single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector
BACKGROUND: Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying molecular basis, crucial for successful resistance management, remains poorly characterized. RESULTS: Here, we demonstrate that the single amino ac...
Saved in:
| Published in: | Genome biology Vol. 15; no. 2; pp. R27 - 27 |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer-Verlag
25.02.2014
BioMed Central |
| Subjects: | |
| ISSN: | 1465-6906, 1474-760X, 1465-6914, 1474-760X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | BACKGROUND: Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying molecular basis, crucial for successful resistance management, remains poorly characterized. RESULTS: Here, we demonstrate that the single amino acid change L119F in an upregulated glutathione S-transferase gene, GSTe2, confers high levels of metabolic resistance to DDT in the malaria vector Anopheles funestus. Genome-wide transcription analysis revealed that GSTe2 was the most over-expressed detoxification gene in DDT and permethrin-resistant mosquitoes from Benin. Transgenic expression of GSTe2 in Drosophila melanogaster demonstrated that over-transcription of this gene alone confers DDT resistance and cross-resistance to pyrethroids. Analysis of GSTe2 polymorphism established that the point mutation is tightly associated with metabolic resistance to DDT and its geographical distribution strongly correlates with DDT resistance patterns across Africa. Functional characterization of recombinant GSTe2 further supports the role of the L119F mutation, with the resistant allele being more efficient at metabolizing DDT than the susceptible one. Importantly, we also show that GSTe2 directly metabolizes the pyrethroid permethrin. Structural analysis reveals that the mutation confers resistance by enlarging the GSTe2 DDT-binding cavity, leading to increased DDT access and metabolism. Furthermore, we show that GSTe2 is under strong directional selection in resistant populations, and a restriction of gene flow is observed between African regions, enabling the prediction of the future spread of this resistance. CONCLUSIONS: This first DNA-based metabolic resistance marker in mosquitoes provides an essential tool to track the evolution of resistance and to design suitable resistance management strategies. |
|---|---|
| AbstractList | BACKGROUND: Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying molecular basis, crucial for successful resistance management, remains poorly characterized. RESULTS: Here, we demonstrate that the single amino acid change L119F in an upregulated glutathione S-transferase gene, GSTe2, confers high levels of metabolic resistance to DDT in the malaria vector Anopheles funestus. Genome-wide transcription analysis revealed that GSTe2 was the most over-expressed detoxification gene in DDT and permethrin-resistant mosquitoes from Benin. Transgenic expression of GSTe2 in Drosophila melanogaster demonstrated that over-transcription of this gene alone confers DDT resistance and cross-resistance to pyrethroids. Analysis of GSTe2 polymorphism established that the point mutation is tightly associated with metabolic resistance to DDT and its geographical distribution strongly correlates with DDT resistance patterns across Africa. Functional characterization of recombinant GSTe2 further supports the role of the L119F mutation, with the resistant allele being more efficient at metabolizing DDT than the susceptible one. Importantly, we also show that GSTe2 directly metabolizes the pyrethroid permethrin. Structural analysis reveals that the mutation confers resistance by enlarging the GSTe2 DDT-binding cavity, leading to increased DDT access and metabolism. Furthermore, we show that GSTe2 is under strong directional selection in resistant populations, and a restriction of gene flow is observed between African regions, enabling the prediction of the future spread of this resistance. CONCLUSIONS: This first DNA-based metabolic resistance marker in mosquitoes provides an essential tool to track the evolution of resistance and to design suitable resistance management strategies. Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying molecular basis, crucial for successful resistance management, remains poorly characterized.BACKGROUNDMetabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying molecular basis, crucial for successful resistance management, remains poorly characterized.Here, we demonstrate that the single amino acid change L119F in an upregulated glutathione S-transferase gene, GSTe2, confers high levels of metabolic resistance to DDT in the malaria vector Anopheles funestus. Genome-wide transcription analysis revealed that GSTe2 was the most over-expressed detoxification gene in DDT and permethrin-resistant mosquitoes from Benin. Transgenic expression of GSTe2 in Drosophila melanogaster demonstrated that over-transcription of this gene alone confers DDT resistance and cross-resistance to pyrethroids. Analysis of GSTe2 polymorphism established that the point mutation is tightly associated with metabolic resistance to DDT and its geographical distribution strongly correlates with DDT resistance patterns across Africa. Functional characterization of recombinant GSTe2 further supports the role of the L119F mutation, with the resistant allele being more efficient at metabolizing DDT than the susceptible one. Importantly, we also show that GSTe2 directly metabolizes the pyrethroid permethrin. Structural analysis reveals that the mutation confers resistance by enlarging the GSTe2 DDT-binding cavity, leading to increased DDT access and metabolism. Furthermore, we show that GSTe2 is under strong directional selection in resistant populations, and a restriction of gene flow is observed between African regions, enabling the prediction of the future spread of this resistance.RESULTSHere, we demonstrate that the single amino acid change L119F in an upregulated glutathione S-transferase gene, GSTe2, confers high levels of metabolic resistance to DDT in the malaria vector Anopheles funestus. Genome-wide transcription analysis revealed that GSTe2 was the most over-expressed detoxification gene in DDT and permethrin-resistant mosquitoes from Benin. Transgenic expression of GSTe2 in Drosophila melanogaster demonstrated that over-transcription of this gene alone confers DDT resistance and cross-resistance to pyrethroids. Analysis of GSTe2 polymorphism established that the point mutation is tightly associated with metabolic resistance to DDT and its geographical distribution strongly correlates with DDT resistance patterns across Africa. Functional characterization of recombinant GSTe2 further supports the role of the L119F mutation, with the resistant allele being more efficient at metabolizing DDT than the susceptible one. Importantly, we also show that GSTe2 directly metabolizes the pyrethroid permethrin. Structural analysis reveals that the mutation confers resistance by enlarging the GSTe2 DDT-binding cavity, leading to increased DDT access and metabolism. Furthermore, we show that GSTe2 is under strong directional selection in resistant populations, and a restriction of gene flow is observed between African regions, enabling the prediction of the future spread of this resistance.This first DNA-based metabolic resistance marker in mosquitoes provides an essential tool to track the evolution of resistance and to design suitable resistance management strategies.CONCLUSIONSThis first DNA-based metabolic resistance marker in mosquitoes provides an essential tool to track the evolution of resistance and to design suitable resistance management strategies. Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying molecular basis, crucial for successful resistance management, remains poorly characterized. Here, we demonstrate that the single amino acid change L119F in an upregulated glutathione S-transferase gene, GSTe2, confers high levels of metabolic resistance to DDT in the malaria vector Anopheles funestus. Genome-wide transcription analysis revealed that GSTe2 was the most over-expressed detoxification gene in DDT and permethrin-resistant mosquitoes from Benin. Transgenic expression of GSTe2 in Drosophila melanogaster demonstrated that over-transcription of this gene alone confers DDT resistance and cross-resistance to pyrethroids. Analysis of GSTe2 polymorphism established that the point mutation is tightly associated with metabolic resistance to DDT and its geographical distribution strongly correlates with DDT resistance patterns across Africa. Functional characterization of recombinant GSTe2 further supports the role of the L119F mutation, with the resistant allele being more efficient at metabolizing DDT than the susceptible one. Importantly, we also show that GSTe2 directly metabolizes the pyrethroid permethrin. Structural analysis reveals that the mutation confers resistance by enlarging the GSTe2 DDT-binding cavity, leading to increased DDT access and metabolism. Furthermore, we show that GSTe2 is under strong directional selection in resistant populations, and a restriction of gene flow is observed between African regions, enabling the prediction of the future spread of this resistance. This first DNA-based metabolic resistance marker in mosquitoes provides an essential tool to track the evolution of resistance and to design suitable resistance management strategies. Background Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying molecular basis, crucial for successful resistance management, remains poorly characterized. Results Here, we demonstrate that the single amino acid change L119F in an upregulated glutathione S-transferase gene, GSTe2 , confers high levels of metabolic resistance to DDT in the malaria vector Anopheles funestus . Genome-wide transcription analysis revealed that GSTe2 was the most over-expressed detoxification gene in DDT and permethrin-resistant mosquitoes from Benin. Transgenic expression of GSTe2 in Drosophila melanogaster demonstrated that over-transcription of this gene alone confers DDT resistance and cross-resistance to pyrethroids. Analysis of GSTe2 polymorphism established that the point mutation is tightly associated with metabolic resistance to DDT and its geographical distribution strongly correlates with DDT resistance patterns across Africa. Functional characterization of recombinant GSTe2 further supports the role of the L119F mutation, with the resistant allele being more efficient at metabolizing DDT than the susceptible one. Importantly, we also show that GSTe2 directly metabolizes the pyrethroid permethrin. Structural analysis reveals that the mutation confers resistance by enlarging the GSTe2 DDT-binding cavity, leading to increased DDT access and metabolism. Furthermore, we show that GSTe2 is under strong directional selection in resistant populations, and a restriction of gene flow is observed between African regions, enabling the prediction of the future spread of this resistance. Conclusions This first DNA-based metabolic resistance marker in mosquitoes provides an essential tool to track the evolution of resistance and to design suitable resistance management strategies. |
| ArticleNumber | R27 |
| Author | Ismail, Hanafy M Menze, Benjamin D Djouaka, Rousseau Yunta, Cristina Riveron, Jacob M Ranson, Hilary Albert, Armando Irving, Helen Ibrahim, Sulaiman S Wondji, Charles S Hemingway, Janet |
| AuthorAffiliation | 2 Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física “Rocasolano”, CSIC, C/Serrano 119 Madrid E-28006, Spain 1 Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom 4 Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, PO Box 288, Yaoundé, Cameroon 3 International Institute of Tropical Agriculture, 08 BP 0932 Cotonou, Benin |
| AuthorAffiliation_xml | – name: 2 Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física “Rocasolano”, CSIC, C/Serrano 119 Madrid E-28006, Spain – name: 4 Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, PO Box 288, Yaoundé, Cameroon – name: 3 International Institute of Tropical Agriculture, 08 BP 0932 Cotonou, Benin – name: 1 Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom |
| Author_xml | – sequence: 1 fullname: Riveron, Jacob M – sequence: 2 fullname: Yunta, Cristina – sequence: 3 fullname: Ibrahim, Sulaiman S – sequence: 4 fullname: Djouaka, Rousseau – sequence: 5 fullname: Irving, Helen – sequence: 6 fullname: Menze, Benjamin D – sequence: 7 fullname: Ismail, Hanafy M – sequence: 8 fullname: Hemingway, Janet – sequence: 9 fullname: Ranson, Hilary – sequence: 10 fullname: Albert, Armando – sequence: 11 fullname: Wondji, Charles S |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24565444$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNksFvFSEQxompse3Tuyfl6GUrsMCyFxPTaG3SxEPbM2HZ2S1PFirs1rz_Xl62vqiHKoeBZH7fBzPMKToKMQBCryk5o1TJ92NXMUJ5RUXFqsSaZ-iEcikq2VJ-dDgTeYxOc94SQhsl5Qt0zLiQgnN-gnbZhdEDnpbZzC4G7AKe7wBfXN8AwyMEwMb7-CPjORn7rcA4DniC2XTRO1tyO9yZDH0RZrCzs64HnCC7PJtgYe9n8GS2MZXoTXIGPxQuppfo-WB8hleP-wbdfv50c_6luvp6cXn-8aqyUrK5qhUbSMdEbWyjmOobZpvBKNG0vKeNJU1fk9YOytoCtjUMjSLcdgO0NQPR83qDPqy-90s3QW8hlEq8vk9uMmmno3H6z0xwd3qMD5oTwRWvi8G7R4MUvy-QZz25bMF7EyAuWdO2LCGU4P9GhRCSEULkf6CU1ayWJW7Qm98rODz91y8WgKyATTHnBMMBoUTvB0WPnd4PSnHVTJdBKRL5l8S6dQJKD5x_SkhXYS53hBGS3sYlhfKDT2nerprBRG3G5LK-vd4jpRMtaSivfwIdV92N |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0201679 crossref_primary_10_3390_insects12040276 crossref_primary_10_1186_s12859_017_1587_y crossref_primary_10_1186_s13071_015_1194_6 crossref_primary_10_1016_j_cois_2018_04_004 crossref_primary_10_1016_j_pestbp_2019_10_002 crossref_primary_10_1016_j_cois_2018_04_007 crossref_primary_10_1093_jme_tjab124 crossref_primary_10_1051_parasite_2021003 crossref_primary_10_1016_j_cois_2018_04_009 crossref_primary_10_1186_s13071_018_3115_y crossref_primary_10_1186_s13071_022_05335_2 crossref_primary_10_1186_s12936_015_0877_y crossref_primary_10_1038_s41598_025_95814_0 crossref_primary_10_1186_s12936_021_04002_8 crossref_primary_10_1371_journal_pone_0211497 crossref_primary_10_1093_infdis_jiz139 crossref_primary_10_1016_j_chemosphere_2019_125203 crossref_primary_10_1186_s13071_020_04296_8 crossref_primary_10_1186_1471_2164_15_817 crossref_primary_10_1371_journal_pgen_1010678 crossref_primary_10_1016_j_pestbp_2021_104772 crossref_primary_10_1038_s41598_022_21522_8 crossref_primary_10_1371_journal_pntd_0005302 crossref_primary_10_1038_s41598_025_04684_z crossref_primary_10_1002_ps_7031 crossref_primary_10_1186_s12915_024_02081_y crossref_primary_10_1038_s41598_024_70885_7 crossref_primary_10_1186_s12936_018_2467_2 crossref_primary_10_1016_j_ibmb_2016_12_003 crossref_primary_10_1186_s13071_019_3774_3 crossref_primary_10_1371_journal_pgen_1009556 crossref_primary_10_1186_s12879_023_08698_8 crossref_primary_10_3390_insects7010002 crossref_primary_10_1016_j_cois_2024_101325 crossref_primary_10_1186_s12864_025_11637_3 crossref_primary_10_1186_s13071_016_1723_y crossref_primary_10_1016_j_ibmb_2015_06_003 crossref_primary_10_1186_s12936_023_04444_2 crossref_primary_10_1038_s41598_019_42015_1 crossref_primary_10_1126_science_1258522 crossref_primary_10_1007_s42690_020_00173_0 crossref_primary_10_1371_journal_pgen_1009422 crossref_primary_10_1186_s12864_024_11148_7 crossref_primary_10_1016_j_ibmb_2021_103655 crossref_primary_10_1038_s41598_018_21265_5 crossref_primary_10_1093_jme_tjab137 crossref_primary_10_1186_s12936_025_05437_z crossref_primary_10_12688_wellcomeopenres_14589_1 crossref_primary_10_1074_jbc_RA119_011463 crossref_primary_10_1016_j_ecoenv_2018_08_055 crossref_primary_10_1186_s13071_018_2702_2 crossref_primary_10_1371_journal_pntd_0005526 crossref_primary_10_1016_j_cois_2018_03_005 crossref_primary_10_1038_s41598_024_64007_6 crossref_primary_10_1002_ps_5392 crossref_primary_10_1038_s41598_022_26990_6 crossref_primary_10_3390_genes11121492 crossref_primary_10_1111_imb_12194 crossref_primary_10_1016_j_ijbiomac_2022_10_029 crossref_primary_10_1371_journal_pntd_0011595 crossref_primary_10_1016_j_ibmb_2021_103647 crossref_primary_10_1016_j_ibmb_2021_103646 crossref_primary_10_12688_wellcomeopenres_19404_1 crossref_primary_10_12688_wellcomeopenres_19404_2 crossref_primary_10_3390_genes9120645 crossref_primary_10_1016_j_pestbp_2023_105397 crossref_primary_10_1186_s40249_020_00769_1 crossref_primary_10_1016_j_aquatox_2021_105860 crossref_primary_10_1038_s41598_022_17822_8 crossref_primary_10_1093_genetics_iyae181 crossref_primary_10_1073_pnas_1801826115 crossref_primary_10_1038_s41598_025_09016_9 crossref_primary_10_1111_imb_12769 crossref_primary_10_1371_journal_pgen_1006539 crossref_primary_10_3390_genes11040454 crossref_primary_10_3390_pathogens10040415 crossref_primary_10_1186_s13071_024_06372_9 crossref_primary_10_1016_j_pt_2024_04_016 crossref_primary_10_3389_fphys_2019_00766 crossref_primary_10_3390_insects12060544 crossref_primary_10_1186_s13071_016_1462_0 crossref_primary_10_1101_gr_262790_120 crossref_primary_10_1016_j_cbpc_2015_11_001 crossref_primary_10_1186_s12864_021_07646_7 crossref_primary_10_3389_fphys_2018_00314 crossref_primary_10_1186_s12936_015_0885_y crossref_primary_10_1534_g3_120_401279 crossref_primary_10_3390_genes9030140 crossref_primary_10_1042_BSR20150183 crossref_primary_10_1038_s41598_023_44457_0 crossref_primary_10_1002_ps_5614 crossref_primary_10_1371_journal_pgen_1008822 crossref_primary_10_3390_ijms222111921 crossref_primary_10_1186_s12864_021_07722_y crossref_primary_10_1038_s42003_023_05447_0 crossref_primary_10_1016_j_pestbp_2023_105498 crossref_primary_10_1038_s41598_025_03066_9 crossref_primary_10_1093_g3journal_jkab352 crossref_primary_10_1371_journal_pone_0163261 crossref_primary_10_1016_j_scitotenv_2024_175712 crossref_primary_10_1080_20477724_2018_1541160 crossref_primary_10_3390_genes10030211 crossref_primary_10_1038_s41598_022_16366_1 crossref_primary_10_1016_j_pestbp_2020_104724 crossref_primary_10_1186_1756_3305_7_409 crossref_primary_10_1093_infdis_jix570 crossref_primary_10_1111_eva_12470 crossref_primary_10_1111_mec_15645 crossref_primary_10_1016_j_pestbp_2022_105061 crossref_primary_10_1186_s40249_023_01132_w crossref_primary_10_1111_mve_12089 crossref_primary_10_1186_s12879_022_07596_9 crossref_primary_10_1186_s12936_025_05321_w crossref_primary_10_1186_s12936_022_04123_8 crossref_primary_10_3389_fmolb_2023_1257859 crossref_primary_10_1017_wsc_2018_38 crossref_primary_10_1186_s13071_025_06675_5 crossref_primary_10_1016_j_cois_2015_12_002 crossref_primary_10_12688_wellcomeopenres_15818_2 crossref_primary_10_12688_wellcomeopenres_15818_1 crossref_primary_10_1016_j_pt_2024_06_008 crossref_primary_10_1186_s12936_023_04667_3 crossref_primary_10_1093_trstmh_trv017 crossref_primary_10_1186_s13071_018_3253_2 crossref_primary_10_1126_scitranslmed_aat7386 crossref_primary_10_12688_wellcomeopenres_10213_2 crossref_primary_10_1038_s41598_022_11333_2 crossref_primary_10_1186_s12864_025_11260_2 crossref_primary_10_12688_wellcomeopenres_10213_1 crossref_primary_10_1002_ece3_4916 crossref_primary_10_1101_gr_245795_118 crossref_primary_10_1038_s41598_019_51234_5 crossref_primary_10_1371_journal_pone_0247944 crossref_primary_10_3390_genes12040561 crossref_primary_10_1111_mve_12706 crossref_primary_10_1186_s12936_016_1615_9 crossref_primary_10_1186_s13071_015_0797_2 crossref_primary_10_1016_j_pestbp_2022_105084 crossref_primary_10_1371_journal_pgen_1009963 crossref_primary_10_1038_srep12475 crossref_primary_10_1186_s12936_023_04791_0 crossref_primary_10_1016_j_pt_2015_11_010 crossref_primary_10_12688_wellcomeopenres_15061_2 crossref_primary_10_1016_j_cois_2019_12_001 crossref_primary_10_12688_wellcomeopenres_15061_1 crossref_primary_10_1371_journal_pone_0213949 crossref_primary_10_1016_j_ygeno_2015_11_004 crossref_primary_10_3390_insects13050434 crossref_primary_10_1186_s13071_022_05174_1 crossref_primary_10_1101_gr_189225_115 crossref_primary_10_1111_mec_13673 crossref_primary_10_1186_s12863_017_0539_x crossref_primary_10_3390_genes13061102 crossref_primary_10_1016_j_pestbp_2023_105569 crossref_primary_10_1016_j_jhazmat_2020_122971 crossref_primary_10_3390_ijms252413298 crossref_primary_10_1186_s12879_022_07795_4 crossref_primary_10_1016_j_actatropica_2023_106973 crossref_primary_10_1128_Spectrum_00157_21 crossref_primary_10_1186_s12936_019_2757_3 crossref_primary_10_1002_ps_5810 crossref_primary_10_1534_g3_117_040147 crossref_primary_10_1186_s12936_020_03503_2 crossref_primary_10_1186_s13071_021_04609_5 crossref_primary_10_1016_j_ygeno_2024_110798 crossref_primary_10_1002_ps_5374 crossref_primary_10_1371_journal_pmed_1002451 crossref_primary_10_1111_eva_13641 crossref_primary_10_1371_journal_pone_0110058 crossref_primary_10_1002_1873_3468_13718 crossref_primary_10_1093_molbev_msz040 crossref_primary_10_3390_genes11111314 crossref_primary_10_1016_j_ibmb_2025_104299 crossref_primary_10_12688_wellcomeopenres_19126_1 crossref_primary_10_3390_genes10100790 crossref_primary_10_1016_j_pestbp_2015_11_002 crossref_primary_10_1186_s12864_025_11755_y crossref_primary_10_1186_s13071_016_1787_8 crossref_primary_10_1038_srep24707 crossref_primary_10_12688_wellcomeopenres_19126_2 crossref_primary_10_1016_j_cois_2020_03_006 crossref_primary_10_1002_arch_70045 crossref_primary_10_1038_s41598_018_31360_2 crossref_primary_10_1186_s12915_023_01610_5 crossref_primary_10_3390_ijms26051854 crossref_primary_10_1016_j_pestbp_2019_07_002 crossref_primary_10_1111_1744_7917_13151 crossref_primary_10_3390_biom14070758 crossref_primary_10_1073_pnas_1914633116 crossref_primary_10_1016_j_pestbp_2015_01_004 crossref_primary_10_1186_s12936_024_05106_7 crossref_primary_10_1371_journal_pntd_0004780 crossref_primary_10_1371_journal_pone_0305207 crossref_primary_10_1093_jme_tjaa075 crossref_primary_10_1007_s00018_022_04171_y crossref_primary_10_1038_s41598_024_83689_6 crossref_primary_10_1002_ps_5318 crossref_primary_10_1002_ps_5316 crossref_primary_10_1016_j_ibmb_2020_103364 crossref_primary_10_1038_s42003_025_07560_8 crossref_primary_10_1371_journal_pgen_1005618 crossref_primary_10_1016_j_ibmb_2025_104355 crossref_primary_10_1016_j_pt_2015_12_001 crossref_primary_10_1038_s42003_025_08658_9 crossref_primary_10_3390_genes11020143 crossref_primary_10_3390_pathogens11091021 crossref_primary_10_1186_s12936_023_04815_9 crossref_primary_10_1371_journal_pone_0230984 crossref_primary_10_3390_pathogens11060638 crossref_primary_10_1038_s41598_023_32336_7 crossref_primary_10_1186_1756_3305_7_274 crossref_primary_10_1371_journal_pgen_1009888 crossref_primary_10_12688_wellcomeopenres_16876_2 crossref_primary_10_12688_wellcomeopenres_16876_1 crossref_primary_10_1186_s12936_017_2099_y crossref_primary_10_1186_s13071_022_05321_8 crossref_primary_10_1186_s13071_024_06315_4 crossref_primary_10_1038_s41598_024_84432_x crossref_primary_10_1111_pbi_12711 crossref_primary_10_1186_gb4162 crossref_primary_10_1016_j_ijbiomac_2022_12_174 crossref_primary_10_1038_s41598_019_43634_4 crossref_primary_10_1186_s13071_016_1735_7 crossref_primary_10_1038_s41598_021_86665_6 crossref_primary_10_1038_s41467_023_40693_0 crossref_primary_10_1016_j_pestbp_2025_106305 crossref_primary_10_1371_journal_pone_0249440 crossref_primary_10_1371_journal_pone_0151786 crossref_primary_10_1038_s41467_024_49792_y crossref_primary_10_1016_j_pestbp_2023_105410 crossref_primary_10_1186_s13071_020_04342_5 crossref_primary_10_1186_s12936_023_04673_5 crossref_primary_10_12688_wellcomeopenres_15013_2 crossref_primary_10_1186_s13071_017_2232_3 crossref_primary_10_12688_wellcomeopenres_15013_1 crossref_primary_10_3390_molecules27196343 crossref_primary_10_1038_s41598_019_49892_6 crossref_primary_10_1371_journal_pone_0102746 crossref_primary_10_1038_s41598_022_14043_x crossref_primary_10_1111_eva_12867 crossref_primary_10_1186_s12864_015_2114_z crossref_primary_10_1007_s00709_014_0697_x crossref_primary_10_1186_s12879_022_07138_3 |
| Cites_doi | 10.1107/S0907444909047337 10.1107/S0907444909052925 10.1093/nar/22.22.4673 10.1016/j.ibmb.2010.12.005 10.1111/j.1365-294X.2005.02754.x 10.1073/pnas.0709249105 10.1016/j.tig.2006.06.005 10.1016/j.trstmh.2008.02.022 10.1073/pnas.0303793101 10.1093/genetics/132.2.583 10.1126/science.1074170 10.1073/pnas.1216705110 10.1046/j.1365-294x.2000.01020.x 10.1371/journal.pone.0011010 10.1016/j.jsb.2008.08.003 10.1038/nprot.2008.73 10.1042/bj3570065 10.1016/j.gene.2013.01.036 10.1016/S0965-1748(99)00035-1 10.1073/pnas.1217229109 10.1371/journal.pone.0027760 10.1016/j.trstmh.2009.02.014 10.1016/S1672-0229(07)60007-2 10.1146/annurev.ento.45.1.371 10.1371/journal.pone.0011872 10.1016/S0965-1748(97)00109-4 10.1038/ng.101 10.1073/pnas.1203452109 10.1016/j.ab.2012.09.011 10.1371/journal.pgen.1000286 10.1016/j.ibmb.2007.02.008 10.1107/S0021889807021206 10.1042/bj3590295 10.1093/molbev/msr121 10.1073/pnas.0409348102 10.1007/978-1-59745-251-9_17 10.1016/S0965-1748(00)00123-5 10.1016/j.ibmb.2011.03.012 |
| ContentType | Journal Article |
| Copyright | Riveron et al.; licensee BioMed Central Ltd. 2014 Copyright © 2014 Riveron et al.; licensee BioMed Central Ltd. 2014 Riveron et al.; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Riveron et al.; licensee BioMed Central Ltd. 2014 – notice: Copyright © 2014 Riveron et al.; licensee BioMed Central Ltd. 2014 Riveron et al.; licensee BioMed Central Ltd. |
| DBID | FBQ C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SS 7TM 8FD C1K F1W FR3 H95 H97 L.G M7N P64 RC3 7X8 7S9 L.6 5PM |
| DOI | 10.1186/gb-2014-15-2-r27 |
| DatabaseName | AGRIS Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Entomology Abstracts (Full archive) Nucleic Acids Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE Entomology Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1465-6914 1474-760X |
| EndPage | 27 |
| ExternalDocumentID | PMC4054843 24565444 10_1186_gb_2014_15_2_r27 US201400090714 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Benin Africa |
| GeographicLocations_xml | – name: Benin – name: Africa |
| GrantInformation_xml | – fundername: Wellcome Trust grantid: 083515/Z/07/Z – fundername: Wellcome Trust grantid: 101893 |
| GroupedDBID | 0R~ 29H 2WC 4.4 5GY AAFWJ ADBBV AENEX AHYZX ALMA_UNASSIGNED_HOLDINGS BAWUL BFQNJ BMC C1A C24 CS3 DIK E3Z EBS EJD F5P FBQ HYE HZ~ KQ8 O5R O5S O9- OK1 RBZ ROL RPM SBL SJN TR2 WOQ ZA5 --- 53G 5VS 7X7 AAHBH AAJSJ AASML ACGFO ACGFS ACJQM ACPRK ADUKV AEGXH AFPKN AHBYD AHSBF AIAGR AMKLP AMTXH AOIAM AOIJS BAPOH BCNDV C6C EBD EBLON EMOBN GROUPED_DOAJ GX1 IAO IGS IHR ISR ITC KPI RSV SOJ SV3 AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 7SS 7TM 8FD C1K F1W FR3 H95 H97 L.G M7N P64 RC3 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c662t-382f0b253ac7828d72c7fa85794d17c07d309cf8cc82f93ef7804cbfe932e5d43 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 255 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000336256600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1465-6906 1474-760X |
| IngestDate | Thu Aug 21 13:33:19 EDT 2025 Fri Sep 05 14:24:05 EDT 2025 Thu Sep 04 19:46:41 EDT 2025 Fri Jul 11 04:34:58 EDT 2025 Thu Apr 03 06:59:35 EDT 2025 Sat Nov 29 04:55:43 EST 2025 Tue Nov 18 19:58:41 EST 2025 Sat Sep 06 07:24:35 EDT 2025 Tue Nov 07 23:07:38 EST 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Root Mean Square Deviation Pyrethroid Resistance Indoor Residual Spray Deltamethrin L119F Mutation |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c662t-382f0b253ac7828d72c7fa85794d17c07d309cf8cc82f93ef7804cbfe932e5d43 |
| Notes | http://dx.doi.org/10.1186/gb-2014-15-2-r27 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1186/gb-2014-15-2-r27 |
| PMID | 24565444 |
| PQID | 1512323612 |
| PQPubID | 23462 |
| PageCount | 1 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4054843 proquest_miscellaneous_1999955854 proquest_miscellaneous_1555620006 proquest_miscellaneous_1512323612 pubmed_primary_24565444 crossref_primary_10_1186_gb_2014_15_2_r27 crossref_citationtrail_10_1186_gb_2014_15_2_r27 springer_journals_10_1186_gb_2014_15_2_r27 fao_agris_US201400090714 |
| PublicationCentury | 2000 |
| PublicationDate | 20140225 |
| PublicationDateYYYYMMDD | 2014-02-25 |
| PublicationDate_xml | – month: 2 year: 2014 text: 20140225 day: 25 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Genome biology |
| PublicationTitleAbbrev | Genome Biol |
| PublicationTitleAlternate | Genome Biol |
| PublicationYear | 2014 |
| Publisher | Springer-Verlag BioMed Central |
| Publisher_xml | – name: Springer-Verlag – name: BioMed Central |
| References | World Health Organization (3228_CR1) 2012 H Ranson (3228_CR7) 2001; 359 C Claudianos (3228_CR18) 1999; 29 JD Thompson (3228_CR30) 1994; 22 W Kabsch (3228_CR38) 2010; 66 N Lumjuan (3228_CR8) 2011; 41 CS Wondji (3228_CR22) 2012; 109 R Djouaka (3228_CR6) 2011; 6 JG Vontas (3228_CR15) 2001; 357 M Nei (3228_CR37) 1986; 3 JC Morgan (3228_CR9) 2010; 5 JP David (3228_CR3) 2005; 102 Z Zhang (3228_CR36) 2006; 4 PN Okoye (3228_CR19) 2008; 102 M Markstein (3228_CR29) 2008; 40 J Rozas (3228_CR31) 2009; 537 N Cuamba (3228_CR21) 2010; 5 PD Adams (3228_CR40) 2010; 66 I Kostaropoulos (3228_CR14) 2001; 31 J Hemingway (3228_CR2) 2000; 45 PJ Daborn (3228_CR13) 2007; 37 S Biswas (3228_CR24) 2006; 22 JM Riveron (3228_CR5) 2013; 110 CS Wondji (3228_CR20) 2011; 41 TA Schlenke (3228_CR25) 2004; 101 TD Schmittgen (3228_CR28) 2008; 3 H Huang (3228_CR23) 2012; 431 PM Campbell (3228_CR17) 1998; 28 RM Kwiatkowska (3228_CR34) 2013; 519 RR Hudson (3228_CR35) 1992; 132 P Muller (3228_CR4) 2008; 4 K Tamura (3228_CR32) 2011; 28 AJ McCoy (3228_CR39) 2007; 40 TL Chiu (3228_CR11) 2008; 105 Y Wang (3228_CR27) 2008; 164 SN Mitchell (3228_CR12) 2012; 109 AP Michel (3228_CR26) 2005; 14 PJ Daborn (3228_CR16) 2002; 297 M Clement (3228_CR33) 2000; 9 U Ramphul (3228_CR10) 2009; 103 10761582 - Annu Rev Entomol. 2000;45:371-91 18778777 - J Struct Biol. 2008 Nov;164(2):228-35 18311141 - Nat Genet. 2008 Apr;40(4):476-83 15753317 - Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):4080-4 19378153 - Methods Mol Biol. 2009;537:337-50 1427045 - Genetics. 1992 Oct;132(2):583-9 12351787 - Science. 2002 Sep 27;297(5590):2253-6 21546353 - Mol Biol Evol. 2011 Oct;28(10):2731-9 17456446 - Insect Biochem Mol Biol. 2007 May;37(5):512-9 19461840 - J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674 18546601 - Nat Protoc. 2008;3(6):1101-8 21501685 - Insect Biochem Mol Biol. 2011 Jul;41(7):484-91 18405930 - Trans R Soc Trop Med Hyg. 2008 Jun;102(6):591-8 23000005 - Anal Biochem. 2012 Dec 15;431(2):77-83 10451921 - Insect Biochem Mol Biol. 1999 Aug;29(8):675-86 19043575 - PLoS Genet. 2008 Nov;4(11):e1000286 19303125 - Trans R Soc Trop Med Hyg. 2009 Nov;103(11):1121-6 16808986 - Trends Genet. 2006 Aug;22(8):437-46 16313589 - Mol Ecol. 2005 Dec;14(14):4235-48 20124692 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32 11415437 - Biochem J. 2001 Jul 1;357(Pt 1):65-72 11050560 - Mol Ecol. 2000 Oct;9(10):1657-9 23248325 - Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):252-7 20124702 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 3444411 - Mol Biol Evol. 1986 Sep;3(5):418-26 17531802 - Genomics Proteomics Bioinformatics. 2006 Nov;4(4):259-63 20686697 - PLoS One. 2010;5(7):e11872 18577597 - Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):8855-60 21195177 - Insect Biochem Mol Biol. 2011 Mar;41(3):203-9 11583575 - Biochem J. 2001 Oct 15;359(Pt 2):295-304 23118337 - Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19063-70 22460795 - Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6147-52 20544036 - PLoS One. 2010;5(6):e11010 11222940 - Insect Biochem Mol Biol. 2001 Mar 15;31(4-5):313-9 14745026 - Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1626-31 22110757 - PLoS One. 2011;6(11):e27760 7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 23380570 - Gene. 2013 Apr 25;519(1):98-106 |
| References_xml | – volume: 66 start-page: 125 year: 2010 ident: 3228_CR38 publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444909047337 – volume: 3 start-page: 418 year: 1986 ident: 3228_CR37 publication-title: Mol Biol Evol – volume: 66 start-page: 213 year: 2010 ident: 3228_CR40 publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444909052925 – volume: 22 start-page: 4673 year: 1994 ident: 3228_CR30 publication-title: Nucleic Acids Res doi: 10.1093/nar/22.22.4673 – volume: 41 start-page: 203 year: 2011 ident: 3228_CR8 publication-title: Insect Biochem Mol Biol doi: 10.1016/j.ibmb.2010.12.005 – volume: 14 start-page: 4235 year: 2005 ident: 3228_CR26 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2005.02754.x – volume: 105 start-page: 8855 year: 2008 ident: 3228_CR11 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0709249105 – volume: 22 start-page: 437 year: 2006 ident: 3228_CR24 publication-title: Trends Genet doi: 10.1016/j.tig.2006.06.005 – volume: 102 start-page: 591 year: 2008 ident: 3228_CR19 publication-title: Trans R Soc Trop Med Hyg doi: 10.1016/j.trstmh.2008.02.022 – volume: 101 start-page: 1626 year: 2004 ident: 3228_CR25 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0303793101 – volume: 132 start-page: 583 year: 1992 ident: 3228_CR35 publication-title: Genetics doi: 10.1093/genetics/132.2.583 – volume: 297 start-page: 2253 year: 2002 ident: 3228_CR16 publication-title: Science doi: 10.1126/science.1074170 – volume: 110 start-page: 252 year: 2013 ident: 3228_CR5 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1216705110 – volume: 9 start-page: 1657 year: 2000 ident: 3228_CR33 publication-title: Mol Ecol doi: 10.1046/j.1365-294x.2000.01020.x – volume: 5 start-page: e11010 year: 2010 ident: 3228_CR21 publication-title: PLoS One doi: 10.1371/journal.pone.0011010 – volume: 164 start-page: 228 year: 2008 ident: 3228_CR27 publication-title: J Struct Biol doi: 10.1016/j.jsb.2008.08.003 – volume: 3 start-page: 1101 year: 2008 ident: 3228_CR28 publication-title: Nat Protoc doi: 10.1038/nprot.2008.73 – volume: 357 start-page: 65 year: 2001 ident: 3228_CR15 publication-title: Biochem J doi: 10.1042/bj3570065 – volume: 519 start-page: 98 year: 2013 ident: 3228_CR34 publication-title: Gene doi: 10.1016/j.gene.2013.01.036 – volume: 29 start-page: 675 year: 1999 ident: 3228_CR18 publication-title: Insect Biochem Mol Biol doi: 10.1016/S0965-1748(99)00035-1 – volume: 109 start-page: 19063 year: 2012 ident: 3228_CR22 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1217229109 – volume: 6 start-page: e27760 year: 2011 ident: 3228_CR6 publication-title: PLoS One doi: 10.1371/journal.pone.0027760 – volume: 103 start-page: 1121 year: 2009 ident: 3228_CR10 publication-title: Trans R Soc Trop Med Hyg doi: 10.1016/j.trstmh.2009.02.014 – volume: 4 start-page: 259 year: 2006 ident: 3228_CR36 publication-title: Genomics Proteomics Bioinformatics doi: 10.1016/S1672-0229(07)60007-2 – volume: 45 start-page: 369 year: 2000 ident: 3228_CR2 publication-title: Annual Review Entomol doi: 10.1146/annurev.ento.45.1.371 – volume: 5 start-page: e11872 year: 2010 ident: 3228_CR9 publication-title: PLoS One doi: 10.1371/journal.pone.0011872 – volume: 28 start-page: 139 year: 1998 ident: 3228_CR17 publication-title: Insect Biochem Mol Biol doi: 10.1016/S0965-1748(97)00109-4 – volume-title: Global Plan for Insecticide Resistance Management (GPIRM) year: 2012 ident: 3228_CR1 – volume: 40 start-page: 476 year: 2008 ident: 3228_CR29 publication-title: Nat Genet doi: 10.1038/ng.101 – volume: 109 start-page: 6147 year: 2012 ident: 3228_CR12 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1203452109 – volume: 431 start-page: 77 year: 2012 ident: 3228_CR23 publication-title: Anal Biochem doi: 10.1016/j.ab.2012.09.011 – volume: 4 start-page: e1000286 year: 2008 ident: 3228_CR4 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000286 – volume: 37 start-page: 512 year: 2007 ident: 3228_CR13 publication-title: Insect Biochem Mol Biol doi: 10.1016/j.ibmb.2007.02.008 – volume: 40 start-page: 658 year: 2007 ident: 3228_CR39 publication-title: J Appl Crystallogr doi: 10.1107/S0021889807021206 – volume: 359 start-page: 295 year: 2001 ident: 3228_CR7 publication-title: Biochem J doi: 10.1042/bj3590295 – volume: 28 start-page: 2731 year: 2011 ident: 3228_CR32 publication-title: Mol Biol Evol doi: 10.1093/molbev/msr121 – volume: 102 start-page: 4080 year: 2005 ident: 3228_CR3 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0409348102 – volume: 537 start-page: 337 year: 2009 ident: 3228_CR31 publication-title: Methods Mol Biol doi: 10.1007/978-1-59745-251-9_17 – volume: 31 start-page: 313 year: 2001 ident: 3228_CR14 publication-title: Insect Biochem Mol Biol doi: 10.1016/S0965-1748(00)00123-5 – volume: 41 start-page: 484 year: 2011 ident: 3228_CR20 publication-title: Insect Biochem Mol Biol doi: 10.1016/j.ibmb.2011.03.012 – reference: 16313589 - Mol Ecol. 2005 Dec;14(14):4235-48 – reference: 21501685 - Insect Biochem Mol Biol. 2011 Jul;41(7):484-91 – reference: 7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 – reference: 1427045 - Genetics. 1992 Oct;132(2):583-9 – reference: 23118337 - Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19063-70 – reference: 20544036 - PLoS One. 2010;5(6):e11010 – reference: 11050560 - Mol Ecol. 2000 Oct;9(10):1657-9 – reference: 20686697 - PLoS One. 2010;5(7):e11872 – reference: 10451921 - Insect Biochem Mol Biol. 1999 Aug;29(8):675-86 – reference: 23380570 - Gene. 2013 Apr 25;519(1):98-106 – reference: 19303125 - Trans R Soc Trop Med Hyg. 2009 Nov;103(11):1121-6 – reference: 11415437 - Biochem J. 2001 Jul 1;357(Pt 1):65-72 – reference: 22110757 - PLoS One. 2011;6(11):e27760 – reference: 12351787 - Science. 2002 Sep 27;297(5590):2253-6 – reference: 18546601 - Nat Protoc. 2008;3(6):1101-8 – reference: 21195177 - Insect Biochem Mol Biol. 2011 Mar;41(3):203-9 – reference: 20124692 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32 – reference: 18405930 - Trans R Soc Trop Med Hyg. 2008 Jun;102(6):591-8 – reference: 18778777 - J Struct Biol. 2008 Nov;164(2):228-35 – reference: 19043575 - PLoS Genet. 2008 Nov;4(11):e1000286 – reference: 18311141 - Nat Genet. 2008 Apr;40(4):476-83 – reference: 11222940 - Insect Biochem Mol Biol. 2001 Mar 15;31(4-5):313-9 – reference: 20124702 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 – reference: 19461840 - J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674 – reference: 18577597 - Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):8855-60 – reference: 19378153 - Methods Mol Biol. 2009;537:337-50 – reference: 15753317 - Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):4080-4 – reference: 22460795 - Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6147-52 – reference: 10761582 - Annu Rev Entomol. 2000;45:371-91 – reference: 16808986 - Trends Genet. 2006 Aug;22(8):437-46 – reference: 3444411 - Mol Biol Evol. 1986 Sep;3(5):418-26 – reference: 23248325 - Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):252-7 – reference: 14745026 - Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1626-31 – reference: 17531802 - Genomics Proteomics Bioinformatics. 2006 Nov;4(4):259-63 – reference: 21546353 - Mol Biol Evol. 2011 Oct;28(10):2731-9 – reference: 17456446 - Insect Biochem Mol Biol. 2007 May;37(5):512-9 – reference: 23000005 - Anal Biochem. 2012 Dec 15;431(2):77-83 – reference: 11583575 - Biochem J. 2001 Oct 15;359(Pt 2):295-304 |
| SSID | ssj0017866 ssj0019426 |
| Score | 2.574543 |
| Snippet | BACKGROUND: Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying... Background Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying... Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying molecular basis,... Background: Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying... |
| SourceID | pubmedcentral proquest pubmed crossref springer fao |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | R27 |
| SubjectTerms | Africa Alleles Animal Genetics and Genomics Animals Anopheles - drug effects Anopheles - genetics Anopheles funestus Benin Bioinformatics Biomedical and Life Sciences cross resistance Crystallography, X-Ray DDT (pesticide) DDT - toxicity Drosophila melanogaster evolution Evolutionary Biology gene expression regulation gene flow gene overexpression genes geographical distribution glutathione transferase Glutathione Transferase - chemistry Glutathione Transferase - genetics Human Genetics Humans Insect Vectors - drug effects Insect Vectors - genetics insecticide resistance Insecticide Resistance - genetics Life Sciences malaria Malaria - genetics Malaria - transmission Microbial Genetics and Genomics Molecular Sequence Data Mutation permethrin Plant Genetics and Genomics point mutation Pyrethrins - metabolism resistance management vector control |
| Title | single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector |
| URI | https://link.springer.com/article/10.1186/gb-2014-15-2-r27 https://www.ncbi.nlm.nih.gov/pubmed/24565444 https://www.proquest.com/docview/1512323612 https://www.proquest.com/docview/1555620006 https://www.proquest.com/docview/1999955854 https://pubmed.ncbi.nlm.nih.gov/PMC4054843 |
| Volume | 15 |
| WOSCitedRecordID | wos000336256600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1465-6914 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017866 issn: 1465-6906 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1465-6914 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019426 issn: 1465-6906 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1465-6914 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019426 issn: 1465-6906 databaseCode: RSV dateStart: 20000201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfWAdJe-IaVj8pIvIAULXGc2nkciMHThNYNVbxYjnMuQW0y9WNo4p_nzmkqFUYlePGLz4ll3_l-5599Zuy111CCxCAHpHSR9ClEeQplVHgMVqBUNi6K8NiEOj3V43H-eY-J7i5MOO3eUZJhpQ5mrYdHkwJnNJFRkkUimgvVY7fQ2WkyxrPRlw1zkKPL6ejIG1ptuZ-et81NyPLPA5K_saTB-Zzc-59u32d311CTH7e68YDtQf2Q3Wkfn7x-xH4ec9onmAKfrVo-nlc1RzzIP47OQXDULOBEy_9YcOyeoz113ng-gyUqDu31TafXnLxgiQ0XtHC6qgSO8TthUlQm-p7lM_u9mWOJIXRl-VVgCR6zi5MP5-8_ReunGCI3HIpllGrh40JkqXUIKXSphFPe6gytuUyUi1WZxrnz2jkUxMn2lNfIFR4QHkJWyvQJ26-bGg4ZzwoQuY2lAldIYTPtdAzeQaKSMs2l67OjboaMW-cpp-cypibEK3poJoWhITVJZoTBIe2zN5sWl22Ojh2yhzjpxk5wCTUXI6ojmEnXuPrsVacJBm2MiBNbQ7NaGEJFKWWpEbtkMoSS5P13yCAazzMM0PBfT1sN23Q4ENBSYo3a0r2NAOUB366pq28hHzhibqll2mdvOw0064Vo8ddxePYvws_ZQdBhusmfvWD7y_kKXrLb7mpZLeYD1lNjPQibGVievfs6CBb5CxMeMzo |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa2AYIXfsPKTyPxAlK0xHEa53FCjCFGhWiH9mY59rkEtQlq2qGJf547t6lUGJXgpS8-p5b92fedP_vM2EuvwIHEIAektJH0KURFCi4qPQYr4HITl2V4bCIfDNTZWfFph4nuLkw47d5JkmGlDtNa9Q_GJY5oIqMki0Q0E_kuuyLRX9Exvs_DL2vloECX08mRl9TacD-73jSXMcs_D0j-ppIG53N063-afZvdXFFNfrjExh22A_Vddm35-OTFPfbzkNM-wQT4dLHU43lVc-SD_N1wBIIjsoCTLP-j5dg8S3vqvPF8CnMEDu31TSYXnLygw4otLZy2csAxfidOimCi7xk-Nd-aGf5iCF0Zfh5Ugvvs9Ojt6M1xtHqKIbL9vphHqRI-LkWWGouUQrlc2NwbleFsdklu49ylcWG9shYNcbA95TWypQekh5A5mT5ge3VTwz7jWQmiMLHMwZZSmExZFYO3kOSJSwtpe-ygGyFtV3nK6bmMiQ7xiurrcampS3WSaaGxS3vs1brG92WOji22-zjo2oxxCdWnQyojmknXuHrsRYcEjXOMhBNTQ7NoNbGilLLUiG02GVJJ8v5bbJCNFxkGaPhfD5cIWzc4CNBSYkm-gb21AeUB3yypq68hHzhybqlk2mOvOwTq1ULU_rUfHv2L8XN2_Xj08USfvB98eMxuBDzTrf7sCdubzxbwlF215_OqnT0Lc_EX3mczMg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbY5SEuvGHL00hcQIqaOE7jHFdAAYGqlbqL9mY59rgEtcmqSRet-PPMJE2lwlIJccnF4zycz_Y3_uwZxl55BQ4kOjkgpQ2kjyHIYnBB7tFZAZeaMM_bZBPpZKJOT7Oj9YJb3e927yXJ7kwDRWkqm-GZ810XV6PhLMe_G8kgSgIRLEW6x65KShlE3vr060ZFyHD66aXJS2ptTUV73lSXscw_N0v-ppi2E9H49v9-wh12a01B-WGHmbvsCpT32PUuKeXFffbzkNP6wRz4YtXp9LwoOfJE_mF6DIIj4oCTXP-j5viqltbaeeX5AhoEFK0BzucXnGZHhxVrGlBt4YCjX09cFUFG9zN8Yb5XS7yia10Yft6qBw_Yyfj98duPwTpFQ2BHI9EEsRI-zEUSG4tUQ7lU2NQblWAvd1Fqw9TFYWa9shYNEQSe4h3Z3APSRkicjB-y_bIq4YDxJAeRmVCmYHMpTKKsCsFbiNLIxZm0Azbs_5a26_jllEZjrls_Ro30LNfUpDpKtNDYpAP2elPjrIvdscP2AAGgzQyHVn0ypTKin3S8a8Be9qjQ2PdIUDElVKtaE1uKKXqN2GWTIMUkVrDDBll6lqDjhs961KFt88KtMC0llqRbONwYUHzw7ZKy-NbGCUcuLpWMB-xNj0a9HqDqv7bD438xfsFuHL0b6y-fJp-fsJstnOmwf_KU7TfLFTxj1-x5U9TL5223_AVTPTwW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+single+mutation+in+the+GSTe2+gene+allows+tracking+of+metabolically+based+insecticide+resistance+in+a+major+malaria+vector&rft.jtitle=Genome+biology&rft.au=Riveron%2C+Jacob+M&rft.au=Yunta%2C+Cristina&rft.au=Ibrahim%2C+Sulaiman+S&rft.au=Djouaka%2C+Rousseau&rft.date=2014-02-25&rft.issn=1474-760X&rft.eissn=1474-760X&rft.volume=15&rft.issue=2&rft.spage=R27&rft_id=info:doi/10.1186%2Fgb-2014-15-2-r27&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-6906&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-6906&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-6906&client=summon |