single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector

BACKGROUND: Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying molecular basis, crucial for successful resistance management, remains poorly characterized. RESULTS: Here, we demonstrate that the single amino ac...

Full description

Saved in:
Bibliographic Details
Published in:Genome biology Vol. 15; no. 2; pp. R27 - 27
Main Authors: Riveron, Jacob M, Yunta, Cristina, Ibrahim, Sulaiman S, Djouaka, Rousseau, Irving, Helen, Menze, Benjamin D, Ismail, Hanafy M, Hemingway, Janet, Ranson, Hilary, Albert, Armando, Wondji, Charles S
Format: Journal Article
Language:English
Published: London Springer-Verlag 25.02.2014
BioMed Central
Subjects:
ISSN:1465-6906, 1474-760X, 1465-6914, 1474-760X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract BACKGROUND: Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying molecular basis, crucial for successful resistance management, remains poorly characterized. RESULTS: Here, we demonstrate that the single amino acid change L119F in an upregulated glutathione S-transferase gene, GSTe2, confers high levels of metabolic resistance to DDT in the malaria vector Anopheles funestus. Genome-wide transcription analysis revealed that GSTe2 was the most over-expressed detoxification gene in DDT and permethrin-resistant mosquitoes from Benin. Transgenic expression of GSTe2 in Drosophila melanogaster demonstrated that over-transcription of this gene alone confers DDT resistance and cross-resistance to pyrethroids. Analysis of GSTe2 polymorphism established that the point mutation is tightly associated with metabolic resistance to DDT and its geographical distribution strongly correlates with DDT resistance patterns across Africa. Functional characterization of recombinant GSTe2 further supports the role of the L119F mutation, with the resistant allele being more efficient at metabolizing DDT than the susceptible one. Importantly, we also show that GSTe2 directly metabolizes the pyrethroid permethrin. Structural analysis reveals that the mutation confers resistance by enlarging the GSTe2 DDT-binding cavity, leading to increased DDT access and metabolism. Furthermore, we show that GSTe2 is under strong directional selection in resistant populations, and a restriction of gene flow is observed between African regions, enabling the prediction of the future spread of this resistance. CONCLUSIONS: This first DNA-based metabolic resistance marker in mosquitoes provides an essential tool to track the evolution of resistance and to design suitable resistance management strategies.
AbstractList BACKGROUND: Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying molecular basis, crucial for successful resistance management, remains poorly characterized. RESULTS: Here, we demonstrate that the single amino acid change L119F in an upregulated glutathione S-transferase gene, GSTe2, confers high levels of metabolic resistance to DDT in the malaria vector Anopheles funestus. Genome-wide transcription analysis revealed that GSTe2 was the most over-expressed detoxification gene in DDT and permethrin-resistant mosquitoes from Benin. Transgenic expression of GSTe2 in Drosophila melanogaster demonstrated that over-transcription of this gene alone confers DDT resistance and cross-resistance to pyrethroids. Analysis of GSTe2 polymorphism established that the point mutation is tightly associated with metabolic resistance to DDT and its geographical distribution strongly correlates with DDT resistance patterns across Africa. Functional characterization of recombinant GSTe2 further supports the role of the L119F mutation, with the resistant allele being more efficient at metabolizing DDT than the susceptible one. Importantly, we also show that GSTe2 directly metabolizes the pyrethroid permethrin. Structural analysis reveals that the mutation confers resistance by enlarging the GSTe2 DDT-binding cavity, leading to increased DDT access and metabolism. Furthermore, we show that GSTe2 is under strong directional selection in resistant populations, and a restriction of gene flow is observed between African regions, enabling the prediction of the future spread of this resistance. CONCLUSIONS: This first DNA-based metabolic resistance marker in mosquitoes provides an essential tool to track the evolution of resistance and to design suitable resistance management strategies.
Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying molecular basis, crucial for successful resistance management, remains poorly characterized.BACKGROUNDMetabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying molecular basis, crucial for successful resistance management, remains poorly characterized.Here, we demonstrate that the single amino acid change L119F in an upregulated glutathione S-transferase gene, GSTe2, confers high levels of metabolic resistance to DDT in the malaria vector Anopheles funestus. Genome-wide transcription analysis revealed that GSTe2 was the most over-expressed detoxification gene in DDT and permethrin-resistant mosquitoes from Benin. Transgenic expression of GSTe2 in Drosophila melanogaster demonstrated that over-transcription of this gene alone confers DDT resistance and cross-resistance to pyrethroids. Analysis of GSTe2 polymorphism established that the point mutation is tightly associated with metabolic resistance to DDT and its geographical distribution strongly correlates with DDT resistance patterns across Africa. Functional characterization of recombinant GSTe2 further supports the role of the L119F mutation, with the resistant allele being more efficient at metabolizing DDT than the susceptible one. Importantly, we also show that GSTe2 directly metabolizes the pyrethroid permethrin. Structural analysis reveals that the mutation confers resistance by enlarging the GSTe2 DDT-binding cavity, leading to increased DDT access and metabolism. Furthermore, we show that GSTe2 is under strong directional selection in resistant populations, and a restriction of gene flow is observed between African regions, enabling the prediction of the future spread of this resistance.RESULTSHere, we demonstrate that the single amino acid change L119F in an upregulated glutathione S-transferase gene, GSTe2, confers high levels of metabolic resistance to DDT in the malaria vector Anopheles funestus. Genome-wide transcription analysis revealed that GSTe2 was the most over-expressed detoxification gene in DDT and permethrin-resistant mosquitoes from Benin. Transgenic expression of GSTe2 in Drosophila melanogaster demonstrated that over-transcription of this gene alone confers DDT resistance and cross-resistance to pyrethroids. Analysis of GSTe2 polymorphism established that the point mutation is tightly associated with metabolic resistance to DDT and its geographical distribution strongly correlates with DDT resistance patterns across Africa. Functional characterization of recombinant GSTe2 further supports the role of the L119F mutation, with the resistant allele being more efficient at metabolizing DDT than the susceptible one. Importantly, we also show that GSTe2 directly metabolizes the pyrethroid permethrin. Structural analysis reveals that the mutation confers resistance by enlarging the GSTe2 DDT-binding cavity, leading to increased DDT access and metabolism. Furthermore, we show that GSTe2 is under strong directional selection in resistant populations, and a restriction of gene flow is observed between African regions, enabling the prediction of the future spread of this resistance.This first DNA-based metabolic resistance marker in mosquitoes provides an essential tool to track the evolution of resistance and to design suitable resistance management strategies.CONCLUSIONSThis first DNA-based metabolic resistance marker in mosquitoes provides an essential tool to track the evolution of resistance and to design suitable resistance management strategies.
Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying molecular basis, crucial for successful resistance management, remains poorly characterized. Here, we demonstrate that the single amino acid change L119F in an upregulated glutathione S-transferase gene, GSTe2, confers high levels of metabolic resistance to DDT in the malaria vector Anopheles funestus. Genome-wide transcription analysis revealed that GSTe2 was the most over-expressed detoxification gene in DDT and permethrin-resistant mosquitoes from Benin. Transgenic expression of GSTe2 in Drosophila melanogaster demonstrated that over-transcription of this gene alone confers DDT resistance and cross-resistance to pyrethroids. Analysis of GSTe2 polymorphism established that the point mutation is tightly associated with metabolic resistance to DDT and its geographical distribution strongly correlates with DDT resistance patterns across Africa. Functional characterization of recombinant GSTe2 further supports the role of the L119F mutation, with the resistant allele being more efficient at metabolizing DDT than the susceptible one. Importantly, we also show that GSTe2 directly metabolizes the pyrethroid permethrin. Structural analysis reveals that the mutation confers resistance by enlarging the GSTe2 DDT-binding cavity, leading to increased DDT access and metabolism. Furthermore, we show that GSTe2 is under strong directional selection in resistant populations, and a restriction of gene flow is observed between African regions, enabling the prediction of the future spread of this resistance. This first DNA-based metabolic resistance marker in mosquitoes provides an essential tool to track the evolution of resistance and to design suitable resistance management strategies.
Background Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying molecular basis, crucial for successful resistance management, remains poorly characterized. Results Here, we demonstrate that the single amino acid change L119F in an upregulated glutathione S-transferase gene, GSTe2 , confers high levels of metabolic resistance to DDT in the malaria vector Anopheles funestus . Genome-wide transcription analysis revealed that GSTe2 was the most over-expressed detoxification gene in DDT and permethrin-resistant mosquitoes from Benin. Transgenic expression of GSTe2 in Drosophila melanogaster demonstrated that over-transcription of this gene alone confers DDT resistance and cross-resistance to pyrethroids. Analysis of GSTe2 polymorphism established that the point mutation is tightly associated with metabolic resistance to DDT and its geographical distribution strongly correlates with DDT resistance patterns across Africa. Functional characterization of recombinant GSTe2 further supports the role of the L119F mutation, with the resistant allele being more efficient at metabolizing DDT than the susceptible one. Importantly, we also show that GSTe2 directly metabolizes the pyrethroid permethrin. Structural analysis reveals that the mutation confers resistance by enlarging the GSTe2 DDT-binding cavity, leading to increased DDT access and metabolism. Furthermore, we show that GSTe2 is under strong directional selection in resistant populations, and a restriction of gene flow is observed between African regions, enabling the prediction of the future spread of this resistance. Conclusions This first DNA-based metabolic resistance marker in mosquitoes provides an essential tool to track the evolution of resistance and to design suitable resistance management strategies.
ArticleNumber R27
Author Ismail, Hanafy M
Menze, Benjamin D
Djouaka, Rousseau
Yunta, Cristina
Riveron, Jacob M
Ranson, Hilary
Albert, Armando
Irving, Helen
Ibrahim, Sulaiman S
Wondji, Charles S
Hemingway, Janet
AuthorAffiliation 2 Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física “Rocasolano”, CSIC, C/Serrano 119 Madrid E-28006, Spain
1 Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
4 Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, PO Box 288, Yaoundé, Cameroon
3 International Institute of Tropical Agriculture, 08 BP 0932 Cotonou, Benin
AuthorAffiliation_xml – name: 2 Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física “Rocasolano”, CSIC, C/Serrano 119 Madrid E-28006, Spain
– name: 4 Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, PO Box 288, Yaoundé, Cameroon
– name: 3 International Institute of Tropical Agriculture, 08 BP 0932 Cotonou, Benin
– name: 1 Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
Author_xml – sequence: 1
  fullname: Riveron, Jacob M
– sequence: 2
  fullname: Yunta, Cristina
– sequence: 3
  fullname: Ibrahim, Sulaiman S
– sequence: 4
  fullname: Djouaka, Rousseau
– sequence: 5
  fullname: Irving, Helen
– sequence: 6
  fullname: Menze, Benjamin D
– sequence: 7
  fullname: Ismail, Hanafy M
– sequence: 8
  fullname: Hemingway, Janet
– sequence: 9
  fullname: Ranson, Hilary
– sequence: 10
  fullname: Albert, Armando
– sequence: 11
  fullname: Wondji, Charles S
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24565444$$D View this record in MEDLINE/PubMed
BookMark eNqNksFvFSEQxompse3Tuyfl6GUrsMCyFxPTaG3SxEPbM2HZ2S1PFirs1rz_Xl62vqiHKoeBZH7fBzPMKToKMQBCryk5o1TJ92NXMUJ5RUXFqsSaZ-iEcikq2VJ-dDgTeYxOc94SQhsl5Qt0zLiQgnN-gnbZhdEDnpbZzC4G7AKe7wBfXN8AwyMEwMb7-CPjORn7rcA4DniC2XTRO1tyO9yZDH0RZrCzs64HnCC7PJtgYe9n8GS2MZXoTXIGPxQuppfo-WB8hleP-wbdfv50c_6luvp6cXn-8aqyUrK5qhUbSMdEbWyjmOobZpvBKNG0vKeNJU1fk9YOytoCtjUMjSLcdgO0NQPR83qDPqy-90s3QW8hlEq8vk9uMmmno3H6z0xwd3qMD5oTwRWvi8G7R4MUvy-QZz25bMF7EyAuWdO2LCGU4P9GhRCSEULkf6CU1ayWJW7Qm98rODz91y8WgKyATTHnBMMBoUTvB0WPnd4PSnHVTJdBKRL5l8S6dQJKD5x_SkhXYS53hBGS3sYlhfKDT2nerprBRG3G5LK-vd4jpRMtaSivfwIdV92N
CitedBy_id crossref_primary_10_1371_journal_pone_0201679
crossref_primary_10_3390_insects12040276
crossref_primary_10_1186_s12859_017_1587_y
crossref_primary_10_1186_s13071_015_1194_6
crossref_primary_10_1016_j_cois_2018_04_004
crossref_primary_10_1016_j_pestbp_2019_10_002
crossref_primary_10_1016_j_cois_2018_04_007
crossref_primary_10_1093_jme_tjab124
crossref_primary_10_1051_parasite_2021003
crossref_primary_10_1016_j_cois_2018_04_009
crossref_primary_10_1186_s13071_018_3115_y
crossref_primary_10_1186_s13071_022_05335_2
crossref_primary_10_1186_s12936_015_0877_y
crossref_primary_10_1038_s41598_025_95814_0
crossref_primary_10_1186_s12936_021_04002_8
crossref_primary_10_1371_journal_pone_0211497
crossref_primary_10_1093_infdis_jiz139
crossref_primary_10_1016_j_chemosphere_2019_125203
crossref_primary_10_1186_s13071_020_04296_8
crossref_primary_10_1186_1471_2164_15_817
crossref_primary_10_1371_journal_pgen_1010678
crossref_primary_10_1016_j_pestbp_2021_104772
crossref_primary_10_1038_s41598_022_21522_8
crossref_primary_10_1371_journal_pntd_0005302
crossref_primary_10_1038_s41598_025_04684_z
crossref_primary_10_1002_ps_7031
crossref_primary_10_1186_s12915_024_02081_y
crossref_primary_10_1038_s41598_024_70885_7
crossref_primary_10_1186_s12936_018_2467_2
crossref_primary_10_1016_j_ibmb_2016_12_003
crossref_primary_10_1186_s13071_019_3774_3
crossref_primary_10_1371_journal_pgen_1009556
crossref_primary_10_1186_s12879_023_08698_8
crossref_primary_10_3390_insects7010002
crossref_primary_10_1016_j_cois_2024_101325
crossref_primary_10_1186_s12864_025_11637_3
crossref_primary_10_1186_s13071_016_1723_y
crossref_primary_10_1016_j_ibmb_2015_06_003
crossref_primary_10_1186_s12936_023_04444_2
crossref_primary_10_1038_s41598_019_42015_1
crossref_primary_10_1126_science_1258522
crossref_primary_10_1007_s42690_020_00173_0
crossref_primary_10_1371_journal_pgen_1009422
crossref_primary_10_1186_s12864_024_11148_7
crossref_primary_10_1016_j_ibmb_2021_103655
crossref_primary_10_1038_s41598_018_21265_5
crossref_primary_10_1093_jme_tjab137
crossref_primary_10_1186_s12936_025_05437_z
crossref_primary_10_12688_wellcomeopenres_14589_1
crossref_primary_10_1074_jbc_RA119_011463
crossref_primary_10_1016_j_ecoenv_2018_08_055
crossref_primary_10_1186_s13071_018_2702_2
crossref_primary_10_1371_journal_pntd_0005526
crossref_primary_10_1016_j_cois_2018_03_005
crossref_primary_10_1038_s41598_024_64007_6
crossref_primary_10_1002_ps_5392
crossref_primary_10_1038_s41598_022_26990_6
crossref_primary_10_3390_genes11121492
crossref_primary_10_1111_imb_12194
crossref_primary_10_1016_j_ijbiomac_2022_10_029
crossref_primary_10_1371_journal_pntd_0011595
crossref_primary_10_1016_j_ibmb_2021_103647
crossref_primary_10_1016_j_ibmb_2021_103646
crossref_primary_10_12688_wellcomeopenres_19404_1
crossref_primary_10_12688_wellcomeopenres_19404_2
crossref_primary_10_3390_genes9120645
crossref_primary_10_1016_j_pestbp_2023_105397
crossref_primary_10_1186_s40249_020_00769_1
crossref_primary_10_1016_j_aquatox_2021_105860
crossref_primary_10_1038_s41598_022_17822_8
crossref_primary_10_1093_genetics_iyae181
crossref_primary_10_1073_pnas_1801826115
crossref_primary_10_1038_s41598_025_09016_9
crossref_primary_10_1111_imb_12769
crossref_primary_10_1371_journal_pgen_1006539
crossref_primary_10_3390_genes11040454
crossref_primary_10_3390_pathogens10040415
crossref_primary_10_1186_s13071_024_06372_9
crossref_primary_10_1016_j_pt_2024_04_016
crossref_primary_10_3389_fphys_2019_00766
crossref_primary_10_3390_insects12060544
crossref_primary_10_1186_s13071_016_1462_0
crossref_primary_10_1101_gr_262790_120
crossref_primary_10_1016_j_cbpc_2015_11_001
crossref_primary_10_1186_s12864_021_07646_7
crossref_primary_10_3389_fphys_2018_00314
crossref_primary_10_1186_s12936_015_0885_y
crossref_primary_10_1534_g3_120_401279
crossref_primary_10_3390_genes9030140
crossref_primary_10_1042_BSR20150183
crossref_primary_10_1038_s41598_023_44457_0
crossref_primary_10_1002_ps_5614
crossref_primary_10_1371_journal_pgen_1008822
crossref_primary_10_3390_ijms222111921
crossref_primary_10_1186_s12864_021_07722_y
crossref_primary_10_1038_s42003_023_05447_0
crossref_primary_10_1016_j_pestbp_2023_105498
crossref_primary_10_1038_s41598_025_03066_9
crossref_primary_10_1093_g3journal_jkab352
crossref_primary_10_1371_journal_pone_0163261
crossref_primary_10_1016_j_scitotenv_2024_175712
crossref_primary_10_1080_20477724_2018_1541160
crossref_primary_10_3390_genes10030211
crossref_primary_10_1038_s41598_022_16366_1
crossref_primary_10_1016_j_pestbp_2020_104724
crossref_primary_10_1186_1756_3305_7_409
crossref_primary_10_1093_infdis_jix570
crossref_primary_10_1111_eva_12470
crossref_primary_10_1111_mec_15645
crossref_primary_10_1016_j_pestbp_2022_105061
crossref_primary_10_1186_s40249_023_01132_w
crossref_primary_10_1111_mve_12089
crossref_primary_10_1186_s12879_022_07596_9
crossref_primary_10_1186_s12936_025_05321_w
crossref_primary_10_1186_s12936_022_04123_8
crossref_primary_10_3389_fmolb_2023_1257859
crossref_primary_10_1017_wsc_2018_38
crossref_primary_10_1186_s13071_025_06675_5
crossref_primary_10_1016_j_cois_2015_12_002
crossref_primary_10_12688_wellcomeopenres_15818_2
crossref_primary_10_12688_wellcomeopenres_15818_1
crossref_primary_10_1016_j_pt_2024_06_008
crossref_primary_10_1186_s12936_023_04667_3
crossref_primary_10_1093_trstmh_trv017
crossref_primary_10_1186_s13071_018_3253_2
crossref_primary_10_1126_scitranslmed_aat7386
crossref_primary_10_12688_wellcomeopenres_10213_2
crossref_primary_10_1038_s41598_022_11333_2
crossref_primary_10_1186_s12864_025_11260_2
crossref_primary_10_12688_wellcomeopenres_10213_1
crossref_primary_10_1002_ece3_4916
crossref_primary_10_1101_gr_245795_118
crossref_primary_10_1038_s41598_019_51234_5
crossref_primary_10_1371_journal_pone_0247944
crossref_primary_10_3390_genes12040561
crossref_primary_10_1111_mve_12706
crossref_primary_10_1186_s12936_016_1615_9
crossref_primary_10_1186_s13071_015_0797_2
crossref_primary_10_1016_j_pestbp_2022_105084
crossref_primary_10_1371_journal_pgen_1009963
crossref_primary_10_1038_srep12475
crossref_primary_10_1186_s12936_023_04791_0
crossref_primary_10_1016_j_pt_2015_11_010
crossref_primary_10_12688_wellcomeopenres_15061_2
crossref_primary_10_1016_j_cois_2019_12_001
crossref_primary_10_12688_wellcomeopenres_15061_1
crossref_primary_10_1371_journal_pone_0213949
crossref_primary_10_1016_j_ygeno_2015_11_004
crossref_primary_10_3390_insects13050434
crossref_primary_10_1186_s13071_022_05174_1
crossref_primary_10_1101_gr_189225_115
crossref_primary_10_1111_mec_13673
crossref_primary_10_1186_s12863_017_0539_x
crossref_primary_10_3390_genes13061102
crossref_primary_10_1016_j_pestbp_2023_105569
crossref_primary_10_1016_j_jhazmat_2020_122971
crossref_primary_10_3390_ijms252413298
crossref_primary_10_1186_s12879_022_07795_4
crossref_primary_10_1016_j_actatropica_2023_106973
crossref_primary_10_1128_Spectrum_00157_21
crossref_primary_10_1186_s12936_019_2757_3
crossref_primary_10_1002_ps_5810
crossref_primary_10_1534_g3_117_040147
crossref_primary_10_1186_s12936_020_03503_2
crossref_primary_10_1186_s13071_021_04609_5
crossref_primary_10_1016_j_ygeno_2024_110798
crossref_primary_10_1002_ps_5374
crossref_primary_10_1371_journal_pmed_1002451
crossref_primary_10_1111_eva_13641
crossref_primary_10_1371_journal_pone_0110058
crossref_primary_10_1002_1873_3468_13718
crossref_primary_10_1093_molbev_msz040
crossref_primary_10_3390_genes11111314
crossref_primary_10_1016_j_ibmb_2025_104299
crossref_primary_10_12688_wellcomeopenres_19126_1
crossref_primary_10_3390_genes10100790
crossref_primary_10_1016_j_pestbp_2015_11_002
crossref_primary_10_1186_s12864_025_11755_y
crossref_primary_10_1186_s13071_016_1787_8
crossref_primary_10_1038_srep24707
crossref_primary_10_12688_wellcomeopenres_19126_2
crossref_primary_10_1016_j_cois_2020_03_006
crossref_primary_10_1002_arch_70045
crossref_primary_10_1038_s41598_018_31360_2
crossref_primary_10_1186_s12915_023_01610_5
crossref_primary_10_3390_ijms26051854
crossref_primary_10_1016_j_pestbp_2019_07_002
crossref_primary_10_1111_1744_7917_13151
crossref_primary_10_3390_biom14070758
crossref_primary_10_1073_pnas_1914633116
crossref_primary_10_1016_j_pestbp_2015_01_004
crossref_primary_10_1186_s12936_024_05106_7
crossref_primary_10_1371_journal_pntd_0004780
crossref_primary_10_1371_journal_pone_0305207
crossref_primary_10_1093_jme_tjaa075
crossref_primary_10_1007_s00018_022_04171_y
crossref_primary_10_1038_s41598_024_83689_6
crossref_primary_10_1002_ps_5318
crossref_primary_10_1002_ps_5316
crossref_primary_10_1016_j_ibmb_2020_103364
crossref_primary_10_1038_s42003_025_07560_8
crossref_primary_10_1371_journal_pgen_1005618
crossref_primary_10_1016_j_ibmb_2025_104355
crossref_primary_10_1016_j_pt_2015_12_001
crossref_primary_10_1038_s42003_025_08658_9
crossref_primary_10_3390_genes11020143
crossref_primary_10_3390_pathogens11091021
crossref_primary_10_1186_s12936_023_04815_9
crossref_primary_10_1371_journal_pone_0230984
crossref_primary_10_3390_pathogens11060638
crossref_primary_10_1038_s41598_023_32336_7
crossref_primary_10_1186_1756_3305_7_274
crossref_primary_10_1371_journal_pgen_1009888
crossref_primary_10_12688_wellcomeopenres_16876_2
crossref_primary_10_12688_wellcomeopenres_16876_1
crossref_primary_10_1186_s12936_017_2099_y
crossref_primary_10_1186_s13071_022_05321_8
crossref_primary_10_1186_s13071_024_06315_4
crossref_primary_10_1038_s41598_024_84432_x
crossref_primary_10_1111_pbi_12711
crossref_primary_10_1186_gb4162
crossref_primary_10_1016_j_ijbiomac_2022_12_174
crossref_primary_10_1038_s41598_019_43634_4
crossref_primary_10_1186_s13071_016_1735_7
crossref_primary_10_1038_s41598_021_86665_6
crossref_primary_10_1038_s41467_023_40693_0
crossref_primary_10_1016_j_pestbp_2025_106305
crossref_primary_10_1371_journal_pone_0249440
crossref_primary_10_1371_journal_pone_0151786
crossref_primary_10_1038_s41467_024_49792_y
crossref_primary_10_1016_j_pestbp_2023_105410
crossref_primary_10_1186_s13071_020_04342_5
crossref_primary_10_1186_s12936_023_04673_5
crossref_primary_10_12688_wellcomeopenres_15013_2
crossref_primary_10_1186_s13071_017_2232_3
crossref_primary_10_12688_wellcomeopenres_15013_1
crossref_primary_10_3390_molecules27196343
crossref_primary_10_1038_s41598_019_49892_6
crossref_primary_10_1371_journal_pone_0102746
crossref_primary_10_1038_s41598_022_14043_x
crossref_primary_10_1111_eva_12867
crossref_primary_10_1186_s12864_015_2114_z
crossref_primary_10_1007_s00709_014_0697_x
crossref_primary_10_1186_s12879_022_07138_3
Cites_doi 10.1107/S0907444909047337
10.1107/S0907444909052925
10.1093/nar/22.22.4673
10.1016/j.ibmb.2010.12.005
10.1111/j.1365-294X.2005.02754.x
10.1073/pnas.0709249105
10.1016/j.tig.2006.06.005
10.1016/j.trstmh.2008.02.022
10.1073/pnas.0303793101
10.1093/genetics/132.2.583
10.1126/science.1074170
10.1073/pnas.1216705110
10.1046/j.1365-294x.2000.01020.x
10.1371/journal.pone.0011010
10.1016/j.jsb.2008.08.003
10.1038/nprot.2008.73
10.1042/bj3570065
10.1016/j.gene.2013.01.036
10.1016/S0965-1748(99)00035-1
10.1073/pnas.1217229109
10.1371/journal.pone.0027760
10.1016/j.trstmh.2009.02.014
10.1016/S1672-0229(07)60007-2
10.1146/annurev.ento.45.1.371
10.1371/journal.pone.0011872
10.1016/S0965-1748(97)00109-4
10.1038/ng.101
10.1073/pnas.1203452109
10.1016/j.ab.2012.09.011
10.1371/journal.pgen.1000286
10.1016/j.ibmb.2007.02.008
10.1107/S0021889807021206
10.1042/bj3590295
10.1093/molbev/msr121
10.1073/pnas.0409348102
10.1007/978-1-59745-251-9_17
10.1016/S0965-1748(00)00123-5
10.1016/j.ibmb.2011.03.012
ContentType Journal Article
Copyright Riveron et al.; licensee BioMed Central Ltd. 2014
Copyright © 2014 Riveron et al.; licensee BioMed Central Ltd. 2014 Riveron et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Riveron et al.; licensee BioMed Central Ltd. 2014
– notice: Copyright © 2014 Riveron et al.; licensee BioMed Central Ltd. 2014 Riveron et al.; licensee BioMed Central Ltd.
DBID FBQ
C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7TM
8FD
C1K
F1W
FR3
H95
H97
L.G
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1186/gb-2014-15-2-r27
DatabaseName AGRIS
Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Entomology Abstracts (Full archive)
Nucleic Acids Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
MEDLINE
Entomology Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1465-6914
1474-760X
EndPage 27
ExternalDocumentID PMC4054843
24565444
10_1186_gb_2014_15_2_r27
US201400090714
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Benin
Africa
GeographicLocations_xml – name: Benin
– name: Africa
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 083515/Z/07/Z
– fundername: Wellcome Trust
  grantid: 101893
GroupedDBID 0R~
29H
2WC
4.4
5GY
AAFWJ
ADBBV
AENEX
AHYZX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BFQNJ
BMC
C1A
C24
CS3
DIK
E3Z
EBS
EJD
F5P
FBQ
HYE
HZ~
KQ8
O5R
O5S
O9-
OK1
RBZ
ROL
RPM
SBL
SJN
TR2
WOQ
ZA5
---
53G
5VS
7X7
AAHBH
AAJSJ
AASML
ACGFO
ACGFS
ACJQM
ACPRK
ADUKV
AEGXH
AFPKN
AHBYD
AHSBF
AIAGR
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BCNDV
C6C
EBD
EBLON
EMOBN
GROUPED_DOAJ
GX1
IAO
IGS
IHR
ISR
ITC
KPI
RSV
SOJ
SV3
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7TM
8FD
C1K
F1W
FR3
H95
H97
L.G
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c662t-382f0b253ac7828d72c7fa85794d17c07d309cf8cc82f93ef7804cbfe932e5d43
IEDL.DBID RSV
ISICitedReferencesCount 255
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000336256600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1465-6906
1474-760X
IngestDate Thu Aug 21 13:33:19 EDT 2025
Fri Sep 05 14:24:05 EDT 2025
Thu Sep 04 19:46:41 EDT 2025
Fri Jul 11 04:34:58 EDT 2025
Thu Apr 03 06:59:35 EDT 2025
Sat Nov 29 04:55:43 EST 2025
Tue Nov 18 19:58:41 EST 2025
Sat Sep 06 07:24:35 EDT 2025
Tue Nov 07 23:07:38 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Root Mean Square Deviation
Pyrethroid Resistance
Indoor Residual Spray
Deltamethrin
L119F Mutation
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c662t-382f0b253ac7828d72c7fa85794d17c07d309cf8cc82f93ef7804cbfe932e5d43
Notes http://dx.doi.org/10.1186/gb-2014-15-2-r27
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/10.1186/gb-2014-15-2-r27
PMID 24565444
PQID 1512323612
PQPubID 23462
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4054843
proquest_miscellaneous_1999955854
proquest_miscellaneous_1555620006
proquest_miscellaneous_1512323612
pubmed_primary_24565444
crossref_primary_10_1186_gb_2014_15_2_r27
crossref_citationtrail_10_1186_gb_2014_15_2_r27
springer_journals_10_1186_gb_2014_15_2_r27
fao_agris_US201400090714
PublicationCentury 2000
PublicationDate 20140225
PublicationDateYYYYMMDD 2014-02-25
PublicationDate_xml – month: 2
  year: 2014
  text: 20140225
  day: 25
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Genome biology
PublicationTitleAbbrev Genome Biol
PublicationTitleAlternate Genome Biol
PublicationYear 2014
Publisher Springer-Verlag
BioMed Central
Publisher_xml – name: Springer-Verlag
– name: BioMed Central
References World Health Organization (3228_CR1) 2012
H Ranson (3228_CR7) 2001; 359
C Claudianos (3228_CR18) 1999; 29
JD Thompson (3228_CR30) 1994; 22
W Kabsch (3228_CR38) 2010; 66
N Lumjuan (3228_CR8) 2011; 41
CS Wondji (3228_CR22) 2012; 109
R Djouaka (3228_CR6) 2011; 6
JG Vontas (3228_CR15) 2001; 357
M Nei (3228_CR37) 1986; 3
JC Morgan (3228_CR9) 2010; 5
JP David (3228_CR3) 2005; 102
Z Zhang (3228_CR36) 2006; 4
PN Okoye (3228_CR19) 2008; 102
M Markstein (3228_CR29) 2008; 40
J Rozas (3228_CR31) 2009; 537
N Cuamba (3228_CR21) 2010; 5
PD Adams (3228_CR40) 2010; 66
I Kostaropoulos (3228_CR14) 2001; 31
J Hemingway (3228_CR2) 2000; 45
PJ Daborn (3228_CR13) 2007; 37
S Biswas (3228_CR24) 2006; 22
JM Riveron (3228_CR5) 2013; 110
CS Wondji (3228_CR20) 2011; 41
TA Schlenke (3228_CR25) 2004; 101
TD Schmittgen (3228_CR28) 2008; 3
H Huang (3228_CR23) 2012; 431
PM Campbell (3228_CR17) 1998; 28
RM Kwiatkowska (3228_CR34) 2013; 519
RR Hudson (3228_CR35) 1992; 132
P Muller (3228_CR4) 2008; 4
K Tamura (3228_CR32) 2011; 28
AJ McCoy (3228_CR39) 2007; 40
TL Chiu (3228_CR11) 2008; 105
Y Wang (3228_CR27) 2008; 164
SN Mitchell (3228_CR12) 2012; 109
AP Michel (3228_CR26) 2005; 14
PJ Daborn (3228_CR16) 2002; 297
M Clement (3228_CR33) 2000; 9
U Ramphul (3228_CR10) 2009; 103
10761582 - Annu Rev Entomol. 2000;45:371-91
18778777 - J Struct Biol. 2008 Nov;164(2):228-35
18311141 - Nat Genet. 2008 Apr;40(4):476-83
15753317 - Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):4080-4
19378153 - Methods Mol Biol. 2009;537:337-50
1427045 - Genetics. 1992 Oct;132(2):583-9
12351787 - Science. 2002 Sep 27;297(5590):2253-6
21546353 - Mol Biol Evol. 2011 Oct;28(10):2731-9
17456446 - Insect Biochem Mol Biol. 2007 May;37(5):512-9
19461840 - J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674
18546601 - Nat Protoc. 2008;3(6):1101-8
21501685 - Insect Biochem Mol Biol. 2011 Jul;41(7):484-91
18405930 - Trans R Soc Trop Med Hyg. 2008 Jun;102(6):591-8
23000005 - Anal Biochem. 2012 Dec 15;431(2):77-83
10451921 - Insect Biochem Mol Biol. 1999 Aug;29(8):675-86
19043575 - PLoS Genet. 2008 Nov;4(11):e1000286
19303125 - Trans R Soc Trop Med Hyg. 2009 Nov;103(11):1121-6
16808986 - Trends Genet. 2006 Aug;22(8):437-46
16313589 - Mol Ecol. 2005 Dec;14(14):4235-48
20124692 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32
11415437 - Biochem J. 2001 Jul 1;357(Pt 1):65-72
11050560 - Mol Ecol. 2000 Oct;9(10):1657-9
23248325 - Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):252-7
20124702 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21
3444411 - Mol Biol Evol. 1986 Sep;3(5):418-26
17531802 - Genomics Proteomics Bioinformatics. 2006 Nov;4(4):259-63
20686697 - PLoS One. 2010;5(7):e11872
18577597 - Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):8855-60
21195177 - Insect Biochem Mol Biol. 2011 Mar;41(3):203-9
11583575 - Biochem J. 2001 Oct 15;359(Pt 2):295-304
23118337 - Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19063-70
22460795 - Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6147-52
20544036 - PLoS One. 2010;5(6):e11010
11222940 - Insect Biochem Mol Biol. 2001 Mar 15;31(4-5):313-9
14745026 - Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1626-31
22110757 - PLoS One. 2011;6(11):e27760
7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80
23380570 - Gene. 2013 Apr 25;519(1):98-106
References_xml – volume: 66
  start-page: 125
  year: 2010
  ident: 3228_CR38
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444909047337
– volume: 3
  start-page: 418
  year: 1986
  ident: 3228_CR37
  publication-title: Mol Biol Evol
– volume: 66
  start-page: 213
  year: 2010
  ident: 3228_CR40
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444909052925
– volume: 22
  start-page: 4673
  year: 1994
  ident: 3228_CR30
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/22.22.4673
– volume: 41
  start-page: 203
  year: 2011
  ident: 3228_CR8
  publication-title: Insect Biochem Mol Biol
  doi: 10.1016/j.ibmb.2010.12.005
– volume: 14
  start-page: 4235
  year: 2005
  ident: 3228_CR26
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2005.02754.x
– volume: 105
  start-page: 8855
  year: 2008
  ident: 3228_CR11
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0709249105
– volume: 22
  start-page: 437
  year: 2006
  ident: 3228_CR24
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2006.06.005
– volume: 102
  start-page: 591
  year: 2008
  ident: 3228_CR19
  publication-title: Trans R Soc Trop Med Hyg
  doi: 10.1016/j.trstmh.2008.02.022
– volume: 101
  start-page: 1626
  year: 2004
  ident: 3228_CR25
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0303793101
– volume: 132
  start-page: 583
  year: 1992
  ident: 3228_CR35
  publication-title: Genetics
  doi: 10.1093/genetics/132.2.583
– volume: 297
  start-page: 2253
  year: 2002
  ident: 3228_CR16
  publication-title: Science
  doi: 10.1126/science.1074170
– volume: 110
  start-page: 252
  year: 2013
  ident: 3228_CR5
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1216705110
– volume: 9
  start-page: 1657
  year: 2000
  ident: 3228_CR33
  publication-title: Mol Ecol
  doi: 10.1046/j.1365-294x.2000.01020.x
– volume: 5
  start-page: e11010
  year: 2010
  ident: 3228_CR21
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0011010
– volume: 164
  start-page: 228
  year: 2008
  ident: 3228_CR27
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2008.08.003
– volume: 3
  start-page: 1101
  year: 2008
  ident: 3228_CR28
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2008.73
– volume: 357
  start-page: 65
  year: 2001
  ident: 3228_CR15
  publication-title: Biochem J
  doi: 10.1042/bj3570065
– volume: 519
  start-page: 98
  year: 2013
  ident: 3228_CR34
  publication-title: Gene
  doi: 10.1016/j.gene.2013.01.036
– volume: 29
  start-page: 675
  year: 1999
  ident: 3228_CR18
  publication-title: Insect Biochem Mol Biol
  doi: 10.1016/S0965-1748(99)00035-1
– volume: 109
  start-page: 19063
  year: 2012
  ident: 3228_CR22
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1217229109
– volume: 6
  start-page: e27760
  year: 2011
  ident: 3228_CR6
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0027760
– volume: 103
  start-page: 1121
  year: 2009
  ident: 3228_CR10
  publication-title: Trans R Soc Trop Med Hyg
  doi: 10.1016/j.trstmh.2009.02.014
– volume: 4
  start-page: 259
  year: 2006
  ident: 3228_CR36
  publication-title: Genomics Proteomics Bioinformatics
  doi: 10.1016/S1672-0229(07)60007-2
– volume: 45
  start-page: 369
  year: 2000
  ident: 3228_CR2
  publication-title: Annual Review Entomol
  doi: 10.1146/annurev.ento.45.1.371
– volume: 5
  start-page: e11872
  year: 2010
  ident: 3228_CR9
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0011872
– volume: 28
  start-page: 139
  year: 1998
  ident: 3228_CR17
  publication-title: Insect Biochem Mol Biol
  doi: 10.1016/S0965-1748(97)00109-4
– volume-title: Global Plan for Insecticide Resistance Management (GPIRM)
  year: 2012
  ident: 3228_CR1
– volume: 40
  start-page: 476
  year: 2008
  ident: 3228_CR29
  publication-title: Nat Genet
  doi: 10.1038/ng.101
– volume: 109
  start-page: 6147
  year: 2012
  ident: 3228_CR12
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1203452109
– volume: 431
  start-page: 77
  year: 2012
  ident: 3228_CR23
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2012.09.011
– volume: 4
  start-page: e1000286
  year: 2008
  ident: 3228_CR4
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000286
– volume: 37
  start-page: 512
  year: 2007
  ident: 3228_CR13
  publication-title: Insect Biochem Mol Biol
  doi: 10.1016/j.ibmb.2007.02.008
– volume: 40
  start-page: 658
  year: 2007
  ident: 3228_CR39
  publication-title: J Appl Crystallogr
  doi: 10.1107/S0021889807021206
– volume: 359
  start-page: 295
  year: 2001
  ident: 3228_CR7
  publication-title: Biochem J
  doi: 10.1042/bj3590295
– volume: 28
  start-page: 2731
  year: 2011
  ident: 3228_CR32
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msr121
– volume: 102
  start-page: 4080
  year: 2005
  ident: 3228_CR3
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0409348102
– volume: 537
  start-page: 337
  year: 2009
  ident: 3228_CR31
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-59745-251-9_17
– volume: 31
  start-page: 313
  year: 2001
  ident: 3228_CR14
  publication-title: Insect Biochem Mol Biol
  doi: 10.1016/S0965-1748(00)00123-5
– volume: 41
  start-page: 484
  year: 2011
  ident: 3228_CR20
  publication-title: Insect Biochem Mol Biol
  doi: 10.1016/j.ibmb.2011.03.012
– reference: 16313589 - Mol Ecol. 2005 Dec;14(14):4235-48
– reference: 21501685 - Insect Biochem Mol Biol. 2011 Jul;41(7):484-91
– reference: 7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80
– reference: 1427045 - Genetics. 1992 Oct;132(2):583-9
– reference: 23118337 - Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19063-70
– reference: 20544036 - PLoS One. 2010;5(6):e11010
– reference: 11050560 - Mol Ecol. 2000 Oct;9(10):1657-9
– reference: 20686697 - PLoS One. 2010;5(7):e11872
– reference: 10451921 - Insect Biochem Mol Biol. 1999 Aug;29(8):675-86
– reference: 23380570 - Gene. 2013 Apr 25;519(1):98-106
– reference: 19303125 - Trans R Soc Trop Med Hyg. 2009 Nov;103(11):1121-6
– reference: 11415437 - Biochem J. 2001 Jul 1;357(Pt 1):65-72
– reference: 22110757 - PLoS One. 2011;6(11):e27760
– reference: 12351787 - Science. 2002 Sep 27;297(5590):2253-6
– reference: 18546601 - Nat Protoc. 2008;3(6):1101-8
– reference: 21195177 - Insect Biochem Mol Biol. 2011 Mar;41(3):203-9
– reference: 20124692 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32
– reference: 18405930 - Trans R Soc Trop Med Hyg. 2008 Jun;102(6):591-8
– reference: 18778777 - J Struct Biol. 2008 Nov;164(2):228-35
– reference: 19043575 - PLoS Genet. 2008 Nov;4(11):e1000286
– reference: 18311141 - Nat Genet. 2008 Apr;40(4):476-83
– reference: 11222940 - Insect Biochem Mol Biol. 2001 Mar 15;31(4-5):313-9
– reference: 20124702 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21
– reference: 19461840 - J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674
– reference: 18577597 - Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):8855-60
– reference: 19378153 - Methods Mol Biol. 2009;537:337-50
– reference: 15753317 - Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):4080-4
– reference: 22460795 - Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6147-52
– reference: 10761582 - Annu Rev Entomol. 2000;45:371-91
– reference: 16808986 - Trends Genet. 2006 Aug;22(8):437-46
– reference: 3444411 - Mol Biol Evol. 1986 Sep;3(5):418-26
– reference: 23248325 - Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):252-7
– reference: 14745026 - Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1626-31
– reference: 17531802 - Genomics Proteomics Bioinformatics. 2006 Nov;4(4):259-63
– reference: 21546353 - Mol Biol Evol. 2011 Oct;28(10):2731-9
– reference: 17456446 - Insect Biochem Mol Biol. 2007 May;37(5):512-9
– reference: 23000005 - Anal Biochem. 2012 Dec 15;431(2):77-83
– reference: 11583575 - Biochem J. 2001 Oct 15;359(Pt 2):295-304
SSID ssj0017866
ssj0019426
Score 2.574543
Snippet BACKGROUND: Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying...
Background Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying...
Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying molecular basis,...
Background: Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage R27
SubjectTerms Africa
Alleles
Animal Genetics and Genomics
Animals
Anopheles - drug effects
Anopheles - genetics
Anopheles funestus
Benin
Bioinformatics
Biomedical and Life Sciences
cross resistance
Crystallography, X-Ray
DDT (pesticide)
DDT - toxicity
Drosophila melanogaster
evolution
Evolutionary Biology
gene expression regulation
gene flow
gene overexpression
genes
geographical distribution
glutathione transferase
Glutathione Transferase - chemistry
Glutathione Transferase - genetics
Human Genetics
Humans
Insect Vectors - drug effects
Insect Vectors - genetics
insecticide resistance
Insecticide Resistance - genetics
Life Sciences
malaria
Malaria - genetics
Malaria - transmission
Microbial Genetics and Genomics
Molecular Sequence Data
Mutation
permethrin
Plant Genetics and Genomics
point mutation
Pyrethrins - metabolism
resistance management
vector control
Title single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector
URI https://link.springer.com/article/10.1186/gb-2014-15-2-r27
https://www.ncbi.nlm.nih.gov/pubmed/24565444
https://www.proquest.com/docview/1512323612
https://www.proquest.com/docview/1555620006
https://www.proquest.com/docview/1999955854
https://pubmed.ncbi.nlm.nih.gov/PMC4054843
Volume 15
WOSCitedRecordID wos000336256600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1465-6914
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017866
  issn: 1465-6906
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1465-6914
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1465-6906
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1465-6914
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1465-6906
  databaseCode: RSV
  dateStart: 20000201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfWAdJe-IaVj8pIvIAULXGc2nkciMHThNYNVbxYjnMuQW0y9WNo4p_nzmkqFUYlePGLz4ll3_l-5599Zuy111CCxCAHpHSR9ClEeQplVHgMVqBUNi6K8NiEOj3V43H-eY-J7i5MOO3eUZJhpQ5mrYdHkwJnNJFRkkUimgvVY7fQ2WkyxrPRlw1zkKPL6ejIG1ptuZ-et81NyPLPA5K_saTB-Zzc-59u32d311CTH7e68YDtQf2Q3Wkfn7x-xH4ec9onmAKfrVo-nlc1RzzIP47OQXDULOBEy_9YcOyeoz113ng-gyUqDu31TafXnLxgiQ0XtHC6qgSO8TthUlQm-p7lM_u9mWOJIXRl-VVgCR6zi5MP5-8_ReunGCI3HIpllGrh40JkqXUIKXSphFPe6gytuUyUi1WZxrnz2jkUxMn2lNfIFR4QHkJWyvQJ26-bGg4ZzwoQuY2lAldIYTPtdAzeQaKSMs2l67OjboaMW-cpp-cypibEK3poJoWhITVJZoTBIe2zN5sWl22Ojh2yhzjpxk5wCTUXI6ojmEnXuPrsVacJBm2MiBNbQ7NaGEJFKWWpEbtkMoSS5P13yCAazzMM0PBfT1sN23Q4ENBSYo3a0r2NAOUB366pq28hHzhibqll2mdvOw0064Vo8ddxePYvws_ZQdBhusmfvWD7y_kKXrLb7mpZLeYD1lNjPQibGVievfs6CBb5CxMeMzo
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa2AYIXfsPKTyPxAlK0xHEa53FCjCFGhWiH9mY59rkEtQlq2qGJf547t6lUGJXgpS8-p5b92fedP_vM2EuvwIHEIAektJH0KURFCi4qPQYr4HITl2V4bCIfDNTZWfFph4nuLkw47d5JkmGlDtNa9Q_GJY5oIqMki0Q0E_kuuyLRX9Exvs_DL2vloECX08mRl9TacD-73jSXMcs_D0j-ppIG53N063-afZvdXFFNfrjExh22A_Vddm35-OTFPfbzkNM-wQT4dLHU43lVc-SD_N1wBIIjsoCTLP-j5dg8S3vqvPF8CnMEDu31TSYXnLygw4otLZy2csAxfidOimCi7xk-Nd-aGf5iCF0Zfh5Ugvvs9Ojt6M1xtHqKIbL9vphHqRI-LkWWGouUQrlc2NwbleFsdklu49ylcWG9shYNcbA95TWypQekh5A5mT5ge3VTwz7jWQmiMLHMwZZSmExZFYO3kOSJSwtpe-ygGyFtV3nK6bmMiQ7xiurrcampS3WSaaGxS3vs1brG92WOji22-zjo2oxxCdWnQyojmknXuHrsRYcEjXOMhBNTQ7NoNbGilLLUiG02GVJJ8v5bbJCNFxkGaPhfD5cIWzc4CNBSYkm-gb21AeUB3yypq68hHzhybqlk2mOvOwTq1ULU_rUfHv2L8XN2_Xj08USfvB98eMxuBDzTrf7sCdubzxbwlF215_OqnT0Lc_EX3mczMg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbY5SEuvGHL00hcQIqaOE7jHFdAAYGqlbqL9mY59rgEtcmqSRet-PPMJE2lwlIJccnF4zycz_Y3_uwZxl55BQ4kOjkgpQ2kjyHIYnBB7tFZAZeaMM_bZBPpZKJOT7Oj9YJb3e927yXJ7kwDRWkqm-GZ810XV6PhLMe_G8kgSgIRLEW6x65KShlE3vr060ZFyHD66aXJS2ptTUV73lSXscw_N0v-ppi2E9H49v9-wh12a01B-WGHmbvsCpT32PUuKeXFffbzkNP6wRz4YtXp9LwoOfJE_mF6DIIj4oCTXP-j5viqltbaeeX5AhoEFK0BzucXnGZHhxVrGlBt4YCjX09cFUFG9zN8Yb5XS7yia10Yft6qBw_Yyfj98duPwTpFQ2BHI9EEsRI-zEUSG4tUQ7lU2NQblWAvd1Fqw9TFYWa9shYNEQSe4h3Z3APSRkicjB-y_bIq4YDxJAeRmVCmYHMpTKKsCsFbiNLIxZm0Azbs_5a26_jllEZjrls_Ro30LNfUpDpKtNDYpAP2elPjrIvdscP2AAGgzQyHVn0ypTKin3S8a8Be9qjQ2PdIUDElVKtaE1uKKXqN2GWTIMUkVrDDBll6lqDjhs961KFt88KtMC0llqRbONwYUHzw7ZKy-NbGCUcuLpWMB-xNj0a9HqDqv7bD438xfsFuHL0b6y-fJp-fsJstnOmwf_KU7TfLFTxj1-x5U9TL5223_AVTPTwW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+single+mutation+in+the+GSTe2+gene+allows+tracking+of+metabolically+based+insecticide+resistance+in+a+major+malaria+vector&rft.jtitle=Genome+biology&rft.au=Riveron%2C+Jacob+M&rft.au=Yunta%2C+Cristina&rft.au=Ibrahim%2C+Sulaiman+S&rft.au=Djouaka%2C+Rousseau&rft.date=2014-02-25&rft.issn=1474-760X&rft.eissn=1474-760X&rft.volume=15&rft.issue=2&rft.spage=R27&rft_id=info:doi/10.1186%2Fgb-2014-15-2-r27&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-6906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-6906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-6906&client=summon