimage_2012_10_065 crossref_primary_10_3233_JAD_221061 crossref_primary_10_3389_fnagi_2024_1432909 crossref_primary_10_1002_alz_13807 crossref_primary_10_1016_j_nicl_2022_102952 crossref_primary_10_1016_j_neuropsychologia_2019_04_005 crossref_primary_10_3389_fnagi_2016_00063 crossref_primary_10_1016_j_neuroimage_2020_117671 crossref_primary_10_1016_j_jpain_2023_10_002 crossref_primary_10_1016_j_bandc_2021_105822 crossref_primary_10_1093_cercor_bhac400 crossref_primary_10_2217_nmt_2017_0057 crossref_primary_10_1016_j_neuroimage_2017_11_022 crossref_primary_10_1038_s41598_019_47470_4 crossref_primary_10_3389_fnagi_2021_666851 crossref_primary_10_1007_s00394_023_03107_x crossref_primary_10_1016_j_neuroimage_2017_02_055 crossref_primary_10_1016_j_jad_2025_03_106 crossref_primary_10_1016_j_nicl_2025_103837 crossref_primary_10_1371_journal_pcbi_1012595 crossref_primary_10_1016_j_pscychresns_2019_07_006 crossref_primary_10_1212_NXI_0000000000000616 crossref_primary_10_1007_s11682_021_00625_2 crossref_primary_10_1016_j_pscychresns_2017_11_004 crossref_primary_10_1016_j_neuroimage_2013_09_054 crossref_primary_10_1073_pnas_1524259113 crossref_primary_10_3389_fpsyt_2021_667656 crossref_primary_10_1016_j_media_2015_06_012 crossref_primary_10_1016_j_neuroscience_2014_06_058 crossref_primary_10_1016_j_neuroimage_2013_09_059 crossref_primary_10_1016_j_pscychresns_2021_111384 crossref_primary_10_1016_j_neuroimage_2021_117946 crossref_primary_10_1017_S0033291714001433 crossref_primary_10_1007_s12021_019_09426_x crossref_primary_10_1038_s41398_021_01314_w crossref_primary_10_3233_JAD_160834 crossref_primary_10_1093_brain_awv007 crossref_primary_10_3389_fnagi_2017_00309 crossref_primary_10_1093_gerona_glaf155 crossref_primary_10_1007_s00401_024_02750_w crossref_primary_10_1017_S135561771500079X crossref_primary_10_1136_bmjopen_2019_030379 crossref_primary_10_1523_JNEUROSCI_0447_17_2017 crossref_primary_10_1080_09540091_2022_2123450 crossref_primary_10_1109_JBHI_2016_2597963 crossref_primary_10_1371_journal_pone_0272736 crossref_primary_10_1016_j_neuroimage_2020_116798 crossref_primary_10_1016_j_jaac_2023_08_015 crossref_primary_10_1016_j_schres_2024_05_009 crossref_primary_10_1118_1_4871040 crossref_primary_10_1016_j_dadm_2017_07_005 crossref_primary_10_1017_S135561772300053X crossref_primary_10_3389_fpsyt_2019_00332 crossref_primary_10_7554_eLife_84173 crossref_primary_10_1097_AJP_0000000000001115 crossref_primary_10_1016_j_bandc_2016_11_001 crossref_primary_10_1002_ana_26813 crossref_primary_10_1002_alz_13845 crossref_primary_10_1093_sleep_zsz280 crossref_primary_10_1016_j_resuscitation_2018_02_011 crossref_primary_10_1016_j_neuroimage_2019_05_040 crossref_primary_10_1016_j_neuroimage_2020_116779 crossref_primary_10_1016_j_schres_2024_05_002 crossref_primary_10_1016_j_cortex_2020_11_022 crossref_primary_10_1111_acer_13757 crossref_primary_10_1016_j_neuroimage_2020_116788 crossref_primary_10_1089_can_2017_0047 crossref_primary_10_1007_s00429_016_1240_y crossref_primary_10_1038_s41597_023_02396_5 crossref_primary_10_1016_j_neurobiolaging_2020_06_005 crossref_primary_10_1371_journal_pcbi_1013459 crossref_primary_10_3389_fnins_2023_1172010 crossref_primary_10_1038_s41386_024_01832_3 crossref_primary_10_1177_1039856219842647 crossref_primary_10_1016_j_biopsych_2019_08_015 crossref_primary_10_1503_jpn_150093 crossref_primary_10_1016_j_neurobiolaging_2014_09_002 crossref_primary_10_1002_hipo_22389 crossref_primary_10_1093_radadv_umaf022 crossref_primary_10_1002_brb3_185 crossref_primary_10_1016_j_biopsych_2013_08_016 crossref_primary_10_1111_psyg_12567 crossref_primary_10_1126_scitranslmed_aav6221 crossref_primary_10_1016_j_dcn_2017_11_008 crossref_primary_10_1016_j_pscychresns_2017_06_003 crossref_primary_10_1016_j_cag_2022_07_023 crossref_primary_10_1111_pcn_12919 crossref_primary_10_3389_fnhum_2021_681634 crossref_primary_10_3390_diagnostics12020230 crossref_primary_10_1016_j_dcn_2020_100776 crossref_primary_10_3389_fpsyg_2022_957308 crossref_primary_10_1038_s41398_023_02515_1 crossref_primary_10_3233_JAD_220598 crossref_primary_10_1016_j_neuroimage_2016_05_009 crossref_primary_10_1088_1741_2552_ab9d11 crossref_primary_10_1371_journal_pone_0117692 crossref_primary_10_1002_alz_12587 crossref_primary_10_3389_fneur_2020_00673 crossref_primary_10_1523_JNEUROSCI_1973_15_2016 crossref_primary_10_1136_jnnp_2021_328623 crossref_primary_10_1007_s11682_018_9904_2 crossref_primary_10_3390_biomedicines12102166 crossref_primary_10_1016_j_archger_2025_105943 crossref_primary_10_1109_TMI_2018_2887072 crossref_primary_10_1002_hbm_22575 crossref_primary_10_1002_alz_70482 crossref_primary_10_1016_j_jagp_2015_03_006 crossref_primary_10_1111_joim_13534 crossref_primary_10_1093_cercor_bhz240 crossref_primary_10_1016_j_ejpn_2014_04_004 crossref_primary_10_1017_S1041610223004386 crossref_primary_10_1016_j_ijchp_2023_100372 crossref_primary_10_3389_fnagi_2020_00071 crossref_primary_10_1016_j_neuroimage_2021_118420 crossref_primary_10_1007_s00406_015_0592_2 crossref_primary_10_1007_s00125_018_4778_9 crossref_primary_10_3233_JAD_190283 crossref_primary_10_3389_fneur_2023_1277765 crossref_primary_10_1016_j_clinph_2020_09_018 crossref_primary_10_1111_jon_12237 crossref_primary_10_1016_j_neuroimage_2016_07_044 crossref_primary_10_1093_cercor_bhx099 crossref_primary_10_1002_brb3_1869 crossref_primary_10_1016_j_jceh_2019_02_003 crossref_primary_10_3389_fneur_2022_802113 crossref_primary_10_1162_jocn_a_01522 crossref_primary_10_1093_cercor_bhaa237 crossref_primary_10_1016_j_neuropsychologia_2017_01_008 crossref_primary_10_1109_TMI_2013_2282126 crossref_primary_10_1212_WNL_0000000000200551 crossref_primary_10_1016_j_msard_2022_104402 crossref_primary_10_1177_0004867418824020 crossref_primary_10_1212_NXI_0000000000000681 crossref_primary_10_2147_JPR_S345365 crossref_primary_10_1038_s41746_023_00845_4 crossref_primary_10_1016_j_neuroimage_2016_07_035 crossref_primary_10_3390_electronics11081199 crossref_primary_10_1002_ana_27298 crossref_primary_10_1016_j_psyneuen_2018_12_231 crossref_primary_10_1017_S003329171500210X crossref_primary_10_1002_alz_12140 crossref_primary_10_1002_hbm_22502 crossref_primary_10_1002_jmri_27853 crossref_primary_10_1007_s10439_020_02458_4 crossref_primary_10_1177_2331216519857267 crossref_primary_10_12968_hmed_2024_0480 crossref_primary_10_1016_j_jaac_2018_02_010 crossref_primary_10_1038_s41598_023_47934_8 crossref_primary_10_3389_fnins_2021_627445 crossref_primary_10_2196_41173 crossref_primary_10_1093_cercor_bhab102 crossref_primary_10_1007_s42044_025_00282_4 crossref_primary_10_1016_j_bspc_2020_101903 crossref_primary_10_1089_neu_2020_7376 crossref_primary_10_3389_fnagi_2024_1335336 crossref_primary_10_1016_j_dadm_2018_02_003 crossref_primary_10_1016_j_bbi_2020_07_024 crossref_primary_10_3389_fimmu_2019_01779 crossref_primary_10_1016_j_nicl_2019_101827 crossref_primary_10_1002_mrm_29005 crossref_primary_10_1016_j_intell_2018_12_003 crossref_primary_10_1097_01_j_pain_0000460310_71572_16 crossref_primary_10_1186_s12877_025_06295_9 crossref_primary_10_1007_s00234_022_02988_9 crossref_primary_10_1016_j_jpsychires_2014_05_015 crossref_primary_10_4329_wjr_v9_i10_371 crossref_primary_10_1038_tp_2016_139 crossref_primary_10_1016_j_bandc_2018_09_004 crossref_primary_10_1186_s40035_023_00336_2 crossref_primary_10_1016_j_neurobiolaging_2014_12_022 crossref_primary_10_1073_pnas_1715451115 crossref_primary_10_1007_s00521_020_05596_x crossref_primary_10_1136_jnnp_2023_332067 crossref_primary_10_1210_jc_2017_01438 crossref_primary_10_1136_bmjopen_2021_051660 crossref_primary_10_1002_hbm_23922 crossref_primary_10_1007_s12311_020_01205_8 crossref_primary_10_1016_j_neurobiolaging_2014_12_038 crossref_primary_10_3389_fnhum_2022_838228 crossref_primary_10_1073_pnas_1601889113 crossref_primary_10_1016_j_neuroimage_2025_121452 crossref_primary_10_3389_fnagi_2022_811146 crossref_primary_10_1016_j_dcn_2021_101053 crossref_primary_10_1093_jnci_djx285 crossref_primary_10_1093_brain_awaa286 crossref_primary_10_1038_ijo_2017_254 crossref_primary_10_1007_s11682_021_00553_1 crossref_primary_10_1523_JNEUROSCI_0884_18_2018 crossref_primary_10_1038_nn_4354 crossref_primary_10_1007_s11682_022_00746_2 crossref_primary_10_1186_s13195_024_01382_2 crossref_primary_10_1002_hbm_23948 crossref_primary_10_1016_j_pscychresns_2014_11_004 crossref_primary_10_1073_pnas_2004363117 crossref_primary_10_1093_brain_awac459 crossref_primary_10_1016_j_ynirp_2021_100066 crossref_primary_10_3389_fnagi_2019_00015 crossref_primary_10_1016_j_cortex_2019_02_010 crossref_primary_10_1089_cap_2015_0047 crossref_primary_10_1523_JNEUROSCI_5506_12_2013 crossref_primary_10_1186_s13195_024_01591_9 crossref_primary_10_1016_j_neuroimage_2018_08_022 crossref_primary_10_1038_s44220_025_00501_8 crossref_primary_10_1016_j_neuroimage_2012_12_052 crossref_primary_10_1016_j_neuroimage_2018_08_015 crossref_primary_10_1111_jcpp_12895 crossref_primary_10_1002_mds_29934 crossref_primary_10_1080_1028415X_2017_1324357 crossref_primary_10_3233_JAD_161223 crossref_primary_10_1523_JNEUROSCI_1101_19_2019 crossref_primary_10_3389_frobt_2022_926255 crossref_primary_10_1016_j_neuroimage_2016_03_022 crossref_primary_10_1212_WNL_0000000000008386 crossref_primary_10_1093_cercor_bhab040 crossref_primary_10_1093_schbul_sbaa020 crossref_primary_10_1109_JBHI_2019_2933138 crossref_primary_10_1007_s11263_015_0849_2 crossref_primary_10_1038_s41598_022_24826_x crossref_primary_10_1016_j_neuroimage_2015_10_056 crossref_primary_10_1016_j_cortex_2021_01_018 crossref_primary_10_3390_languages4030068 crossref_primary_10_1093_cercor_bhad231 crossref_primary_10_1186_s40695_020_00055_y crossref_primary_10_1186_s13229_025_00641_9 crossref_primary_10_1038_tp_2016_102 crossref_primary_10_1007_s00415_014_7426_4 crossref_primary_10_3389_fnins_2016_00478 crossref_primary_10_1093_cercor_bhab051 crossref_primary_10_1155_2024_8797606 crossref_primary_10_1093_cercor_bhw154 crossref_primary_10_1016_j_nicl_2017_01_024 crossref_primary_10_1162_imag_a_00294 crossref_primary_10_1111_ene_15470 crossref_primary_10_1016_j_nbscr_2024_100111 crossref_primary_10_3758_s13415_015_0344_9 crossref_primary_10_1016_j_neuroimage_2015_10_065 crossref_primary_10_1016_j_neuroimage_2019_116335 crossref_primary_10_1093_cercor_bhw180 crossref_primary_10_1016_j_ejmp_2022_10_023 crossref_primary_10_1017_S0033291718001198 crossref_primary_10_1109_TMI_2025_3550206 crossref_primary_10_1016_j_jocn_2016_01_040 crossref_primary_10_1016_j_neuroimage_2022_119507 crossref_primary_10_1111_acps_12860 crossref_primary_10_1002_hbm_23903 crossref_primary_10_1212_WNL_0000000000001738 crossref_primary_10_1080_14737175_2016_1181543 crossref_primary_10_1093_brain_awab163 crossref_primary_10_1093_cercor_bhab076 crossref_primary_10_1007_s00429_024_02852_x crossref_primary_10_1212_WNL_0000000000200947 crossref_primary_10_1016_j_bspc_2019_101559 crossref_primary_10_1016_j_ebiom_2018_08_048 crossref_primary_10_1038_s41598_019_48910_x crossref_primary_10_1016_j_nicl_2023_103354 crossref_primary_10_1002_brb3_607 crossref_primary_10_1016_j_jns_2021_117443 crossref_primary_10_3389_fnagi_2019_00069 crossref_primary_10_1126_sciadv_adt5619 crossref_primary_10_1186_s12937_023_00887_0 crossref_primary_10_7554_eLife_86812 crossref_primary_10_1016_j_neurobiolaging_2024_03_003 crossref_primary_10_1007_s00415_022_11095_x crossref_primary_10_1016_j_neuroimage_2013_05_076 crossref_primary_10_1016_j_neuroimage_2016_03_061 crossref_primary_10_1186_s13195_023_01237_2 crossref_primary_10_1089_neur_2024_0149 crossref_primary_10_1016_j_brs_2022_02_017 crossref_primary_10_1371_journal_pcbi_1005350 crossref_primary_10_1249_MSS_0000000000002946 crossref_primary_10_1016_j_msard_2018_03_002 crossref_primary_10_1002_mds_26013 crossref_primary_10_1016_j_eplepsyres_2021_106845 crossref_primary_10_1007_s00234_016_1737_3 crossref_primary_10_1111_ane_13181 crossref_primary_10_1212_WNL_0000000000007003 crossref_primary_10_1007_s00429_015_1139_z crossref_primary_10_1515_revneuro_2018_0096 crossref_primary_10_1007_s11060_017_2453_5 crossref_primary_10_1016_j_neuroimage_2023_119892 crossref_primary_10_3389_fnagi_2020_553461 crossref_primary_10_1016_j_clineuro_2018_05_018 crossref_primary_10_1177_1352458520940548 crossref_primary_10_2147_CIA_S318679 crossref_primary_10_1016_j_neuroimage_2013_05_065 crossref_primary_10_3233_JAD_215563 crossref_primary_10_1111_ene_70275 crossref_primary_10_3389_fneur_2019_01398 crossref_primary_10_1038_srep06482 crossref_primary_10_1016_j_cct_2021_106488 crossref_primary_10_1016_j_nicl_2020_102407 crossref_primary_10_1088_1361_6560_abb2ec crossref_primary_10_1016_j_jpsychires_2021_11_009 crossref_primary_10_3389_fpsyt_2024_1395243 crossref_primary_10_1002_jnr_24790 crossref_primary_10_1080_19466315_2019_1677492 crossref_primary_10_1016_j_exger_2020_110939 crossref_primary_10_3390_diagnostics12010084 crossref_primary_10_1016_j_nicl_2013_10_015 crossref_primary_10_1016_j_dcn_2019_100734 crossref_primary_10_1016_j_neurobiolaging_2020_11_014 crossref_primary_10_1016_j_visres_2024_108398 crossref_primary_10_1016_j_nicl_2023_103383 crossref_primary_10_1371_journal_pone_0124453 crossref_primary_10_1016_j_neuroimage_2015_08_026 crossref_primary_10_1016_j_neuroimage_2016_03_032 crossref_primary_10_1093_brain_aww319 crossref_primary_10_3390_brainsci4040594 crossref_primary_10_1080_1357650X_2019_1710525 crossref_primary_10_1016_j_neurobiolaging_2023_08_010 crossref_primary_10_1016_j_nicl_2017_01_009 crossref_primary_10_1038_s41598_022_18696_6 crossref_primary_10_1109_JBHI_2020_3042447 crossref_primary_10_1016_j_neuroimage_2013_05_049 crossref_primary_10_1038_s41598_024_54370_9 crossref_primary_10_1016_j_schres_2017_02_014 crossref_primary_10_1109_JBHI_2024_3523298 crossref_primary_10_1080_13645706_2016_1275016 crossref_primary_10_1002_mrm_27705 crossref_primary_10_1038_s41386_019_0322_y crossref_primary_10_1038_tp_2016_175 crossref_primary_10_1002_hbm_26567 crossref_primary_10_1186_2051_5960_2_26 crossref_primary_10_1016_j_compbiomed_2024_108622 crossref_primary_10_1016_j_cortex_2018_11_009 crossref_primary_10_1038_s41598_023_43478_z crossref_primary_10_1016_j_jad_2025_119998 crossref_primary_10_1016_j_msard_2020_102513 crossref_primary_10_1212_WNL_0000000000000824 crossref_primary_10_1016_j_dcn_2014_04_004 crossref_primary_10_1016_j_exger_2016_04_001 crossref_primary_10_1016_j_dcn_2021_101028 crossref_primary_10_1016_j_jaac_2022_04_018 crossref_primary_10_1038_s41398_023_02688_9 crossref_primary_10_1038_s43587_025_00897_z crossref_primary_10_1016_j_jalz_2016_08_010 crossref_primary_10_1111_ene_13205 crossref_primary_10_1016_j_nicl_2021_102757 crossref_primary_10_1016_j_neuroimage_2016_01_020 crossref_primary_10_1111_bdi_70050 crossref_primary_10_1016_j_jagp_2018_03_003 crossref_primary_10_1007_s11682_018_9858_4 crossref_primary_10_1016_j_pscychresns_2021_111301 crossref_primary_10_1016_j_jalz_2017_01_020 crossref_primary_10_1016_j_dcn_2019_100704 crossref_primary_10_1002_mrm_27726 crossref_primary_10_3389_fneur_2018_00235 crossref_primary_10_1007_s11682_016_9523_8 crossref_primary_10_1016_j_psyneuen_2016_09_028 crossref_primary_10_1002_brb3_687 crossref_primary_10_1080_1357650X_2015_1096939 crossref_primary_10_3109_00952990_2013_837057 crossref_primary_10_3390_ijms25115607 crossref_primary_10_1016_j_media_2015_04_014 crossref_primary_10_1016_j_pscychresns_2021_111311 crossref_primary_10_1016_j_neuroimage_2018_04_003 crossref_primary_10_1016_j_jad_2020_05_092 crossref_primary_10_1161_HYPERTENSIONAHA_117_09807 crossref_primary_10_1016_j_pnpbp_2025_111429 crossref_primary_10_1016_j_exger_2019_110792 crossref_primary_10_1002_hbm_26574 crossref_primary_10_1371_journal_pone_0133352 crossref_primary_10_1016_j_neuroimage_2016_01_007 crossref_primary_10_1038_s41598_024_59227_9 crossref_primary_10_1016_j_neuroimage_2013_05_007 crossref_primary_10_1016_j_neuroimage_2012_10_029 crossref_primary_10_1016_j_neuroimage_2018_06_065 crossref_primary_10_1089_neu_2018_6357 crossref_primary_10_1080_02699052_2021_1906445 crossref_primary_10_1016_j_jaac_2023_01_001 crossref_primary_10_1002_hbm_24463 crossref_primary_10_1007_s11682_013_9277_5 crossref_primary_10_1038_pr_2018_10 crossref_primary_10_1053_j_ajkd_2015_11_008 crossref_primary_10_3389_fneur_2018_00824 crossref_primary_10_1093_brain_awu083 crossref_primary_10_1177_1352458519878685 crossref_primary_10_1007_s00415_024_12514_x crossref_primary_10_1016_j_pnpbp_2021_110381 crossref_primary_10_1002_ana_26718 crossref_primary_10_1038_s41467_023_43146_w crossref_primary_10_1038_s41398_020_0828_4 crossref_primary_10_1002_hbm_70348 crossref_primary_10_1038_s41562_023_01707_5 crossref_primary_10_1007_s00415_023_11937_2 crossref_primary_10_1016_j_clinph_2020_10_007 crossref_primary_10_1001_jamapediatrics_2020_2991 crossref_primary_10_1093_ijnp_pyv037 crossref_primary_10_1109_TBME_2022_3213266 crossref_primary_10_3389_fnagi_2018_00293 crossref_primary_10_1002_hbm_23154 crossref_primary_10_3233_JAD_190566 crossref_primary_10_1016_j_dadm_2018_08_007 crossref_primary_10_1371_journal_pone_0210375 crossref_primary_10_3233_JAD_201345 crossref_primary_10_1016_j_neurobiolaging_2016_03_008 crossref_primary_10_1002_jmri_27092 crossref_primary_10_1080_21678421_2019_1612920 crossref_primary_10_1111_cns_14540 crossref_primary_10_1093_neuros_nyz176 crossref_primary_10_1097_RMR_0000000000000307 crossref_primary_10_1016_j_brainres_2016_10_027 crossref_primary_10_3389_fneur_2019_00450 crossref_primary_10_1016_j_jpsychires_2014_08_010 crossref_primary_10_1038_s41596_023_00871_2 crossref_primary_10_1371_journal_pone_0156770 crossref_primary_10_3390_genes12122024 crossref_primary_10_1016_j_schres_2020_05_043 crossref_primary_10_1016_j_jagp_2014_10_005 crossref_primary_10_1371_journal_pone_0269491 crossref_primary_10_1016_j_tjpad_2025_100315 crossref_primary_10_1016_j_neuroimage_2018_04_035 crossref_primary_10_1523_JNEUROSCI_1732_18_2019 crossref_primary_10_1016_j_pscychresns_2021_111249 crossref_primary_10_1016_j_neurobiolaging_2019_10_005 crossref_primary_10_3389_fpsyt_2020_00597 crossref_primary_10_1155_2020_8830005 crossref_primary_10_1016_j_mad_2021_111575 crossref_primary_10_1088_1741_2552_aadf3d crossref_primary_10_1080_09297049_2017_1338340 crossref_primary_10_1016_j_dadm_2016_11_007 crossref_primary_10_1016_j_dcn_2016_04_004 crossref_primary_10_1097_JS9_0000000000002746 crossref_primary_10_1038_s41380_022_01870_7 crossref_primary_10_1249_MSS_0000000000003678 crossref_primary_10_1016_j_neuroimage_2023_120306 crossref_primary_10_1038_s41467_020_19543_w crossref_primary_10_1001_jamanetworkopen_2020_17337 crossref_primary_10_1111_acps_13065 crossref_primary_10_1016_j_nicl_2018_06_011 crossref_primary_10_3233_ADR_230206 crossref_primary_10_1038_s41598_020_78225_1 crossref_primary_10_1016_j_nicl_2016_10_014 crossref_primary_10_1111_acps_13068 crossref_primary_10_1111_jon_12521 crossref_primary_10_1002_hbm_70303 crossref_primary_10_1016_j_neuroimage_2016_10_044 crossref_primary_10_1002_hbm_25739 crossref_primary_10_1038_npp_2017_49 crossref_primary_10_1093_brain_awu036 crossref_primary_10_1002_hbm_23559 crossref_primary_10_1016_j_dadm_2019_01_002 crossref_primary_10_1038_s41386_020_00947_7 crossref_primary_10_1111_jon_12977 crossref_primary_10_1016_j_protcy_2016_01_156 crossref_primary_10_1371_journal_pone_0146913 crossref_primary_10_3390_diagnostics12010165 crossref_primary_10_1016_j_nicl_2016_10_021 crossref_primary_10_1016_j_nicl_2019_101786 crossref_primary_10_1111_jon_12972 crossref_primary_10_1016_j_bpsc_2020_11_011 crossref_primary_10_1016_j_dcn_2015_07_005 crossref_primary_10_1093_brain_aww243 crossref_primary_10_3389_fpsyt_2019_00694 crossref_primary_10_1016_j_neuroimage_2022_119061 crossref_primary_10_1111_bdi_13315 crossref_primary_10_1159_000541098 crossref_primary_10_3389_fneur_2018_00400 crossref_primary_10_1212_NXI_0000000000000984 crossref_primary_10_1002_hbm_23580 crossref_primary_10_1111_ner_13380 crossref_primary_10_1159_000537847 crossref_primary_10_1002_hbm_25761 crossref_primary_10_1007_s00330_016_4485_1 crossref_primary_10_1088_1741_2552_ac64c4 crossref_primary_10_1016_j_pscychresns_2021_111285 crossref_primary_10_1007_s00415_022_11435_x crossref_primary_10_1136_bmjopen_2018_023664 crossref_primary_10_3389_fneur_2022_857328 crossref_primary_10_1016_j_pscychresns_2021_111286 crossref_primary_10_1093_brain_awv387 crossref_primary_10_1016_j_nicl_2016_03_011 crossref_primary_10_1002_trc2_12258 crossref_primary_10_1136_bmjopen_2019_033760 crossref_primary_10_1093_cercor_bhy266 crossref_primary_10_1093_cercor_bhw082 crossref_primary_10_52294_001c_118616 crossref_primary_10_1038_s41467_024_47286_5 crossref_primary_10_1007_s00787_023_02278_6 crossref_primary_10_1016_j_brs_2020_02_020 crossref_primary_10_1007_s00415_021_10495_9 crossref_primary_10_1016_j_neuroimage_2017_07_008 crossref_primary_10_1016_j_neuroimage_2016_10_016 crossref_primary_10_1093_cercor_bhac333 crossref_primary_10_1016_j_jalz_2013_12_022 crossref_primary_10_1016_j_neuroimage_2013_01_044 crossref_primary_10_1016_j_bbr_2018_12_008 crossref_primary_10_1177_0271678X231224502 crossref_primary_10_1016_j_jneumeth_2020_108698 crossref_primary_10_1016_j_dcn_2018_05_005 crossref_primary_10_1038_s41467_019_12426_9 crossref_primary_10_1038_s41593_021_00997_0 crossref_primary_10_1016_j_pnpbp_2020_110048 crossref_primary_10_1038_s41386_023_01780_4 crossref_primary_10_1016_j_schres_2017_10_013 crossref_primary_10_3389_fnagi_2016_00118 crossref_primary_10_1016_j_nicl_2024_103623 crossref_primary_10_3389_fnbeh_2016_00124 crossref_primary_10_1002_hbm_24849 crossref_primary_10_1097_WNR_0000000000000121 crossref_primary_10_1002_hbm_24884 crossref_primary_10_1073_pnas_2023860118 crossref_primary_10_1016_j_earlhumdev_2012_12_003 crossref_primary_10_1016_j_neurobiolaging_2019_12_003 crossref_primary_10_1093_cercor_bhz131 crossref_primary_10_1016_j_brs_2018_01_029 crossref_primary_10_1016_j_dcn_2022_101088 crossref_primary_10_7554_eLife_34354 crossref_primary_10_1093_cercor_bhy277 crossref_primary_10_1016_j_jrras_2025_101735 crossref_primary_10_3389_fninf_2017_00059 crossref_primary_10_1016_j_pscychresns_2016_04_006 crossref_primary_10_1002_jmri_27929 crossref_primary_10_1002_brb3_3506 crossref_primary_10_1186_s13195_014_0056_3 crossref_primary_10_1016_j_seizure_2021_03_007 crossref_primary_10_1038_s41598_023_50780_3 crossref_primary_10_1016_j_jad_2019_07_075 crossref_primary_10_1017_S0033291717000137 crossref_primary_10_1093_brain_awy054 crossref_primary_10_1371_journal_pone_0119774 crossref_primary_10_3233_JAD_160772 crossref_primary_10_1016_j_dcn_2020_100880 crossref_primary_10_1016_j_jad_2019_09_068 crossref_primary_10_1017_S0033291716000143 crossref_primary_10_1038_s41598_018_27898_w crossref_primary_10_3233_JAD_181217 crossref_primary_10_1016_j_parkreldis_2024_106072 crossref_primary_10_3389_fninf_2017_00063 crossref_primary_10_1038_mp_2016_217 crossref_primary_10_1016_j_nicl_2016_12_008 crossref_primary_10_1016_j_neuroimage_2015_11_026 crossref_primary_10_1016_j_neuroimage_2017_09_045 crossref_primary_10_3389_fnins_2024_1385847 crossref_primary_10_1093_schbul_sbv169 crossref_primary_10_1016_j_media_2025_103662 crossref_primary_10_1016_j_nicl_2016_12_003 crossref_primary_10_1111_tmi_14056 crossref_primary_10_1111_eip_12358 crossref_primary_10_1016_j_jad_2021_01_058 crossref_primary_10_1186_s10194_024_01803_5 crossref_primary_10_1016_j_neuroimage_2021_118751 crossref_primary_10_1016_j_neuroimage_2019_02_053 crossref_primary_10_1016_j_neurobiolaging_2024_12_009 crossref_primary_10_1002_alz_12252 crossref_primary_10_1038_s41380_023_02177_x crossref_primary_10_1016_j_msard_2025_106567 crossref_primary_10_1038_s41598_024_63071_2 crossref_primary_10_1016_j_neurobiolaging_2016_03_016 crossref_primary_10_1186_s12916_024_03437_5 crossref_primary_10_3389_fnagi_2016_00155 crossref_primary_10_1016_j_schres_2015_01_005 crossref_primary_10_3390_brainsci11091134 crossref_primary_10_1002_jnr_24818 crossref_primary_10_3390_s23094329 crossref_primary_10_3389_fpsyt_2021_673595 crossref_primary_10_3389_fneur_2020_595463 crossref_primary_10_1002_jmri_28824 crossref_primary_10_1016_j_jns_2016_04_054 crossref_primary_10_1016_j_nicl_2016_12_025 crossref_primary_10_1212_WNL_0000000000209460 crossref_primary_10_1002_alz_14414 crossref_primary_10_1016_j_neuroscience_2015_05_049 crossref_primary_10_1016_j_neuroimage_2015_06_094 crossref_primary_10_1016_j_msard_2022_103891 crossref_primary_10_7554_eLife_95823_4 crossref_primary_10_3389_fninf_2017_00010 crossref_primary_10_1016_j_jaac_2019_04_006 crossref_primary_10_1002_brb3_1766 crossref_primary_10_1016_j_bandl_2019_104661 crossref_primary_10_1016_j_dib_2020_106286 crossref_primary_10_1016_j_neuropsychologia_2022_108353 crossref_primary_10_1016_j_neuroimage_2020_117596 crossref_primary_10_55095_CesRadiol2020_040 crossref_primary_10_3233_JAD_230244 crossref_primary_10_1016_j_dcn_2018_03_009 crossref_primary_10_3233_JAD_170055 crossref_primary_10_1038_nn_4458 crossref_primary_10_3389_fnhum_2021_635687 crossref_primary_10_1016_j_neuroimage_2015_02_011 crossref_primary_10_3389_fnagi_2019_00117 crossref_primary_10_1016_j_neurobiolaging_2017_02_019 crossref_primary_10_1016_j_bandc_2022_105877 crossref_primary_10_1016_j_neuroimage_2016_12_026 crossref_primary_10_1016_j_neuroimage_2019_116475 crossref_primary_10_1002_jnr_25392 crossref_primary_10_1016_j_neuroimage_2019_116489 crossref_primary_10_1002_jmri_25685 crossref_primary_10_1016_j_dcn_2020_100816 crossref_primary_10_3389_fnagi_2020_00129 crossref_primary_10_1016_j_jagp_2017_04_011 crossref_primary_10_1016_j_neulet_2021_136178 crossref_primary_10_1038_s41598_024_62960_w crossref_primary_10_1111_ejn_15761 crossref_primary_10_1080_20008066_2023_2216624 crossref_primary_10_1002_hbm_22707 crossref_primary_10_1002_ana_26281 crossref_primary_10_1137_15M104431X crossref_primary_10_1038_tp_2017_57 crossref_primary_10_3389_fneur_2021_754204 crossref_primary_10_1016_j_neurobiolaging_2017_02_005 crossref_primary_10_1038_s43856_025_00920_9 crossref_primary_10_1007_s00787_018_1241_x crossref_primary_10_1016_j_neuroimage_2025_121302 crossref_primary_10_1080_19466315_2021_1884129 crossref_primary_10_1016_j_neuroimage_2022_119423 crossref_primary_10_1016_j_nicl_2019_102159 crossref_primary_10_2337_db15_1242 crossref_primary_10_1002_brb3_1734 crossref_primary_10_1016_j_archger_2021_104454 crossref_primary_10_1007_s10548_016_0509_z crossref_primary_10_1016_j_neuroimage_2021_118259 crossref_primary_10_1177_13524585221139152 crossref_primary_10_1148_radiol_232274 crossref_primary_10_3233_JAD_210604 crossref_primary_10_1038_s42003_024_05949_5 crossref_primary_10_1016_j_parkreldis_2019_09_031 crossref_primary_10_1002_da_22284 crossref_primary_10_1038_jcbfm_2015_125 crossref_primary_10_1007_s00429_025_03000_9 crossref_primary_10_3233_JAD_181175 crossref_primary_10_1007_s00429_025_02937_1 crossref_primary_10_1093_scan_nsz015 crossref_primary_10_3390_medsci9020020 crossref_primary_10_1017_S1366728923000354 crossref_primary_10_1038_s41593_023_01513_2 crossref_primary_10_1016_j_nicl_2012_12_003 crossref_primary_10_1016_j_dcn_2019_100675 crossref_primary_10_1002_mrm_27215 crossref_primary_10_1002_alz_70485 crossref_primary_10_3389_fnagi_2020_00102 crossref_primary_10_1016_j_neurobiolaging_2013_11_011 crossref_primary_10_1016_j_dcn_2020_100853 crossref_primary_10_1016_j_schres_2024_01_005 crossref_primary_10_1017_S1092852918001268 crossref_primary_10_1038_npp_2017_213 crossref_primary_10_1371_journal_pone_0185239 crossref_primary_10_1016_j_neuroimage_2017_07_053 crossref_primary_10_1371_journal_pone_0233858 crossref_primary_10_1177_18796397251366900 crossref_primary_10_1111_jsm_12491 crossref_primary_10_3233_JAD_220825 crossref_primary_10_1016_j_neuroimage_2017_05_027 crossref_primary_10_5665_sleep_5768 crossref_primary_10_1109_TMI_2013_2269814 crossref_primary_10_1371_journal_pone_0288967 crossref_primary_10_1016_j_neuroimage_2019_116441 crossref_primary_10_1212_WNL_0000000000000774 crossref_primary_10_1038_s41591_025_03828_y crossref_primary_10_1111_epi_18514 crossref_primary_10_1016_j_trci_2019_05_004 crossref_primary_10_1007_s12021_018_9380_2 crossref_primary_10_1016_j_jmpt_2024_08_018 crossref_primary_10_1007_s12975_020_00847_4 crossref_primary_10_1007_s11682_017_9752_5 crossref_primary_10_1177_1747493019851277 crossref_primary_10_3389_fnins_2019_01053 crossref_primary_10_3389_fnimg_2023_1129446 crossref_primary_10_1177_1087054714523316 crossref_primary_10_1097_HTR_0000000000000758 crossref_primary_10_1016_j_psyneuen_2023_106336 crossref_primary_10_1016_j_parkreldis_2020_04_009 crossref_primary_10_1002_mds_29866 crossref_primary_10_1162_imag_a_00387 crossref_primary_10_1186_s10194_021_01312_9 crossref_primary_10_1016_j_jneuroling_2025_101285 crossref_primary_10_1016_j_neuroimage_2022_119850 crossref_primary_10_1111_jcpp_12972 crossref_primary_10_3389_fnagi_2022_872867 crossref_primary_10_1038_ijo_2016_132 crossref_primary_10_3233_JAD_161146 crossref_primary_10_1016_j_neurobiolaging_2016_09_012 crossref_primary_10_1016_j_brs_2019_03_007 crossref_primary_10_3390_nu14245300 crossref_primary_10_3233_JAD_170092 crossref_primary_10_1038_s41380_024_02874_1 crossref_primary_10_1038_s41598_018_22277_x crossref_primary_10_1162_imag_a_00395 crossref_primary_10_1002_aur_1427 crossref_primary_10_1016_j_brs_2025_07_005 crossref_primary_10_1016_j_neuroimage_2022_119488 crossref_primary_10_3233_JAD_190504 crossref_primary_10_1016_j_schres_2014_12_003 crossref_primary_10_1016_j_jpsychires_2024_05_042 crossref_primary_10_3389_fnins_2023_1178473 crossref_primary_10_7554_eLife_83660 crossref_primary_10_1016_j_neuroimage_2013_12_012 crossref_primary_10_3389_fnagi_2022_832828 crossref_primary_10_1002_hbm_24052 crossref_primary_10_1038_s41593_022_01042_4 crossref_primary_10_1016_j_biopsych_2015_08_024 crossref_primary_10_1002_ehf2_14909 crossref_primary_10_1177_1545968320913502 crossref_primary_10_1038_s41598_024_60828_7 crossref_primary_10_1162_nol_a_00122 crossref_primary_10_1093_neuonc_noac148 crossref_primary_10_1177_0271678X221090747 crossref_primary_10_1016_j_neuroimage_2012_06_043 crossref_primary_10_1016_j_neuroimage_2017_05_051 crossref_primary_10_1016_j_psyneuen_2018_02_034 crossref_primary_10_1038_s41386_022_01457_4 crossref_primary_10_1016_j_neuroimage_2013_12_004 crossref_primary_10_1016_j_neurobiolaging_2015_12_009 crossref_primary_10_1186_s41983_021_00293_5 crossref_primary_10_1093_cercor_bhw418 crossref_primary_10_3389_fnhum_2020_00255 crossref_primary_10_1016_j_neuroscience_2021_01_005 crossref_primary_10_1002_pbc_25110 crossref_primary_10_3390_brainsci9120373 crossref_primary_10_1002_brb3_518 crossref_primary_10_1016_j_jns_2020_117213 crossref_primary_10_1016_j_neunet_2019_12_001 crossref_primary_10_1016_j_trci_2016_05_002 crossref_primary_10_1038_s42003_024_07414_9 crossref_primary_10_1002_hbm_26250 crossref_primary_10_1007_s00429_019_02009_1 crossref_primary_10_1080_23273798_2016_1250926 crossref_primary_10_1016_j_neuroimage_2017_05_049 crossref_primary_10_1002_dad2_12487 crossref_primary_10_3389_fneur_2022_912592 crossref_primary_10_1016_j_jpsychires_2020_12_007 crossref_primary_10_7717_peerj_19914 crossref_primary_10_1016_j_psyneuen_2014_11_010 crossref_primary_10_1002_brb3_3011 crossref_primary_10_1016_j_neuroimage_2020_116608 crossref_primary_10_3389_fnhum_2020_00229 crossref_primary_10_1016_j_parkreldis_2020_06_460 crossref_primary_10_3233_JAD_201243 crossref_primary_10_3389_frai_2022_910049 crossref_primary_10_1111_jon_12909 crossref_primary_10_1186_s13195_023_01349_9 crossref_primary_10_1016_j_nicl_2018_04_019 crossref_primary_10_1016_j_neurobiolaging_2020_04_002 crossref_primary_10_1002_hbm_24011 crossref_primary_10_1016_j_nicl_2018_04_023 crossref_primary_10_1016_j_nicl_2019_102104 crossref_primary_10_3389_fnhum_2014_00307 crossref_primary_10_1093_cercor_bhv102 crossref_primary_10_3390_brainsci13101448 crossref_primary_10_1080_13803395_2015_1105199 crossref_primary_10_1016_j_dcn_2013_02_003 crossref_primary_10_1038_s41531_025_00954_9 crossref_primary_10_3389_fnhum_2017_00319 crossref_primary_10_3390_ijms232314635 crossref_primary_10_3233_JAD_180749 crossref_primary_10_1016_j_dcn_2017_08_009 crossref_primary_10_3389_fneur_2020_590573 crossref_primary_10_1089_neu_2014_3833 crossref_primary_10_1002_acn3_51041 crossref_primary_10_1002_nbm_4754 crossref_primary_10_1017_S095457941900035X crossref_primary_10_3390_brainsci14030219 crossref_primary_10_1016_j_nicl_2020_102321 crossref_primary_10_1038_s41598_024_58120_9 crossref_primary_10_3389_fpsyt_2021_780095 crossref_primary_10_1007_s40122_025_00770_2 crossref_primary_10_1007_s12311_020_01137_3 crossref_primary_10_3389_fnins_2018_01008 crossref_primary_10_1038_sdata_2018_63 crossref_primary_10_1109_JBHI_2016_2608998 crossref_primary_10_1016_j_mri_2021_06_010 crossref_primary_10_1088_1361_6560_acae14 crossref_primary_10_1371_journal_pone_0207967 crossref_primary_10_1016_j_mri_2017_09_007 crossref_primary_10_1016_j_joca_2014_06_029 crossref_primary_10_1016_j_neurobiolaging_2014_04_035 crossref_primary_10_1002_hbm_26697 crossref_primary_10_1016_j_neurobiolaging_2021_12_015 crossref_primary_10_3389_fpsyt_2021_718539 crossref_primary_10_1016_j_nicl_2020_102310 crossref_primary_10_1016_j_nicl_2020_102315 crossref_primary_10_7554_eLife_86812_3 crossref_primary_10_1038_s41586_023_06982_w crossref_primary_10_1111_acer_14446 crossref_primary_10_1016_j_clinph_2024_01_003 crossref_primary_10_1038_s41598_025_87224_z crossref_primary_10_1002_hbm_26205 crossref_primary_10_1016_j_neuroimage_2013_12_038 crossref_primary_10_1016_j_neurobiolaging_2020_04_013 crossref_primary_10_3390_children12091127 |
| Cites_doi | 10.1016/j.neuroimage.2004.07.016 10.1002/hbm.20973 10.1097/00004728-200105000-00022 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 10.1016/j.neuroimage.2006.02.051 10.1016/j.neuroimage.2004.07.068 10.1016/j.neuroimage.2007.12.025 10.1016/j.neuroimage.2010.07.052 10.1016/j.neuroimage.2012.01.021 10.1037/0033-2909.86.2.420 10.1136/jnnp.2004.047993 10.1016/S0896-6273(02)00569-X 10.1016/j.neuroimage.2010.05.041 10.1016/j.neuroimage.2006.01.021 10.1006/nimg.1998.0395 10.1016/j.neuroimage.2009.05.084 10.1016/j.neuroimage.2009.05.045 10.1016/j.neuroimage.2011.02.046 10.1371/journal.pone.0012853 10.1016/j.neuroimage.2007.07.007 10.2307/2533516 10.1137/S0895479801383877 10.1002/mrm.23228 10.1002/(SICI)1097-0193(200004)9:4<212::AID-HBM3>3.0.CO;2-# 10.1001/archneurol.2011.167 10.1016/j.neuroimage.2004.07.051 10.1002/jmri.22636 10.1148/radiol.11101637 10.1109/TMI.2006.882143 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G 10.1109/42.875199 10.1212/WNL.0b013e3181ffe4d1 10.1109/TMI.2006.887364 10.1093/cercor/bhg087 10.2307/2532051 10.1006/nimg.1998.0396 10.1006/nimg.2002.1132 10.1006/nimg.2002.1040 10.1016/j.neuroimage.2009.06.074 10.1016/j.neuroimage.2011.02.076 10.1016/j.neuroimage.2004.07.010 10.1109/42.906426 10.1016/j.media.2011.02.005 10.1016/j.neuroimage.2005.09.054 10.1016/j.neuroimage.2010.11.092 10.1109/42.668698 10.1016/j.neuroimage.2009.12.007 10.1016/j.neuroimage.2005.05.015 10.1016/j.mechmachtheory.2010.05.002 10.1016/j.neuroimage.2010.07.020 10.1198/000313006X90684 10.1073/pnas.200033797 10.1016/j.neuroimage.2008.10.052 10.1111/j.1399-0004.2004.00241.x 10.1256/003590002320603584 10.1002/mds.23762 10.1109/TMI.2010.2050897 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier Inc. Copyright © 2012 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jul 16, 2012 2012 Elsevier Inc. All rights reserved. 2012 |
| Copyright_xml | – notice: 2012 Elsevier Inc. – notice: Copyright © 2012 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jul 16, 2012 – notice: 2012 Elsevier Inc. All rights reserved. 2012 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 5PM |
| DOI | 10.1016/j.neuroimage.2012.02.084 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
| DatabaseTitleList | Engineering Research Database MEDLINE ProQuest One Psychology MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| EndPage | 1418 |
| ExternalDocumentID | PMC3389460 3245015211 22430496 10_1016_j_neuroimage_2012_02_084 S1053811912002765 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCCIH NIH HHS grantid: RC1 AT005728 – fundername: NIA NIH HHS grantid: R01 AG022381 – fundername: NINDS NIH HHS grantid: R01NS042861 – fundername: NCRR NIH HHS grantid: S10RR023043 – fundername: NCCIH NIH HHS grantid: RC1AT005728 – fundername: NIA NIH HHS grantid: U01 AG024904 – fundername: NIA NIH HHS grantid: R01 AG021910 – fundername: NIA NIH HHS grantid: P50 AG005681 – fundername: NINDS NIH HHS grantid: R01 NS052585 – fundername: NIA NIH HHS grantid: P01AG03991 – fundername: National Institute on Aging : NIA grantid: R01 AG021910-05 || AG – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: R01 EB006758-04 || EB – fundername: National Center for Complementary and Alternative Medicine : NCCAM grantid: RC1 AT005728-02 || AT – fundername: National Institute on Aging : NIA grantid: P01 AG003991-25 || AG – fundername: National Center for Research Resources : NCRR grantid: S10 RR023043-01 || RR – fundername: National Center for Research Resources : NCRR grantid: S10 RR019307-01 || RR – fundername: National Institute of Neurological Disorders and Stroke : NINDS grantid: R01 NS070963-02 || NS – fundername: National Institute of Mental Health : NIMH grantid: P50 MH071616-05 || MH – fundername: National Institute of Neurological Disorders and Stroke : NINDS grantid: P01 NS058793-05 || NS – fundername: National Center for Research Resources : NCRR grantid: U24 RR021382-05 || RR |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- ~HD 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 HMQ LCYCR RIG SNS ZA5 29N 53G 9DU AAFWJ AAQXK AAYXX ABMZM ADFGL ADVLN ADXHL AFFHD AFPKN AGHFR AGQPQ AIGII AKRLJ APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF OK1 R2- SEW WUQ XPP ZMT AGCQF AGRNS ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 7QO 5PM |
| ID | FETCH-LOGICAL-c663t-8a02a7f28b154fc161b18aadb85fdfb2e02b0711b7139c5f30726c9ae5e8b7e3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 1880 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000305920600064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Tue Nov 04 01:59:05 EST 2025 Tue Oct 07 09:54:17 EDT 2025 Thu Oct 02 11:18:48 EDT 2025 Tue Nov 04 01:54:06 EST 2025 Mon Jul 21 05:16:24 EDT 2025 Tue Nov 18 21:20:57 EST 2025 Sat Nov 29 03:33:17 EST 2025 Fri Feb 23 02:36:05 EST 2024 Tue Oct 14 19:35:01 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Reliability and power Unbiased longitudinal image processing Within-subject template FreeSurfer MRI biomarkers |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2012 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c663t-8a02a7f28b154fc161b18aadb85fdfb2e02b0711b7139c5f30726c9ae5e8b7e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Senior authors. |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3389460 |
| PMID | 22430496 |
| PQID | 1506872948 |
| PQPubID | 2031077 |
| PageCount | 17 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3389460 proquest_miscellaneous_1038598901 proquest_miscellaneous_1020832651 proquest_journals_1506872948 pubmed_primary_22430496 crossref_citationtrail_10_1016_j_neuroimage_2012_02_084 crossref_primary_10_1016_j_neuroimage_2012_02_084 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2012_02_084 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2012_02_084 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-07-16 |
| PublicationDateYYYYMMDD | 2012-07-16 |
| PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-16 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2012 |
| Publisher | Elsevier Inc Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
| References | Langbehn, Brinkman, Falush, Paulsen, Hayden (bb0165) 2004; 65 Reuter, Rosas, Fischl (bb0230) 2010; 53 Reuter (bb0215) 2009 Chételat, Landeau, Eustache, Mézenge, Viader, de la Sayette, Desgranges, Baron (bb0040) 2005; 27 Nakamura, Fox, Fisher (bb0195) 2011; 54 Rosas, Reuter, Doros, Lee, Triggs, Malarick, Fischl, Salat, Hersch (bb0235) 2011; 26 Fischl, van der Kouwe, Destrieux, Halgren, Ségonne, Salat, Busa, Seidman, Goldstein, Kennedy, Caviness, Makris, Rosen, Dale (bb0120) 2004; 14 Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, van der Kouwe, Killiany, Kennedy, Klaveness, Montillo, Makris, Rosen, Dale (bb0100) 2002; 33 Berry, Ayers (bb0035) 2006; 60 Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman, Albert, Killiany (bb0075) 2006; 31 Ashburner, Andersson, Friston (bb0010) 2000; 9 Avants, Anderson, Grossman, Gee (bb0020) 2007 Chiang, Insel, Tosun, Schuff, Truran-Sacrey, Raptentsetsang, Jack, Aisen, Petersen, Weiner, ADNI (bb0045) 2010; 75 Avants, Cook, McMillan, Grossman, Tustison, Zheng, Gee (bb0025) 2010 Patenaude, Smith, Kennedy, Jenkinson (bb0205) 2011; 56 Morey, Selgrade, Wagner, Huettel, Wang, McCarthy (bb0190) 2010; 31 Nickerson (bb0200) 1997; 53 Tisdall, M.D., Hess, A.T., Reuter, M., Meintjes, E.M., Fischl, B., van der Kouwe, A.J.W., in press. Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI. Magn. Reson. Med. Sabuncu, Yeo, Van Leemput, Fischl, Golland (bb0245) 2010; 29 Salat, Lee, van der Kouwe, Greve, Fischl, Rosas (bb0250) 2009; 48 Takao, Hayashi, Ohtomo (bb0290) 2011; 34 Qiu, Bitouk, Miller (bb0210) 2006; 25 Holland, McEvoy, Dale, ADNI (bb0145) 2011 Kipps, Duggins, Mahant, Gomes, Ashburner, McCusker (bb0160) 2005; 76 Fischl, Salat, van der Kouwe, Makris, Ségonne, Quinn, Dale (bb0105) 2004; 23 Sled, Zijdenbos, Evans (bb0270) 1998; 17 . Fischl, Dale (bb0090) 2000; 97 Chiang, Insel, Tosun, Schuff, Truran-Sacrey, Raptentsetsang, Jack, Weiner, ADNI (bb0050) 2011; 259 Li, Wang, Xue, Shi, Lin, Shen (bb0170) 2010 Reuter, Rosas, Fischl (bb0220) 2010 Smith, De Stefano, Jenkinson, Matthews (bb0275) 2001; 25 Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, De Luca, Drobnjak, Flitney, Niazy, Saunders, Vickers, Zhang, De Stefano, Brady, Matthews (bb0280) 2004; 23 Thevenaz, Blu, Unser (bb0295) 2000; 19 Fischl, Sereno, Dale (bb0110) 1999; 9 Fischl, Liu, Dale (bb0095) 2001; 20 Sharf, Wolf, Rubin (bb0260) 2010; 45 Shrout, Fleiss (bb0265) 1979; 86 Xue, Shen, Davatzikos (bb0320) 2006; 30 Reuter, Fischl (bb0225) 2011; 57 Dale, Fischl, Sereno (bb0065) 1999; 9 Han, Jovicich, Salat, van der Kouwe, Quinn, Czanner, Busa, Pacheco, Albert, Killiany, Maguire, Rosas, Makris, Dale, Dickerson, Fischl (bb0135) 2006; 32 Engvig, Fjell, Westlye, Moberget, Sundseth, Larsen, Walhovd (bb0085) 2010; 52 Fischl, B., in press. FreeSurfer. NeuroImage. URL Ségonne, Pacheco, Fischl (bb0255) 2007; 26 Smith, Zhang, Jenkinson, Chen, Matthews, Federico, Stefano (bb0285) 2002; 17 van der Kouwe, Benner, Salat, Fischl (bb0310) 2008; 40 Lin (bb0175) 1989; 45 Collignon, Maes, Delaere, Vandermeulen, Suetens, Marchal (bb0060) 1995 Clarkson, Ourselin, Nielsen, Leung, Barnes, Whitwell, Gunter, Hill, Weiner, Jack, Fox (bb0055) 2009; 47 Westlye, Walhovd, Dale, Espeseth, Reinvang, Raz, Agartz, Greve, Fischl, Fjell (bb0315) 2009; 47 Yushkevich, Avants, Das, Pluta, Altinay, Craige, ADNI (bb0325) 2010; 50 Ashburner (bb0005) 2007; 38 Mason, Graham (bb0180) 2002; 128 Fischl, Sereno, Tootell, Dale (bb0115) 1999; 8 Desikan, Sabuncu, Schmansky, Reuter, Cabral, Hess, Weiner, Biffi, Anderson, Rosand, Salat, Kemper, Dale, Sperling, Fischl, ADNI (bb0070) 2010; 5 Moakher (bb0185) 2002; 24 Thompson, Holland (bb0300) 2011; 57 Fletcher, Venkatasubramanian, Joshi (bb0130) 2009; 45 Avants, Gee (bb0030) 2004; 23 Ashburner, Friston (bb0015) 1999; 7 Jenkinson, Bannister, Brady, Smith (bb0150) 2002; 17 Joshi, Davis, Jomier, Gerig (bb0155) 2004; 23 Diggle, Heagerty, Liang, Zeger (bb0080) 2002 Holland, Dale (bb0140) 2011; 15 Sabuncu, Desikan, Sepulcre, Yeo, Liu, Schmansky, Reuter, Weiner, Buckner, Sperling, Fischl, ADNI (bb0240) 2011; 68 Collignon (10.1016/j.neuroimage.2012.02.084_bb0060) 1995 van der Kouwe (10.1016/j.neuroimage.2012.02.084_bb0310) 2008; 40 Rosas (10.1016/j.neuroimage.2012.02.084_bb0235) 2011; 26 Chiang (10.1016/j.neuroimage.2012.02.084_bb0050) 2011; 259 Li (10.1016/j.neuroimage.2012.02.084_bb0170) 2010 Lin (10.1016/j.neuroimage.2012.02.084_bb0175) 1989; 45 Ségonne (10.1016/j.neuroimage.2012.02.084_bb0255) 2007; 26 Takao (10.1016/j.neuroimage.2012.02.084_bb0290) 2011; 34 Westlye (10.1016/j.neuroimage.2012.02.084_bb0315) 2009; 47 Ashburner (10.1016/j.neuroimage.2012.02.084_bb0015) 1999; 7 Sabuncu (10.1016/j.neuroimage.2012.02.084_bb0240) 2011; 68 Fletcher (10.1016/j.neuroimage.2012.02.084_bb0130) 2009; 45 Reuter (10.1016/j.neuroimage.2012.02.084_bb0215) Reuter (10.1016/j.neuroimage.2012.02.084_bb0220) 2010 Diggle (10.1016/j.neuroimage.2012.02.084_bb0080) 2002 Holland (10.1016/j.neuroimage.2012.02.084_bb0145) 2011 Ashburner (10.1016/j.neuroimage.2012.02.084_bb0010) 2000; 9 Reuter (10.1016/j.neuroimage.2012.02.084_bb0230) 2010; 53 Salat (10.1016/j.neuroimage.2012.02.084_bb0250) 2009; 48 10.1016/j.neuroimage.2012.02.084_bb0305 Morey (10.1016/j.neuroimage.2012.02.084_bb0190) 2010; 31 Holland (10.1016/j.neuroimage.2012.02.084_bb0140) 2011; 15 Langbehn (10.1016/j.neuroimage.2012.02.084_bb0165) 2004; 65 Jenkinson (10.1016/j.neuroimage.2012.02.084_bb0150) 2002; 17 Nakamura (10.1016/j.neuroimage.2012.02.084_bb0195) 2011; 54 Fischl (10.1016/j.neuroimage.2012.02.084_bb0115) 1999; 8 Nickerson (10.1016/j.neuroimage.2012.02.084_bb0200) 1997; 53 Fischl (10.1016/j.neuroimage.2012.02.084_bb0100) 2002; 33 Engvig (10.1016/j.neuroimage.2012.02.084_bb0085) 2010; 52 Shrout (10.1016/j.neuroimage.2012.02.084_bb0265) 1979; 86 Fischl (10.1016/j.neuroimage.2012.02.084_bb0120) 2004; 14 Reuter (10.1016/j.neuroimage.2012.02.084_bb0225) 2011; 57 Avants (10.1016/j.neuroimage.2012.02.084_bb0020) 2007 Fischl (10.1016/j.neuroimage.2012.02.084_bb0110) 1999; 9 Moakher (10.1016/j.neuroimage.2012.02.084_bb0185) 2002; 24 Avants (10.1016/j.neuroimage.2012.02.084_bb0030) 2004; 23 Sharf (10.1016/j.neuroimage.2012.02.084_bb0260) 2010; 45 Qiu (10.1016/j.neuroimage.2012.02.084_bb0210) 2006; 25 Berry (10.1016/j.neuroimage.2012.02.084_bb0035) 2006; 60 Fischl (10.1016/j.neuroimage.2012.02.084_bb0095) 2001; 20 Sabuncu (10.1016/j.neuroimage.2012.02.084_bb0245) 2010; 29 Joshi (10.1016/j.neuroimage.2012.02.084_bb0155) 2004; 23 Chételat (10.1016/j.neuroimage.2012.02.084_bb0040) 2005; 27 Chiang (10.1016/j.neuroimage.2012.02.084_bb0045) 2010; 75 Thompson (10.1016/j.neuroimage.2012.02.084_bb0300) 2011; 57 Dale (10.1016/j.neuroimage.2012.02.084_bb0065) 1999; 9 Sled (10.1016/j.neuroimage.2012.02.084_bb0270) 1998; 17 10.1016/j.neuroimage.2012.02.084_bb0125 Kipps (10.1016/j.neuroimage.2012.02.084_bb0160) 2005; 76 Ashburner (10.1016/j.neuroimage.2012.02.084_bb0005) 2007; 38 Desikan (10.1016/j.neuroimage.2012.02.084_bb0075) 2006; 31 Clarkson (10.1016/j.neuroimage.2012.02.084_bb0055) 2009; 47 Avants (10.1016/j.neuroimage.2012.02.084_bb0025) 2010 Mason (10.1016/j.neuroimage.2012.02.084_bb0180) 2002; 128 Fischl (10.1016/j.neuroimage.2012.02.084_bb0090) 2000; 97 Fischl (10.1016/j.neuroimage.2012.02.084_bb0105) 2004; 23 Yushkevich (10.1016/j.neuroimage.2012.02.084_bb0325) 2010; 50 Han (10.1016/j.neuroimage.2012.02.084_bb0135) 2006; 32 Xue (10.1016/j.neuroimage.2012.02.084_bb0320) 2006; 30 Smith (10.1016/j.neuroimage.2012.02.084_bb0285) 2002; 17 Thevenaz (10.1016/j.neuroimage.2012.02.084_bb0295) 2000; 19 Smith (10.1016/j.neuroimage.2012.02.084_bb0280) 2004; 23 Smith (10.1016/j.neuroimage.2012.02.084_bb0275) 2001; 25 Desikan (10.1016/j.neuroimage.2012.02.084_bb0070) 2010; 5 Patenaude (10.1016/j.neuroimage.2012.02.084_bb0205) 2011; 56 |
| References_xml | – volume: 14 start-page: 11 year: 2004 end-page: 22 ident: bb0120 article-title: Automatically parcellating the human cerebral cortex publication-title: Cereb. Cortex – volume: 29 start-page: 1714 year: 2010 end-page: 1729 ident: bb0245 article-title: A generative model for image segmentation based on label fusion publication-title: IEEE Trans. Med. Imaging – volume: 65 start-page: 267 year: 2004 end-page: 277 ident: bb0165 article-title: A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length publication-title: Clin. Genet. – volume: 40 start-page: 559 year: 2008 end-page: 569 ident: bb0310 article-title: Brain morphometry with multiecho MPRAGE publication-title: NeuroImage – volume: 50 start-page: 434 year: 2010 end-page: 445 ident: bb0325 article-title: Bias in estimation of hippocampal atrophy using deformation-based morphometry arises from asymmetric global normalization: an illustration in ADNI 3 publication-title: NeuroImage – volume: 27 start-page: 934 year: 2005 end-page: 946 ident: bb0040 article-title: Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study publication-title: NeuroImage – volume: 32 start-page: 180 year: 2006 end-page: 194 ident: bb0135 article-title: Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer publication-title: NeuroImage – volume: 5 start-page: e12853 year: 2010 ident: bb0070 article-title: Seletive disruption of the cerebral neocortex in Alzheimer's disease publication-title: PLoS One – volume: 53 start-page: 1503 year: 1997 end-page: 1507 ident: bb0200 article-title: A note on “A concordance correlation coefficient to evaluate reproducibility” publication-title: Biometrics – volume: 15 start-page: 489 year: 2011 end-page: 497 ident: bb0140 article-title: Nonlinear registration of longitudinal images and measurement of change in regions of interest publication-title: Med. Image Anal. – volume: 26 start-page: 518 year: 2007 end-page: 529 ident: bb0255 article-title: Geometrically accurate topology-correction of cortical surfaces using nonseparating loops publication-title: IEEE Trans. Med. Imaging – volume: 97 start-page: 11050 year: 2000 end-page: 11055 ident: bb0090 article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 23 start-page: 139 year: 2004 end-page: 150 ident: bb0030 article-title: Geodesic estimation for large deformation anatomical shape averaging and interpolation publication-title: NeuroImage – volume: 17 start-page: 479 year: 2002 end-page: 489 ident: bb0285 article-title: Accurate, robust, and automated longitudinal and cross-sectional brain change analysis publication-title: NeuroImage – reference: Fischl, B., in press. FreeSurfer. NeuroImage. URL – volume: 9 start-page: 212 year: 2000 end-page: 225 ident: bb0010 article-title: Image registration using a symmetric prior—in three dimensions publication-title: Hum. Brain Mapp. – volume: 23 start-page: 69 year: 2004 end-page: 84 ident: bb0105 article-title: Sequence-independent segmentation of magnetic resonance images publication-title: NeuroImage – start-page: 133 year: 2010 end-page: 142 ident: bb0170 article-title: Consistent 4D cortical thickness measurement for longitudinal neuroimaging study publication-title: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2010 – volume: 30 start-page: 388 year: 2006 end-page: 399 ident: bb0320 article-title: CLASSIC: consistent longitudinal alignment and segmentation for serial image computing publication-title: NeuroImage – start-page: 303 year: 2007 end-page: 310 ident: bb0020 article-title: Spatiotemporal normalization for longitudinal analysis of gray matter atrophy in frontotemporal dementia publication-title: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2007 – volume: 9 start-page: 195 year: 1999 end-page: 207 ident: bb0110 article-title: Cortical surface-based analysis: II. Inflation, flattening, and a surface-based coordinate system publication-title: NeuroImage – volume: 19 start-page: 739 year: 2000 end-page: 758 ident: bb0295 article-title: Interpolation revisited publication-title: IEEE Trans. Med. Imaging – year: 2010 ident: bb0220 article-title: Unbiased robust template estimation for longitudinal analysis in FreeSurfer publication-title: Proceedings of the 16th Annual Meeting of the Organization for Human Brain Mapping – volume: 23 start-page: 208 year: 2004 end-page: 219 ident: bb0280 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: NeuroImage – volume: 48 start-page: 21 year: 2009 end-page: 28 ident: bb0250 article-title: Age-associated alterations in cortical gray and white matter signal intensity and gray to white matter contrast publication-title: NeuroImage – year: 2002 ident: bb0080 article-title: Analysis of Longitudinal Data – volume: 68 start-page: 1040 year: 2011 end-page: 1048 ident: bb0240 article-title: The dynamics of cortical and hippocampal atrophy in Alzheimer's disease publication-title: Arch. Neurol. – volume: 47 start-page: 1545 year: 2009 end-page: 1557 ident: bb0315 article-title: Increased sensitivity to effects of normal aging and Alzheimer's disease on cortical thickness by adjustment for local variability in gray/white contrast: a multi-sample MRI study publication-title: NeuroImage – volume: 38 start-page: 95 year: 2007 end-page: 113 ident: bb0005 article-title: A fast diffeomorphic image registration algorithm publication-title: NeuroImage – volume: 75 start-page: 1976 year: 2010 end-page: 1981 ident: bb0045 article-title: Hippocampal atrophy rates and CSF biomarkers in elderly APOE2 normal subjects publication-title: Neurology – volume: 24 start-page: 1 year: 2002 end-page: 16 ident: bb0185 article-title: Means and averaging in the group of rotations publication-title: SIAM J. Matrix Anal. Appl. – volume: 23 start-page: 151 year: 2004 end-page: 160 ident: bb0155 article-title: Unbiased diffeomorphic atlas construction for computational anatomy publication-title: NeuroImage – volume: 259 start-page: 844 year: 2011 end-page: 851 ident: bb0050 article-title: Identifying cognitively healthy elderly individuals with subsequent memory decline by using automated MR temporoparietal volumes publication-title: Radiology – volume: 34 start-page: 438 year: 2011 end-page: 444 ident: bb0290 article-title: Effect of scanner in longitudinal studies of brain volume changes publication-title: J. Magn. Reson. Imaging – volume: 54 start-page: 278 year: 2011 end-page: 289 ident: bb0195 article-title: CLADA: cortical longitudinal atrophy detection algorithm publication-title: NeuroImage – volume: 26 start-page: 1691 year: 2011 end-page: 1697 ident: bb0235 article-title: A tale of two factors: what determines the rate of progression in Huntington's disease? A longitudinal MRI study publication-title: Mov. Disord. – start-page: 263 year: 1995 end-page: 274 ident: bb0060 article-title: Automated multi-modality image registration based on information theory publication-title: Information Processing in Medical Imaging – year: 2011 ident: bb0145 article-title: Unbiased comparison of sample size estimates from longitudinal structural measures in ADNI publication-title: Hum. Brain Mapp. – year: 2009 ident: bb0215 article-title: Longitudinal Processing in FreeSurfer – volume: 57 start-page: 1 year: 2011 end-page: 4 ident: bb0300 article-title: Bias in tensor based morphometry Stat-ROI measures may result in unrealistic power estimates publication-title: NeuroImage – volume: 20 start-page: 70 year: 2001 end-page: 80 ident: bb0095 article-title: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex publication-title: IEEE Trans. Med. Imaging – volume: 8 start-page: 272 year: 1999 end-page: 284 ident: bb0115 article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface publication-title: Hum. Brain Mapp. – volume: 17 start-page: 825 year: 2002 end-page: 841 ident: bb0150 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage – volume: 33 start-page: 341 year: 2002 end-page: 355 ident: bb0100 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron – volume: 76 start-page: 650 year: 2005 end-page: 655 ident: bb0160 article-title: Progression of structural neuropathology in preclinical huntington's disease: a tensor based morphometry study publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 52 start-page: 1667 year: 2010 end-page: 1676 ident: bb0085 article-title: Effects of memory training on cortical thickness in the elderly publication-title: NeuroImage – volume: 47 start-page: 1506 year: 2009 end-page: 1513 ident: bb0055 article-title: Comparison of phantom and registration scaling corrections using the adni cohort publication-title: NeuroImage – volume: 57 start-page: 19 year: 2011 end-page: 21 ident: bb0225 article-title: Avoiding asymmetry-induced bias in longitudinal image processing publication-title: NeuroImage – volume: 60 start-page: 27 year: 2006 end-page: 31 ident: bb0035 article-title: Symmetrized percent change for treatment comparisons publication-title: Am. Stat. – volume: 17 start-page: 87 year: 1998 end-page: 97 ident: bb0270 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans. Med. Imaging – volume: 7 start-page: 254 year: 1999 end-page: 266 ident: bb0015 article-title: Nonlinear spatial normalization using basis functions publication-title: Hum. Brain Mapp. – volume: 9 start-page: 179 year: 1999 end-page: 194 ident: bb0065 article-title: Cortical surface-based analysis: I. segmentation and surface reconstruction publication-title: NeuroImage – volume: 45 start-page: 143 year: 2009 end-page: 152 ident: bb0130 article-title: The geometric median on Riemannian manifolds with application to robust atlas estimation publication-title: NeuroImage – volume: 45 start-page: 255 year: 1989 end-page: 268 ident: bb0175 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics – volume: 128 start-page: 2145 year: 2002 end-page: 2166 ident: bb0180 article-title: Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: statistical significance and interpretation publication-title: Q. J. R. Meteorol. Soc. – volume: 53 start-page: 1181 year: 2010 end-page: 1196 ident: bb0230 article-title: Highly accurate inverse consistent registration: a robust approach publication-title: NeuroImage – reference: Tisdall, M.D., Hess, A.T., Reuter, M., Meintjes, E.M., Fischl, B., van der Kouwe, A.J.W., in press. Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI. Magn. Reson. Med. – volume: 45 start-page: 1239 year: 2010 end-page: 1251 ident: bb0260 article-title: Arithmetic and geometric solutions for average rigid-body rotation publication-title: Mech. Mach. Theory – start-page: 324 year: 2010 end-page: 331 ident: bb0025 article-title: Sparse unbiased analysis of anatomical variance in longitudinal imaging publication-title: MICCAI 2010, Part I. Vol. 6361 of LNCS – volume: 86 start-page: 420 year: 1979 end-page: 428 ident: bb0265 article-title: Intraclass correlations: uses in assessing rater reliability publication-title: Psychol. Bull. – volume: 31 start-page: 1751 year: 2010 end-page: 1762 ident: bb0190 article-title: Scan-rescan reliability of subcortical brain volumes derived from automated segmentation publication-title: Hum. Brain Mapp. – volume: 56 start-page: 907 year: 2011 end-page: 922 ident: bb0205 article-title: A Bayesian model of shape and appearance for subcortical brain segmentation publication-title: NeuroImage – reference: . – volume: 25 start-page: 1296 year: 2006 end-page: 1306 ident: bb0210 article-title: Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace–Beltrami operator publication-title: IEEE Trans. Med. Imaging – volume: 25 start-page: 466 year: 2001 end-page: 475 ident: bb0275 article-title: Normalized accurate measurement of longitudinal brain change publication-title: J. Comput. Assist. Tomogr. – volume: 31 start-page: 968 year: 2006 end-page: 980 ident: bb0075 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: NeuroImage – volume: 23 start-page: 69 issue: Suppl. 1 year: 2004 ident: 10.1016/j.neuroimage.2012.02.084_bb0105 article-title: Sequence-independent segmentation of magnetic resonance images publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.016 – volume: 31 start-page: 1751 issue: 11 year: 2010 ident: 10.1016/j.neuroimage.2012.02.084_bb0190 article-title: Scan-rescan reliability of subcortical brain volumes derived from automated segmentation publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20973 – year: 2002 ident: 10.1016/j.neuroimage.2012.02.084_bb0080 – year: 2010 ident: 10.1016/j.neuroimage.2012.02.084_bb0220 article-title: Unbiased robust template estimation for longitudinal analysis in FreeSurfer – volume: 25 start-page: 466 issue: 3 year: 2001 ident: 10.1016/j.neuroimage.2012.02.084_bb0275 article-title: Normalized accurate measurement of longitudinal brain change publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/00004728-200105000-00022 – volume: 8 start-page: 272 issue: 4 year: 1999 ident: 10.1016/j.neuroimage.2012.02.084_bb0115 article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 – volume: 32 start-page: 180 issue: 1 year: 2006 ident: 10.1016/j.neuroimage.2012.02.084_bb0135 article-title: Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.02.051 – volume: 23 start-page: 151 year: 2004 ident: 10.1016/j.neuroimage.2012.02.084_bb0155 article-title: Unbiased diffeomorphic atlas construction for computational anatomy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.068 – volume: 40 start-page: 559 issue: 2 year: 2008 ident: 10.1016/j.neuroimage.2012.02.084_bb0310 article-title: Brain morphometry with multiecho MPRAGE publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.12.025 – volume: 54 start-page: 278 issue: 1 year: 2011 ident: 10.1016/j.neuroimage.2012.02.084_bb0195 article-title: CLADA: cortical longitudinal atrophy detection algorithm publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.07.052 – ident: 10.1016/j.neuroimage.2012.02.084_bb0125 doi: 10.1016/j.neuroimage.2012.01.021 – volume: 86 start-page: 420 issue: 2 year: 1979 ident: 10.1016/j.neuroimage.2012.02.084_bb0265 article-title: Intraclass correlations: uses in assessing rater reliability publication-title: Psychol. Bull. doi: 10.1037/0033-2909.86.2.420 – volume: 76 start-page: 650 issue: 5 year: 2005 ident: 10.1016/j.neuroimage.2012.02.084_bb0160 article-title: Progression of structural neuropathology in preclinical huntington's disease: a tensor based morphometry study publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2004.047993 – volume: 33 start-page: 341 issue: 3 year: 2002 ident: 10.1016/j.neuroimage.2012.02.084_bb0100 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron doi: 10.1016/S0896-6273(02)00569-X – volume: 52 start-page: 1667 issue: 4 year: 2010 ident: 10.1016/j.neuroimage.2012.02.084_bb0085 article-title: Effects of memory training on cortical thickness in the elderly publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.05.041 – start-page: 133 year: 2010 ident: 10.1016/j.neuroimage.2012.02.084_bb0170 article-title: Consistent 4D cortical thickness measurement for longitudinal neuroimaging study – volume: 31 start-page: 968 issue: 3 year: 2006 ident: 10.1016/j.neuroimage.2012.02.084_bb0075 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.01.021 – volume: 9 start-page: 179 issue: 2 year: 1999 ident: 10.1016/j.neuroimage.2012.02.084_bb0065 article-title: Cortical surface-based analysis: I. segmentation and surface reconstruction publication-title: NeuroImage doi: 10.1006/nimg.1998.0395 – volume: 47 start-page: 1545 issue: 4 year: 2009 ident: 10.1016/j.neuroimage.2012.02.084_bb0315 article-title: Increased sensitivity to effects of normal aging and Alzheimer's disease on cortical thickness by adjustment for local variability in gray/white contrast: a multi-sample MRI study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.05.084 – volume: 47 start-page: 1506 issue: 4 year: 2009 ident: 10.1016/j.neuroimage.2012.02.084_bb0055 article-title: Comparison of phantom and registration scaling corrections using the adni cohort publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.05.045 – volume: 56 start-page: 907 issue: 3 year: 2011 ident: 10.1016/j.neuroimage.2012.02.084_bb0205 article-title: A Bayesian model of shape and appearance for subcortical brain segmentation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.02.046 – volume: 5 start-page: e12853 issue: 9 year: 2010 ident: 10.1016/j.neuroimage.2012.02.084_bb0070 article-title: Seletive disruption of the cerebral neocortex in Alzheimer's disease publication-title: PLoS One doi: 10.1371/journal.pone.0012853 – volume: 38 start-page: 95 issue: 1 year: 2007 ident: 10.1016/j.neuroimage.2012.02.084_bb0005 article-title: A fast diffeomorphic image registration algorithm publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.07.007 – volume: 53 start-page: 1503 issue: 4 year: 1997 ident: 10.1016/j.neuroimage.2012.02.084_bb0200 article-title: A note on “A concordance correlation coefficient to evaluate reproducibility” publication-title: Biometrics doi: 10.2307/2533516 – volume: 24 start-page: 1 issue: 1 year: 2002 ident: 10.1016/j.neuroimage.2012.02.084_bb0185 article-title: Means and averaging in the group of rotations publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479801383877 – ident: 10.1016/j.neuroimage.2012.02.084_bb0305 doi: 10.1002/mrm.23228 – volume: 9 start-page: 212 issue: 4 year: 2000 ident: 10.1016/j.neuroimage.2012.02.084_bb0010 article-title: Image registration using a symmetric prior—in three dimensions publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(200004)9:4<212::AID-HBM3>3.0.CO;2-# – start-page: 263 year: 1995 ident: 10.1016/j.neuroimage.2012.02.084_bb0060 article-title: Automated multi-modality image registration based on information theory – volume: 68 start-page: 1040 issue: 8 year: 2011 ident: 10.1016/j.neuroimage.2012.02.084_bb0240 article-title: The dynamics of cortical and hippocampal atrophy in Alzheimer's disease publication-title: Arch. Neurol. doi: 10.1001/archneurol.2011.167 – volume: 23 start-page: 208 year: 2004 ident: 10.1016/j.neuroimage.2012.02.084_bb0280 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.051 – start-page: 303 year: 2007 ident: 10.1016/j.neuroimage.2012.02.084_bb0020 article-title: Spatiotemporal normalization for longitudinal analysis of gray matter atrophy in frontotemporal dementia – volume: 34 start-page: 438 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2012.02.084_bb0290 article-title: Effect of scanner in longitudinal studies of brain volume changes publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.22636 – volume: 259 start-page: 844 issue: 3 year: 2011 ident: 10.1016/j.neuroimage.2012.02.084_bb0050 article-title: Identifying cognitively healthy elderly individuals with subsequent memory decline by using automated MR temporoparietal volumes publication-title: Radiology doi: 10.1148/radiol.11101637 – volume: 25 start-page: 1296 issue: 10 year: 2006 ident: 10.1016/j.neuroimage.2012.02.084_bb0210 article-title: Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace–Beltrami operator publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2006.882143 – start-page: 324 year: 2010 ident: 10.1016/j.neuroimage.2012.02.084_bb0025 article-title: Sparse unbiased analysis of anatomical variance in longitudinal imaging – ident: 10.1016/j.neuroimage.2012.02.084_bb0215 – volume: 7 start-page: 254 issue: 4 year: 1999 ident: 10.1016/j.neuroimage.2012.02.084_bb0015 article-title: Nonlinear spatial normalization using basis functions publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G – volume: 19 start-page: 739 issue: 7 year: 2000 ident: 10.1016/j.neuroimage.2012.02.084_bb0295 article-title: Interpolation revisited publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.875199 – volume: 75 start-page: 1976 issue: 22 year: 2010 ident: 10.1016/j.neuroimage.2012.02.084_bb0045 article-title: Hippocampal atrophy rates and CSF biomarkers in elderly APOE2 normal subjects publication-title: Neurology doi: 10.1212/WNL.0b013e3181ffe4d1 – volume: 26 start-page: 518 year: 2007 ident: 10.1016/j.neuroimage.2012.02.084_bb0255 article-title: Geometrically accurate topology-correction of cortical surfaces using nonseparating loops publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2006.887364 – volume: 14 start-page: 11 issue: 1 year: 2004 ident: 10.1016/j.neuroimage.2012.02.084_bb0120 article-title: Automatically parcellating the human cerebral cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/bhg087 – volume: 45 start-page: 255 issue: 1 year: 1989 ident: 10.1016/j.neuroimage.2012.02.084_bb0175 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics doi: 10.2307/2532051 – volume: 9 start-page: 195 issue: 2 year: 1999 ident: 10.1016/j.neuroimage.2012.02.084_bb0110 article-title: Cortical surface-based analysis: II. Inflation, flattening, and a surface-based coordinate system publication-title: NeuroImage doi: 10.1006/nimg.1998.0396 – volume: 17 start-page: 825 year: 2002 ident: 10.1016/j.neuroimage.2012.02.084_bb0150 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage doi: 10.1006/nimg.2002.1132 – volume: 17 start-page: 479 issue: 1 year: 2002 ident: 10.1016/j.neuroimage.2012.02.084_bb0285 article-title: Accurate, robust, and automated longitudinal and cross-sectional brain change analysis publication-title: NeuroImage doi: 10.1006/nimg.2002.1040 – volume: 48 start-page: 21 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2012.02.084_bb0250 article-title: Age-associated alterations in cortical gray and white matter signal intensity and gray to white matter contrast publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.06.074 – volume: 57 start-page: 19 issue: 1 year: 2011 ident: 10.1016/j.neuroimage.2012.02.084_bb0225 article-title: Avoiding asymmetry-induced bias in longitudinal image processing publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.02.076 – volume: 23 start-page: 139 issue: 1 year: 2004 ident: 10.1016/j.neuroimage.2012.02.084_bb0030 article-title: Geodesic estimation for large deformation anatomical shape averaging and interpolation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.010 – volume: 20 start-page: 70 issue: 1 year: 2001 ident: 10.1016/j.neuroimage.2012.02.084_bb0095 article-title: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.906426 – volume: 15 start-page: 489 issue: 4 year: 2011 ident: 10.1016/j.neuroimage.2012.02.084_bb0140 article-title: Nonlinear registration of longitudinal images and measurement of change in regions of interest publication-title: Med. Image Anal. doi: 10.1016/j.media.2011.02.005 – volume: 30 start-page: 388 year: 2006 ident: 10.1016/j.neuroimage.2012.02.084_bb0320 article-title: CLASSIC: consistent longitudinal alignment and segmentation for serial image computing publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.09.054 – volume: 57 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.neuroimage.2012.02.084_bb0300 article-title: Bias in tensor based morphometry Stat-ROI measures may result in unrealistic power estimates publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.11.092 – volume: 17 start-page: 87 issue: 1 year: 1998 ident: 10.1016/j.neuroimage.2012.02.084_bb0270 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.668698 – volume: 50 start-page: 434 issue: 2 year: 2010 ident: 10.1016/j.neuroimage.2012.02.084_bb0325 article-title: Bias in estimation of hippocampal atrophy using deformation-based morphometry arises from asymmetric global normalization: an illustration in ADNI 3Tesla MRI data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.12.007 – volume: 27 start-page: 934 issue: 4 year: 2005 ident: 10.1016/j.neuroimage.2012.02.084_bb0040 article-title: Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.05.015 – year: 2011 ident: 10.1016/j.neuroimage.2012.02.084_bb0145 article-title: Unbiased comparison of sample size estimates from longitudinal structural measures in ADNI publication-title: Hum. Brain Mapp. – volume: 45 start-page: 1239 issue: 9 year: 2010 ident: 10.1016/j.neuroimage.2012.02.084_bb0260 article-title: Arithmetic and geometric solutions for average rigid-body rotation publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2010.05.002 – volume: 53 start-page: 1181 issue: 4 year: 2010 ident: 10.1016/j.neuroimage.2012.02.084_bb0230 article-title: Highly accurate inverse consistent registration: a robust approach publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.07.020 – volume: 60 start-page: 27 year: 2006 ident: 10.1016/j.neuroimage.2012.02.084_bb0035 article-title: Symmetrized percent change for treatment comparisons publication-title: Am. Stat. doi: 10.1198/000313006X90684 – volume: 97 start-page: 11050 issue: 20 year: 2000 ident: 10.1016/j.neuroimage.2012.02.084_bb0090 article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.200033797 – volume: 45 start-page: 143 issue: 1, Suppl. 1 year: 2009 ident: 10.1016/j.neuroimage.2012.02.084_bb0130 article-title: The geometric median on Riemannian manifolds with application to robust atlas estimation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.10.052 – volume: 65 start-page: 267 issue: 4 year: 2004 ident: 10.1016/j.neuroimage.2012.02.084_bb0165 article-title: A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length publication-title: Clin. Genet. doi: 10.1111/j.1399-0004.2004.00241.x – volume: 128 start-page: 2145 issue: 584 year: 2002 ident: 10.1016/j.neuroimage.2012.02.084_bb0180 article-title: Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: statistical significance and interpretation publication-title: Q. J. R. Meteorol. Soc. doi: 10.1256/003590002320603584 – volume: 26 start-page: 1691 issue: 9 year: 2011 ident: 10.1016/j.neuroimage.2012.02.084_bb0235 article-title: A tale of two factors: what determines the rate of progression in Huntington's disease? A longitudinal MRI study publication-title: Mov. Disord. doi: 10.1002/mds.23762 – volume: 29 start-page: 1714 issue: 10 year: 2010 ident: 10.1016/j.neuroimage.2012.02.084_bb0245 article-title: A generative model for image segmentation based on label fusion publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2050897 |
| SSID | ssj0009148 |
| Score | 2.6269245 |
| Snippet | Longitudinal image analysis has become increasingly important in clinical studies of normal aging and neurodegenerative disorders. Furthermore, there is a... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1402 |
| SubjectTerms | Algorithms Bias Brain - anatomy & histology Brain - physiology FreeSurfer Humans Image Interpretation, Computer-Assisted - methods Magnetic Resonance Imaging - methods Methods MRI biomarkers Neurodegeneration Noise Reliability and power Software Standard deviation Studies Unbiased longitudinal image processing Within-subject template |
| Title | Within-subject template estimation for unbiased longitudinal image analysis |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811912002765 https://dx.doi.org/10.1016/j.neuroimage.2012.02.084 https://www.ncbi.nlm.nih.gov/pubmed/22430496 https://www.proquest.com/docview/1506872948 https://www.proquest.com/docview/1020832651 https://www.proquest.com/docview/1038598901 https://pubmed.ncbi.nlm.nih.gov/PMC3389460 |
| Volume | 61 |
| WOSCitedRecordID | wos000305920600064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1095-9572 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M7P dateStart: 19980501 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1095-9572 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1095-9572 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M2M dateStart: 20020801 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_Wdoy9dN9bti54sFcxy1-S2MPoSso-SAijsLwZyZKpR-Z0Tby_v3e27KwdK4FBSCDSgSWd7n7WnX4H8FY562yhHEPXU7KEC8tMqkMmlLDoMUQqEtMWmxCzmVws1NwfuK19WmVvE1tDbVcFnZG_IyY8iUgwkR8ufjGqGkXRVV9CYw8OiCUhblP35lvSXZ50V-HSmEnOlc_k6fK7Wr7I6ifuWkrwilrmTpn8yz39DT9vZlH-4ZZOH_zvgB7CoQekwXGnQY_gjqsfw72pD7k_ga_fq815VbN1Y-jIJiAuqyUC1IDoObp7jwEC36CpTYUe0QbLFZVAaiyV2wrakQfaM588hbPTydnJJ-YrMLACkciGSR1GWpSRNIi0ygLRoeFSa2tkWtrSRC6MDGIUbvBVVxVpiQYjygqlXeqkES5-Bvv1qnYvIECFzVQaC1dmFKpTGl0nty52uExaqHAEop_3vPDs5FQkY5n3aWg_8u2K5bRieYgfmYyAD5IXHUPHDjKqX9q8v4GKNjNHN7KD7PtB1qOUDn3sKH3Ua0PurcU636rCCN4MzbjPKXija7dqsA9VU0WsnfLb-sQyVRIh3gied8o5TAluPIqoZjjR19R26EA849db6uq85RuPEdQmWfjy9kd_BfdpnHTuzbMj2N9cNu413C1-b6r15Rj2xEK033IMB8efJ4sv-PtxMpt_w3-n0XTcbt0rl9xK9g |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL78dCASPBMWqcl20hhBBQtdruisNK9GbZsaMGLdnS3YD4UfxHZvJaCqLaSw9IudkTJfY8PtvjbwBeKO-8y5UPMPQUQcKFC2xqwkAo4TBiiFQktik2IaZTeXSkPm7Bz_4uDKVV9j6xcdRukdMe-S4x4UlEgol8c_I1oKpRdLral9Bo1WLsf3zHJdvy9cF7nN-XUbT3YfZuP-iqCgQ5RtdVIE0YGVFE0iJ6KHJEPJZLY5yVaeEKG_kwshh3ucXlm8rTAo0gynJlfOqlFT7G116CywkuhKhSxCSarDl-edLevEvjQHKuusShNp2soacsv6CToHyyqCEKlcm_ouHfaPfPpM3fouDezf9s_G7BjQ5us7etfdyGLV_dgauTLqHgLow_lavjsgqWtaUNKUZMXXOE34zIR9pbnQxhPasrW2K8d2y-oAJPtaNiYqwZaGY6Xpd7MLuIP7kP29Wi8g-BoTlmKo2FLzI6iFQGgQF3PvaoFUaocASin2add9zrVAJkrvsku896rSCaFESH-MhkBHyQPGn5RzaQUb0m6f5-LUYEjUFyA9lXg2yHwVpstaH0Tq98uvOFS73WvBE8H5rRi9HRlKn8osY-VCsWVxIpP69PLFMlEcCO4EFrC8OQoFuh8-IMB_qMlQwdiEX9bEtVHjds6jFC9iQLH53_6c_g2v5scqgPD6bjx3Cd_pl2-Hm2A9ur09o_gSv5t1W5PH3a-AQG-oJt6BdYraHp |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgiouvAsLBYwEx6hxXraFEEKUFdXCag-V6M2yY0cNWrKluwHx0_h3zOS1FES1lx6QcrMnSux5fLbH3wA8V955lysfYOgpgoQLF9jUhIFQwmHEEKlIbFNsQkyn8vhYzbbgZ38XhtIqe5_YOGq3yGmPfJ-Y8CQiwUTuF11axOxg_Pr0a0AVpOiktS-n0arIxP_4jsu35avDA5zrF1E0fnf09n3QVRgIcoy0q0CaMDKiiKRFJFHkiH4sl8Y4K9PCFTbyYWQxBnOLSzmVpwUaRJTlyvjUSyt8jK-9AlcFcZY3WYOzNd8vT9pbeGkcSM5Vl0TUppY1VJXlF3QYlFsWNaShMvlXZPwb-f6ZwPlbRBzf_I_H8hbc6GA4e9PazW3Y8tUd2PnYJRrchcmncnVSVsGytrRRxYjBa46wnBEpSXvbkyHcZ3VlS8QBjs0XVPipdlRkjDWDzkzH93IPji7jT3Zhu1pU_gEwNNNMpbHwRUYHlMogYODOxx41xAgVjkD0U67zjpOdSoPMdZ9891mvlUWTsugQH5mMgA-Spy0vyQYyqtcq3d-7xUihMXhuIPtykO2wWYu5NpTe6xVRdz5yqddaOIJnQzN6NzqyMpVf1NiHasjiCiPlF_WJZaokAtsR3G_tYhgSdDd0jpzhQJ-zmKEDsaufb6nKk4ZlPUYon2Thw4s__SnsoOnoD4fTySO4Tr9MG_8824Pt1VntH8O1_NuqXJ49adwDA33JJvQLI5Cqug |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Within-subject+template+estimation+for+unbiased+longitudinal+image+analysis&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Reuter%2C+Martin&rft.au=Schmansky%2C+Nicholas+J.&rft.au=Rosas%2C+H.+Diana&rft.au=Fischl%2C+Bruce&rft.date=2012-07-16&rft.issn=1053-8119&rft.volume=61&rft.issue=4&rft.spage=1402&rft.epage=1418&rft_id=info:doi/10.1016%2Fj.neuroimage.2012.02.084&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2012_02_084 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |