Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge
Recent studies have shown that the human fecal microbiota is composed of a consortium of species specific to the host and resistant to modifications over time. Antibiotics are known to affect the intestinal microflora, and ensuing changes may result in antibiotic-associated diarrhea. It is therefore...
Saved in:
| Published in: | Journal of clinical microbiology Vol. 43; no. 11; p. 5588 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
01.11.2005
|
| Subjects: | |
| ISSN: | 0095-1137 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Recent studies have shown that the human fecal microbiota is composed of a consortium of species specific to the host and resistant to modifications over time. Antibiotics are known to affect the intestinal microflora, and ensuing changes may result in antibiotic-associated diarrhea. It is therefore important to characterize the nature and amplitude of these modifications and the ability of this ecosystem to return to its original profile-i.e., its resilience. Six healthy volunteers received oral amoxicillin (1.5 g/day) for 5 days. Fecal samples were collected at day 0 (D0) before antibiotic treatment and at set intervals until 60 days thereafter. Fecal DNA was isolated, and V6-to-V8 regions of the 16S rRNA genes were amplified by PCR with general primers and analyzed by temporal temperature gradient gel electrophoresis. Dominant species profiles were compared on the basis of similarity (Pearson correlation coefficient). Dominant species profiles at D0 were used as a reference. The fecal microbiota showed a major shift in dominant species upon antibiotic treatment, starting 24 h after treatment initiation and reaching an average similarity of only 74% after 4 days. Within 30 days following antibiotic treatment, the fecal microbiota tended to reach an average similarity of 88% to the D0 value; within 60 days, the average similarity to the D0 value was 89%. However, in one subject, important modifications persisted for at least 2 months, with similarity to the D0 value remaining below 70%. We demonstrated the resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. Yet the persistence of long-term alterations in some subjects may explain susceptibilities to antibiotic-associated diarrhea. Furthermore, these findings suggest that strategies reinforcing the ability of the fecal microbiota to resist modifications would be of clinical relevance. |
|---|---|
| AbstractList | Recent studies have shown that the human fecal microbiota is composed of a consortium of species specific to the host and resistant to modifications over time. Antibiotics are known to affect the intestinal microflora, and ensuing changes may result in antibiotic-associated diarrhea. It is therefore important to characterize the nature and amplitude of these modifications and the ability of this ecosystem to return to its original profile-i.e., its resilience. Six healthy volunteers received oral amoxicillin (1.5 g/day) for 5 days. Fecal samples were collected at day 0 (D0) before antibiotic treatment and at set intervals until 60 days thereafter. Fecal DNA was isolated, and V6-to-V8 regions of the 16S rRNA genes were amplified by PCR with general primers and analyzed by temporal temperature gradient gel electrophoresis. Dominant species profiles were compared on the basis of similarity (Pearson correlation coefficient). Dominant species profiles at D0 were used as a reference. The fecal microbiota showed a major shift in dominant species upon antibiotic treatment, starting 24 h after treatment initiation and reaching an average similarity of only 74% after 4 days. Within 30 days following antibiotic treatment, the fecal microbiota tended to reach an average similarity of 88% to the D0 value; within 60 days, the average similarity to the D0 value was 89%. However, in one subject, important modifications persisted for at least 2 months, with similarity to the D0 value remaining below 70%. We demonstrated the resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. Yet the persistence of long-term alterations in some subjects may explain susceptibilities to antibiotic-associated diarrhea. Furthermore, these findings suggest that strategies reinforcing the ability of the fecal microbiota to resist modifications would be of clinical relevance. Recent studies have shown that the human fecal microbiota is composed of a consortium of species specific to the host and resistant to modifications over time. Antibiotics are known to affect the intestinal microflora, and ensuing changes may result in antibiotic-associated diarrhea. It is therefore important to characterize the nature and amplitude of these modifications and the ability of this ecosystem to return to its original profile-i.e., its resilience. Six healthy volunteers received oral amoxicillin (1.5 g/day) for 5 days. Fecal samples were collected at day 0 (D0) before antibiotic treatment and at set intervals until 60 days thereafter. Fecal DNA was isolated, and V6-to-V8 regions of the 16S rRNA genes were amplified by PCR with general primers and analyzed by temporal temperature gradient gel electrophoresis. Dominant species profiles were compared on the basis of similarity (Pearson correlation coefficient). Dominant species profiles at D0 were used as a reference. The fecal microbiota showed a major shift in dominant species upon antibiotic treatment, starting 24 h after treatment initiation and reaching an average similarity of only 74% after 4 days. Within 30 days following antibiotic treatment, the fecal microbiota tended to reach an average similarity of 88% to the D0 value; within 60 days, the average similarity to the D0 value was 89%. However, in one subject, important modifications persisted for at least 2 months, with similarity to the D0 value remaining below 70%. We demonstrated the resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. Yet the persistence of long-term alterations in some subjects may explain susceptibilities to antibiotic-associated diarrhea. Furthermore, these findings suggest that strategies reinforcing the ability of the fecal microbiota to resist modifications would be of clinical relevance.Recent studies have shown that the human fecal microbiota is composed of a consortium of species specific to the host and resistant to modifications over time. Antibiotics are known to affect the intestinal microflora, and ensuing changes may result in antibiotic-associated diarrhea. It is therefore important to characterize the nature and amplitude of these modifications and the ability of this ecosystem to return to its original profile-i.e., its resilience. Six healthy volunteers received oral amoxicillin (1.5 g/day) for 5 days. Fecal samples were collected at day 0 (D0) before antibiotic treatment and at set intervals until 60 days thereafter. Fecal DNA was isolated, and V6-to-V8 regions of the 16S rRNA genes were amplified by PCR with general primers and analyzed by temporal temperature gradient gel electrophoresis. Dominant species profiles were compared on the basis of similarity (Pearson correlation coefficient). Dominant species profiles at D0 were used as a reference. The fecal microbiota showed a major shift in dominant species upon antibiotic treatment, starting 24 h after treatment initiation and reaching an average similarity of only 74% after 4 days. Within 30 days following antibiotic treatment, the fecal microbiota tended to reach an average similarity of 88% to the D0 value; within 60 days, the average similarity to the D0 value was 89%. However, in one subject, important modifications persisted for at least 2 months, with similarity to the D0 value remaining below 70%. We demonstrated the resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. Yet the persistence of long-term alterations in some subjects may explain susceptibilities to antibiotic-associated diarrhea. Furthermore, these findings suggest that strategies reinforcing the ability of the fecal microbiota to resist modifications would be of clinical relevance. |
| Author | Durand, T Lepage, P De La Cochetière, M F Bourreille, A Doré, J Galmiche, J P |
| Author_xml | – sequence: 1 givenname: M F surname: De La Cochetière fullname: De La Cochetière, M F email: mfdlc@nantes.inserm.fr organization: INSERM Unité 539 CHU Hôtel-Dieu, Place Alexis Ricordeau, 44035 Nantes cedex 1, France. mfdlc@nantes.inserm.fr – sequence: 2 givenname: T surname: Durand fullname: Durand, T – sequence: 3 givenname: P surname: Lepage fullname: Lepage, P – sequence: 4 givenname: A surname: Bourreille fullname: Bourreille, A – sequence: 5 givenname: J P surname: Galmiche fullname: Galmiche, J P – sequence: 6 givenname: J surname: Doré fullname: Doré, J |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16272491$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1kEtPxCAYRVmMcR76Fwwrd61AgcLSTHxmjInRxF1D6YfFUBhLu_DfO8ZxdU9yT-7irtEipggIYUpKSpm6etw-lbw6cCmEUoUQmpWMELFAK0K0KCit6iVa5_xJCOVciFO0pJLVjGu6Qu8vkH3wEC3g5PDUA-7S4KOJE-7nwUTswJqAB2_H1Po0GTzvU8S5T-NU2DSPGfBB9r-dt9j2JgSIH3CGTpwJGc6PuUFvtzev2_ti93z3sL3eFVZKNhVtSyWpSSek7hRlRPFWUUc0dapz2nFqtHUgtK6VEJxVhEOlnK1VJUWrZMU26PJvdz-mrxny1Aw-WwjBREhzbqSqpRREH8SLozi3A3TNfvSDGb-b_y_YD8SCYl4 |
| CitedBy_id | crossref_primary_10_3390_antibiotics4030337 crossref_primary_10_1093_femsre_fuab018 crossref_primary_10_1111_j_1365_2109_2010_02590_x crossref_primary_10_3389_fmicb_2015_01408 crossref_primary_10_1016_j_socscimed_2024_117652 crossref_primary_10_1016_S0007_9960_17_30193_1 crossref_primary_10_1016_j_pathophys_2016_02_002 crossref_primary_10_1111_j_1572_0241_2008_02074_3_x crossref_primary_10_1128_JCM_01542_06 crossref_primary_10_1136_bmjopen_2019_035677 crossref_primary_10_1017_S0950268816000200 crossref_primary_10_1051_ocl_2012_0458 crossref_primary_10_1371_journal_pone_0154012 crossref_primary_10_1038_s41598_020_69797_z crossref_primary_10_1007_s40265_019_01110_3 crossref_primary_10_1017_S0007114509993497 crossref_primary_10_3390_ani15111643 crossref_primary_10_1016_S0515_3700_14_71368_0 crossref_primary_10_1586_erm_09_16 crossref_primary_10_1038_jp_2016_161 crossref_primary_10_1007_s12038_019_9860_z crossref_primary_10_1161_HYPERTENSIONAHA_118_12588 crossref_primary_10_1136_gutjnl_2011_301805 crossref_primary_10_1016_j_ijmm_2022_151549 crossref_primary_10_1016_j_rvsc_2025_105674 crossref_primary_10_1038_ismej_2007_29 crossref_primary_10_1128_JCM_01507_10 crossref_primary_10_1021_acs_jafc_8b00054 crossref_primary_10_1073_pnas_1000097107 crossref_primary_10_1097_MCG_0000000000001170 crossref_primary_10_1111_jam_13432 crossref_primary_10_1136_gutjnl_2012_303184 crossref_primary_10_2147_JAA_S401755 crossref_primary_10_1542_peds_2011_2736 crossref_primary_10_3389_fnagi_2022_1037904 crossref_primary_10_3390_gidisord5030028 crossref_primary_10_3389_fmicb_2015_01543 crossref_primary_10_1128_AEM_02326_20 crossref_primary_10_1177_0897190013499527 crossref_primary_10_1016_j_lpm_2018_03_016 crossref_primary_10_1016_j_ijantimicag_2006_09_020 crossref_primary_10_1016_j_micpath_2018_05_028 crossref_primary_10_1111_nmo_12046 crossref_primary_10_1038_s44259_025_00129_9 crossref_primary_10_1080_00365540802651897 crossref_primary_10_1016_j_micpath_2018_03_035 crossref_primary_10_1002_ame2_12022 crossref_primary_10_1007_BF02829968 crossref_primary_10_1038_srep04302 crossref_primary_10_1515_jpm_2010_035 crossref_primary_10_1371_journal_pone_0089417 crossref_primary_10_3389_fmicb_2025_1481197 crossref_primary_10_1111_j_1574_6976_2011_00270_x crossref_primary_10_1007_s10298_011_0615_8 crossref_primary_10_1371_journal_pone_0058005 crossref_primary_10_1053_j_scrs_2017_09_001 crossref_primary_10_1007_s00248_013_0355_4 crossref_primary_10_1371_journal_pone_0028654 crossref_primary_10_1111_j_1572_0241_2008_02145_x crossref_primary_10_1128_AAC_00774_17 crossref_primary_10_1007_s00248_007_9356_5 crossref_primary_10_1038_ismej_2013_223 crossref_primary_10_1038_s41598_019_45173_4 crossref_primary_10_1093_ofid_ofz409 crossref_primary_10_1038_ismej_2007_3 crossref_primary_10_3945_ajcn_2008_26219 crossref_primary_10_3390_cancers12103011 crossref_primary_10_1002_mbo3_1260 crossref_primary_10_1093_jacamr_dlac077 crossref_primary_10_1111_1462_2920_12399 crossref_primary_10_1111_hel_12543 crossref_primary_10_1016_j_cyto_2023_156285 crossref_primary_10_1111_1574_6941_12020 crossref_primary_10_1016_j_anaerobe_2010_06_002 crossref_primary_10_1016_j_anaerobe_2010_06_005 crossref_primary_10_1080_14767058_2019_1583738 crossref_primary_10_1186_s13073_016_0294_z crossref_primary_10_3390_ijms25105561 crossref_primary_10_1016_j_jcf_2015_08_003 crossref_primary_10_1080_1744666X_2025_2556435 crossref_primary_10_1093_ajh_hpy067 crossref_primary_10_1016_j_cll_2014_08_008 crossref_primary_10_1128_mSphereDirect_00588_18 crossref_primary_10_1016_j_bbi_2014_10_018 crossref_primary_10_1371_journal_pone_0107909 crossref_primary_10_5507_bp_2016_039 crossref_primary_10_1016_j_mimet_2012_12_011 crossref_primary_10_1007_s10190_014_0391_z crossref_primary_10_1080_00498254_2018_1558310 crossref_primary_10_1111_cei_12474 crossref_primary_10_3389_falgy_2024_1438252 crossref_primary_10_1177_11206721231219147 crossref_primary_10_1007_s00217_012_1851_3 crossref_primary_10_3389_fimmu_2021_712915 crossref_primary_10_1016_j_tim_2012_12_001 crossref_primary_10_1016_j_ijantimicag_2012_10_012 crossref_primary_10_1128_MMBR_00014_10 crossref_primary_10_1016_S0399_8320_10_70018_X crossref_primary_10_1007_s11926_012_0314_y crossref_primary_10_3390_antibiotics4030230 crossref_primary_10_1016_j_humic_2019_100061 crossref_primary_10_1016_j_humic_2019_100069 crossref_primary_10_3390_cancers11081174 crossref_primary_10_1038_ijo_2015_218 crossref_primary_10_1073_pnas_0812600106 crossref_primary_10_1111_jvim_15635 crossref_primary_10_3390_jcm10081598 crossref_primary_10_1038_s41575_018_0003_z crossref_primary_10_1016_j_humic_2018_08_003 crossref_primary_10_3748_wjg_v23_i25_4491 crossref_primary_10_1371_journal_pone_0199676 crossref_primary_10_1186_s13017_023_00518_3 crossref_primary_10_3389_fphar_2016_00104 crossref_primary_10_3390_microorganisms13030602 crossref_primary_10_1053_j_gastro_2015_06_043 crossref_primary_10_3390_nu10111723 crossref_primary_10_1016_S1773_2247_10_50072_8 crossref_primary_10_1016_S0399_8320_10_70005_1 crossref_primary_10_1016_S0007_9960_07_91317_6 crossref_primary_10_1016_j_ucl_2018_06_001 crossref_primary_10_1038_s41598_025_02287_2 crossref_primary_10_1128_AAC_00789_12 crossref_primary_10_3390_vetsci11010031 crossref_primary_10_1016_j_gene_2022_146266 crossref_primary_10_1056_NEJMoa1812379 crossref_primary_10_1016_j_gofs_2018_10_017 crossref_primary_10_1038_s41579_023_00890_6 crossref_primary_10_1038_mi_2016_138 crossref_primary_10_1080_14767058_2019_1567706 crossref_primary_10_1186_s12917_015_0335_7 crossref_primary_10_1016_j_rmr_2016_11_003 crossref_primary_10_1155_2014_196312 crossref_primary_10_1136_bmjdrc_2021_002321 crossref_primary_10_1017_S0007114514001135 crossref_primary_10_1016_S0399_8320_10_70015_4 crossref_primary_10_1371_journal_pone_0023035 crossref_primary_10_1111_dom_12637 crossref_primary_10_1136_adc_2008_155754 crossref_primary_10_1016_j_envres_2017_12_016 crossref_primary_10_3389_fnut_2022_970530 crossref_primary_10_1016_j_jinf_2019_10_008 crossref_primary_10_1038_s41598_020_65792_6 crossref_primary_10_1016_j_joms_2016_04_026 crossref_primary_10_1055_s_0043_1772189 crossref_primary_10_1111_febs_14692 crossref_primary_10_26779_2786_832X_2023_6_44 crossref_primary_10_1128_AAC_03447_14 crossref_primary_10_1073_pnas_2103513118 crossref_primary_10_1002_hep_30090 crossref_primary_10_1039_D0FO02981E crossref_primary_10_1007_s00281_012_0337_5 crossref_primary_10_1016_j_pcd_2018_07_001 crossref_primary_10_1038_s41598_024_69566_2 crossref_primary_10_1111_j_1461_0248_2010_01542_x crossref_primary_10_1586_17474124_2015_1013031 crossref_primary_10_1089_dna_2016_3432 crossref_primary_10_1371_journal_pone_0029913 crossref_primary_10_1002_mbo3_537 crossref_primary_10_1002_path_4277 crossref_primary_10_1016_j_freeradbiomed_2013_11_008 crossref_primary_10_1016_j_rvsc_2019_05_021 crossref_primary_10_1128_JCM_00312_06 crossref_primary_10_1016_j_rvsc_2018_03_013 crossref_primary_10_1186_s12916_016_0636_0 crossref_primary_10_1186_s12969_016_0104_6 crossref_primary_10_1093_femsec_fix092 crossref_primary_10_1097_PSY_0000000000000614 crossref_primary_10_1007_s00248_007_9337_8 crossref_primary_10_1111_j_1574_6941_2012_01368_x crossref_primary_10_1186_s13568_021_01274_w crossref_primary_10_1159_000443360 crossref_primary_10_1016_j_bbr_2020_112886 crossref_primary_10_1186_2049_2618_1_15 crossref_primary_10_1038_s41416_019_0701_5 crossref_primary_10_2478_macvetrev_2018_0016 crossref_primary_10_3389_fmicb_2019_00336 crossref_primary_10_1002_alr_22799 crossref_primary_10_3389_fmicb_2017_02306 crossref_primary_10_1371_journal_pone_0050257 crossref_primary_10_1093_rheumatology_kew374 crossref_primary_10_1371_journal_pone_0009964 crossref_primary_10_1681_ASN_2019101029 crossref_primary_10_1007_s00383_021_04948_5 crossref_primary_10_1016_j_scitotenv_2019_136286 crossref_primary_10_1371_journal_pone_0126712 crossref_primary_10_1016_S0399_8320_10_70002_6 crossref_primary_10_3389_fped_2014_00109 crossref_primary_10_1093_ije_dyw042 crossref_primary_10_1080_09540105_2012_689816 crossref_primary_10_1371_journal_pone_0095476 crossref_primary_10_1016_j_eplepsyres_2021_106742 crossref_primary_10_1139_cjas_2018_0202 crossref_primary_10_1017_S0007114513002560 crossref_primary_10_1038_nrmicro2536 crossref_primary_10_2217_fmb_2018_0203 crossref_primary_10_1111_j_1462_2920_2009_01982_x crossref_primary_10_2478_aoas_2019_0013 crossref_primary_10_1111_j_1462_2920_2007_01503_x crossref_primary_10_3109_08916934_2014_938322 crossref_primary_10_1186_s12866_017_0968_8 crossref_primary_10_1093_jac_dky530 crossref_primary_10_1146_annurev_micro_091313_103456 crossref_primary_10_7554_eLife_08973 crossref_primary_10_3390_ijms232315387 crossref_primary_10_1586_17474124_2016_1158097 crossref_primary_10_3389_fmicb_2025_1559521 crossref_primary_10_1039_D1BM00958C crossref_primary_10_1093_femsre_fux022 crossref_primary_10_1183_09059180_00011614 crossref_primary_10_1016_j_pcl_2007_10_002 crossref_primary_10_3390_ijms19051280 crossref_primary_10_1016_j_dentre_2022_100040 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1128/JCM.43.11.5588-5592.2005 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Biology |
| ExternalDocumentID | 16272491 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
| GroupedDBID | --- .55 .GJ 0R~ 18M 29K 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS AAYOK ABOCM ABPPZ ACGFO ADBBV AENEX AGCDD AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CGR CS3 CUY CVF D-I DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HF~ HYE HZ~ H~9 KQ8 L7B NPM O9- OHT OK1 P2P P6G PKN RHF RHI RNS RPM RSF TR2 UCJ VH1 W8F WHG WOQ X7M YIF ZCA ZGI ZXP ~KM 7X8 AAGFI |
| ID | FETCH-LOGICAL-c662t-bb16070d569d812084b81f091f8df9f41a9cfe599785542304e38fc78365b8632 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 238 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000233312200029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0095-1137 |
| IngestDate | Fri Sep 05 10:41:38 EDT 2025 Wed Feb 19 01:43:14 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c662t-bb16070d569d812084b81f091f8df9f41a9cfe599785542304e38fc78365b8632 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | http://doi.org/10.1128/JCM.43.11.5588-5592.2005 |
| PMID | 16272491 |
| PQID | 68766509 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_68766509 pubmed_primary_16272491 |
| PublicationCentury | 2000 |
| PublicationDate | 2005-11-01 |
| PublicationDateYYYYMMDD | 2005-11-01 |
| PublicationDate_xml | – month: 11 year: 2005 text: 2005-11-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of clinical microbiology |
| PublicationTitleAlternate | J Clin Microbiol |
| PublicationYear | 2005 |
| References | 12054235 - Int J Syst Evol Microbiol. 2002 May;52(Pt 3):757-63 15184159 - Appl Environ Microbiol. 2004 Jun;70(6):3575-81 14747690 - J Nutr. 2004 Feb;134(2):465-72 10543789 - Appl Environ Microbiol. 1999 Nov;65(11):4799-807 11772630 - Appl Environ Microbiol. 2002 Jan;68(1):219-26 9602286 - Antonie Van Leeuwenhoek. 1998 Jan;73(1):127-41 12363017 - Microbiol Immunol. 2002;46(8):535-48 12747418 - Syst Appl Microbiol. 2003 Mar;26(1):110-8 15867587 - Inflamm Bowel Dis. 2005 May;11(5):473-80 9758810 - Appl Environ Microbiol. 1998 Oct;64(10):3854-9 9212428 - Appl Environ Microbiol. 1997 Jul;63(7):2802-13 12597356 - Microbiol Immunol. 2002;46(12):819-31 12147461 - Appl Environ Microbiol. 2002 Aug;68(8):3691-701 15352889 - Aliment Pharmacol Ther. 2004 Oct;20 Suppl 4:18-23 19712312 - FEMS Microbiol Ecol. 2004 Jun 1;48(3):437-46 12556947 - Eur J Clin Nutr. 2002 Dec;56 Suppl 4:S44-9 7981107 - Int J Syst Bacteriol. 1994 Oct;44(4):812-26 12524406 - Gut. 2003 Feb;52(2):237-42 7683183 - Appl Environ Microbiol. 1993 Mar;59(3):695-700 2277039 - J Biochem. 1990 Sep;108(3):466-74 16145122 - J Clin Microbiol. 2005 Sep;43(9):4654-8 15123074 - Best Pract Res Clin Gastroenterol. 2004 Apr;18(2):337-52 11868762 - Scand J Infect Dis. 2001;33(12):899-903 15574920 - Appl Environ Microbiol. 2004 Dec;70(12):7220-8 11709849 - Curr Issues Intest Microbiol. 2000 Mar;1(1):1-12 12763508 - Best Pract Res Clin Gastroenterol. 2003 Jun;17(3):475-93 12406736 - Appl Environ Microbiol. 2002 Nov;68(11):5445-51 |
| References_xml | – reference: 7683183 - Appl Environ Microbiol. 1993 Mar;59(3):695-700 – reference: 12747418 - Syst Appl Microbiol. 2003 Mar;26(1):110-8 – reference: 15867587 - Inflamm Bowel Dis. 2005 May;11(5):473-80 – reference: 12556947 - Eur J Clin Nutr. 2002 Dec;56 Suppl 4:S44-9 – reference: 12054235 - Int J Syst Evol Microbiol. 2002 May;52(Pt 3):757-63 – reference: 2277039 - J Biochem. 1990 Sep;108(3):466-74 – reference: 12406736 - Appl Environ Microbiol. 2002 Nov;68(11):5445-51 – reference: 12597356 - Microbiol Immunol. 2002;46(12):819-31 – reference: 16145122 - J Clin Microbiol. 2005 Sep;43(9):4654-8 – reference: 11868762 - Scand J Infect Dis. 2001;33(12):899-903 – reference: 12763508 - Best Pract Res Clin Gastroenterol. 2003 Jun;17(3):475-93 – reference: 9602286 - Antonie Van Leeuwenhoek. 1998 Jan;73(1):127-41 – reference: 11709849 - Curr Issues Intest Microbiol. 2000 Mar;1(1):1-12 – reference: 15574920 - Appl Environ Microbiol. 2004 Dec;70(12):7220-8 – reference: 15184159 - Appl Environ Microbiol. 2004 Jun;70(6):3575-81 – reference: 15352889 - Aliment Pharmacol Ther. 2004 Oct;20 Suppl 4:18-23 – reference: 12363017 - Microbiol Immunol. 2002;46(8):535-48 – reference: 11772630 - Appl Environ Microbiol. 2002 Jan;68(1):219-26 – reference: 7981107 - Int J Syst Bacteriol. 1994 Oct;44(4):812-26 – reference: 14747690 - J Nutr. 2004 Feb;134(2):465-72 – reference: 15123074 - Best Pract Res Clin Gastroenterol. 2004 Apr;18(2):337-52 – reference: 9758810 - Appl Environ Microbiol. 1998 Oct;64(10):3854-9 – reference: 10543789 - Appl Environ Microbiol. 1999 Nov;65(11):4799-807 – reference: 12147461 - Appl Environ Microbiol. 2002 Aug;68(8):3691-701 – reference: 12524406 - Gut. 2003 Feb;52(2):237-42 – reference: 9212428 - Appl Environ Microbiol. 1997 Jul;63(7):2802-13 – reference: 19712312 - FEMS Microbiol Ecol. 2004 Jun 1;48(3):437-46 |
| SSID | ssj0014455 |
| Score | 2.3214364 |
| Snippet | Recent studies have shown that the human fecal microbiota is composed of a consortium of species specific to the host and resistant to modifications over time.... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 5588 |
| SubjectTerms | Administration, Oral Adolescent Adult Amoxicillin - administration & dosage Amoxicillin - pharmacology Anti-Bacterial Agents - administration & dosage Anti-Bacterial Agents - pharmacology Bacteria - drug effects Bacteria - genetics Bacteria - isolation & purification Electrophoresis, Agar Gel Feces - microbiology Female Humans Male Middle Aged Polymerase Chain Reaction RNA, Bacterial - analysis RNA, Bacterial - genetics RNA, Ribosomal, 16S - analysis RNA, Ribosomal, 16S - genetics Species Specificity Temperature Time Factors |
| Title | Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/16272491 https://www.proquest.com/docview/68766509 |
| Volume | 43 |
| WOSCitedRecordID | wos000233312200029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6qVfHio77qcw9et3aT3WQXBJFiEaGliEJvJdkHBjSpthX8984mDZ7Eg5clkATCZmbnm53Z7wO41MLxrg0EFVIryg1LaKpSSXUYGst4EinuSrGJeDiU47EaNeC6Pgvj2yrrNbFcqE2h_R75VYRu69nebqbv1GtG-drqUkBjBZohAhlv0_H4p4bAuaj0C5SgjIVx3ccTyKuH3qDDQ7zuCIGWgqi65KQUv8PMMtz0t__3oTuwtYSZ5Layi11o2LwF65Xw5FcLNgbLkvoejB_tLHstHZwUjiAeJKao-mNIKeBHnMX_SN6yirJpnpDFtMjJ7AWBO9WFbwIh-HDm72Wa6FqdZR-e-3dPvXu6lFugOoqCOU1TTzbXNSJSBsN-V_JUMod4wknjlOMsUdpZoTDvRAziN5NtKJ32x0BEKqMwOIDVvMjtEZA0SdA0YqNMyjxBmxJJN8ZU1GkcMCy34aKeuwmas69RJLktFrNJPXttOKymfzKtWDcmLApizBXZ8Z_vnsBmRbDqN0pOoenQke0ZrOnPeTb7OC-tBMfhaPAN7drF6g |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resilience+of+the+dominant+human+fecal+microbiota+upon+short-course+antibiotic+challenge&rft.jtitle=Journal+of+clinical+microbiology&rft.au=De+La+Cocheti%C3%A8re%2C+M+F&rft.au=Durand%2C+T&rft.au=Lepage%2C+P&rft.au=Bourreille%2C+A&rft.date=2005-11-01&rft.issn=0095-1137&rft.volume=43&rft.issue=11&rft.spage=5588&rft_id=info:doi/10.1128%2FJCM.43.11.5588-5592.2005&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0095-1137&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0095-1137&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0095-1137&client=summon |