spaMGCN: a graph convolutional network with autoencoder for spatial domain identification using multi-scale adaptation

Spatial domain identification is crucial in spatial transcriptomics analysis. Existing methods excel with continuous and clustered distributions but struggle with discrete ones. We present spaMGCN, an innovative approach specifically designed for identifying spatial domains, especially in discrete t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Genome Biology Ročník 26; číslo 1; s. 159
Hlavní autori: Zhang, Tianjiao, Zhang, Hongfei, Zhao, Zhongqian, Shao, Saihong, Jiang, Yucai, Zhang, Xiang, Wang, Guohua
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 10.06.2025
Springer Nature B.V
BMC
Predmet:
ISSN:1474-760X, 1474-7596, 1474-760X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Spatial domain identification is crucial in spatial transcriptomics analysis. Existing methods excel with continuous and clustered distributions but struggle with discrete ones. We present spaMGCN, an innovative approach specifically designed for identifying spatial domains, especially in discrete tissue distributions. By integrating spatial transcriptomics and spatial epigenomic data through an autoencoder and a multi-scale adaptive graph convolutional network, spaMGCN outperforms baseline methods. Our evaluations demonstrate its effectiveness in recognizing discrete T cell zones in mouse spleens and follicular cells in human lymph nodes, as well as effectively distinguishing capsule structures from surrounding tissues.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-025-03637-z