Within-subject template estimation for unbiased longitudinal image analysis

Longitudinal image analysis has become increasingly important in clinical studies of normal aging and neurodegenerative disorders. Furthermore, there is a growing appreciation of the potential utility of longitudinally acquired structural images and reliable image processing to evaluate disease modi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:NeuroImage (Orlando, Fla.) Ročník 61; číslo 4; s. 1402 - 1418
Hlavní autoři: Reuter, Martin, Schmansky, Nicholas J., Rosas, H. Diana, Fischl, Bruce
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Inc 16.07.2012
Elsevier Limited
Témata:
ISSN:1053-8119, 1095-9572, 1095-9572
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Longitudinal image analysis has become increasingly important in clinical studies of normal aging and neurodegenerative disorders. Furthermore, there is a growing appreciation of the potential utility of longitudinally acquired structural images and reliable image processing to evaluate disease modifying therapies. Challenges have been related to the variability that is inherent in the available cross-sectional processing tools, to the introduction of bias in longitudinal processing and to potential over-regularization. In this paper we introduce a novel longitudinal image processing framework, based on unbiased, robust, within-subject template creation, for automatic surface reconstruction and segmentation of brain MRI of arbitrarily many time points. We demonstrate that it is essential to treat all input images exactly the same as removing only interpolation asymmetries is not sufficient to remove processing bias. We successfully reduce variability and avoid over-regularization by initializing the processing in each time point with common information from the subject template. The presented results show a significant increase in precision and discrimination power while preserving the ability to detect large anatomical deviations; as such they hold great potential in clinical applications, e.g. allowing for smaller sample sizes or shorter trials to establish disease specific biomarkers or to quantify drug effects. ► We introduce unbiased longitudinal processing of brain MRI of several time points. ► We demonstrate that inerpolation asymmetries are not the only source of bias. ► We create a robust within-subject template to initialize all time points. ► Reliability is significantly increased, while over-regularization is avoided. ► Precision allows for smaller sample sizes in clinical trials to assess biomarkers.
AbstractList Longitudinal image analysis has become increasingly important in clinical studies of normal aging and neurodegenerative disorders. Furthermore, there is a growing appreciation of the potential utility of longitudinally acquired structural images and reliable image processing to evaluate disease modifying therapies. Challenges have been related to the variability that is inherent in the available cross-sectional processing tools, to the introduction of bias in longitudinal processing and to potential over-regularization. In this paper we introduce a novel longitudinal image processing framework, based on unbiased, robust, within-subject template creation, for automatic surface reconstruction and segmentation of brain MRI of arbitrarily many time points. We demonstrate that it is essential to treat all input images exactly the same as removing only interpolation asymmetries is not sufficient to remove processing bias. We successfully reduce variability and avoid over-regularization by initializing the processing in each time point with common information from the subject template. The presented results show a significant increase in precision and discrimination power while preserving the ability to detect large anatomical deviations; as such they hold great potential in clinical applications, e.g. allowing for smaller sample sizes or shorter trials to establish disease specific biomarkers or to quantify drug effects.
Longitudinal image analysis has become increasingly important in clinical studies of normal aging and neurodegenerative disorders. Furthermore, there is a growing appreciation of the potential utility of longitudinally acquired structural images and reliable image processing to evaluate disease modifying therapies. Challenges have been related to the variability that is inherent in the available cross-sectional processing tools, to the introduction of bias in longitudinal processing and to potential over-regularization. In this paper we introduce a novel longitudinal image processing framework, based on unbiased, robust, within-subject template creation, for automatic surface reconstruction and segmentation of brain MRI of arbitrarily many time points. We demonstrate that it is essential to treat all input images exactly the same as removing only interpolation asymmetries is not sufficient to remove processing bias. We successfully reduce variability and avoid over-regularization by initializing the processing in each time point with common information from the subject template. The presented results show a significant increase in precision and discrimination power while preserving the ability to detect large anatomical deviations; as such they hold great potential in clinical applications, e.g. allowing for smaller sample sizes or shorter trials to establish disease specific biomarkers or to quantify drug effects. ► We introduce unbiased longitudinal processing of brain MRI of several time points. ► We demonstrate that inerpolation asymmetries are not the only source of bias. ► We create a robust within-subject template to initialize all time points. ► Reliability is significantly increased, while over-regularization is avoided. ► Precision allows for smaller sample sizes in clinical trials to assess biomarkers.
Longitudinal image analysis has become increasingly important in clinical studies of normal aging and neurodegenerative disorders. Furthermore, there is a growing appreciation of the potential utility of longitudinally acquired structural images and reliable image processing to evaluate disease modifying therapies. Challenges have been related to thevariabilitythat is inherent in the available cross-sectional processing tools, to the introduction ofbiasin longitudinal processing and to potentialover-regularization. In this paper we introduce a novel longitudinal image processing framework, based on unbiased, robust, within-subject template creation, for automatic surface reconstruction and segmentation of brain MRI of arbitrarily many time points. We demonstrate that it is essential to treat all input images exactly the same as removing only interpolation asymmetries is not sufficient to remove processing bias. We successfully reduce variability and avoid over-regularization by initializing the processing in each time point with common information from the subject template. The presented results show a significant increase in precision and discrimination power while preserving the ability to detect large anatomical deviations; as such they hold great potential in clinical applications, e.g. allowing for smaller sample sizes or shorter trials to establish disease specific biomarkers or to quantify drug effects.
Longitudinal image analysis has become increasingly important in clinical studies of normal aging and neurodegenerative disorders. Furthermore, there is a growing appreciation of the potential utility of longitudinally acquired structural images and reliable image processing to evaluate disease modifying therapies. Challenges have been related to the variability that is inherent in the available cross-sectional processing tools, to the introduction of bias in longitudinal processing and to potential over-regularization. In this paper we introduce a novel longitudinal image processing framework, based on unbiased, robust, within-subject template creation, for automatic surface reconstruction and segmentation of brain MRI of arbitrarily many time points. We demonstrate that it is essential to treat all input images exactly the same as removing only interpolation asymmetries is not sufficient to remove processing bias. We successfully reduce variability and avoid over-regularization by initializing the processing in each time point with common information from the subject template. The presented results show a significant increase in precision and discrimination power while preserving the ability to detect large anatomical deviations; as such they hold great potential in clinical applications, e.g. allowing for smaller sample sizes or shorter trials to establish disease specific biomarkers or to quantify drug effects.Longitudinal image analysis has become increasingly important in clinical studies of normal aging and neurodegenerative disorders. Furthermore, there is a growing appreciation of the potential utility of longitudinally acquired structural images and reliable image processing to evaluate disease modifying therapies. Challenges have been related to the variability that is inherent in the available cross-sectional processing tools, to the introduction of bias in longitudinal processing and to potential over-regularization. In this paper we introduce a novel longitudinal image processing framework, based on unbiased, robust, within-subject template creation, for automatic surface reconstruction and segmentation of brain MRI of arbitrarily many time points. We demonstrate that it is essential to treat all input images exactly the same as removing only interpolation asymmetries is not sufficient to remove processing bias. We successfully reduce variability and avoid over-regularization by initializing the processing in each time point with common information from the subject template. The presented results show a significant increase in precision and discrimination power while preserving the ability to detect large anatomical deviations; as such they hold great potential in clinical applications, e.g. allowing for smaller sample sizes or shorter trials to establish disease specific biomarkers or to quantify drug effects.
Author Fischl, Bruce
Reuter, Martin
Rosas, H. Diana
Schmansky, Nicholas J.
AuthorAffiliation b Martinos Center for Biomedical Imaging, 143 13th Street, Charlestown, MA, USA
c MIT Computer Science and AI Lab, Cambridge, MA, USA
a Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
AuthorAffiliation_xml – name: c MIT Computer Science and AI Lab, Cambridge, MA, USA
– name: a Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
– name: b Martinos Center for Biomedical Imaging, 143 13th Street, Charlestown, MA, USA
Author_xml – sequence: 1
  givenname: Martin
  surname: Reuter
  fullname: Reuter, Martin
  email: mreuter@nmr.mgh.harvard.edu
  organization: Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
– sequence: 2
  givenname: Nicholas J.
  surname: Schmansky
  fullname: Schmansky, Nicholas J.
  organization: Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
– sequence: 3
  givenname: H. Diana
  surname: Rosas
  fullname: Rosas, H. Diana
  organization: Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
– sequence: 4
  givenname: Bruce
  surname: Fischl
  fullname: Fischl, Bruce
  organization: Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22430496$$D View this record in MEDLINE/PubMed
BookMark eNqNkk2LFDEQhoOsuB_6F6TBi5ce89HpTi6iu7iruOBlwWNI0tWzGTPJmKQX5t-b2Q9X5zRQkEDeeqoq9Z6ioxADINQQvCCY9B9WiwBzim6tl7CgmNAFriG6F-iEYMlbyQd6tLtz1gpC5DE6zXmFMZakE6_QMaUdw53sT9D3n67cutDm2azAlqbAeuN1gQZyqfjiYmimmJo5GKczjI2PYenKPLqgfXPfQKPrdZtdfo1eTtpnePN4nqGbyy83F1_b6x9X3y4-X7e271lphcZUDxMVhvBusqQnhgitRyP4NE6GAqYGD4SYgTBp-cTwQHsrNXAQZgB2hj4-YDezWcNoIZSkvdqk2k3aqqid-v8luFu1jHeKMSG7HlfA-0dAir_nOqhau2zBex0gzlkRzASXQmJygJRiwWjPd9J3e9JVnFP9mqriuBcDlZ2oqrf_Nv-366eNPE9nU8w5waSsK_d7qLM4XyuqnQXUSj1bQO0soHAN0VWA2AM81Tgg9fwhFer27hwkla2DYGF0qZpDjdEdAvm0B7HeBWe1_wXbwxB_ANxr6V8
CitedBy_id crossref_primary_10_1016_j_knosys_2022_108578
crossref_primary_10_1038_s41380_018_0202_6
crossref_primary_10_1186_s13034_016_0093_8
crossref_primary_10_1177_0271678X19874790
crossref_primary_10_1016_j_jaac_2015_07_009
crossref_primary_10_1016_j_neurobiolaging_2020_05_009
crossref_primary_10_1016_j_neucli_2021_12_003
crossref_primary_10_1016_j_neurobiolaging_2020_05_008
crossref_primary_10_3390_biomedicines12040896
crossref_primary_10_1109_ACCESS_2017_2773359
crossref_primary_10_1016_j_neurobiolaging_2023_03_005
crossref_primary_10_1186_s13195_023_01173_1
crossref_primary_10_1017_S0954579418001475
crossref_primary_10_1093_scan_nst183
crossref_primary_10_1371_journal_pone_0168652
crossref_primary_10_1249_MSS_0000000000002666
crossref_primary_10_1186_s13550_018_0416_2
crossref_primary_10_1136_bjsports_2020_102002
crossref_primary_10_1016_j_neuroimage_2014_12_035
crossref_primary_10_1016_j_neurobiolaging_2014_08_031
crossref_primary_10_1016_j_neurobiolaging_2017_06_022
crossref_primary_10_1038_s41598_018_29017_1
crossref_primary_10_1136_jnnp_2021_326630
crossref_primary_10_1177_13524585231204710
crossref_primary_10_1016_j_neurobiolaging_2015_10_020
crossref_primary_10_3390_biomedicines12092081
crossref_primary_10_1016_j_neuroimage_2023_120237
crossref_primary_10_1093_scan_nsu022
crossref_primary_10_3233_JAD_210159
crossref_primary_10_1148_radiol_13131041
crossref_primary_10_1002_brb3_369
crossref_primary_10_1002_hbm_25455
crossref_primary_10_1038_s41380_021_01380_y
crossref_primary_10_1038_s41598_022_10202_2
crossref_primary_10_1177_0271678X19874770
crossref_primary_10_1002_hipo_23411
crossref_primary_10_1016_j_drugalcdep_2021_108630
crossref_primary_10_1016_j_pneurobio_2014_02_004
crossref_primary_10_1016_j_jagp_2013_01_043
crossref_primary_10_1176_appi_ajp_2018_17070777
crossref_primary_10_1038_s41598_025_99326_9
crossref_primary_10_1016_j_nicl_2016_09_013
crossref_primary_10_1016_j_jaac_2016_02_009
crossref_primary_10_1002_dneu_22906
crossref_primary_10_1038_srep20482
crossref_primary_10_1212_WNL_0000000000209148
crossref_primary_10_1016_j_neuroimage_2014_12_006
crossref_primary_10_1002_hbm_23267
crossref_primary_10_3389_fnagi_2023_1193283
crossref_primary_10_1007_s11682_018_9826_z
crossref_primary_10_1016_j_ntt_2016_09_005
crossref_primary_10_1016_j_arr_2016_01_003
crossref_primary_10_1016_j_tjfa_2024_100006
crossref_primary_10_1212_WNL_0000000000005551
crossref_primary_10_1016_j_neurad_2013_11_004
crossref_primary_10_1159_000442443
crossref_primary_10_1177_1971400917731301
crossref_primary_10_1016_j_ynirp_2022_100086
crossref_primary_10_1002_trc2_12121
crossref_primary_10_1002_hbm_25865
crossref_primary_10_1177_1352458514560928
crossref_primary_10_1016_j_neurobiolaging_2020_12_010
crossref_primary_10_1152_japplphysiol_00081_2019
crossref_primary_10_1002_hbm_25860
crossref_primary_10_1016_j_nicl_2019_101652
crossref_primary_10_1162_jocn_a_01375
crossref_primary_10_3389_fncom_2021_769982
crossref_primary_10_1007_s00259_019_04446_w
crossref_primary_10_1016_j_nicl_2020_102178
crossref_primary_10_3389_fpsyt_2024_1404594
crossref_primary_10_1007_s12021_012_9156_z
crossref_primary_10_1016_j_neuroimage_2014_05_044
crossref_primary_10_1016_j_tine_2019_100123
crossref_primary_10_3390_jpm12101555
crossref_primary_10_1002_hbm_26709
crossref_primary_10_1016_j_nicl_2020_102182
crossref_primary_10_3233_JAD_221238
crossref_primary_10_1016_j_neuroimage_2020_116563
crossref_primary_10_1038_npp_2013_273
crossref_primary_10_1016_j_ejrad_2024_111660
crossref_primary_10_1007_s00259_014_2704_z
crossref_primary_10_1038_s43587_021_00070_2
crossref_primary_10_1002_hbm_25412
crossref_primary_10_1148_radiol_13122542
crossref_primary_10_1016_j_heliyon_2023_e22199
crossref_primary_10_1093_cercor_bht352
crossref_primary_10_1016_j_ijpsycho_2022_08_006
crossref_primary_10_1186_s13195_025_01835_2
crossref_primary_10_1016_j_nbd_2025_107078
crossref_primary_10_3233_JAD_160621
crossref_primary_10_3389_fpsyt_2025_1641745
crossref_primary_10_1080_21678421_2017_1407795
crossref_primary_10_1038_s41467_024_48015_8
crossref_primary_10_1016_j_neuroimage_2013_08_022
crossref_primary_10_1038_s41598_020_76528_x
crossref_primary_10_1016_j_bandl_2018_12_002
crossref_primary_10_1016_j_neuroimage_2017_01_029
crossref_primary_10_1016_j_cortex_2014_04_018
crossref_primary_10_1016_j_parkreldis_2020_08_004
crossref_primary_10_1111_jne_13270
crossref_primary_10_1212_WNL_0000000000002490
crossref_primary_10_1109_TFUZZ_2022_3161729
crossref_primary_10_1177_1545968319899911
crossref_primary_10_1038_s41598_022_11636_4
crossref_primary_10_1016_j_neuroimage_2017_12_033
crossref_primary_10_1093_brain_awv266
crossref_primary_10_1002_hbm_25877
crossref_primary_10_1038_s41467_023_38910_x
crossref_primary_10_1016_j_neuroimage_2017_12_037
crossref_primary_10_1212_WNL_0000000000005523
crossref_primary_10_1162_neco_a_01196
crossref_primary_10_1016_j_neurobiolaging_2012_10_018
crossref_primary_10_1016_j_neurobiolaging_2023_05_012
crossref_primary_10_1016_j_jad_2016_03_003
crossref_primary_10_1016_j_dcn_2022_101181
crossref_primary_10_1038_s41598_021_81355_9
crossref_primary_10_1002_hbm_24975
crossref_primary_10_1007_s10044_015_0492_0
crossref_primary_10_1093_cercor_bhab368
crossref_primary_10_1016_j_neuroimage_2019_116073
crossref_primary_10_1111_ene_12948
crossref_primary_10_1016_j_biopsych_2021_09_008
crossref_primary_10_1016_j_jpsychires_2013_05_008
crossref_primary_10_1089_neu_2017_5124
crossref_primary_10_1016_j_neurobiolaging_2019_07_015
crossref_primary_10_1016_j_brs_2022_10_007
crossref_primary_10_1038_s41398_020_0809_7
crossref_primary_10_1093_cercor_bhab379
crossref_primary_10_1016_j_visres_2023_108209
crossref_primary_10_1111_bdi_12771
crossref_primary_10_1176_appi_ajp_20220380
crossref_primary_10_3389_fncom_2019_00054
crossref_primary_10_1016_j_jpsychires_2020_01_013
crossref_primary_10_1212_01_wnl_0000438220_16190_42
crossref_primary_10_1159_000506133
crossref_primary_10_1155_2020_8836925
crossref_primary_10_1007_s00429_018_1777_z
crossref_primary_10_1523_JNEUROSCI_1522_23_2024
crossref_primary_10_1002_hbm_23672
crossref_primary_10_1007_s00234_016_1740_8
crossref_primary_10_1016_j_dadm_2017_08_001
crossref_primary_10_1016_j_msard_2025_106411
crossref_primary_10_1016_j_eurpsy_2014_09_353
crossref_primary_10_1523_JNEUROSCI_1468_18_2019
crossref_primary_10_1016_j_eurpsy_2014_09_352
crossref_primary_10_3389_fnhum_2020_563415
crossref_primary_10_3389_fnagi_2016_00226
crossref_primary_10_3389_fninf_2021_689675
crossref_primary_10_1016_j_neuroimage_2019_116091
crossref_primary_10_1002_hbm_24513
crossref_primary_10_1186_s12877_018_0730_6
crossref_primary_10_1002_dev_22010
crossref_primary_10_3389_fnagi_2018_00325
crossref_primary_10_1002_jmri_25866
crossref_primary_10_1016_j_neuroimage_2014_03_072
crossref_primary_10_1016_j_pnpbp_2020_110180
crossref_primary_10_3389_fncir_2018_00079
crossref_primary_10_1016_j_neulet_2024_137943
crossref_primary_10_1017_S1366728923000445
crossref_primary_10_1111_ejn_14617
crossref_primary_10_1371_journal_pone_0244893
crossref_primary_10_1177_2055217319863122
crossref_primary_10_3389_fpsyt_2022_929306
crossref_primary_10_1002_nbm_5235
crossref_primary_10_1016_j_neuroimage_2022_118966
crossref_primary_10_1186_s11689_023_09477_x
crossref_primary_10_1007_s12094_018_1903_7
crossref_primary_10_1080_02699052_2018_1494852
crossref_primary_10_3389_fnagi_2021_645258
crossref_primary_10_1080_02699052_2018_1494854
crossref_primary_10_1016_j_neuroimage_2014_10_023
crossref_primary_10_1002_hbm_24507
crossref_primary_10_1093_cercor_bhac244
crossref_primary_10_1016_j_neuroimage_2019_116037
crossref_primary_10_1017_S0033291723000387
crossref_primary_10_3389_fnins_2020_00754
crossref_primary_10_1002_hipo_23039
crossref_primary_10_1016_j_dcn_2024_101385
crossref_primary_10_1016_j_nicl_2022_103200
crossref_primary_10_3389_fnagi_2016_00297
crossref_primary_10_1002_dad2_12511
crossref_primary_10_1038_s41593_025_02037_7
crossref_primary_10_3389_fneur_2022_923988
crossref_primary_10_1111_bdi_12722
crossref_primary_10_1016_j_neuroimage_2014_10_059
crossref_primary_10_1016_j_media_2025_103540
crossref_primary_10_1177_1352458517722645
crossref_primary_10_1007_s11682_020_00372_w
crossref_primary_10_1038_s41598_019_56923_9
crossref_primary_10_1192_bjp_bp_114_156588
crossref_primary_10_3389_fnagi_2016_00277
crossref_primary_10_1073_pnas_1508831112
crossref_primary_10_1186_s13195_021_00879_4
crossref_primary_10_1152_japplphysiol_00846_2016
crossref_primary_10_1016_j_patcog_2022_109076
crossref_primary_10_1002_hbm_24928
crossref_primary_10_1186_s10194_025_02009_z
crossref_primary_10_1371_journal_pone_0277322
crossref_primary_10_1177_1756286419838673
crossref_primary_10_1016_j_neuroimage_2021_117793
crossref_primary_10_1016_j_neuroimage_2020_117012
crossref_primary_10_1038_s41467_025_55830_0
crossref_primary_10_3389_fnagi_2015_00014
crossref_primary_10_1177_20552173221144230
crossref_primary_10_3389_fnimg_2024_1355402
crossref_primary_10_1002_cne_24858
crossref_primary_10_1093_cercor_bhz053
crossref_primary_10_1002_mp_16655
crossref_primary_10_3390_jpm11080702
crossref_primary_10_3389_fnins_2025_1430185
crossref_primary_10_1159_000522654
crossref_primary_10_1038_s41598_018_33530_8
crossref_primary_10_1038_s41598_021_84549_3
crossref_primary_10_1016_j_msard_2024_106172
crossref_primary_10_1038_s41598_022_17727_6
crossref_primary_10_1007_s11604_019_00895_3
crossref_primary_10_1016_j_rehab_2021_101599
crossref_primary_10_1155_2019_3709402
crossref_primary_10_1186_s13195_018_0436_1
crossref_primary_10_1016_j_neuroimage_2018_09_006
crossref_primary_10_1093_brain_awaa106
crossref_primary_10_1038_s44294_024_00023_1
crossref_primary_10_1016_j_dcn_2017_10_001
crossref_primary_10_1038_s41597_021_00823_z
crossref_primary_10_3389_frai_2023_1334613
crossref_primary_10_1016_j_neuroimage_2013_06_033
crossref_primary_10_3389_fpsyt_2018_00699
crossref_primary_10_1016_j_jtcvs_2018_08_116
crossref_primary_10_1016_j_neuroimage_2014_01_058
crossref_primary_10_1212_NXI_0000000000000374
crossref_primary_10_1523_JNEUROSCI_1745_22_2023
crossref_primary_10_3389_fnhum_2020_00307
crossref_primary_10_1016_j_neuroimage_2020_116932
crossref_primary_10_1503_jpn_230017
crossref_primary_10_7554_eLife_69995
crossref_primary_10_1371_journal_pone_0298235
crossref_primary_10_1016_j_biopsych_2018_08_021
crossref_primary_10_3389_fneur_2017_00615
crossref_primary_10_1016_j_bandl_2019_104654
crossref_primary_10_1007_s00521_021_05721_4
crossref_primary_10_1186_s12987_015_0004_z
crossref_primary_10_1007_s00415_023_12172_5
crossref_primary_10_1016_j_cortex_2017_06_003
crossref_primary_10_1016_j_neuroimage_2015_11_054
crossref_primary_10_1186_s13195_024_01612_7
crossref_primary_10_1016_j_nicl_2019_102028
crossref_primary_10_3389_fnhum_2021_728993
crossref_primary_10_1002_alz_13158
crossref_primary_10_1007_s00394_025_03664_3
crossref_primary_10_1016_j_compbiomed_2023_107614
crossref_primary_10_1016_j_nicl_2023_103531
crossref_primary_10_1186_s12888_015_0546_2
crossref_primary_10_1016_j_bbi_2023_06_027
crossref_primary_10_1016_j_neuroimage_2016_04_011
crossref_primary_10_1016_j_bpsc_2019_02_003
crossref_primary_10_1111_ejn_15411
crossref_primary_10_1016_j_soard_2023_02_022
crossref_primary_10_1371_journal_pone_0207885
crossref_primary_10_1016_j_jaac_2022_03_026
crossref_primary_10_1002_hbm_22859
crossref_primary_10_1177_09727531221117633
crossref_primary_10_7554_eLife_66466
crossref_primary_10_1016_j_neuroimage_2016_04_004
crossref_primary_10_1016_j_mri_2019_04_002
crossref_primary_10_1002_hbm_22856
crossref_primary_10_1073_pnas_1601443113
crossref_primary_10_1016_j_neuroimage_2022_119770
crossref_primary_10_1371_journal_pone_0158036
crossref_primary_10_1111_ene_15289
crossref_primary_10_3389_fnagi_2025_1542857
crossref_primary_10_3390_brainsci13111582
crossref_primary_10_1007_s11682_018_9887_z
crossref_primary_10_1186_s13195_019_0506_z
crossref_primary_10_1016_j_neuroimage_2021_118142
crossref_primary_10_3389_fneur_2021_640696
crossref_primary_10_1016_j_neurobiolaging_2018_03_024
crossref_primary_10_1016_j_schres_2025_08_007
crossref_primary_10_3389_fnagi_2016_00328
crossref_primary_10_3389_fpsyt_2021_664811
crossref_primary_10_1089_neu_2014_3534
crossref_primary_10_1523_JNEUROSCI_2733_16_2016
crossref_primary_10_1038_s41398_020_00962_8
crossref_primary_10_1002_dad2_70089
crossref_primary_10_1007_s00330_022_08907_z
crossref_primary_10_1016_j_pscychresns_2022_111494
crossref_primary_10_1007_s00415_023_12087_1
crossref_primary_10_3389_fnagi_2015_00081
crossref_primary_10_1016_j_ebiom_2020_102910
crossref_primary_10_1016_j_ijbiomac_2025_142887
crossref_primary_10_1016_j_neuroimage_2021_118114
crossref_primary_10_3389_fnagi_2015_00087
crossref_primary_10_1016_j_neuroimage_2021_118113
crossref_primary_10_1093_brain_awad126
crossref_primary_10_1016_j_archger_2022_104846
crossref_primary_10_1016_j_nicl_2019_102063
crossref_primary_10_1186_s12888_015_0457_2
crossref_primary_10_1186_s13195_025_01742_6
crossref_primary_10_3390_life12040514
crossref_primary_10_3389_fnins_2016_00236
crossref_primary_10_1016_j_nicl_2014_08_017
crossref_primary_10_1109_TCBB_2022_3202707
crossref_primary_10_1016_j_neuroimage_2018_09_060
crossref_primary_10_1038_s41598_020_78471_3
crossref_primary_10_1016_j_bpsgos_2022_02_003
crossref_primary_10_1371_journal_pone_0210641
crossref_primary_10_3389_fnhum_2025_1613993
crossref_primary_10_1038_tp_2017_131
crossref_primary_10_1523_JNEUROSCI_1522_21_2021
crossref_primary_10_1007_s10548_017_0544_4
crossref_primary_10_1186_2045_5380_4_4
crossref_primary_10_1016_j_neuroimage_2016_04_058
crossref_primary_10_1016_j_neuron_2015_12_018
crossref_primary_10_1007_s10334_025_01276_w
crossref_primary_10_1093_brain_awad113
crossref_primary_10_1212_WNL_0000000000001502
crossref_primary_10_1093_cercor_bhy126
crossref_primary_10_1016_j_expneurol_2021_113853
crossref_primary_10_3389_fnagi_2022_795764
crossref_primary_10_1523_JNEUROSCI_2028_17_2017
crossref_primary_10_1007_s00429_024_02885_2
crossref_primary_10_1016_j_yebeh_2022_108560
crossref_primary_10_1016_j_jneumeth_2022_109662
crossref_primary_10_1016_j_jad_2020_01_033
crossref_primary_10_1016_j_jpsychires_2020_03_013
crossref_primary_10_1038_s41597_022_01231_7
crossref_primary_10_1093_brain_awad100
crossref_primary_10_1371_journal_pone_0239021
crossref_primary_10_1002_jmri_27568
crossref_primary_10_1016_j_yebeh_2021_108272
crossref_primary_10_1016_j_jneumeth_2025_110517
crossref_primary_10_1016_j_pscychresns_2022_111462
crossref_primary_10_1177_1087054716682336
crossref_primary_10_1016_j_pscychresns_2015_06_014
crossref_primary_10_1001_jamanetworkopen_2021_25166
crossref_primary_10_1016_j_nicl_2022_103292
crossref_primary_10_1186_s12877_023_03849_7
crossref_primary_10_1016_j_nicl_2019_102081
crossref_primary_10_3233_JPD_212691
crossref_primary_10_1016_j_cortex_2015_12_001
crossref_primary_10_1016_j_bpsc_2018_09_006
crossref_primary_10_1038_s41467_024_44863_6
crossref_primary_10_1093_brain_awv211
crossref_primary_10_1002_ana_26572
crossref_primary_10_1002_cjs_11521
crossref_primary_10_1016_j_jneuroling_2016_10_004
crossref_primary_10_1017_S1355617715000673
crossref_primary_10_1007_s11682_021_00627_0
crossref_primary_10_1017_nws_2019_9
crossref_primary_10_1007_s10545_018_0162_7
crossref_primary_10_1093_eurheartj_ehab003
crossref_primary_10_1038_s41380_020_0757_x
crossref_primary_10_1016_j_pscychresns_2022_111446
crossref_primary_10_3389_fneur_2023_1112865
crossref_primary_10_1162_imag_a_00016
crossref_primary_10_3389_fnins_2021_666000
crossref_primary_10_3389_fphys_2021_643725
crossref_primary_10_1111_jon_12816
crossref_primary_10_1002_hbm_26388
crossref_primary_10_1186_s40814_024_01495_3
crossref_primary_10_1080_10255842_2021_1927000
crossref_primary_10_1038_mp_2016_19
crossref_primary_10_1038_s41398_019_0440_7
crossref_primary_10_1016_j_bpsc_2025_01_010
crossref_primary_10_1371_journal_pone_0147774
crossref_primary_10_1002_sim_9442
crossref_primary_10_1038_s41531_021_00164_z
crossref_primary_10_1007_s00429_020_02172_w
crossref_primary_10_1016_j_pscychresns_2020_111232
crossref_primary_10_1016_j_neuroimage_2020_116991
crossref_primary_10_1097_YCT_0000000000000985
crossref_primary_10_1371_journal_pone_0170547
crossref_primary_10_1002_hbm_70056
crossref_primary_10_1016_j_jns_2019_02_002
crossref_primary_10_1016_j_biopsych_2019_05_017
crossref_primary_10_3389_fneur_2021_620198
crossref_primary_10_1186_s41983_023_00662_2
crossref_primary_10_1007_s12640_019_00158_z
crossref_primary_10_1038_s41598_025_98399_w
crossref_primary_10_1016_j_neuroimage_2016_02_003
crossref_primary_10_1016_j_clinph_2021_10_008
crossref_primary_10_1016_j_neubiorev_2018_04_018
crossref_primary_10_1002_hbm_25473
crossref_primary_10_1038_mp_2016_35
crossref_primary_10_1002_hbm_23299
crossref_primary_10_1002_jcv2_12210
crossref_primary_10_1002_brb3_1197
crossref_primary_10_1002_acn3_51142
crossref_primary_10_1002_mds_30325
crossref_primary_10_1002_da_23229
crossref_primary_10_1002_jmri_28009
crossref_primary_10_1371_journal_pone_0287921
crossref_primary_10_1016_j_neurobiolaging_2015_05_021
crossref_primary_10_1002_mds_28473
crossref_primary_10_1159_000362685
crossref_primary_10_1016_j_media_2022_102576
crossref_primary_10_1002_hbm_23289
crossref_primary_10_1002_jnr_24142
crossref_primary_10_1002_dad2_12195
crossref_primary_10_1002_acn3_51158
crossref_primary_10_1016_j_nicl_2018_10_019
crossref_primary_10_1097_YCT_0000000000000930
crossref_primary_10_1016_j_drugalcdep_2018_02_007
crossref_primary_10_1093_sleep_zsaa054
crossref_primary_10_1523_JNEUROSCI_2330_22_2023
crossref_primary_10_1111_head_14360
crossref_primary_10_1016_j_neuroimage_2013_06_058
crossref_primary_10_1111_joa_13318
crossref_primary_10_1016_j_ebiom_2024_105523
crossref_primary_10_1186_s12888_024_05749_5
crossref_primary_10_1111_pcn_13626
crossref_primary_10_1016_j_neuroimage_2020_116946
crossref_primary_10_1016_j_inffus_2020_01_001
crossref_primary_10_1016_j_neuroimage_2016_02_034
crossref_primary_10_1177_0271678X241237624
crossref_primary_10_1007_s41465_018_0077_0
crossref_primary_10_1093_brain_awae034
crossref_primary_10_1007_s00401_013_1236_0
crossref_primary_10_1038_s41398_019_0618_z
crossref_primary_10_1177_1352458517748474
crossref_primary_10_1155_2020_5894021
crossref_primary_10_3233_JAD_190875
crossref_primary_10_1007_s40520_025_03062_z
crossref_primary_10_1016_j_nicl_2019_102008
crossref_primary_10_1016_j_jagp_2024_03_001
crossref_primary_10_1371_journal_pone_0186071
crossref_primary_10_1016_j_neurobiolaging_2015_05_011
crossref_primary_10_3389_fpsyt_2022_1092784
crossref_primary_10_1093_brain_awae024
crossref_primary_10_1002_ana_25214
crossref_primary_10_1017_S0033291713001712
crossref_primary_10_1186_s43045_020_00025_0
crossref_primary_10_1016_j_jalz_2014_05_1754
crossref_primary_10_1002_brb3_3330
crossref_primary_10_1002_brb3_3334
crossref_primary_10_1016_j_neuroimage_2015_07_087
crossref_primary_10_1016_j_pscychresns_2018_06_002
crossref_primary_10_1097_WNN_0000000000000318
crossref_primary_10_1503_jpn_190029
crossref_primary_10_1016_j_nicl_2019_101958
crossref_primary_10_1016_j_parkreldis_2016_06_019
crossref_primary_10_3389_fneur_2019_00234
crossref_primary_10_1093_brain_awx354
crossref_primary_10_1016_j_neuroimage_2024_120865
crossref_primary_10_1016_j_neurobiolaging_2015_09_018
crossref_primary_10_1038_mp_2016_4
crossref_primary_10_1016_j_jpsychires_2020_07_034
crossref_primary_10_1109_TMI_2020_2971422
crossref_primary_10_7554_eLife_35082
crossref_primary_10_1016_j_jpsychires_2025_08_005
crossref_primary_10_1016_j_drugalcdep_2014_09_016
crossref_primary_10_1016_j_jpain_2021_07_010
crossref_primary_10_1016_j_neuroimage_2018_12_038
crossref_primary_10_1016_j_bbr_2018_06_013
crossref_primary_10_1093_cercor_bhaa322
crossref_primary_10_1523_JNEUROSCI_1216_14_2014
crossref_primary_10_3390_biomedicines11010233
crossref_primary_10_1016_j_bbih_2021_100376
crossref_primary_10_1016_j_dcn_2015_08_003
crossref_primary_10_1016_j_ntt_2016_11_003
crossref_primary_10_1038_s41380_023_02318_2
crossref_primary_10_1002_hbm_23397
crossref_primary_10_1016_j_neurobiolaging_2016_12_002
crossref_primary_10_1093_brain_awx371
crossref_primary_10_1016_j_media_2017_02_007
crossref_primary_10_1109_TMI_2012_2224879
crossref_primary_10_1016_j_dcn_2024_101448
crossref_primary_10_1016_j_neurobiolaging_2019_02_030
crossref_primary_10_1162_imag_a_00500
crossref_primary_10_1016_j_neuroimage_2018_12_003
crossref_primary_10_1016_j_biopsych_2018_05_019
crossref_primary_10_1093_cercor_bhaa332
crossref_primary_10_1002_cjs_11588
crossref_primary_10_1007_s11682_017_9746_3
crossref_primary_10_1002_brb3_2490
crossref_primary_10_1002_hbm_25560
crossref_primary_10_1148_radiol_2017162403
crossref_primary_10_1111_jon_12781
crossref_primary_10_3389_fneur_2022_871421
crossref_primary_10_1016_j_jocn_2019_02_007
crossref_primary_10_1186_s12967_015_0679_6
crossref_primary_10_1016_j_ijmedinf_2024_105549
crossref_primary_10_1016_j_nicl_2021_102781
crossref_primary_10_1159_000502977
crossref_primary_10_3390_ijerph19106078
crossref_primary_10_1038_s41598_024_68050_1
crossref_primary_10_1038_s41598_024_71965_4
crossref_primary_10_1111_sms_13015
crossref_primary_10_1016_j_biopsych_2018_05_008
crossref_primary_10_1007_s00415_021_10560_3
crossref_primary_10_1016_j_neuroimage_2018_03_023
crossref_primary_10_1016_j_neuropsychologia_2023_108494
crossref_primary_10_1016_j_schres_2023_03_021
crossref_primary_10_1016_j_alcohol_2023_08_011
crossref_primary_10_1038_s41467_023_42588_6
crossref_primary_10_1148_radiol_2017161981
crossref_primary_10_3233_JAD_180570
crossref_primary_10_1007_s11682_016_9636_0
crossref_primary_10_1038_s41467_024_54022_6
crossref_primary_10_1523_JNEUROSCI_1459_13_2013
crossref_primary_10_1038_s41562_021_01141_5
crossref_primary_10_1016_j_seizure_2022_09_006
crossref_primary_10_1080_02699052_2020_1858345
crossref_primary_10_1186_s12888_017_1457_1
crossref_primary_10_1016_j_nicl_2016_02_005
crossref_primary_10_1016_j_brs_2017_05_005
crossref_primary_10_1177_0706743720904598
crossref_primary_10_1038_s41597_025_05740_z
crossref_primary_10_3390_brainsci7120164
crossref_primary_10_3389_fpsyt_2022_935043
crossref_primary_10_1038_s41526_025_00497_6
crossref_primary_10_3233_JAD_201525
crossref_primary_10_1016_j_brainres_2024_148777
crossref_primary_10_1371_journal_pone_0166785
crossref_primary_10_1038_s41597_022_01171_2
crossref_primary_10_1136_jnnp_2019_321767
crossref_primary_10_25259_SNI_787_2021
crossref_primary_10_1016_j_neurobiolaging_2019_11_020
crossref_primary_10_1002_hbm_23350
crossref_primary_10_1177_15459683211062897
crossref_primary_10_1186_alzrt144
crossref_primary_10_1016_j_neuroimage_2015_12_003
crossref_primary_10_1038_s42003_021_01863_2
crossref_primary_10_1145_3387131
crossref_primary_10_1109_ACCESS_2022_3230688
crossref_primary_10_1111_neup_70000
crossref_primary_10_3389_fpsyt_2024_1365159
crossref_primary_10_1111_acer_13882
crossref_primary_10_1093_cercor_bhs379
crossref_primary_10_1212_WNL_0000000000005415
crossref_primary_10_1016_j_dcn_2024_101407
crossref_primary_10_1212_NXI_0000000000200125
crossref_primary_10_3233_JAD_160504
crossref_primary_10_1111_ene_15918
crossref_primary_10_1186_s12888_019_2141_4
crossref_primary_10_1007_s11682_019_00245_x
crossref_primary_10_1016_j_compbiomed_2017_03_028
crossref_primary_10_1093_schbul_sbaf049
crossref_primary_10_1002_da_22524
crossref_primary_10_1038_npp_2015_90
crossref_primary_10_3233_JAD_230080
crossref_primary_10_1016_j_media_2024_103193
crossref_primary_10_3389_fnagi_2018_00076
crossref_primary_10_1177_15500594211050487
crossref_primary_10_1016_j_pnpbp_2019_109824
crossref_primary_10_1093_cercor_bhy028
crossref_primary_10_1097_HJH_0000000000000531
crossref_primary_10_1186_s13195_022_01081_w
crossref_primary_10_1016_j_bpsc_2024_07_012
crossref_primary_10_1038_s41467_023_43251_w
crossref_primary_10_1007_s00234_022_03019_3
crossref_primary_10_1371_journal_pone_0093715
crossref_primary_10_1371_journal_pone_0233670
crossref_primary_10_1212_WNL_0000000000000187
crossref_primary_10_1089_brain_2014_0235
crossref_primary_10_1093_cercor_bhad421
crossref_primary_10_1002_cnm_3225
crossref_primary_10_1007_s00234_018_2017_1
crossref_primary_10_1016_j_nicl_2018_07_015
crossref_primary_10_1016_j_jshs_2023_09_001
crossref_primary_10_1210_clinem_dgae014
crossref_primary_10_1038_s41467_021_26713_x
crossref_primary_10_1089_neu_2017_5002
crossref_primary_10_1016_j_neuroimage_2019_01_045
crossref_primary_10_1093_brain_awaa443
crossref_primary_10_3389_fnagi_2021_787654
crossref_primary_10_3389_fnins_2021_669194
crossref_primary_10_1016_j_jneumeth_2018_06_021
crossref_primary_10_2217_3dp_2021_0018
crossref_primary_10_3390_brainsci12111522
crossref_primary_10_1002_mds_30182
crossref_primary_10_1038_s41598_022_06651_4
crossref_primary_10_1001_jama_2022_21680
crossref_primary_10_1038_s41467_023_37463_3
crossref_primary_10_1016_j_neuropsychologia_2016_01_012
crossref_primary_10_1016_j_nicl_2018_07_008
crossref_primary_10_1038_s41598_022_25503_9
crossref_primary_10_1109_TMI_2023_3330576
crossref_primary_10_1016_j_jpsychires_2023_11_040
crossref_primary_10_1016_j_neurobiolaging_2013_08_027
crossref_primary_10_1016_j_schres_2020_02_005
crossref_primary_10_1038_s41598_022_18129_4
crossref_primary_10_1007_s00234_020_02611_9
crossref_primary_10_1016_j_nicl_2017_08_014
crossref_primary_10_1162_jocn_a_01430
crossref_primary_10_1371_journal_pone_0175674
crossref_primary_10_1111_psyg_12475
crossref_primary_10_3389_fnagi_2016_00336
crossref_primary_10_1016_j_biopsych_2020_08_008
crossref_primary_10_1016_j_nicl_2019_101902
crossref_primary_10_1007_s00330_018_5710_x
crossref_primary_10_1523_JNEUROSCI_3470_17_2018
crossref_primary_10_1111_sjop_12705
crossref_primary_10_1109_TKDE_2018_2816029
crossref_primary_10_1371_journal_pone_0176519
crossref_primary_10_1371_journal_pone_0269649
crossref_primary_10_1002_hbm_25957
crossref_primary_10_1016_j_neurobiolaging_2022_04_010
crossref_primary_10_3389_fpsyg_2022_917189
crossref_primary_10_1007_s00429_019_01829_5
crossref_primary_10_1016_j_exger_2020_111049
crossref_primary_10_1016_j_msard_2015_10_006
crossref_primary_10_1002_jmri_25538
crossref_primary_10_1016_j_media_2014_06_007
crossref_primary_10_3233_BPL_190087
crossref_primary_10_1016_j_neuroimage_2021_118514
crossref_primary_10_1016_j_ynirp_2022_100121
crossref_primary_10_3389_fneur_2023_1257886
crossref_primary_10_1371_journal_pone_0117785
crossref_primary_10_1016_j_dcn_2013_12_002
crossref_primary_10_1016_j_celrep_2023_113432
crossref_primary_10_1177_09622802211022404
crossref_primary_10_1038_s41598_021_87434_1
crossref_primary_10_1038_s41467_019_13599_z
crossref_primary_10_1016_j_neuroimage_2018_01_020
crossref_primary_10_1016_j_nicl_2019_101927
crossref_primary_10_3389_fnagi_2021_752575
crossref_primary_10_1016_j_neuroimage_2019_116162
crossref_primary_10_1016_j_neuroimage_2020_117373
crossref_primary_10_1002_alz_13352
crossref_primary_10_1016_j_neuroimage_2023_120176
crossref_primary_10_1007_s10548_018_0659_2
crossref_primary_10_3389_fneur_2020_575611
crossref_primary_10_1007_s11682_019_00089_5
crossref_primary_10_1016_j_clineuro_2024_108342
crossref_primary_10_1016_j_neuroimage_2018_01_032
crossref_primary_10_1186_s12974_022_02476_0
crossref_primary_10_1186_s40708_023_00189_5
crossref_primary_10_1089_neu_2023_0336
crossref_primary_10_3233_JAD_180152
crossref_primary_10_1016_j_cortex_2017_07_007
crossref_primary_10_1177_1352458515604383
crossref_primary_10_1016_j_euroneuro_2017_12_009
crossref_primary_10_1016_j_jalz_2018_12_003
crossref_primary_10_3389_fpsyt_2020_00784
crossref_primary_10_1016_j_dcn_2021_100997
crossref_primary_10_1016_j_euroneuro_2020_01_002
crossref_primary_10_1111_ejn_15624
crossref_primary_10_1162_netn_a_00453
crossref_primary_10_1017_S0033291724000394
crossref_primary_10_1038_s41598_024_80153_3
crossref_primary_10_1016_j_dadm_2019_04_010
crossref_primary_10_1016_j_dcn_2024_101498
crossref_primary_10_3233_JAD_181016
crossref_primary_10_3233_JAD_150780
crossref_primary_10_1162_jocn_a_00549
crossref_primary_10_1002_jmri_27636
crossref_primary_10_1093_cercor_bhac053
crossref_primary_10_1186_s13098_021_00691_y
crossref_primary_10_1016_j_neucli_2024_102965
crossref_primary_10_1109_ACCESS_2021_3121609
crossref_primary_10_1093_cercor_bhw246
crossref_primary_10_1177_1352458516656808
crossref_primary_10_3389_fnhum_2017_00590
crossref_primary_10_1016_j_psychres_2021_113772
crossref_primary_10_1038_s41467_024_51443_1
crossref_primary_10_1016_j_neuroscience_2017_07_070
crossref_primary_10_3389_fnana_2018_00111
crossref_primary_10_1111_acps_12314
crossref_primary_10_1007_s11357_024_01483_8
crossref_primary_10_1016_j_ymgme_2021_04_006
crossref_primary_10_1093_schbul_sbu150
crossref_primary_10_3233_JAD_230458
crossref_primary_10_1007_s12035_022_03132_7
crossref_primary_10_1016_j_bpsc_2021_07_002
crossref_primary_10_1038_srep38366
crossref_primary_10_1111_ejn_13340
crossref_primary_10_1016_j_orcp_2021_08_002
crossref_primary_10_3389_fneur_2020_00952
crossref_primary_10_1038_s41380_022_01842_x
crossref_primary_10_1016_j_neuroimage_2014_08_038
crossref_primary_10_1016_j_jnha_2024_100432
crossref_primary_10_3233_JAD_215289
crossref_primary_10_1007_s12603_023_2020_z
crossref_primary_10_1186_s10194_021_01216_8
crossref_primary_10_1016_j_bandl_2019_04_008
crossref_primary_10_1016_j_neurobiolaging_2024_09_004
crossref_primary_10_1016_j_nicl_2023_103421
crossref_primary_10_1162_imag_a_00180
crossref_primary_10_1186_s12937_024_00935_3
crossref_primary_10_1016_j_neuroimage_2021_118498
crossref_primary_10_1016_j_ijrobp_2021_12_172
crossref_primary_10_1080_24725579_2017_1423419
crossref_primary_10_1038_s41598_022_06459_2
crossref_primary_10_1007_s00429_014_0947_x
crossref_primary_10_1016_j_biopsych_2018_01_016
crossref_primary_10_1162_imag_a_00188
crossref_primary_10_1212_WNL_0000000000207882
crossref_primary_10_3389_fnhum_2024_1188533
crossref_primary_10_1007_s10334_025_01262_2
crossref_primary_10_1016_j_neuroimage_2023_119950
crossref_primary_10_1038_s41380_024_02592_8
crossref_primary_10_1016_j_yebeh_2019_106516
crossref_primary_10_1177_13872877251328941
crossref_primary_10_1371_journal_pone_0295069
crossref_primary_10_1002_jnr_25135
crossref_primary_10_1016_j_neurobiolaging_2014_05_038
crossref_primary_10_1038_s41598_020_62263_w
crossref_primary_10_7554_eLife_95823
crossref_primary_10_1089_brain_2020_1003
crossref_primary_10_1038_s41398_021_01628_9
crossref_primary_10_1016_j_compbiomed_2022_105271
crossref_primary_10_1371_journal_pone_0170018
crossref_primary_10_3390_geriatrics2040034
crossref_primary_10_1002_jcsm_13396
crossref_primary_10_1038_s41598_023_31819_x
crossref_primary_10_1093_cercor_bhx131
crossref_primary_10_1111_jsr_13538
crossref_primary_10_1002_art_42755
crossref_primary_10_1111_pcn_13362
crossref_primary_10_1111_1753_0407_12773
crossref_primary_10_1002_ana_25150
crossref_primary_10_1093_cercor_bhx137
crossref_primary_10_1016_j_neurobiolaging_2017_01_014
crossref_primary_10_1016_j_neurobiolaging_2017_01_013
crossref_primary_10_1186_s13195_024_01381_3
crossref_primary_10_1007_s00415_021_10512_x
crossref_primary_10_1210_clinem_dgaa023
crossref_primary_10_3390_cells9040895
crossref_primary_10_1002_mds_25240
crossref_primary_10_1007_s11682_018_9931_z
crossref_primary_10_1038_s41537_022_00296_y
crossref_primary_10_1002_hbm_26039
crossref_primary_10_1016_j_neucom_2020_05_087
crossref_primary_10_1016_j_neuroimage_2015_03_035
crossref_primary_10_1038_s41598_024_68002_9
crossref_primary_10_1016_j_jaac_2017_08_008
crossref_primary_10_1016_j_mri_2021_09_004
crossref_primary_10_3389_fnut_2022_846148
crossref_primary_10_1002_jmri_70052
crossref_primary_10_3390_brainsci14111066
crossref_primary_10_1016_j_neuroimage_2021_118009
crossref_primary_10_1016_j_bandc_2023_105960
crossref_primary_10_1016_j_neurobiolaging_2014_05_011
crossref_primary_10_3389_fnhum_2017_00157
crossref_primary_10_1016_j_neuroimage_2021_118004
crossref_primary_10_1016_j_neuroimage_2021_118489
crossref_primary_10_1016_j_reia_2025_202689
crossref_primary_10_1007_s12311_018_0943_4
crossref_primary_10_1002_alz_14160
crossref_primary_10_1007_s10549_022_06597_1
crossref_primary_10_1016_j_schres_2022_12_001
crossref_primary_10_1093_cercor_bhx157
crossref_primary_10_1038_s41386_024_01836_z
crossref_primary_10_1016_j_jalz_2014_12_005
crossref_primary_10_1016_j_neuroimage_2021_118450
crossref_primary_10_3233_JAD_150270
crossref_primary_10_1007_s00259_019_04519_w
crossref_primary_10_1192_bjpo_bp_115_002444
crossref_primary_10_1002_jnr_25176
crossref_primary_10_1038_s41598_020_72654_8
crossref_primary_10_1016_j_neuroimage_2022_119616
crossref_primary_10_1186_s12868_023_00783_7
crossref_primary_10_1016_j_neuroimage_2023_119909
crossref_primary_10_1007_s11336_023_09910_z
crossref_primary_10_1080_23279095_2019_1710509
crossref_primary_10_1016_j_nicl_2023_103472
crossref_primary_10_1016_j_neurol_2024_02_387
crossref_primary_10_3390_s24248152
crossref_primary_10_1002_epi4_12754
crossref_primary_10_1002_hbm_25159
crossref_primary_10_1002_hbm_26003
crossref_primary_10_1111_jon_12716
crossref_primary_10_1016_j_psyneuen_2020_104779
crossref_primary_10_1016_j_nicl_2020_102545
crossref_primary_10_1038_s41598_022_18805_5
crossref_primary_10_1212_WN9_0000000000000013
crossref_primary_10_1016_j_jneumeth_2022_109563
crossref_primary_10_1093_cercor_bhv307
crossref_primary_10_1016_j_jneumeth_2023_110032
crossref_primary_10_1016_j_brainres_2015_10_002
crossref_primary_10_1016_j_neuroimage_2022_119239
crossref_primary_10_1177_0271678X211067455
crossref_primary_10_1038_s41562_021_01247_w
crossref_primary_10_1038_s41398_020_01090_z
crossref_primary_10_1111_acps_13259
crossref_primary_10_1007_s10072_019_03817_3
crossref_primary_10_1016_j_euroneuro_2017_08_433
crossref_primary_10_1038_npp_2017_5
crossref_primary_10_3233_JAD_180943
crossref_primary_10_1002_mds_29633
crossref_primary_10_1093_brain_awac187
crossref_primary_10_1007_s11065_024_09655_1
crossref_primary_10_1089_neu_2015_4253
crossref_primary_10_1016_j_neuroimage_2015_01_032
crossref_primary_10_1016_j_nicl_2021_102804
crossref_primary_10_1038_s41593_024_01741_0
crossref_primary_10_1162_imag_a_00108
crossref_primary_10_1016_j_neurad_2021_11_007
crossref_primary_10_1016_j_cortex_2014_11_019
crossref_primary_10_3171_2022_1_JNS212943
crossref_primary_10_1093_scan_nsx003
crossref_primary_10_1007_s00259_023_06196_2
crossref_primary_10_1038_s41380_020_00975_1
crossref_primary_10_1192_bjp_2025_10302
crossref_primary_10_1002_ana_25145
crossref_primary_10_1136_jnnp_2017_317443
crossref_primary_10_1159_000447744
crossref_primary_10_3389_fnana_2020_00020
crossref_primary_10_1371_journal_pone_0102312
crossref_primary_10_1016_j_neuroimage_2016_09_011
crossref_primary_10_1155_2021_6628036
crossref_primary_10_1177_1877718X241308141
crossref_primary_10_1016_j_neuroimage_2020_116864
crossref_primary_10_1016_j_nicl_2015_09_003
crossref_primary_10_1016_j_pscychresns_2020_111100
crossref_primary_10_3389_fnins_2022_1058137
crossref_primary_10_1016_j_ins_2020_05_001
crossref_primary_10_1038_s41598_018_25377_w
crossref_primary_10_1016_j_bbi_2025_01_028
crossref_primary_10_1111_jsr_70086
crossref_primary_10_1177_1352458519831400
crossref_primary_10_1017_S0033291714000877
crossref_primary_10_1523_JNEUROSCI_0203_14_2014
crossref_primary_10_1007_s00234_024_03516_7
crossref_primary_10_1038_srep25007
crossref_primary_10_3389_fninf_2023_1104508
crossref_primary_10_1523_JNEUROSCI_3302_16_2017
crossref_primary_10_1016_j_dcn_2018_02_008
crossref_primary_10_7554_eLife_66968
crossref_primary_10_1038_s41537_022_00230_2
crossref_primary_10_3389_fneur_2018_00107
crossref_primary_10_1016_j_clinph_2020_04_168
crossref_primary_10_1016_j_dcn_2015_04_006
crossref_primary_10_1016_j_neuroimage_2013_11_010
crossref_primary_10_1080_21678421_2018_1517180
crossref_primary_10_1007_s11227_020_03154_9
crossref_primary_10_1159_000362328
crossref_primary_10_1002_ana_26894
crossref_primary_10_1016_j_neuroimage_2021_118076
crossref_primary_10_3389_frai_2023_1286266
crossref_primary_10_1016_j_media_2023_102744
crossref_primary_10_5114_pjr_2023_124433
crossref_primary_10_1007_s11845_023_03528_x
crossref_primary_10_1161_STROKEAHA_120_030256
crossref_primary_10_3390_brainsci14121266
crossref_primary_10_1097_QAD_0000000000002436
crossref_primary_10_1016_j_cortex_2021_08_010
crossref_primary_10_1038_s41598_020_65957_3
crossref_primary_10_7717_peerj_2442
crossref_primary_10_1038_s41598_023_32754_7
crossref_primary_10_1002_ana_25556
crossref_primary_10_1371_journal_pone_0114721
crossref_primary_10_1093_cercor_bhaf145
crossref_primary_10_1186_s12883_021_02446_8
crossref_primary_10_1684_epd_2020_1163
crossref_primary_10_1002_ana_24240
crossref_primary_10_1002_da_22471
crossref_primary_10_1002_hbm_24287
crossref_primary_10_1162_imag_a_00547
crossref_primary_10_1002_mp_18039
crossref_primary_10_1007_s00415_012_6762_5
crossref_primary_10_1016_j_schres_2013_03_028
crossref_primary_10_1038_s41398_020_00965_5
crossref_primary_10_1016_j_neuroimage_2025_121183
crossref_primary_10_1371_journal_pcbi_1005209
crossref_primary_10_3233_JAD_200175
crossref_primary_10_3171_2018_2_PEDS17671
crossref_primary_10_1016_j_nicl_2018_05_030
crossref_primary_10_1016_j_cortex_2015_08_002
crossref_primary_10_1080_17470919_2017_1361864
crossref_primary_10_1186_s12887_017_0905_x
crossref_primary_10_1002_mds_29219
crossref_primary_10_1002_acn3_615
crossref_primary_10_1002_dad2_12288
crossref_primary_10_1016_j_brs_2025_06_007
crossref_primary_10_1016_j_neuroimage_2021_118067
crossref_primary_10_1136_jnnp_2017_315676
crossref_primary_10_1002_hbm_26521
crossref_primary_10_1016_j_nicl_2022_102949
crossref_primary_10_1016_j_pnpbp_2022_110551
crossref_primary_10_1111_jon_12676
crossref_primary_10_1093_gigascience_giw011
crossref_primary_10_1002_alz_12970
crossref_primary_10_1073_pnas_2203039119
crossref_primary_10_1111_gbb_12182
crossref_primary_10_1093_gerona_glaf124
crossref_primary_10_1016_j_bandc_2020_105517
crossref_primary_10_1080_09273972_2017_1418898
crossref_primary_10_1016_j_jneumeth_2014_04_020
crossref_primary_10_1002_acn3_70010
crossref_primary_10_1038_s41386_020_0665_4
crossref_primary_10_1089_brain_2017_0487
crossref_primary_10_1038_s42003_021_02294_9
crossref_primary_10_1016_j_neuroimage_2014_04_015
crossref_primary_10_1016_j_neuroscience_2020_10_031
crossref_primary_10_1016_j_cortex_2019_06_008
crossref_primary_10_1162_IMAG_a_48
crossref_primary_10_1016_j_neuroimage_2012_10_086
crossref_primary_10_1038_srep33596
crossref_primary_10_1016_j_neurobiolaging_2025_07_007
crossref_primary_10_1038_s41598_021_88918_w
crossref_primary_10_1186_s10194_025_02118_9
crossref_primary_10_1016_j_dcn_2023_101294
crossref_primary_10_1016_j_ajcnut_2023_06_008
crossref_primary_10_12688_wellcomeopenres_17731_1
crossref_primary_10_1016_j_biopsych_2014_05_023
crossref_primary_10_3389_fnagi_2022_896191
crossref_primary_10_1016_j_bbr_2020_113023
crossref_primary_10_1186_s12877_025_05778_z
crossref_primary_10_3389_fnins_2023_1196087
crossref_primary_10_1073_pnas_2001228117
crossref_primary_10_1111_epi_12694
crossref_primary_10_1002_hbm_24360
crossref_primary_10_1016_j_neuroimage_2019_05_017
crossref_primary_10_1088_2057_1976_ad72f9
crossref_primary_10_1016_j_neuroimage_2016_07_020
crossref_primary_10_3389_fneur_2017_00084
crossref_primary_10_1016_j_bandl_2013_03_005
crossref_primary_10_1152_jn_00172_2023
crossref_primary_10_1016_j_neuroimage_2020_117684
crossref_primary_10_1016_j_bpsc_2020_08_006
crossref_primary_10_1186_s12887_017_0793_0
crossref_primary_10_2196_49933
crossref_primary_10_1002_hbm_25680
crossref_primary_10_1161_STROKEAHA_124_047739
crossref_primary_10_1212_WNL_0000000000004475
crossref_primary_10_1371_journal_pone_0135974
crossref_primary_10_3389_fnagi_2018_00161
crossref_primary_10_1016_j_neuroimage_2012_10_065
crossref_primary_10_3233_JAD_221061
crossref_primary_10_3389_fnagi_2024_1432909
crossref_primary_10_1002_alz_13807
crossref_primary_10_1016_j_nicl_2022_102952
crossref_primary_10_1016_j_neuropsychologia_2019_04_005
crossref_primary_10_3389_fnagi_2016_00063
crossref_primary_10_1016_j_neuroimage_2020_117671
crossref_primary_10_1016_j_jpain_2023_10_002
crossref_primary_10_1016_j_bandc_2021_105822
crossref_primary_10_1093_cercor_bhac400
crossref_primary_10_2217_nmt_2017_0057
crossref_primary_10_1016_j_neuroimage_2017_11_022
crossref_primary_10_1038_s41598_019_47470_4
crossref_primary_10_3389_fnagi_2021_666851
crossref_primary_10_1007_s00394_023_03107_x
crossref_primary_10_1016_j_neuroimage_2017_02_055
crossref_primary_10_1016_j_jad_2025_03_106
crossref_primary_10_1016_j_nicl_2025_103837
crossref_primary_10_1371_journal_pcbi_1012595
crossref_primary_10_1016_j_pscychresns_2019_07_006
crossref_primary_10_1212_NXI_0000000000000616
crossref_primary_10_1007_s11682_021_00625_2
crossref_primary_10_1016_j_pscychresns_2017_11_004
crossref_primary_10_1016_j_neuroimage_2013_09_054
crossref_primary_10_1073_pnas_1524259113
crossref_primary_10_3389_fpsyt_2021_667656
crossref_primary_10_1016_j_media_2015_06_012
crossref_primary_10_1016_j_neuroscience_2014_06_058
crossref_primary_10_1016_j_neuroimage_2013_09_059
crossref_primary_10_1016_j_pscychresns_2021_111384
crossref_primary_10_1016_j_neuroimage_2021_117946
crossref_primary_10_1017_S0033291714001433
crossref_primary_10_1007_s12021_019_09426_x
crossref_primary_10_1038_s41398_021_01314_w
crossref_primary_10_3233_JAD_160834
crossref_primary_10_1093_brain_awv007
crossref_primary_10_3389_fnagi_2017_00309
crossref_primary_10_1093_gerona_glaf155
crossref_primary_10_1007_s00401_024_02750_w
crossref_primary_10_1017_S135561771500079X
crossref_primary_10_1136_bmjopen_2019_030379
crossref_primary_10_1523_JNEUROSCI_0447_17_2017
crossref_primary_10_1080_09540091_2022_2123450
crossref_primary_10_1109_JBHI_2016_2597963
crossref_primary_10_1371_journal_pone_0272736
crossref_primary_10_1016_j_neuroimage_2020_116798
crossref_primary_10_1016_j_jaac_2023_08_015
crossref_primary_10_1016_j_schres_2024_05_009
crossref_primary_10_1118_1_4871040
crossref_primary_10_1016_j_dadm_2017_07_005
crossref_primary_10_1017_S135561772300053X
crossref_primary_10_3389_fpsyt_2019_00332
crossref_primary_10_7554_eLife_84173
crossref_primary_10_1097_AJP_0000000000001115
crossref_primary_10_1016_j_bandc_2016_11_001
crossref_primary_10_1002_ana_26813
crossref_primary_10_1002_alz_13845
crossref_primary_10_1093_sleep_zsz280
crossref_primary_10_1016_j_resuscitation_2018_02_011
crossref_primary_10_1016_j_neuroimage_2019_05_040
crossref_primary_10_1016_j_neuroimage_2020_116779
crossref_primary_10_1016_j_schres_2024_05_002
crossref_primary_10_1016_j_cortex_2020_11_022
crossref_primary_10_1111_acer_13757
crossref_primary_10_1016_j_neuroimage_2020_116788
crossref_primary_10_1089_can_2017_0047
crossref_primary_10_1007_s00429_016_1240_y
crossref_primary_10_1038_s41597_023_02396_5
crossref_primary_10_1016_j_neurobiolaging_2020_06_005
crossref_primary_10_1371_journal_pcbi_1013459
crossref_primary_10_3389_fnins_2023_1172010
crossref_primary_10_1038_s41386_024_01832_3
crossref_primary_10_1177_1039856219842647
crossref_primary_10_1016_j_biopsych_2019_08_015
crossref_primary_10_1503_jpn_150093
crossref_primary_10_1016_j_neurobiolaging_2014_09_002
crossref_primary_10_1002_hipo_22389
crossref_primary_10_1093_radadv_umaf022
crossref_primary_10_1002_brb3_185
crossref_primary_10_1016_j_biopsych_2013_08_016
crossref_primary_10_1111_psyg_12567
crossref_primary_10_1126_scitranslmed_aav6221
crossref_primary_10_1016_j_dcn_2017_11_008
crossref_primary_10_1016_j_pscychresns_2017_06_003
crossref_primary_10_1016_j_cag_2022_07_023
crossref_primary_10_1111_pcn_12919
crossref_primary_10_3389_fnhum_2021_681634
crossref_primary_10_3390_diagnostics12020230
crossref_primary_10_1016_j_dcn_2020_100776
crossref_primary_10_3389_fpsyg_2022_957308
crossref_primary_10_1038_s41398_023_02515_1
crossref_primary_10_3233_JAD_220598
crossref_primary_10_1016_j_neuroimage_2016_05_009
crossref_primary_10_1088_1741_2552_ab9d11
crossref_primary_10_1371_journal_pone_0117692
crossref_primary_10_1002_alz_12587
crossref_primary_10_3389_fneur_2020_00673
crossref_primary_10_1523_JNEUROSCI_1973_15_2016
crossref_primary_10_1136_jnnp_2021_328623
crossref_primary_10_1007_s11682_018_9904_2
crossref_primary_10_3390_biomedicines12102166
crossref_primary_10_1016_j_archger_2025_105943
crossref_primary_10_1109_TMI_2018_2887072
crossref_primary_10_1002_hbm_22575
crossref_primary_10_1002_alz_70482
crossref_primary_10_1016_j_jagp_2015_03_006
crossref_primary_10_1111_joim_13534
crossref_primary_10_1093_cercor_bhz240
crossref_primary_10_1016_j_ejpn_2014_04_004
crossref_primary_10_1017_S1041610223004386
crossref_primary_10_1016_j_ijchp_2023_100372
crossref_primary_10_3389_fnagi_2020_00071
crossref_primary_10_1016_j_neuroimage_2021_118420
crossref_primary_10_1007_s00406_015_0592_2
crossref_primary_10_1007_s00125_018_4778_9
crossref_primary_10_3233_JAD_190283
crossref_primary_10_3389_fneur_2023_1277765
crossref_primary_10_1016_j_clinph_2020_09_018
crossref_primary_10_1111_jon_12237
crossref_primary_10_1016_j_neuroimage_2016_07_044
crossref_primary_10_1093_cercor_bhx099
crossref_primary_10_1002_brb3_1869
crossref_primary_10_1016_j_jceh_2019_02_003
crossref_primary_10_3389_fneur_2022_802113
crossref_primary_10_1162_jocn_a_01522
crossref_primary_10_1093_cercor_bhaa237
crossref_primary_10_1016_j_neuropsychologia_2017_01_008
crossref_primary_10_1109_TMI_2013_2282126
crossref_primary_10_1212_WNL_0000000000200551
crossref_primary_10_1016_j_msard_2022_104402
crossref_primary_10_1177_0004867418824020
crossref_primary_10_1212_NXI_0000000000000681
crossref_primary_10_2147_JPR_S345365
crossref_primary_10_1038_s41746_023_00845_4
crossref_primary_10_1016_j_neuroimage_2016_07_035
crossref_primary_10_3390_electronics11081199
crossref_primary_10_1002_ana_27298
crossref_primary_10_1016_j_psyneuen_2018_12_231
crossref_primary_10_1017_S003329171500210X
crossref_primary_10_1002_alz_12140
crossref_primary_10_1002_hbm_22502
crossref_primary_10_1002_jmri_27853
crossref_primary_10_1007_s10439_020_02458_4
crossref_primary_10_1177_2331216519857267
crossref_primary_10_12968_hmed_2024_0480
crossref_primary_10_1016_j_jaac_2018_02_010
crossref_primary_10_1038_s41598_023_47934_8
crossref_primary_10_3389_fnins_2021_627445
crossref_primary_10_2196_41173
crossref_primary_10_1093_cercor_bhab102
crossref_primary_10_1007_s42044_025_00282_4
crossref_primary_10_1016_j_bspc_2020_101903
crossref_primary_10_1089_neu_2020_7376
crossref_primary_10_3389_fnagi_2024_1335336
crossref_primary_10_1016_j_dadm_2018_02_003
crossref_primary_10_1016_j_bbi_2020_07_024
crossref_primary_10_3389_fimmu_2019_01779
crossref_primary_10_1016_j_nicl_2019_101827
crossref_primary_10_1002_mrm_29005
crossref_primary_10_1016_j_intell_2018_12_003
crossref_primary_10_1097_01_j_pain_0000460310_71572_16
crossref_primary_10_1186_s12877_025_06295_9
crossref_primary_10_1007_s00234_022_02988_9
crossref_primary_10_1016_j_jpsychires_2014_05_015
crossref_primary_10_4329_wjr_v9_i10_371
crossref_primary_10_1038_tp_2016_139
crossref_primary_10_1016_j_bandc_2018_09_004
crossref_primary_10_1186_s40035_023_00336_2
crossref_primary_10_1016_j_neurobiolaging_2014_12_022
crossref_primary_10_1073_pnas_1715451115
crossref_primary_10_1007_s00521_020_05596_x
crossref_primary_10_1136_jnnp_2023_332067
crossref_primary_10_1210_jc_2017_01438
crossref_primary_10_1136_bmjopen_2021_051660
crossref_primary_10_1002_hbm_23922
crossref_primary_10_1007_s12311_020_01205_8
crossref_primary_10_1016_j_neurobiolaging_2014_12_038
crossref_primary_10_3389_fnhum_2022_838228
crossref_primary_10_1073_pnas_1601889113
crossref_primary_10_1016_j_neuroimage_2025_121452
crossref_primary_10_3389_fnagi_2022_811146
crossref_primary_10_1016_j_dcn_2021_101053
crossref_primary_10_1093_jnci_djx285
crossref_primary_10_1093_brain_awaa286
crossref_primary_10_1038_ijo_2017_254
crossref_primary_10_1007_s11682_021_00553_1
crossref_primary_10_1523_JNEUROSCI_0884_18_2018
crossref_primary_10_1038_nn_4354
crossref_primary_10_1007_s11682_022_00746_2
crossref_primary_10_1186_s13195_024_01382_2
crossref_primary_10_1002_hbm_23948
crossref_primary_10_1016_j_pscychresns_2014_11_004
crossref_primary_10_1073_pnas_2004363117
crossref_primary_10_1093_brain_awac459
crossref_primary_10_1016_j_ynirp_2021_100066
crossref_primary_10_3389_fnagi_2019_00015
crossref_primary_10_1016_j_cortex_2019_02_010
crossref_primary_10_1089_cap_2015_0047
crossref_primary_10_1523_JNEUROSCI_5506_12_2013
crossref_primary_10_1186_s13195_024_01591_9
crossref_primary_10_1016_j_neuroimage_2018_08_022
crossref_primary_10_1038_s44220_025_00501_8
crossref_primary_10_1016_j_neuroimage_2012_12_052
crossref_primary_10_1016_j_neuroimage_2018_08_015
crossref_primary_10_1111_jcpp_12895
crossref_primary_10_1002_mds_29934
crossref_primary_10_1080_1028415X_2017_1324357
crossref_primary_10_3233_JAD_161223
crossref_primary_10_1523_JNEUROSCI_1101_19_2019
crossref_primary_10_3389_frobt_2022_926255
crossref_primary_10_1016_j_neuroimage_2016_03_022
crossref_primary_10_1212_WNL_0000000000008386
crossref_primary_10_1093_cercor_bhab040
crossref_primary_10_1093_schbul_sbaa020
crossref_primary_10_1109_JBHI_2019_2933138
crossref_primary_10_1007_s11263_015_0849_2
crossref_primary_10_1038_s41598_022_24826_x
crossref_primary_10_1016_j_neuroimage_2015_10_056
crossref_primary_10_1016_j_cortex_2021_01_018
crossref_primary_10_3390_languages4030068
crossref_primary_10_1093_cercor_bhad231
crossref_primary_10_1186_s40695_020_00055_y
crossref_primary_10_1186_s13229_025_00641_9
crossref_primary_10_1038_tp_2016_102
crossref_primary_10_1007_s00415_014_7426_4
crossref_primary_10_3389_fnins_2016_00478
crossref_primary_10_1093_cercor_bhab051
crossref_primary_10_1155_2024_8797606
crossref_primary_10_1093_cercor_bhw154
crossref_primary_10_1016_j_nicl_2017_01_024
crossref_primary_10_1162_imag_a_00294
crossref_primary_10_1111_ene_15470
crossref_primary_10_1016_j_nbscr_2024_100111
crossref_primary_10_3758_s13415_015_0344_9
crossref_primary_10_1016_j_neuroimage_2015_10_065
crossref_primary_10_1016_j_neuroimage_2019_116335
crossref_primary_10_1093_cercor_bhw180
crossref_primary_10_1016_j_ejmp_2022_10_023
crossref_primary_10_1017_S0033291718001198
crossref_primary_10_1109_TMI_2025_3550206
crossref_primary_10_1016_j_jocn_2016_01_040
crossref_primary_10_1016_j_neuroimage_2022_119507
crossref_primary_10_1111_acps_12860
crossref_primary_10_1002_hbm_23903
crossref_primary_10_1212_WNL_0000000000001738
crossref_primary_10_1080_14737175_2016_1181543
crossref_primary_10_1093_brain_awab163
crossref_primary_10_1093_cercor_bhab076
crossref_primary_10_1007_s00429_024_02852_x
crossref_primary_10_1212_WNL_0000000000200947
crossref_primary_10_1016_j_bspc_2019_101559
crossref_primary_10_1016_j_ebiom_2018_08_048
crossref_primary_10_1038_s41598_019_48910_x
crossref_primary_10_1016_j_nicl_2023_103354
crossref_primary_10_1002_brb3_607
crossref_primary_10_1016_j_jns_2021_117443
crossref_primary_10_3389_fnagi_2019_00069
crossref_primary_10_1126_sciadv_adt5619
crossref_primary_10_1186_s12937_023_00887_0
crossref_primary_10_7554_eLife_86812
crossref_primary_10_1016_j_neurobiolaging_2024_03_003
crossref_primary_10_1007_s00415_022_11095_x
crossref_primary_10_1016_j_neuroimage_2013_05_076
crossref_primary_10_1016_j_neuroimage_2016_03_061
crossref_primary_10_1186_s13195_023_01237_2
crossref_primary_10_1089_neur_2024_0149
crossref_primary_10_1016_j_brs_2022_02_017
crossref_primary_10_1371_journal_pcbi_1005350
crossref_primary_10_1249_MSS_0000000000002946
crossref_primary_10_1016_j_msard_2018_03_002
crossref_primary_10_1002_mds_26013
crossref_primary_10_1016_j_eplepsyres_2021_106845
crossref_primary_10_1007_s00234_016_1737_3
crossref_primary_10_1111_ane_13181
crossref_primary_10_1212_WNL_0000000000007003
crossref_primary_10_1007_s00429_015_1139_z
crossref_primary_10_1515_revneuro_2018_0096
crossref_primary_10_1007_s11060_017_2453_5
crossref_primary_10_1016_j_neuroimage_2023_119892
crossref_primary_10_3389_fnagi_2020_553461
crossref_primary_10_1016_j_clineuro_2018_05_018
crossref_primary_10_1177_1352458520940548
crossref_primary_10_2147_CIA_S318679
crossref_primary_10_1016_j_neuroimage_2013_05_065
crossref_primary_10_3233_JAD_215563
crossref_primary_10_1111_ene_70275
crossref_primary_10_3389_fneur_2019_01398
crossref_primary_10_1038_srep06482
crossref_primary_10_1016_j_cct_2021_106488
crossref_primary_10_1016_j_nicl_2020_102407
crossref_primary_10_1088_1361_6560_abb2ec
crossref_primary_10_1016_j_jpsychires_2021_11_009
crossref_primary_10_3389_fpsyt_2024_1395243
crossref_primary_10_1002_jnr_24790
crossref_primary_10_1080_19466315_2019_1677492
crossref_primary_10_1016_j_exger_2020_110939
crossref_primary_10_3390_diagnostics12010084
crossref_primary_10_1016_j_nicl_2013_10_015
crossref_primary_10_1016_j_dcn_2019_100734
crossref_primary_10_1016_j_neurobiolaging_2020_11_014
crossref_primary_10_1016_j_visres_2024_108398
crossref_primary_10_1016_j_nicl_2023_103383
crossref_primary_10_1371_journal_pone_0124453
crossref_primary_10_1016_j_neuroimage_2015_08_026
crossref_primary_10_1016_j_neuroimage_2016_03_032
crossref_primary_10_1093_brain_aww319
crossref_primary_10_3390_brainsci4040594
crossref_primary_10_1080_1357650X_2019_1710525
crossref_primary_10_1016_j_neurobiolaging_2023_08_010
crossref_primary_10_1016_j_nicl_2017_01_009
crossref_primary_10_1038_s41598_022_18696_6
crossref_primary_10_1109_JBHI_2020_3042447
crossref_primary_10_1016_j_neuroimage_2013_05_049
crossref_primary_10_1038_s41598_024_54370_9
crossref_primary_10_1016_j_schres_2017_02_014
crossref_primary_10_1109_JBHI_2024_3523298
crossref_primary_10_1080_13645706_2016_1275016
crossref_primary_10_1002_mrm_27705
crossref_primary_10_1038_s41386_019_0322_y
crossref_primary_10_1038_tp_2016_175
crossref_primary_10_1002_hbm_26567
crossref_primary_10_1186_2051_5960_2_26
crossref_primary_10_1016_j_compbiomed_2024_108622
crossref_primary_10_1016_j_cortex_2018_11_009
crossref_primary_10_1038_s41598_023_43478_z
crossref_primary_10_1016_j_jad_2025_119998
crossref_primary_10_1016_j_msard_2020_102513
crossref_primary_10_1212_WNL_0000000000000824
crossref_primary_10_1016_j_dcn_2014_04_004
crossref_primary_10_1016_j_exger_2016_04_001
crossref_primary_10_1016_j_dcn_2021_101028
crossref_primary_10_1016_j_jaac_2022_04_018
crossref_primary_10_1038_s41398_023_02688_9
crossref_primary_10_1038_s43587_025_00897_z
crossref_primary_10_1016_j_jalz_2016_08_010
crossref_primary_10_1111_ene_13205
crossref_primary_10_1016_j_nicl_2021_102757
crossref_primary_10_1016_j_neuroimage_2016_01_020
crossref_primary_10_1111_bdi_70050
crossref_primary_10_1016_j_jagp_2018_03_003
crossref_primary_10_1007_s11682_018_9858_4
crossref_primary_10_1016_j_pscychresns_2021_111301
crossref_primary_10_1016_j_jalz_2017_01_020
crossref_primary_10_1016_j_dcn_2019_100704
crossref_primary_10_1002_mrm_27726
crossref_primary_10_3389_fneur_2018_00235
crossref_primary_10_1007_s11682_016_9523_8
crossref_primary_10_1016_j_psyneuen_2016_09_028
crossref_primary_10_1002_brb3_687
crossref_primary_10_1080_1357650X_2015_1096939
crossref_primary_10_3109_00952990_2013_837057
crossref_primary_10_3390_ijms25115607
crossref_primary_10_1016_j_media_2015_04_014
crossref_primary_10_1016_j_pscychresns_2021_111311
crossref_primary_10_1016_j_neuroimage_2018_04_003
crossref_primary_10_1016_j_jad_2020_05_092
crossref_primary_10_1161_HYPERTENSIONAHA_117_09807
crossref_primary_10_1016_j_pnpbp_2025_111429
crossref_primary_10_1016_j_exger_2019_110792
crossref_primary_10_1002_hbm_26574
crossref_primary_10_1371_journal_pone_0133352
crossref_primary_10_1016_j_neuroimage_2016_01_007
crossref_primary_10_1038_s41598_024_59227_9
crossref_primary_10_1016_j_neuroimage_2013_05_007
crossref_primary_10_1016_j_neuroimage_2012_10_029
crossref_primary_10_1016_j_neuroimage_2018_06_065
crossref_primary_10_1089_neu_2018_6357
crossref_primary_10_1080_02699052_2021_1906445
crossref_primary_10_1016_j_jaac_2023_01_001
crossref_primary_10_1002_hbm_24463
crossref_primary_10_1007_s11682_013_9277_5
crossref_primary_10_1038_pr_2018_10
crossref_primary_10_1053_j_ajkd_2015_11_008
crossref_primary_10_3389_fneur_2018_00824
crossref_primary_10_1093_brain_awu083
crossref_primary_10_1177_1352458519878685
crossref_primary_10_1007_s00415_024_12514_x
crossref_primary_10_1016_j_pnpbp_2021_110381
crossref_primary_10_1002_ana_26718
crossref_primary_10_1038_s41467_023_43146_w
crossref_primary_10_1038_s41398_020_0828_4
crossref_primary_10_1002_hbm_70348
crossref_primary_10_1038_s41562_023_01707_5
crossref_primary_10_1007_s00415_023_11937_2
crossref_primary_10_1016_j_clinph_2020_10_007
crossref_primary_10_1001_jamapediatrics_2020_2991
crossref_primary_10_1093_ijnp_pyv037
crossref_primary_10_1109_TBME_2022_3213266
crossref_primary_10_3389_fnagi_2018_00293
crossref_primary_10_1002_hbm_23154
crossref_primary_10_3233_JAD_190566
crossref_primary_10_1016_j_dadm_2018_08_007
crossref_primary_10_1371_journal_pone_0210375
crossref_primary_10_3233_JAD_201345
crossref_primary_10_1016_j_neurobiolaging_2016_03_008
crossref_primary_10_1002_jmri_27092
crossref_primary_10_1080_21678421_2019_1612920
crossref_primary_10_1111_cns_14540
crossref_primary_10_1093_neuros_nyz176
crossref_primary_10_1097_RMR_0000000000000307
crossref_primary_10_1016_j_brainres_2016_10_027
crossref_primary_10_3389_fneur_2019_00450
crossref_primary_10_1016_j_jpsychires_2014_08_010
crossref_primary_10_1038_s41596_023_00871_2
crossref_primary_10_1371_journal_pone_0156770
crossref_primary_10_3390_genes12122024
crossref_primary_10_1016_j_schres_2020_05_043
crossref_primary_10_1016_j_jagp_2014_10_005
crossref_primary_10_1371_journal_pone_0269491
crossref_primary_10_1016_j_tjpad_2025_100315
crossref_primary_10_1016_j_neuroimage_2018_04_035
crossref_primary_10_1523_JNEUROSCI_1732_18_2019
crossref_primary_10_1016_j_pscychresns_2021_111249
crossref_primary_10_1016_j_neurobiolaging_2019_10_005
crossref_primary_10_3389_fpsyt_2020_00597
crossref_primary_10_1155_2020_8830005
crossref_primary_10_1016_j_mad_2021_111575
crossref_primary_10_1088_1741_2552_aadf3d
crossref_primary_10_1080_09297049_2017_1338340
crossref_primary_10_1016_j_dadm_2016_11_007
crossref_primary_10_1016_j_dcn_2016_04_004
crossref_primary_10_1097_JS9_0000000000002746
crossref_primary_10_1038_s41380_022_01870_7
crossref_primary_10_1249_MSS_0000000000003678
crossref_primary_10_1016_j_neuroimage_2023_120306
crossref_primary_10_1038_s41467_020_19543_w
crossref_primary_10_1001_jamanetworkopen_2020_17337
crossref_primary_10_1111_acps_13065
crossref_primary_10_1016_j_nicl_2018_06_011
crossref_primary_10_3233_ADR_230206
crossref_primary_10_1038_s41598_020_78225_1
crossref_primary_10_1016_j_nicl_2016_10_014
crossref_primary_10_1111_acps_13068
crossref_primary_10_1111_jon_12521
crossref_primary_10_1002_hbm_70303
crossref_primary_10_1016_j_neuroimage_2016_10_044
crossref_primary_10_1002_hbm_25739
crossref_primary_10_1038_npp_2017_49
crossref_primary_10_1093_brain_awu036
crossref_primary_10_1002_hbm_23559
crossref_primary_10_1016_j_dadm_2019_01_002
crossref_primary_10_1038_s41386_020_00947_7
crossref_primary_10_1111_jon_12977
crossref_primary_10_1016_j_protcy_2016_01_156
crossref_primary_10_1371_journal_pone_0146913
crossref_primary_10_3390_diagnostics12010165
crossref_primary_10_1016_j_nicl_2016_10_021
crossref_primary_10_1016_j_nicl_2019_101786
crossref_primary_10_1111_jon_12972
crossref_primary_10_1016_j_bpsc_2020_11_011
crossref_primary_10_1016_j_dcn_2015_07_005
crossref_primary_10_1093_brain_aww243
crossref_primary_10_3389_fpsyt_2019_00694
crossref_primary_10_1016_j_neuroimage_2022_119061
crossref_primary_10_1111_bdi_13315
crossref_primary_10_1159_000541098
crossref_primary_10_3389_fneur_2018_00400
crossref_primary_10_1212_NXI_0000000000000984
crossref_primary_10_1002_hbm_23580
crossref_primary_10_1111_ner_13380
crossref_primary_10_1159_000537847
crossref_primary_10_1002_hbm_25761
crossref_primary_10_1007_s00330_016_4485_1
crossref_primary_10_1088_1741_2552_ac64c4
crossref_primary_10_1016_j_pscychresns_2021_111285
crossref_primary_10_1007_s00415_022_11435_x
crossref_primary_10_1136_bmjopen_2018_023664
crossref_primary_10_3389_fneur_2022_857328
crossref_primary_10_1016_j_pscychresns_2021_111286
crossref_primary_10_1093_brain_awv387
crossref_primary_10_1016_j_nicl_2016_03_011
crossref_primary_10_1002_trc2_12258
crossref_primary_10_1136_bmjopen_2019_033760
crossref_primary_10_1093_cercor_bhy266
crossref_primary_10_1093_cercor_bhw082
crossref_primary_10_52294_001c_118616
crossref_primary_10_1038_s41467_024_47286_5
crossref_primary_10_1007_s00787_023_02278_6
crossref_primary_10_1016_j_brs_2020_02_020
crossref_primary_10_1007_s00415_021_10495_9
crossref_primary_10_1016_j_neuroimage_2017_07_008
crossref_primary_10_1016_j_neuroimage_2016_10_016
crossref_primary_10_1093_cercor_bhac333
crossref_primary_10_1016_j_jalz_2013_12_022
crossref_primary_10_1016_j_neuroimage_2013_01_044
crossref_primary_10_1016_j_bbr_2018_12_008
crossref_primary_10_1177_0271678X231224502
crossref_primary_10_1016_j_jneumeth_2020_108698
crossref_primary_10_1016_j_dcn_2018_05_005
crossref_primary_10_1038_s41467_019_12426_9
crossref_primary_10_1038_s41593_021_00997_0
crossref_primary_10_1016_j_pnpbp_2020_110048
crossref_primary_10_1038_s41386_023_01780_4
crossref_primary_10_1016_j_schres_2017_10_013
crossref_primary_10_3389_fnagi_2016_00118
crossref_primary_10_1016_j_nicl_2024_103623
crossref_primary_10_3389_fnbeh_2016_00124
crossref_primary_10_1002_hbm_24849
crossref_primary_10_1097_WNR_0000000000000121
crossref_primary_10_1002_hbm_24884
crossref_primary_10_1073_pnas_2023860118
crossref_primary_10_1016_j_earlhumdev_2012_12_003
crossref_primary_10_1016_j_neurobiolaging_2019_12_003
crossref_primary_10_1093_cercor_bhz131
crossref_primary_10_1016_j_brs_2018_01_029
crossref_primary_10_1016_j_dcn_2022_101088
crossref_primary_10_7554_eLife_34354
crossref_primary_10_1093_cercor_bhy277
crossref_primary_10_1016_j_jrras_2025_101735
crossref_primary_10_3389_fninf_2017_00059
crossref_primary_10_1016_j_pscychresns_2016_04_006
crossref_primary_10_1002_jmri_27929
crossref_primary_10_1002_brb3_3506
crossref_primary_10_1186_s13195_014_0056_3
crossref_primary_10_1016_j_seizure_2021_03_007
crossref_primary_10_1038_s41598_023_50780_3
crossref_primary_10_1016_j_jad_2019_07_075
crossref_primary_10_1017_S0033291717000137
crossref_primary_10_1093_brain_awy054
crossref_primary_10_1371_journal_pone_0119774
crossref_primary_10_3233_JAD_160772
crossref_primary_10_1016_j_dcn_2020_100880
crossref_primary_10_1016_j_jad_2019_09_068
crossref_primary_10_1017_S0033291716000143
crossref_primary_10_1038_s41598_018_27898_w
crossref_primary_10_3233_JAD_181217
crossref_primary_10_1016_j_parkreldis_2024_106072
crossref_primary_10_3389_fninf_2017_00063
crossref_primary_10_1038_mp_2016_217
crossref_primary_10_1016_j_nicl_2016_12_008
crossref_primary_10_1016_j_neuroimage_2015_11_026
crossref_primary_10_1016_j_neuroimage_2017_09_045
crossref_primary_10_3389_fnins_2024_1385847
crossref_primary_10_1093_schbul_sbv169
crossref_primary_10_1016_j_media_2025_103662
crossref_primary_10_1016_j_nicl_2016_12_003
crossref_primary_10_1111_tmi_14056
crossref_primary_10_1111_eip_12358
crossref_primary_10_1016_j_jad_2021_01_058
crossref_primary_10_1186_s10194_024_01803_5
crossref_primary_10_1016_j_neuroimage_2021_118751
crossref_primary_10_1016_j_neuroimage_2019_02_053
crossref_primary_10_1016_j_neurobiolaging_2024_12_009
crossref_primary_10_1002_alz_12252
crossref_primary_10_1038_s41380_023_02177_x
crossref_primary_10_1016_j_msard_2025_106567
crossref_primary_10_1038_s41598_024_63071_2
crossref_primary_10_1016_j_neurobiolaging_2016_03_016
crossref_primary_10_1186_s12916_024_03437_5
crossref_primary_10_3389_fnagi_2016_00155
crossref_primary_10_1016_j_schres_2015_01_005
crossref_primary_10_3390_brainsci11091134
crossref_primary_10_1002_jnr_24818
crossref_primary_10_3390_s23094329
crossref_primary_10_3389_fpsyt_2021_673595
crossref_primary_10_3389_fneur_2020_595463
crossref_primary_10_1002_jmri_28824
crossref_primary_10_1016_j_jns_2016_04_054
crossref_primary_10_1016_j_nicl_2016_12_025
crossref_primary_10_1212_WNL_0000000000209460
crossref_primary_10_1002_alz_14414
crossref_primary_10_1016_j_neuroscience_2015_05_049
crossref_primary_10_1016_j_neuroimage_2015_06_094
crossref_primary_10_1016_j_msard_2022_103891
crossref_primary_10_7554_eLife_95823_4
crossref_primary_10_3389_fninf_2017_00010
crossref_primary_10_1016_j_jaac_2019_04_006
crossref_primary_10_1002_brb3_1766
crossref_primary_10_1016_j_bandl_2019_104661
crossref_primary_10_1016_j_dib_2020_106286
crossref_primary_10_1016_j_neuropsychologia_2022_108353
crossref_primary_10_1016_j_neuroimage_2020_117596
crossref_primary_10_55095_CesRadiol2020_040
crossref_primary_10_3233_JAD_230244
crossref_primary_10_1016_j_dcn_2018_03_009
crossref_primary_10_3233_JAD_170055
crossref_primary_10_1038_nn_4458
crossref_primary_10_3389_fnhum_2021_635687
crossref_primary_10_1016_j_neuroimage_2015_02_011
crossref_primary_10_3389_fnagi_2019_00117
crossref_primary_10_1016_j_neurobiolaging_2017_02_019
crossref_primary_10_1016_j_bandc_2022_105877
crossref_primary_10_1016_j_neuroimage_2016_12_026
crossref_primary_10_1016_j_neuroimage_2019_116475
crossref_primary_10_1002_jnr_25392
crossref_primary_10_1016_j_neuroimage_2019_116489
crossref_primary_10_1002_jmri_25685
crossref_primary_10_1016_j_dcn_2020_100816
crossref_primary_10_3389_fnagi_2020_00129
crossref_primary_10_1016_j_jagp_2017_04_011
crossref_primary_10_1016_j_neulet_2021_136178
crossref_primary_10_1038_s41598_024_62960_w
crossref_primary_10_1111_ejn_15761
crossref_primary_10_1080_20008066_2023_2216624
crossref_primary_10_1002_hbm_22707
crossref_primary_10_1002_ana_26281
crossref_primary_10_1137_15M104431X
crossref_primary_10_1038_tp_2017_57
crossref_primary_10_3389_fneur_2021_754204
crossref_primary_10_1016_j_neurobiolaging_2017_02_005
crossref_primary_10_1038_s43856_025_00920_9
crossref_primary_10_1007_s00787_018_1241_x
crossref_primary_10_1016_j_neuroimage_2025_121302
crossref_primary_10_1080_19466315_2021_1884129
crossref_primary_10_1016_j_neuroimage_2022_119423
crossref_primary_10_1016_j_nicl_2019_102159
crossref_primary_10_2337_db15_1242
crossref_primary_10_1002_brb3_1734
crossref_primary_10_1016_j_archger_2021_104454
crossref_primary_10_1007_s10548_016_0509_z
crossref_primary_10_1016_j_neuroimage_2021_118259
crossref_primary_10_1177_13524585221139152
crossref_primary_10_1148_radiol_232274
crossref_primary_10_3233_JAD_210604
crossref_primary_10_1038_s42003_024_05949_5
crossref_primary_10_1016_j_parkreldis_2019_09_031
crossref_primary_10_1002_da_22284
crossref_primary_10_1038_jcbfm_2015_125
crossref_primary_10_1007_s00429_025_03000_9
crossref_primary_10_3233_JAD_181175
crossref_primary_10_1007_s00429_025_02937_1
crossref_primary_10_1093_scan_nsz015
crossref_primary_10_3390_medsci9020020
crossref_primary_10_1017_S1366728923000354
crossref_primary_10_1038_s41593_023_01513_2
crossref_primary_10_1016_j_nicl_2012_12_003
crossref_primary_10_1016_j_dcn_2019_100675
crossref_primary_10_1002_mrm_27215
crossref_primary_10_1002_alz_70485
crossref_primary_10_3389_fnagi_2020_00102
crossref_primary_10_1016_j_neurobiolaging_2013_11_011
crossref_primary_10_1016_j_dcn_2020_100853
crossref_primary_10_1016_j_schres_2024_01_005
crossref_primary_10_1017_S1092852918001268
crossref_primary_10_1038_npp_2017_213
crossref_primary_10_1371_journal_pone_0185239
crossref_primary_10_1016_j_neuroimage_2017_07_053
crossref_primary_10_1371_journal_pone_0233858
crossref_primary_10_1177_18796397251366900
crossref_primary_10_1111_jsm_12491
crossref_primary_10_3233_JAD_220825
crossref_primary_10_1016_j_neuroimage_2017_05_027
crossref_primary_10_5665_sleep_5768
crossref_primary_10_1109_TMI_2013_2269814
crossref_primary_10_1371_journal_pone_0288967
crossref_primary_10_1016_j_neuroimage_2019_116441
crossref_primary_10_1212_WNL_0000000000000774
crossref_primary_10_1038_s41591_025_03828_y
crossref_primary_10_1111_epi_18514
crossref_primary_10_1016_j_trci_2019_05_004
crossref_primary_10_1007_s12021_018_9380_2
crossref_primary_10_1016_j_jmpt_2024_08_018
crossref_primary_10_1007_s12975_020_00847_4
crossref_primary_10_1007_s11682_017_9752_5
crossref_primary_10_1177_1747493019851277
crossref_primary_10_3389_fnins_2019_01053
crossref_primary_10_3389_fnimg_2023_1129446
crossref_primary_10_1177_1087054714523316
crossref_primary_10_1097_HTR_0000000000000758
crossref_primary_10_1016_j_psyneuen_2023_106336
crossref_primary_10_1016_j_parkreldis_2020_04_009
crossref_primary_10_1002_mds_29866
crossref_primary_10_1162_imag_a_00387
crossref_primary_10_1186_s10194_021_01312_9
crossref_primary_10_1016_j_jneuroling_2025_101285
crossref_primary_10_1016_j_neuroimage_2022_119850
crossref_primary_10_1111_jcpp_12972
crossref_primary_10_3389_fnagi_2022_872867
crossref_primary_10_1038_ijo_2016_132
crossref_primary_10_3233_JAD_161146
crossref_primary_10_1016_j_neurobiolaging_2016_09_012
crossref_primary_10_1016_j_brs_2019_03_007
crossref_primary_10_3390_nu14245300
crossref_primary_10_3233_JAD_170092
crossref_primary_10_1038_s41380_024_02874_1
crossref_primary_10_1038_s41598_018_22277_x
crossref_primary_10_1162_imag_a_00395
crossref_primary_10_1002_aur_1427
crossref_primary_10_1016_j_brs_2025_07_005
crossref_primary_10_1016_j_neuroimage_2022_119488
crossref_primary_10_3233_JAD_190504
crossref_primary_10_1016_j_schres_2014_12_003
crossref_primary_10_1016_j_jpsychires_2024_05_042
crossref_primary_10_3389_fnins_2023_1178473
crossref_primary_10_7554_eLife_83660
crossref_primary_10_1016_j_neuroimage_2013_12_012
crossref_primary_10_3389_fnagi_2022_832828
crossref_primary_10_1002_hbm_24052
crossref_primary_10_1038_s41593_022_01042_4
crossref_primary_10_1016_j_biopsych_2015_08_024
crossref_primary_10_1002_ehf2_14909
crossref_primary_10_1177_1545968320913502
crossref_primary_10_1038_s41598_024_60828_7
crossref_primary_10_1162_nol_a_00122
crossref_primary_10_1093_neuonc_noac148
crossref_primary_10_1177_0271678X221090747
crossref_primary_10_1016_j_neuroimage_2012_06_043
crossref_primary_10_1016_j_neuroimage_2017_05_051
crossref_primary_10_1016_j_psyneuen_2018_02_034
crossref_primary_10_1038_s41386_022_01457_4
crossref_primary_10_1016_j_neuroimage_2013_12_004
crossref_primary_10_1016_j_neurobiolaging_2015_12_009
crossref_primary_10_1186_s41983_021_00293_5
crossref_primary_10_1093_cercor_bhw418
crossref_primary_10_3389_fnhum_2020_00255
crossref_primary_10_1016_j_neuroscience_2021_01_005
crossref_primary_10_1002_pbc_25110
crossref_primary_10_3390_brainsci9120373
crossref_primary_10_1002_brb3_518
crossref_primary_10_1016_j_jns_2020_117213
crossref_primary_10_1016_j_neunet_2019_12_001
crossref_primary_10_1016_j_trci_2016_05_002
crossref_primary_10_1038_s42003_024_07414_9
crossref_primary_10_1002_hbm_26250
crossref_primary_10_1007_s00429_019_02009_1
crossref_primary_10_1080_23273798_2016_1250926
crossref_primary_10_1016_j_neuroimage_2017_05_049
crossref_primary_10_1002_dad2_12487
crossref_primary_10_3389_fneur_2022_912592
crossref_primary_10_1016_j_jpsychires_2020_12_007
crossref_primary_10_7717_peerj_19914
crossref_primary_10_1016_j_psyneuen_2014_11_010
crossref_primary_10_1002_brb3_3011
crossref_primary_10_1016_j_neuroimage_2020_116608
crossref_primary_10_3389_fnhum_2020_00229
crossref_primary_10_1016_j_parkreldis_2020_06_460
crossref_primary_10_3233_JAD_201243
crossref_primary_10_3389_frai_2022_910049
crossref_primary_10_1111_jon_12909
crossref_primary_10_1186_s13195_023_01349_9
crossref_primary_10_1016_j_nicl_2018_04_019
crossref_primary_10_1016_j_neurobiolaging_2020_04_002
crossref_primary_10_1002_hbm_24011
crossref_primary_10_1016_j_nicl_2018_04_023
crossref_primary_10_1016_j_nicl_2019_102104
crossref_primary_10_3389_fnhum_2014_00307
crossref_primary_10_1093_cercor_bhv102
crossref_primary_10_3390_brainsci13101448
crossref_primary_10_1080_13803395_2015_1105199
crossref_primary_10_1016_j_dcn_2013_02_003
crossref_primary_10_1038_s41531_025_00954_9
crossref_primary_10_3389_fnhum_2017_00319
crossref_primary_10_3390_ijms232314635
crossref_primary_10_3233_JAD_180749
crossref_primary_10_1016_j_dcn_2017_08_009
crossref_primary_10_3389_fneur_2020_590573
crossref_primary_10_1089_neu_2014_3833
crossref_primary_10_1002_acn3_51041
crossref_primary_10_1002_nbm_4754
crossref_primary_10_1017_S095457941900035X
crossref_primary_10_3390_brainsci14030219
crossref_primary_10_1016_j_nicl_2020_102321
crossref_primary_10_1038_s41598_024_58120_9
crossref_primary_10_3389_fpsyt_2021_780095
crossref_primary_10_1007_s40122_025_00770_2
crossref_primary_10_1007_s12311_020_01137_3
crossref_primary_10_3389_fnins_2018_01008
crossref_primary_10_1038_sdata_2018_63
crossref_primary_10_1109_JBHI_2016_2608998
crossref_primary_10_1016_j_mri_2021_06_010
crossref_primary_10_1088_1361_6560_acae14
crossref_primary_10_1371_journal_pone_0207967
crossref_primary_10_1016_j_mri_2017_09_007
crossref_primary_10_1016_j_joca_2014_06_029
crossref_primary_10_1016_j_neurobiolaging_2014_04_035
crossref_primary_10_1002_hbm_26697
crossref_primary_10_1016_j_neurobiolaging_2021_12_015
crossref_primary_10_3389_fpsyt_2021_718539
crossref_primary_10_1016_j_nicl_2020_102310
crossref_primary_10_1016_j_nicl_2020_102315
crossref_primary_10_7554_eLife_86812_3
crossref_primary_10_1038_s41586_023_06982_w
crossref_primary_10_1111_acer_14446
crossref_primary_10_1016_j_clinph_2024_01_003
crossref_primary_10_1038_s41598_025_87224_z
crossref_primary_10_1002_hbm_26205
crossref_primary_10_1016_j_neuroimage_2013_12_038
crossref_primary_10_1016_j_neurobiolaging_2020_04_013
crossref_primary_10_3390_children12091127
Cites_doi 10.1016/j.neuroimage.2004.07.016
10.1002/hbm.20973
10.1097/00004728-200105000-00022
10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
10.1016/j.neuroimage.2006.02.051
10.1016/j.neuroimage.2004.07.068
10.1016/j.neuroimage.2007.12.025
10.1016/j.neuroimage.2010.07.052
10.1016/j.neuroimage.2012.01.021
10.1037/0033-2909.86.2.420
10.1136/jnnp.2004.047993
10.1016/S0896-6273(02)00569-X
10.1016/j.neuroimage.2010.05.041
10.1016/j.neuroimage.2006.01.021
10.1006/nimg.1998.0395
10.1016/j.neuroimage.2009.05.084
10.1016/j.neuroimage.2009.05.045
10.1016/j.neuroimage.2011.02.046
10.1371/journal.pone.0012853
10.1016/j.neuroimage.2007.07.007
10.2307/2533516
10.1137/S0895479801383877
10.1002/mrm.23228
10.1002/(SICI)1097-0193(200004)9:4<212::AID-HBM3>3.0.CO;2-#
10.1001/archneurol.2011.167
10.1016/j.neuroimage.2004.07.051
10.1002/jmri.22636
10.1148/radiol.11101637
10.1109/TMI.2006.882143
10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G
10.1109/42.875199
10.1212/WNL.0b013e3181ffe4d1
10.1109/TMI.2006.887364
10.1093/cercor/bhg087
10.2307/2532051
10.1006/nimg.1998.0396
10.1006/nimg.2002.1132
10.1006/nimg.2002.1040
10.1016/j.neuroimage.2009.06.074
10.1016/j.neuroimage.2011.02.076
10.1016/j.neuroimage.2004.07.010
10.1109/42.906426
10.1016/j.media.2011.02.005
10.1016/j.neuroimage.2005.09.054
10.1016/j.neuroimage.2010.11.092
10.1109/42.668698
10.1016/j.neuroimage.2009.12.007
10.1016/j.neuroimage.2005.05.015
10.1016/j.mechmachtheory.2010.05.002
10.1016/j.neuroimage.2010.07.020
10.1198/000313006X90684
10.1073/pnas.200033797
10.1016/j.neuroimage.2008.10.052
10.1111/j.1399-0004.2004.00241.x
10.1256/003590002320603584
10.1002/mds.23762
10.1109/TMI.2010.2050897
ContentType Journal Article
Copyright 2012 Elsevier Inc.
Copyright © 2012 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Jul 16, 2012
2012 Elsevier Inc. All rights reserved. 2012
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: Copyright © 2012 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Jul 16, 2012
– notice: 2012 Elsevier Inc. All rights reserved. 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
5PM
DOI 10.1016/j.neuroimage.2012.02.084
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList Engineering Research Database



MEDLINE
ProQuest One Psychology
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 1418
ExternalDocumentID PMC3389460
3245015211
22430496
10_1016_j_neuroimage_2012_02_084
S1053811912002765
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCCIH NIH HHS
  grantid: RC1 AT005728
– fundername: NIA NIH HHS
  grantid: R01 AG022381
– fundername: NINDS NIH HHS
  grantid: R01NS042861
– fundername: NCRR NIH HHS
  grantid: S10RR023043
– fundername: NCCIH NIH HHS
  grantid: RC1AT005728
– fundername: NIA NIH HHS
  grantid: U01 AG024904
– fundername: NIA NIH HHS
  grantid: R01 AG021910
– fundername: NIA NIH HHS
  grantid: P50 AG005681
– fundername: NINDS NIH HHS
  grantid: R01 NS052585
– fundername: NIA NIH HHS
  grantid: P01AG03991
– fundername: National Institute on Aging : NIA
  grantid: R01 AG021910-05 || AG
– fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB
  grantid: R01 EB006758-04 || EB
– fundername: National Center for Complementary and Alternative Medicine : NCCAM
  grantid: RC1 AT005728-02 || AT
– fundername: National Institute on Aging : NIA
  grantid: P01 AG003991-25 || AG
– fundername: National Center for Research Resources : NCRR
  grantid: S10 RR023043-01 || RR
– fundername: National Center for Research Resources : NCRR
  grantid: S10 RR019307-01 || RR
– fundername: National Institute of Neurological Disorders and Stroke : NINDS
  grantid: R01 NS070963-02 || NS
– fundername: National Institute of Mental Health : NIMH
  grantid: P50 MH071616-05 || MH
– fundername: National Institute of Neurological Disorders and Stroke : NINDS
  grantid: P01 NS058793-05 || NS
– fundername: National Center for Research Resources : NCRR
  grantid: U24 RR021382-05 || RR
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
9DU
AAFWJ
AAQXK
AAYXX
ABMZM
ADFGL
ADVLN
ADXHL
AFFHD
AFPKN
AGHFR
AGQPQ
AIGII
AKRLJ
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
OK1
R2-
SEW
WUQ
XPP
ZMT
AGCQF
AGRNS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
7QO
5PM
ID FETCH-LOGICAL-c663t-8a02a7f28b154fc161b18aadb85fdfb2e02b0711b7139c5f30726c9ae5e8b7e3
IEDL.DBID M7P
ISICitedReferencesCount 1880
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000305920600064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8119
1095-9572
IngestDate Tue Nov 04 01:59:05 EST 2025
Tue Oct 07 09:54:17 EDT 2025
Thu Oct 02 11:18:48 EDT 2025
Tue Nov 04 01:54:06 EST 2025
Mon Jul 21 05:16:24 EDT 2025
Tue Nov 18 21:20:57 EST 2025
Sat Nov 29 03:33:17 EST 2025
Fri Feb 23 02:36:05 EST 2024
Tue Oct 14 19:35:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Reliability and power
Unbiased longitudinal image processing
Within-subject template
FreeSurfer
MRI biomarkers
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2012 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c663t-8a02a7f28b154fc161b18aadb85fdfb2e02b0711b7139c5f30726c9ae5e8b7e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Senior authors.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3389460
PMID 22430496
PQID 1506872948
PQPubID 2031077
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3389460
proquest_miscellaneous_1038598901
proquest_miscellaneous_1020832651
proquest_journals_1506872948
pubmed_primary_22430496
crossref_citationtrail_10_1016_j_neuroimage_2012_02_084
crossref_primary_10_1016_j_neuroimage_2012_02_084
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2012_02_084
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2012_02_084
PublicationCentury 2000
PublicationDate 2012-07-16
PublicationDateYYYYMMDD 2012-07-16
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2012
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Langbehn, Brinkman, Falush, Paulsen, Hayden (bb0165) 2004; 65
Reuter, Rosas, Fischl (bb0230) 2010; 53
Reuter (bb0215) 2009
Chételat, Landeau, Eustache, Mézenge, Viader, de la Sayette, Desgranges, Baron (bb0040) 2005; 27
Nakamura, Fox, Fisher (bb0195) 2011; 54
Rosas, Reuter, Doros, Lee, Triggs, Malarick, Fischl, Salat, Hersch (bb0235) 2011; 26
Fischl, van der Kouwe, Destrieux, Halgren, Ségonne, Salat, Busa, Seidman, Goldstein, Kennedy, Caviness, Makris, Rosen, Dale (bb0120) 2004; 14
Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, van der Kouwe, Killiany, Kennedy, Klaveness, Montillo, Makris, Rosen, Dale (bb0100) 2002; 33
Berry, Ayers (bb0035) 2006; 60
Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman, Albert, Killiany (bb0075) 2006; 31
Ashburner, Andersson, Friston (bb0010) 2000; 9
Avants, Anderson, Grossman, Gee (bb0020) 2007
Chiang, Insel, Tosun, Schuff, Truran-Sacrey, Raptentsetsang, Jack, Aisen, Petersen, Weiner, ADNI (bb0045) 2010; 75
Avants, Cook, McMillan, Grossman, Tustison, Zheng, Gee (bb0025) 2010
Patenaude, Smith, Kennedy, Jenkinson (bb0205) 2011; 56
Morey, Selgrade, Wagner, Huettel, Wang, McCarthy (bb0190) 2010; 31
Nickerson (bb0200) 1997; 53
Tisdall, M.D., Hess, A.T., Reuter, M., Meintjes, E.M., Fischl, B., van der Kouwe, A.J.W., in press. Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI. Magn. Reson. Med.
Sabuncu, Yeo, Van Leemput, Fischl, Golland (bb0245) 2010; 29
Salat, Lee, van der Kouwe, Greve, Fischl, Rosas (bb0250) 2009; 48
Takao, Hayashi, Ohtomo (bb0290) 2011; 34
Qiu, Bitouk, Miller (bb0210) 2006; 25
Holland, McEvoy, Dale, ADNI (bb0145) 2011
Kipps, Duggins, Mahant, Gomes, Ashburner, McCusker (bb0160) 2005; 76
Fischl, Salat, van der Kouwe, Makris, Ségonne, Quinn, Dale (bb0105) 2004; 23
Sled, Zijdenbos, Evans (bb0270) 1998; 17
.
Fischl, Dale (bb0090) 2000; 97
Chiang, Insel, Tosun, Schuff, Truran-Sacrey, Raptentsetsang, Jack, Weiner, ADNI (bb0050) 2011; 259
Li, Wang, Xue, Shi, Lin, Shen (bb0170) 2010
Reuter, Rosas, Fischl (bb0220) 2010
Smith, De Stefano, Jenkinson, Matthews (bb0275) 2001; 25
Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, De Luca, Drobnjak, Flitney, Niazy, Saunders, Vickers, Zhang, De Stefano, Brady, Matthews (bb0280) 2004; 23
Thevenaz, Blu, Unser (bb0295) 2000; 19
Fischl, Sereno, Dale (bb0110) 1999; 9
Fischl, Liu, Dale (bb0095) 2001; 20
Sharf, Wolf, Rubin (bb0260) 2010; 45
Shrout, Fleiss (bb0265) 1979; 86
Xue, Shen, Davatzikos (bb0320) 2006; 30
Reuter, Fischl (bb0225) 2011; 57
Dale, Fischl, Sereno (bb0065) 1999; 9
Han, Jovicich, Salat, van der Kouwe, Quinn, Czanner, Busa, Pacheco, Albert, Killiany, Maguire, Rosas, Makris, Dale, Dickerson, Fischl (bb0135) 2006; 32
Engvig, Fjell, Westlye, Moberget, Sundseth, Larsen, Walhovd (bb0085) 2010; 52
Fischl, B., in press. FreeSurfer. NeuroImage. URL
Ségonne, Pacheco, Fischl (bb0255) 2007; 26
Smith, Zhang, Jenkinson, Chen, Matthews, Federico, Stefano (bb0285) 2002; 17
van der Kouwe, Benner, Salat, Fischl (bb0310) 2008; 40
Lin (bb0175) 1989; 45
Collignon, Maes, Delaere, Vandermeulen, Suetens, Marchal (bb0060) 1995
Clarkson, Ourselin, Nielsen, Leung, Barnes, Whitwell, Gunter, Hill, Weiner, Jack, Fox (bb0055) 2009; 47
Westlye, Walhovd, Dale, Espeseth, Reinvang, Raz, Agartz, Greve, Fischl, Fjell (bb0315) 2009; 47
Yushkevich, Avants, Das, Pluta, Altinay, Craige, ADNI (bb0325) 2010; 50
Ashburner (bb0005) 2007; 38
Mason, Graham (bb0180) 2002; 128
Fischl, Sereno, Tootell, Dale (bb0115) 1999; 8
Desikan, Sabuncu, Schmansky, Reuter, Cabral, Hess, Weiner, Biffi, Anderson, Rosand, Salat, Kemper, Dale, Sperling, Fischl, ADNI (bb0070) 2010; 5
Moakher (bb0185) 2002; 24
Thompson, Holland (bb0300) 2011; 57
Fletcher, Venkatasubramanian, Joshi (bb0130) 2009; 45
Avants, Gee (bb0030) 2004; 23
Ashburner, Friston (bb0015) 1999; 7
Jenkinson, Bannister, Brady, Smith (bb0150) 2002; 17
Joshi, Davis, Jomier, Gerig (bb0155) 2004; 23
Diggle, Heagerty, Liang, Zeger (bb0080) 2002
Holland, Dale (bb0140) 2011; 15
Sabuncu, Desikan, Sepulcre, Yeo, Liu, Schmansky, Reuter, Weiner, Buckner, Sperling, Fischl, ADNI (bb0240) 2011; 68
Collignon (10.1016/j.neuroimage.2012.02.084_bb0060) 1995
van der Kouwe (10.1016/j.neuroimage.2012.02.084_bb0310) 2008; 40
Rosas (10.1016/j.neuroimage.2012.02.084_bb0235) 2011; 26
Chiang (10.1016/j.neuroimage.2012.02.084_bb0050) 2011; 259
Li (10.1016/j.neuroimage.2012.02.084_bb0170) 2010
Lin (10.1016/j.neuroimage.2012.02.084_bb0175) 1989; 45
Ségonne (10.1016/j.neuroimage.2012.02.084_bb0255) 2007; 26
Takao (10.1016/j.neuroimage.2012.02.084_bb0290) 2011; 34
Westlye (10.1016/j.neuroimage.2012.02.084_bb0315) 2009; 47
Ashburner (10.1016/j.neuroimage.2012.02.084_bb0015) 1999; 7
Sabuncu (10.1016/j.neuroimage.2012.02.084_bb0240) 2011; 68
Fletcher (10.1016/j.neuroimage.2012.02.084_bb0130) 2009; 45
Reuter (10.1016/j.neuroimage.2012.02.084_bb0215)
Reuter (10.1016/j.neuroimage.2012.02.084_bb0220) 2010
Diggle (10.1016/j.neuroimage.2012.02.084_bb0080) 2002
Holland (10.1016/j.neuroimage.2012.02.084_bb0145) 2011
Ashburner (10.1016/j.neuroimage.2012.02.084_bb0010) 2000; 9
Reuter (10.1016/j.neuroimage.2012.02.084_bb0230) 2010; 53
Salat (10.1016/j.neuroimage.2012.02.084_bb0250) 2009; 48
10.1016/j.neuroimage.2012.02.084_bb0305
Morey (10.1016/j.neuroimage.2012.02.084_bb0190) 2010; 31
Holland (10.1016/j.neuroimage.2012.02.084_bb0140) 2011; 15
Langbehn (10.1016/j.neuroimage.2012.02.084_bb0165) 2004; 65
Jenkinson (10.1016/j.neuroimage.2012.02.084_bb0150) 2002; 17
Nakamura (10.1016/j.neuroimage.2012.02.084_bb0195) 2011; 54
Fischl (10.1016/j.neuroimage.2012.02.084_bb0115) 1999; 8
Nickerson (10.1016/j.neuroimage.2012.02.084_bb0200) 1997; 53
Fischl (10.1016/j.neuroimage.2012.02.084_bb0100) 2002; 33
Engvig (10.1016/j.neuroimage.2012.02.084_bb0085) 2010; 52
Shrout (10.1016/j.neuroimage.2012.02.084_bb0265) 1979; 86
Fischl (10.1016/j.neuroimage.2012.02.084_bb0120) 2004; 14
Reuter (10.1016/j.neuroimage.2012.02.084_bb0225) 2011; 57
Avants (10.1016/j.neuroimage.2012.02.084_bb0020) 2007
Fischl (10.1016/j.neuroimage.2012.02.084_bb0110) 1999; 9
Moakher (10.1016/j.neuroimage.2012.02.084_bb0185) 2002; 24
Avants (10.1016/j.neuroimage.2012.02.084_bb0030) 2004; 23
Sharf (10.1016/j.neuroimage.2012.02.084_bb0260) 2010; 45
Qiu (10.1016/j.neuroimage.2012.02.084_bb0210) 2006; 25
Berry (10.1016/j.neuroimage.2012.02.084_bb0035) 2006; 60
Fischl (10.1016/j.neuroimage.2012.02.084_bb0095) 2001; 20
Sabuncu (10.1016/j.neuroimage.2012.02.084_bb0245) 2010; 29
Joshi (10.1016/j.neuroimage.2012.02.084_bb0155) 2004; 23
Chételat (10.1016/j.neuroimage.2012.02.084_bb0040) 2005; 27
Chiang (10.1016/j.neuroimage.2012.02.084_bb0045) 2010; 75
Thompson (10.1016/j.neuroimage.2012.02.084_bb0300) 2011; 57
Dale (10.1016/j.neuroimage.2012.02.084_bb0065) 1999; 9
Sled (10.1016/j.neuroimage.2012.02.084_bb0270) 1998; 17
10.1016/j.neuroimage.2012.02.084_bb0125
Kipps (10.1016/j.neuroimage.2012.02.084_bb0160) 2005; 76
Ashburner (10.1016/j.neuroimage.2012.02.084_bb0005) 2007; 38
Desikan (10.1016/j.neuroimage.2012.02.084_bb0075) 2006; 31
Clarkson (10.1016/j.neuroimage.2012.02.084_bb0055) 2009; 47
Avants (10.1016/j.neuroimage.2012.02.084_bb0025) 2010
Mason (10.1016/j.neuroimage.2012.02.084_bb0180) 2002; 128
Fischl (10.1016/j.neuroimage.2012.02.084_bb0090) 2000; 97
Fischl (10.1016/j.neuroimage.2012.02.084_bb0105) 2004; 23
Yushkevich (10.1016/j.neuroimage.2012.02.084_bb0325) 2010; 50
Han (10.1016/j.neuroimage.2012.02.084_bb0135) 2006; 32
Xue (10.1016/j.neuroimage.2012.02.084_bb0320) 2006; 30
Smith (10.1016/j.neuroimage.2012.02.084_bb0285) 2002; 17
Thevenaz (10.1016/j.neuroimage.2012.02.084_bb0295) 2000; 19
Smith (10.1016/j.neuroimage.2012.02.084_bb0280) 2004; 23
Smith (10.1016/j.neuroimage.2012.02.084_bb0275) 2001; 25
Desikan (10.1016/j.neuroimage.2012.02.084_bb0070) 2010; 5
Patenaude (10.1016/j.neuroimage.2012.02.084_bb0205) 2011; 56
References_xml – volume: 14
  start-page: 11
  year: 2004
  end-page: 22
  ident: bb0120
  article-title: Automatically parcellating the human cerebral cortex
  publication-title: Cereb. Cortex
– volume: 29
  start-page: 1714
  year: 2010
  end-page: 1729
  ident: bb0245
  article-title: A generative model for image segmentation based on label fusion
  publication-title: IEEE Trans. Med. Imaging
– volume: 65
  start-page: 267
  year: 2004
  end-page: 277
  ident: bb0165
  article-title: A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length
  publication-title: Clin. Genet.
– volume: 40
  start-page: 559
  year: 2008
  end-page: 569
  ident: bb0310
  article-title: Brain morphometry with multiecho MPRAGE
  publication-title: NeuroImage
– volume: 50
  start-page: 434
  year: 2010
  end-page: 445
  ident: bb0325
  article-title: Bias in estimation of hippocampal atrophy using deformation-based morphometry arises from asymmetric global normalization: an illustration in ADNI 3
  publication-title: NeuroImage
– volume: 27
  start-page: 934
  year: 2005
  end-page: 946
  ident: bb0040
  article-title: Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study
  publication-title: NeuroImage
– volume: 32
  start-page: 180
  year: 2006
  end-page: 194
  ident: bb0135
  article-title: Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer
  publication-title: NeuroImage
– volume: 5
  start-page: e12853
  year: 2010
  ident: bb0070
  article-title: Seletive disruption of the cerebral neocortex in Alzheimer's disease
  publication-title: PLoS One
– volume: 53
  start-page: 1503
  year: 1997
  end-page: 1507
  ident: bb0200
  article-title: A note on “A concordance correlation coefficient to evaluate reproducibility”
  publication-title: Biometrics
– volume: 15
  start-page: 489
  year: 2011
  end-page: 497
  ident: bb0140
  article-title: Nonlinear registration of longitudinal images and measurement of change in regions of interest
  publication-title: Med. Image Anal.
– volume: 26
  start-page: 518
  year: 2007
  end-page: 529
  ident: bb0255
  article-title: Geometrically accurate topology-correction of cortical surfaces using nonseparating loops
  publication-title: IEEE Trans. Med. Imaging
– volume: 97
  start-page: 11050
  year: 2000
  end-page: 11055
  ident: bb0090
  article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 23
  start-page: 139
  year: 2004
  end-page: 150
  ident: bb0030
  article-title: Geodesic estimation for large deformation anatomical shape averaging and interpolation
  publication-title: NeuroImage
– volume: 17
  start-page: 479
  year: 2002
  end-page: 489
  ident: bb0285
  article-title: Accurate, robust, and automated longitudinal and cross-sectional brain change analysis
  publication-title: NeuroImage
– reference: Fischl, B., in press. FreeSurfer. NeuroImage. URL
– volume: 9
  start-page: 212
  year: 2000
  end-page: 225
  ident: bb0010
  article-title: Image registration using a symmetric prior—in three dimensions
  publication-title: Hum. Brain Mapp.
– volume: 23
  start-page: 69
  year: 2004
  end-page: 84
  ident: bb0105
  article-title: Sequence-independent segmentation of magnetic resonance images
  publication-title: NeuroImage
– start-page: 133
  year: 2010
  end-page: 142
  ident: bb0170
  article-title: Consistent 4D cortical thickness measurement for longitudinal neuroimaging study
  publication-title: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2010
– volume: 30
  start-page: 388
  year: 2006
  end-page: 399
  ident: bb0320
  article-title: CLASSIC: consistent longitudinal alignment and segmentation for serial image computing
  publication-title: NeuroImage
– start-page: 303
  year: 2007
  end-page: 310
  ident: bb0020
  article-title: Spatiotemporal normalization for longitudinal analysis of gray matter atrophy in frontotemporal dementia
  publication-title: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2007
– volume: 9
  start-page: 195
  year: 1999
  end-page: 207
  ident: bb0110
  article-title: Cortical surface-based analysis: II. Inflation, flattening, and a surface-based coordinate system
  publication-title: NeuroImage
– volume: 19
  start-page: 739
  year: 2000
  end-page: 758
  ident: bb0295
  article-title: Interpolation revisited
  publication-title: IEEE Trans. Med. Imaging
– year: 2010
  ident: bb0220
  article-title: Unbiased robust template estimation for longitudinal analysis in FreeSurfer
  publication-title: Proceedings of the 16th Annual Meeting of the Organization for Human Brain Mapping
– volume: 23
  start-page: 208
  year: 2004
  end-page: 219
  ident: bb0280
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: NeuroImage
– volume: 48
  start-page: 21
  year: 2009
  end-page: 28
  ident: bb0250
  article-title: Age-associated alterations in cortical gray and white matter signal intensity and gray to white matter contrast
  publication-title: NeuroImage
– year: 2002
  ident: bb0080
  article-title: Analysis of Longitudinal Data
– volume: 68
  start-page: 1040
  year: 2011
  end-page: 1048
  ident: bb0240
  article-title: The dynamics of cortical and hippocampal atrophy in Alzheimer's disease
  publication-title: Arch. Neurol.
– volume: 47
  start-page: 1545
  year: 2009
  end-page: 1557
  ident: bb0315
  article-title: Increased sensitivity to effects of normal aging and Alzheimer's disease on cortical thickness by adjustment for local variability in gray/white contrast: a multi-sample MRI study
  publication-title: NeuroImage
– volume: 38
  start-page: 95
  year: 2007
  end-page: 113
  ident: bb0005
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: NeuroImage
– volume: 75
  start-page: 1976
  year: 2010
  end-page: 1981
  ident: bb0045
  article-title: Hippocampal atrophy rates and CSF biomarkers in elderly APOE2 normal subjects
  publication-title: Neurology
– volume: 24
  start-page: 1
  year: 2002
  end-page: 16
  ident: bb0185
  article-title: Means and averaging in the group of rotations
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 23
  start-page: 151
  year: 2004
  end-page: 160
  ident: bb0155
  article-title: Unbiased diffeomorphic atlas construction for computational anatomy
  publication-title: NeuroImage
– volume: 259
  start-page: 844
  year: 2011
  end-page: 851
  ident: bb0050
  article-title: Identifying cognitively healthy elderly individuals with subsequent memory decline by using automated MR temporoparietal volumes
  publication-title: Radiology
– volume: 34
  start-page: 438
  year: 2011
  end-page: 444
  ident: bb0290
  article-title: Effect of scanner in longitudinal studies of brain volume changes
  publication-title: J. Magn. Reson. Imaging
– volume: 54
  start-page: 278
  year: 2011
  end-page: 289
  ident: bb0195
  article-title: CLADA: cortical longitudinal atrophy detection algorithm
  publication-title: NeuroImage
– volume: 26
  start-page: 1691
  year: 2011
  end-page: 1697
  ident: bb0235
  article-title: A tale of two factors: what determines the rate of progression in Huntington's disease? A longitudinal MRI study
  publication-title: Mov. Disord.
– start-page: 263
  year: 1995
  end-page: 274
  ident: bb0060
  article-title: Automated multi-modality image registration based on information theory
  publication-title: Information Processing in Medical Imaging
– year: 2011
  ident: bb0145
  article-title: Unbiased comparison of sample size estimates from longitudinal structural measures in ADNI
  publication-title: Hum. Brain Mapp.
– year: 2009
  ident: bb0215
  article-title: Longitudinal Processing in FreeSurfer
– volume: 57
  start-page: 1
  year: 2011
  end-page: 4
  ident: bb0300
  article-title: Bias in tensor based morphometry Stat-ROI measures may result in unrealistic power estimates
  publication-title: NeuroImage
– volume: 20
  start-page: 70
  year: 2001
  end-page: 80
  ident: bb0095
  article-title: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex
  publication-title: IEEE Trans. Med. Imaging
– volume: 8
  start-page: 272
  year: 1999
  end-page: 284
  ident: bb0115
  article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface
  publication-title: Hum. Brain Mapp.
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: bb0150
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
– volume: 33
  start-page: 341
  year: 2002
  end-page: 355
  ident: bb0100
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
– volume: 76
  start-page: 650
  year: 2005
  end-page: 655
  ident: bb0160
  article-title: Progression of structural neuropathology in preclinical huntington's disease: a tensor based morphometry study
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 52
  start-page: 1667
  year: 2010
  end-page: 1676
  ident: bb0085
  article-title: Effects of memory training on cortical thickness in the elderly
  publication-title: NeuroImage
– volume: 47
  start-page: 1506
  year: 2009
  end-page: 1513
  ident: bb0055
  article-title: Comparison of phantom and registration scaling corrections using the adni cohort
  publication-title: NeuroImage
– volume: 57
  start-page: 19
  year: 2011
  end-page: 21
  ident: bb0225
  article-title: Avoiding asymmetry-induced bias in longitudinal image processing
  publication-title: NeuroImage
– volume: 60
  start-page: 27
  year: 2006
  end-page: 31
  ident: bb0035
  article-title: Symmetrized percent change for treatment comparisons
  publication-title: Am. Stat.
– volume: 17
  start-page: 87
  year: 1998
  end-page: 97
  ident: bb0270
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Trans. Med. Imaging
– volume: 7
  start-page: 254
  year: 1999
  end-page: 266
  ident: bb0015
  article-title: Nonlinear spatial normalization using basis functions
  publication-title: Hum. Brain Mapp.
– volume: 9
  start-page: 179
  year: 1999
  end-page: 194
  ident: bb0065
  article-title: Cortical surface-based analysis: I. segmentation and surface reconstruction
  publication-title: NeuroImage
– volume: 45
  start-page: 143
  year: 2009
  end-page: 152
  ident: bb0130
  article-title: The geometric median on Riemannian manifolds with application to robust atlas estimation
  publication-title: NeuroImage
– volume: 45
  start-page: 255
  year: 1989
  end-page: 268
  ident: bb0175
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– volume: 128
  start-page: 2145
  year: 2002
  end-page: 2166
  ident: bb0180
  article-title: Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: statistical significance and interpretation
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 53
  start-page: 1181
  year: 2010
  end-page: 1196
  ident: bb0230
  article-title: Highly accurate inverse consistent registration: a robust approach
  publication-title: NeuroImage
– reference: Tisdall, M.D., Hess, A.T., Reuter, M., Meintjes, E.M., Fischl, B., van der Kouwe, A.J.W., in press. Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI. Magn. Reson. Med.
– volume: 45
  start-page: 1239
  year: 2010
  end-page: 1251
  ident: bb0260
  article-title: Arithmetic and geometric solutions for average rigid-body rotation
  publication-title: Mech. Mach. Theory
– start-page: 324
  year: 2010
  end-page: 331
  ident: bb0025
  article-title: Sparse unbiased analysis of anatomical variance in longitudinal imaging
  publication-title: MICCAI 2010, Part I. Vol. 6361 of LNCS
– volume: 86
  start-page: 420
  year: 1979
  end-page: 428
  ident: bb0265
  article-title: Intraclass correlations: uses in assessing rater reliability
  publication-title: Psychol. Bull.
– volume: 31
  start-page: 1751
  year: 2010
  end-page: 1762
  ident: bb0190
  article-title: Scan-rescan reliability of subcortical brain volumes derived from automated segmentation
  publication-title: Hum. Brain Mapp.
– volume: 56
  start-page: 907
  year: 2011
  end-page: 922
  ident: bb0205
  article-title: A Bayesian model of shape and appearance for subcortical brain segmentation
  publication-title: NeuroImage
– reference: .
– volume: 25
  start-page: 1296
  year: 2006
  end-page: 1306
  ident: bb0210
  article-title: Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace–Beltrami operator
  publication-title: IEEE Trans. Med. Imaging
– volume: 25
  start-page: 466
  year: 2001
  end-page: 475
  ident: bb0275
  article-title: Normalized accurate measurement of longitudinal brain change
  publication-title: J. Comput. Assist. Tomogr.
– volume: 31
  start-page: 968
  year: 2006
  end-page: 980
  ident: bb0075
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: NeuroImage
– volume: 23
  start-page: 69
  issue: Suppl. 1
  year: 2004
  ident: 10.1016/j.neuroimage.2012.02.084_bb0105
  article-title: Sequence-independent segmentation of magnetic resonance images
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.016
– volume: 31
  start-page: 1751
  issue: 11
  year: 2010
  ident: 10.1016/j.neuroimage.2012.02.084_bb0190
  article-title: Scan-rescan reliability of subcortical brain volumes derived from automated segmentation
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20973
– year: 2002
  ident: 10.1016/j.neuroimage.2012.02.084_bb0080
– year: 2010
  ident: 10.1016/j.neuroimage.2012.02.084_bb0220
  article-title: Unbiased robust template estimation for longitudinal analysis in FreeSurfer
– volume: 25
  start-page: 466
  issue: 3
  year: 2001
  ident: 10.1016/j.neuroimage.2012.02.084_bb0275
  article-title: Normalized accurate measurement of longitudinal brain change
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-200105000-00022
– volume: 8
  start-page: 272
  issue: 4
  year: 1999
  ident: 10.1016/j.neuroimage.2012.02.084_bb0115
  article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
– volume: 32
  start-page: 180
  issue: 1
  year: 2006
  ident: 10.1016/j.neuroimage.2012.02.084_bb0135
  article-title: Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.02.051
– volume: 23
  start-page: 151
  year: 2004
  ident: 10.1016/j.neuroimage.2012.02.084_bb0155
  article-title: Unbiased diffeomorphic atlas construction for computational anatomy
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.068
– volume: 40
  start-page: 559
  issue: 2
  year: 2008
  ident: 10.1016/j.neuroimage.2012.02.084_bb0310
  article-title: Brain morphometry with multiecho MPRAGE
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.12.025
– volume: 54
  start-page: 278
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2012.02.084_bb0195
  article-title: CLADA: cortical longitudinal atrophy detection algorithm
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.07.052
– ident: 10.1016/j.neuroimage.2012.02.084_bb0125
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 86
  start-page: 420
  issue: 2
  year: 1979
  ident: 10.1016/j.neuroimage.2012.02.084_bb0265
  article-title: Intraclass correlations: uses in assessing rater reliability
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.86.2.420
– volume: 76
  start-page: 650
  issue: 5
  year: 2005
  ident: 10.1016/j.neuroimage.2012.02.084_bb0160
  article-title: Progression of structural neuropathology in preclinical huntington's disease: a tensor based morphometry study
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2004.047993
– volume: 33
  start-page: 341
  issue: 3
  year: 2002
  ident: 10.1016/j.neuroimage.2012.02.084_bb0100
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00569-X
– volume: 52
  start-page: 1667
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2012.02.084_bb0085
  article-title: Effects of memory training on cortical thickness in the elderly
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.05.041
– start-page: 133
  year: 2010
  ident: 10.1016/j.neuroimage.2012.02.084_bb0170
  article-title: Consistent 4D cortical thickness measurement for longitudinal neuroimaging study
– volume: 31
  start-page: 968
  issue: 3
  year: 2006
  ident: 10.1016/j.neuroimage.2012.02.084_bb0075
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.021
– volume: 9
  start-page: 179
  issue: 2
  year: 1999
  ident: 10.1016/j.neuroimage.2012.02.084_bb0065
  article-title: Cortical surface-based analysis: I. segmentation and surface reconstruction
  publication-title: NeuroImage
  doi: 10.1006/nimg.1998.0395
– volume: 47
  start-page: 1545
  issue: 4
  year: 2009
  ident: 10.1016/j.neuroimage.2012.02.084_bb0315
  article-title: Increased sensitivity to effects of normal aging and Alzheimer's disease on cortical thickness by adjustment for local variability in gray/white contrast: a multi-sample MRI study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.05.084
– volume: 47
  start-page: 1506
  issue: 4
  year: 2009
  ident: 10.1016/j.neuroimage.2012.02.084_bb0055
  article-title: Comparison of phantom and registration scaling corrections using the adni cohort
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.05.045
– volume: 56
  start-page: 907
  issue: 3
  year: 2011
  ident: 10.1016/j.neuroimage.2012.02.084_bb0205
  article-title: A Bayesian model of shape and appearance for subcortical brain segmentation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.02.046
– volume: 5
  start-page: e12853
  issue: 9
  year: 2010
  ident: 10.1016/j.neuroimage.2012.02.084_bb0070
  article-title: Seletive disruption of the cerebral neocortex in Alzheimer's disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0012853
– volume: 38
  start-page: 95
  issue: 1
  year: 2007
  ident: 10.1016/j.neuroimage.2012.02.084_bb0005
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.07.007
– volume: 53
  start-page: 1503
  issue: 4
  year: 1997
  ident: 10.1016/j.neuroimage.2012.02.084_bb0200
  article-title: A note on “A concordance correlation coefficient to evaluate reproducibility”
  publication-title: Biometrics
  doi: 10.2307/2533516
– volume: 24
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2012.02.084_bb0185
  article-title: Means and averaging in the group of rotations
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479801383877
– ident: 10.1016/j.neuroimage.2012.02.084_bb0305
  doi: 10.1002/mrm.23228
– volume: 9
  start-page: 212
  issue: 4
  year: 2000
  ident: 10.1016/j.neuroimage.2012.02.084_bb0010
  article-title: Image registration using a symmetric prior—in three dimensions
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(200004)9:4<212::AID-HBM3>3.0.CO;2-#
– start-page: 263
  year: 1995
  ident: 10.1016/j.neuroimage.2012.02.084_bb0060
  article-title: Automated multi-modality image registration based on information theory
– volume: 68
  start-page: 1040
  issue: 8
  year: 2011
  ident: 10.1016/j.neuroimage.2012.02.084_bb0240
  article-title: The dynamics of cortical and hippocampal atrophy in Alzheimer's disease
  publication-title: Arch. Neurol.
  doi: 10.1001/archneurol.2011.167
– volume: 23
  start-page: 208
  year: 2004
  ident: 10.1016/j.neuroimage.2012.02.084_bb0280
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.051
– start-page: 303
  year: 2007
  ident: 10.1016/j.neuroimage.2012.02.084_bb0020
  article-title: Spatiotemporal normalization for longitudinal analysis of gray matter atrophy in frontotemporal dementia
– volume: 34
  start-page: 438
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2012.02.084_bb0290
  article-title: Effect of scanner in longitudinal studies of brain volume changes
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.22636
– volume: 259
  start-page: 844
  issue: 3
  year: 2011
  ident: 10.1016/j.neuroimage.2012.02.084_bb0050
  article-title: Identifying cognitively healthy elderly individuals with subsequent memory decline by using automated MR temporoparietal volumes
  publication-title: Radiology
  doi: 10.1148/radiol.11101637
– volume: 25
  start-page: 1296
  issue: 10
  year: 2006
  ident: 10.1016/j.neuroimage.2012.02.084_bb0210
  article-title: Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace–Beltrami operator
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.882143
– start-page: 324
  year: 2010
  ident: 10.1016/j.neuroimage.2012.02.084_bb0025
  article-title: Sparse unbiased analysis of anatomical variance in longitudinal imaging
– ident: 10.1016/j.neuroimage.2012.02.084_bb0215
– volume: 7
  start-page: 254
  issue: 4
  year: 1999
  ident: 10.1016/j.neuroimage.2012.02.084_bb0015
  article-title: Nonlinear spatial normalization using basis functions
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G
– volume: 19
  start-page: 739
  issue: 7
  year: 2000
  ident: 10.1016/j.neuroimage.2012.02.084_bb0295
  article-title: Interpolation revisited
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.875199
– volume: 75
  start-page: 1976
  issue: 22
  year: 2010
  ident: 10.1016/j.neuroimage.2012.02.084_bb0045
  article-title: Hippocampal atrophy rates and CSF biomarkers in elderly APOE2 normal subjects
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181ffe4d1
– volume: 26
  start-page: 518
  year: 2007
  ident: 10.1016/j.neuroimage.2012.02.084_bb0255
  article-title: Geometrically accurate topology-correction of cortical surfaces using nonseparating loops
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.887364
– volume: 14
  start-page: 11
  issue: 1
  year: 2004
  ident: 10.1016/j.neuroimage.2012.02.084_bb0120
  article-title: Automatically parcellating the human cerebral cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhg087
– volume: 45
  start-page: 255
  issue: 1
  year: 1989
  ident: 10.1016/j.neuroimage.2012.02.084_bb0175
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
  doi: 10.2307/2532051
– volume: 9
  start-page: 195
  issue: 2
  year: 1999
  ident: 10.1016/j.neuroimage.2012.02.084_bb0110
  article-title: Cortical surface-based analysis: II. Inflation, flattening, and a surface-based coordinate system
  publication-title: NeuroImage
  doi: 10.1006/nimg.1998.0396
– volume: 17
  start-page: 825
  year: 2002
  ident: 10.1016/j.neuroimage.2012.02.084_bb0150
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1132
– volume: 17
  start-page: 479
  issue: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2012.02.084_bb0285
  article-title: Accurate, robust, and automated longitudinal and cross-sectional brain change analysis
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1040
– volume: 48
  start-page: 21
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2012.02.084_bb0250
  article-title: Age-associated alterations in cortical gray and white matter signal intensity and gray to white matter contrast
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.06.074
– volume: 57
  start-page: 19
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2012.02.084_bb0225
  article-title: Avoiding asymmetry-induced bias in longitudinal image processing
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.02.076
– volume: 23
  start-page: 139
  issue: 1
  year: 2004
  ident: 10.1016/j.neuroimage.2012.02.084_bb0030
  article-title: Geodesic estimation for large deformation anatomical shape averaging and interpolation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.010
– volume: 20
  start-page: 70
  issue: 1
  year: 2001
  ident: 10.1016/j.neuroimage.2012.02.084_bb0095
  article-title: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.906426
– volume: 15
  start-page: 489
  issue: 4
  year: 2011
  ident: 10.1016/j.neuroimage.2012.02.084_bb0140
  article-title: Nonlinear registration of longitudinal images and measurement of change in regions of interest
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2011.02.005
– volume: 30
  start-page: 388
  year: 2006
  ident: 10.1016/j.neuroimage.2012.02.084_bb0320
  article-title: CLASSIC: consistent longitudinal alignment and segmentation for serial image computing
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.09.054
– volume: 57
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2012.02.084_bb0300
  article-title: Bias in tensor based morphometry Stat-ROI measures may result in unrealistic power estimates
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.11.092
– volume: 17
  start-page: 87
  issue: 1
  year: 1998
  ident: 10.1016/j.neuroimage.2012.02.084_bb0270
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.668698
– volume: 50
  start-page: 434
  issue: 2
  year: 2010
  ident: 10.1016/j.neuroimage.2012.02.084_bb0325
  article-title: Bias in estimation of hippocampal atrophy using deformation-based morphometry arises from asymmetric global normalization: an illustration in ADNI 3Tesla MRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.12.007
– volume: 27
  start-page: 934
  issue: 4
  year: 2005
  ident: 10.1016/j.neuroimage.2012.02.084_bb0040
  article-title: Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.05.015
– year: 2011
  ident: 10.1016/j.neuroimage.2012.02.084_bb0145
  article-title: Unbiased comparison of sample size estimates from longitudinal structural measures in ADNI
  publication-title: Hum. Brain Mapp.
– volume: 45
  start-page: 1239
  issue: 9
  year: 2010
  ident: 10.1016/j.neuroimage.2012.02.084_bb0260
  article-title: Arithmetic and geometric solutions for average rigid-body rotation
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2010.05.002
– volume: 53
  start-page: 1181
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2012.02.084_bb0230
  article-title: Highly accurate inverse consistent registration: a robust approach
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.07.020
– volume: 60
  start-page: 27
  year: 2006
  ident: 10.1016/j.neuroimage.2012.02.084_bb0035
  article-title: Symmetrized percent change for treatment comparisons
  publication-title: Am. Stat.
  doi: 10.1198/000313006X90684
– volume: 97
  start-page: 11050
  issue: 20
  year: 2000
  ident: 10.1016/j.neuroimage.2012.02.084_bb0090
  article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.200033797
– volume: 45
  start-page: 143
  issue: 1, Suppl. 1
  year: 2009
  ident: 10.1016/j.neuroimage.2012.02.084_bb0130
  article-title: The geometric median on Riemannian manifolds with application to robust atlas estimation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.10.052
– volume: 65
  start-page: 267
  issue: 4
  year: 2004
  ident: 10.1016/j.neuroimage.2012.02.084_bb0165
  article-title: A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length
  publication-title: Clin. Genet.
  doi: 10.1111/j.1399-0004.2004.00241.x
– volume: 128
  start-page: 2145
  issue: 584
  year: 2002
  ident: 10.1016/j.neuroimage.2012.02.084_bb0180
  article-title: Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: statistical significance and interpretation
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1256/003590002320603584
– volume: 26
  start-page: 1691
  issue: 9
  year: 2011
  ident: 10.1016/j.neuroimage.2012.02.084_bb0235
  article-title: A tale of two factors: what determines the rate of progression in Huntington's disease? A longitudinal MRI study
  publication-title: Mov. Disord.
  doi: 10.1002/mds.23762
– volume: 29
  start-page: 1714
  issue: 10
  year: 2010
  ident: 10.1016/j.neuroimage.2012.02.084_bb0245
  article-title: A generative model for image segmentation based on label fusion
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2050897
SSID ssj0009148
Score 2.6269245
Snippet Longitudinal image analysis has become increasingly important in clinical studies of normal aging and neurodegenerative disorders. Furthermore, there is a...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1402
SubjectTerms Algorithms
Bias
Brain - anatomy & histology
Brain - physiology
FreeSurfer
Humans
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Methods
MRI biomarkers
Neurodegeneration
Noise
Reliability and power
Software
Standard deviation
Studies
Unbiased longitudinal image processing
Within-subject template
Title Within-subject template estimation for unbiased longitudinal image analysis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811912002765
https://dx.doi.org/10.1016/j.neuroimage.2012.02.084
https://www.ncbi.nlm.nih.gov/pubmed/22430496
https://www.proquest.com/docview/1506872948
https://www.proquest.com/docview/1020832651
https://www.proquest.com/docview/1038598901
https://pubmed.ncbi.nlm.nih.gov/PMC3389460
Volume 61
WOSCitedRecordID wos000305920600064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251009
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M7P
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251009
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251009
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251009
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M2M
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_Wdoy9dN9bti54sFcxy1-S2MPoSso-SAijsLwZyZKpR-Z0Tby_v3e27KwdK4FBSCDSgSWd7n7WnX4H8FY562yhHEPXU7KEC8tMqkMmlLDoMUQqEtMWmxCzmVws1NwfuK19WmVvE1tDbVcFnZG_IyY8iUgwkR8ufjGqGkXRVV9CYw8OiCUhblP35lvSXZ50V-HSmEnOlc_k6fK7Wr7I6ifuWkrwilrmTpn8yz39DT9vZlH-4ZZOH_zvgB7CoQekwXGnQY_gjqsfw72pD7k_ga_fq815VbN1Y-jIJiAuqyUC1IDoObp7jwEC36CpTYUe0QbLFZVAaiyV2wrakQfaM588hbPTydnJJ-YrMLACkciGSR1GWpSRNIi0ygLRoeFSa2tkWtrSRC6MDGIUbvBVVxVpiQYjygqlXeqkES5-Bvv1qnYvIECFzVQaC1dmFKpTGl0nty52uExaqHAEop_3vPDs5FQkY5n3aWg_8u2K5bRieYgfmYyAD5IXHUPHDjKqX9q8v4GKNjNHN7KD7PtB1qOUDn3sKH3Ua0PurcU636rCCN4MzbjPKXija7dqsA9VU0WsnfLb-sQyVRIh3gied8o5TAluPIqoZjjR19R26EA849db6uq85RuPEdQmWfjy9kd_BfdpnHTuzbMj2N9cNu413C1-b6r15Rj2xEK033IMB8efJ4sv-PtxMpt_w3-n0XTcbt0rl9xK9g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL78dCASPBMWqcl20hhBBQtdruisNK9GbZsaMGLdnS3YD4UfxHZvJaCqLaSw9IudkTJfY8PtvjbwBeKO-8y5UPMPQUQcKFC2xqwkAo4TBiiFQktik2IaZTeXSkPm7Bz_4uDKVV9j6xcdRukdMe-S4x4UlEgol8c_I1oKpRdLral9Bo1WLsf3zHJdvy9cF7nN-XUbT3YfZuP-iqCgQ5RtdVIE0YGVFE0iJ6KHJEPJZLY5yVaeEKG_kwshh3ucXlm8rTAo0gynJlfOqlFT7G116CywkuhKhSxCSarDl-edLevEvjQHKuusShNp2soacsv6CToHyyqCEKlcm_ouHfaPfPpM3fouDezf9s_G7BjQ5us7etfdyGLV_dgauTLqHgLow_lavjsgqWtaUNKUZMXXOE34zIR9pbnQxhPasrW2K8d2y-oAJPtaNiYqwZaGY6Xpd7MLuIP7kP29Wi8g-BoTlmKo2FLzI6iFQGgQF3PvaoFUaocASin2add9zrVAJkrvsku896rSCaFESH-MhkBHyQPGn5RzaQUb0m6f5-LUYEjUFyA9lXg2yHwVpstaH0Tq98uvOFS73WvBE8H5rRi9HRlKn8osY-VCsWVxIpP69PLFMlEcCO4EFrC8OQoFuh8-IMB_qMlQwdiEX9bEtVHjds6jFC9iQLH53_6c_g2v5scqgPD6bjx3Cd_pl2-Hm2A9ur09o_gSv5t1W5PH3a-AQG-oJt6BdYraHp
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgiouvAsLBYwEx6hxXraFEEKUFdXCag-V6M2yY0cNWrKluwHx0_h3zOS1FES1lx6QcrMnSux5fLbH3wA8V955lysfYOgpgoQLF9jUhIFQwmHEEKlIbFNsQkyn8vhYzbbgZ38XhtIqe5_YOGq3yGmPfJ-Y8CQiwUTuF11axOxg_Pr0a0AVpOiktS-n0arIxP_4jsu35avDA5zrF1E0fnf09n3QVRgIcoy0q0CaMDKiiKRFJFHkiH4sl8Y4K9PCFTbyYWQxBnOLSzmVpwUaRJTlyvjUSyt8jK-9AlcFcZY3WYOzNd8vT9pbeGkcSM5Vl0TUppY1VJXlF3QYlFsWNaShMvlXZPwb-f6ZwPlbRBzf_I_H8hbc6GA4e9PazW3Y8tUd2PnYJRrchcmncnVSVsGytrRRxYjBa46wnBEpSXvbkyHcZ3VlS8QBjs0XVPipdlRkjDWDzkzH93IPji7jT3Zhu1pU_gEwNNNMpbHwRUYHlMogYODOxx41xAgVjkD0U67zjpOdSoPMdZ9891mvlUWTsugQH5mMgA-Spy0vyQYyqtcq3d-7xUihMXhuIPtykO2wWYu5NpTe6xVRdz5yqddaOIJnQzN6NzqyMpVf1NiHasjiCiPlF_WJZaokAtsR3G_tYhgSdDd0jpzhQJ-zmKEDsaufb6nKk4ZlPUYon2Thw4s__SnsoOnoD4fTySO4Tr9MG_8824Pt1VntH8O1_NuqXJ49adwDA33JJvQLI5Cqug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Within-subject+template+estimation+for+unbiased+longitudinal+image+analysis&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Reuter%2C+Martin&rft.au=Schmansky%2C+Nicholas+J.&rft.au=Rosas%2C+H.+Diana&rft.au=Fischl%2C+Bruce&rft.date=2012-07-16&rft.issn=1053-8119&rft.volume=61&rft.issue=4&rft.spage=1402&rft.epage=1418&rft_id=info:doi/10.1016%2Fj.neuroimage.2012.02.084&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2012_02_084
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon