Integrated Assessment and Prediction of Transcription Factor Binding

Systematic chromatin immunoprecipitation (chIP-chip) experiments have become a central technique for mapping transcriptional interactions in model organisms and humans. However, measurement of chromatin binding does not necessarily imply regulation, and binding may be difficult to detect if it is co...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PLoS computational biology Ročník 2; číslo 6; s. e70
Hlavní autoři: Beyer, Andreas, Workman, Christopher, Hollunder, Jens, Radke, Dörte, Möller, Ulrich, Wilhelm, Thomas, Ideker, Trey
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 01.06.2006
Public Library of Science (PLoS)
Témata:
ISSN:1553-7358, 1553-734X, 1553-7358
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Systematic chromatin immunoprecipitation (chIP-chip) experiments have become a central technique for mapping transcriptional interactions in model organisms and humans. However, measurement of chromatin binding does not necessarily imply regulation, and binding may be difficult to detect if it is condition or cofactor dependent. To address these challenges, we present an approach for reliably assigning transcription factors (TFs) to target genes that integrates many lines of direct and indirect evidence into a single probabilistic model. Using this approach, we analyze publicly available chIP-chip binding profiles measured for yeast TFs in standard conditions, showing that our model interprets these data with significantly higher accuracy than previous methods. Pooling the high-confidence interactions reveals a large network containing 363 significant sets of factors (TF modules) that cooperate to regulate common target genes. In addition, the method predicts 980 novel binding interactions with high confidence that are likely to occur in so-far untested conditions. Indeed, using new chIP-chip experiments we show that predicted interactions for the factors Rpn4p and Pdr1p are observed only after treatment of cells with methyl-methanesulfonate, a DNA-damaging agent. We outline the first approach for consistently integrating all available evidences for TF-target interactions and we comprehensively identify the resulting TF module hierarchy. Prioritizing experimental conditions for each factor will be especially important as increasing numbers of chIP-chip assays are performed in complex organisms such as humans, for which "standard conditions" are ill defined.
AbstractList Systematic chromatin immunoprecipitation (chIP-chip) experiments have become a central technique for mapping transcriptional interactions in model organisms and humans. However, measurement of chromatin binding does not necessarily imply regulation, and binding may be difficult to detect if it is condition or cofactor dependent. To address these challenges, we present an approach for reliably assigning transcription factors (TFs) to target genes that integrates many lines of direct and indirect evidence into a single probabilistic model. Using this approach, we analyze publicly available chIP-chip binding profiles measured for yeast TFs in standard conditions, showing that our model interprets these data with significantly higher accuracy than previous methods. Pooling the high-confidence interactions reveals a large network containing 363 significant sets of factors (TF modules) that cooperate to regulate common target genes. In addition, the method predicts 980 novel binding interactions with high confidence that are likely to occur in so-far untested conditions. Indeed, using new chIP-chip experiments we show that predicted interactions for the factors Rpn4p and Pdr1p are observed only after treatment of cells with methyl-methanesulfonate, a DNA-damaging agent. We outline the first approach for consistently integrating all available evidences for TF-target interactions and we comprehensively identify the resulting TF module hierarchy. Prioritizing experimental conditions for each factor will be especially important as increasing numbers of chIP-chip assays are performed in complex organisms such as humans, for which "standard conditions" are ill defined.Systematic chromatin immunoprecipitation (chIP-chip) experiments have become a central technique for mapping transcriptional interactions in model organisms and humans. However, measurement of chromatin binding does not necessarily imply regulation, and binding may be difficult to detect if it is condition or cofactor dependent. To address these challenges, we present an approach for reliably assigning transcription factors (TFs) to target genes that integrates many lines of direct and indirect evidence into a single probabilistic model. Using this approach, we analyze publicly available chIP-chip binding profiles measured for yeast TFs in standard conditions, showing that our model interprets these data with significantly higher accuracy than previous methods. Pooling the high-confidence interactions reveals a large network containing 363 significant sets of factors (TF modules) that cooperate to regulate common target genes. In addition, the method predicts 980 novel binding interactions with high confidence that are likely to occur in so-far untested conditions. Indeed, using new chIP-chip experiments we show that predicted interactions for the factors Rpn4p and Pdr1p are observed only after treatment of cells with methyl-methanesulfonate, a DNA-damaging agent. We outline the first approach for consistently integrating all available evidences for TF-target interactions and we comprehensively identify the resulting TF module hierarchy. Prioritizing experimental conditions for each factor will be especially important as increasing numbers of chIP-chip assays are performed in complex organisms such as humans, for which "standard conditions" are ill defined.
Systematic chromatin immunoprecipitation (chIP-chip) experiments have become a central technique for mapping transcriptional interactions in model organisms and humans. However, measurement of chromatin binding does not necessarily imply regulation, and binding may be difficult to detect if it is condition or cofactor dependent. To address these challenges, we present an approach for reliably assigning transcription factors (TFs) to target genes that integrates many lines of direct and indirect evidence into a single probabilistic model. Using this approach, we analyze publicly available chIP-chip binding profiles measured for yeast TFs in standard conditions, showing that our model interprets these data with significantly higher accuracy than previous methods. Pooling the high-confidence interactions reveals a large network containing 363 significant sets of factors (TF modules) that cooperate to regulate common target genes. In addition, the method predicts 980 novel binding interactions with high confidence that are likely to occur in so-far untested conditions. Indeed, using new chIP-chip experiments we show that predicted interactions for the factors Rpn4p and Pdr1p are observed only after treatment of cells with methyl-methanesulfonate, a DNA-damaging agent. We outline the first approach for consistently integrating all available evidences for TF–target interactions and we comprehensively identify the resulting TF module hierarchy. Prioritizing experimental conditions for each factor will be especially important as increasing numbers of chIP-chip assays are performed in complex organisms such as humans, for which “standard conditions” are ill defined. Transcription factors (TFs) bind close to their target genes for regulating transcript levels depending on cellular conditions. Each gene may be regulated differently from others through the binding of specific groups of TFs (TF modules). Recently, a wide variety of large-scale measurements about transcriptional networks has become available. Here the authors present a framework for consistently integrating all of this evidence to systematically determine the precise set of genes directly regulated by each TF (i.e., TF–target interactions). The framework is applied to the yeast Saccharomyces cerevisiae using seven distinct sources of evidences to score all possible TF–target interactions in this organism. Subsequently, the authors employ another newly developed algorithm to reveal TF modules based on the top 5,000 TF–target interactions, yielding more than 300 TF modules. The new scoring scheme for TF–target interactions allows predicting the binding of TFs under so-far untested conditions, which is demonstrated by experimentally verifying interactions for two TFs (Pdr1p, Rpn4p). Importantly, the new methods (scoring of TF–target interactions and TF module identification) are scalable to much larger datasets, making them applicable to future studies in humans, which are thought to have substantially larger numbers of TF–target interactions.
Systematic chromatin immunoprecipitation (chIP-chip) experiments have become a central technique for mapping transcriptional interactions in model organisms and humans. However, measurement of chromatin binding does not necessarily imply regulation, and binding may be difficult to detect if it is condition or cofactor dependent. To address these challenges, we present an approach for reliably assigning transcription factors (TFs) to target genes that integrates many lines of direct and indirect evidence into a single probabilistic model. Using this approach, we analyze publicly available chIP-chip binding profiles measured for yeast TFs in standard conditions, showing that our model interprets these data with significantly higher accuracy than previous methods. Pooling the high-confidence interactions reveals a large network containing 363 significant sets of factors (TF modules) that cooperate to regulate common target genes. In addition, the method predicts 980 novel binding interactions with high confidence that are likely to occur in so-far untested conditions. Indeed, using new chIP-chip experiments we show that predicted interactions for the factors Rpn4p and Pdr1p are observed only after treatment of cells with methyl-methanesulfonate, a DNA-damaging agent. We outline the first approach for consistently integrating all available evidences for TF-target interactions and we comprehensively identify the resulting TF module hierarchy. Prioritizing experimental conditions for each factor will be especially important as increasing numbers of chIP-chip assays are performed in complex organisms such as humans, for which "standard conditions" are ill defined.
  Systematic chromatin immunoprecipitation (chIP-chip) experiments have become a central technique for mapping transcriptional interactions in model organisms and humans. However, measurement of chromatin binding does not necessarily imply regulation, and binding may be difficult to detect if it is condition or cofactor dependent. To address these challenges, we present an approach for reliably assigning transcription factors (TFs) to target genes that integrates many lines of direct and indirect evidence into a single probabilistic model. Using this approach, we analyze publicly available chIP-chip binding profiles measured for yeast TFs in standard conditions, showing that our model interprets these data with significantly higher accuracy than previous methods. Pooling the high-confidence interactions reveals a large network containing 363 significant sets of factors (TF modules) that cooperate to regulate common target genes. In addition, the method predicts 980 novel binding interactions with high confidence that are likely to occur in so-far untested conditions. Indeed, using new chIP-chip experiments we show that predicted interactions for the factors Rpn4p and Pdr1p are observed only after treatment of cells with methyl-methanesulfonate, a DNA-damaging agent. We outline the first approach for consistently integrating all available evidences for TF-target interactions and we comprehensively identify the resulting TF module hierarchy. Prioritizing experimental conditions for each factor will be especially important as increasing numbers of chIP-chip assays are performed in complex organisms such as humans, for which "standard conditions" are ill defined.
Audience Academic
Author Möller, Ulrich
Radke, Dörte
Wilhelm, Thomas
Hollunder, Jens
Workman, Christopher
Beyer, Andreas
Ideker, Trey
AuthorAffiliation 1 Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
2 Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
3 Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
EMBL Heidelberg, Germany
AuthorAffiliation_xml – name: 2 Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
– name: 1 Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
– name: 3 Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
– name: EMBL Heidelberg, Germany
Author_xml – sequence: 1
  givenname: Andreas
  surname: Beyer
  fullname: Beyer, Andreas
– sequence: 2
  givenname: Christopher
  surname: Workman
  fullname: Workman, Christopher
– sequence: 3
  givenname: Jens
  surname: Hollunder
  fullname: Hollunder, Jens
– sequence: 4
  givenname: Dörte
  surname: Radke
  fullname: Radke, Dörte
– sequence: 5
  givenname: Ulrich
  surname: Möller
  fullname: Möller, Ulrich
– sequence: 6
  givenname: Thomas
  surname: Wilhelm
  fullname: Wilhelm, Thomas
– sequence: 7
  givenname: Trey
  surname: Ideker
  fullname: Ideker, Trey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16789814$$D View this record in MEDLINE/PubMed
BookMark eNqVkl1rFDEYhQep2A_9B6IDguDFrskkM0l6IazV6kJR0XodMm-SMctssiZZ0X9vtrst3SKKzMCEd55zkhzOcXXggzdV9RijKSYMv1yEdfRqnK6gd1OEGoQYulcd4bYlE0ZafnBrfVgdp7RAqCxF96A6xB3jgmN6VL2Z-2yGqLLR9Swlk9LS-Fwrr-tP0WgH2QVfB1tfRuUTRLe6GpwryCHWr53Xzg8Pq_tWjck82n1Pqq_nby_P3k8uPr6bn80uJtB1TZ7gFggjllIkQFBugSndASoDrTBwSwXVwMDoXnDQVgiBrGq6njY91T215KR6uvVdjSHJXQBJYoIp4YQxVIj5ltBBLeQquqWKv2RQTl4NQhykitnBaKQWtm_68jas2DPRmw51hJseU1BUiOL1arfbul8aDSWXqMY90_0_3n2TQ_ghMWUCcVYMnu8MYvi-NinLpUtgxlF5E9ZJdrztGEb8nyAWhApMmgI-uwP-OYTplhpUuafzNpTjQXm0WTooLbKuzGe4xQy3TUuL4MWeoDDZ_MyDWqck518-_wf7YZ99cjvBm-iu61eA0y0AMaQUjZXgsto0rJzYjRIjuen69S3lputy1_UipnfEN_5_k_0GHZsEhw
CitedBy_id crossref_primary_10_1007_s00500_014_1467_6
crossref_primary_10_1534_genetics_111_127019
crossref_primary_10_1093_nar_gkr139
crossref_primary_10_1186_gb_2010_11_6_r67
crossref_primary_10_2119_2006_00107_Trevino
crossref_primary_10_1002_acn3_50850
crossref_primary_10_1093_bioinformatics_btl511
crossref_primary_10_1186_1752_0509_7_S6_S13
crossref_primary_10_1371_journal_pone_0064832
crossref_primary_10_1038_srep11432
crossref_primary_10_1111_febs_15802
crossref_primary_10_1534_genetics_109_111419
crossref_primary_10_1186_1471_2105_8_454
crossref_primary_10_1371_journal_pone_0020059
crossref_primary_10_1038_s41467_020_17961_4
crossref_primary_10_1186_1471_2105_11_S1_S8
crossref_primary_10_1186_1756_0500_5_227
crossref_primary_10_1534_g3_113_006601
crossref_primary_10_1038_msb4100106
crossref_primary_10_1186_1471_2164_11_502
crossref_primary_10_1016_j_tim_2006_11_003
crossref_primary_10_1007_s10709_017_9980_z
crossref_primary_10_1101_gr_6148107
crossref_primary_10_1111_j_1467_9876_2009_00686_x
crossref_primary_10_1038_msb_2010_27
crossref_primary_10_1002_sim_3815
crossref_primary_10_1186_1471_2105_10_196
crossref_primary_10_1371_journal_pcbi_1002391
crossref_primary_10_1091_mbc_e08_02_0140
crossref_primary_10_1186_gb_2008_9_1_r2
crossref_primary_10_1007_s00467_008_0808_z
crossref_primary_10_1371_journal_pone_0053581
crossref_primary_10_1371_journal_pone_0001820
crossref_primary_10_1371_journal_pone_0001821
crossref_primary_10_1038_s41581_024_00849_7
crossref_primary_10_1101_gr_096305_109
crossref_primary_10_1016_j_dnarep_2019_05_002
crossref_primary_10_1038_msb_2008_4
crossref_primary_10_1186_1471_2164_10_S3_S17
crossref_primary_10_1186_gb_2010_11_3_r32
crossref_primary_10_1089_omi_2009_0144
crossref_primary_10_1186_1471_2105_11_S11_S5
crossref_primary_10_1186_gb_2007_8_9_r197
crossref_primary_10_1093_gigascience_giy014
crossref_primary_10_1093_nar_gky468
crossref_primary_10_1371_journal_pcbi_1009414
crossref_primary_10_1093_bioinformatics_btp213
crossref_primary_10_4161_epi_27021
crossref_primary_10_1371_journal_pcbi_1000108
crossref_primary_10_1101_gr_150904_112
crossref_primary_10_1186_1471_2105_10_17
crossref_primary_10_1186_1471_2105_14_S6_S1
crossref_primary_10_1109_TCBB_2018_2804393
crossref_primary_10_1038_nrg2144
crossref_primary_10_1073_pnas_0606914104
crossref_primary_10_1186_1471_2164_9_341
crossref_primary_10_1093_nar_gks695
crossref_primary_10_1089_cmb_2015_0010
crossref_primary_10_1186_s12859_019_3212_8
crossref_primary_10_1093_bioinformatics_btm612
crossref_primary_10_1371_journal_pcbi_1003342
crossref_primary_10_1186_1745_6150_3_22
crossref_primary_10_1186_1471_2105_10_23
crossref_primary_10_1002_wsbm_1489
Cites_doi 10.1002/pmic.200401121
10.1038/ng1165
10.1126/science.285.5428.751
10.1016/0005-2795(75)90109-9
10.1073/pnas.0308661100
10.1038/ng724
10.1126/science.1087361
10.1038/nature01763
10.1073/pnas.0402591101
10.1091/mbc.12.10.2987
10.1016/S1568-7864(02)00187-8
10.1073/pnas.0406614101
10.1046/j.1365-2958.2002.02823.x
10.1038/nbt1103
10.1186/gb-2005-6-13-r114
10.1038/ng941
10.1073/pnas.0405537102
10.1186/gb-2004-5-8-r56
10.1142/9789814447331_0044
10.1038/387s067
10.1093/bioinformatics/bth166
10.1126/science.292.5518.929
10.1126/science.282.5389.699
10.1016/S0092-8674(01)00494-9
10.1038/nsmb820
10.1089/10665270050514945
10.1093/nar/gki166
10.1128/MCB.25.6.2138-2146.2005
10.1126/science.1075090
10.1126/science.1099511
10.1038/nature02800
10.1073/pnas.96.8.4285
10.1091/mbc.11.12.4241
10.1093/nar/29.1.281
10.1128/MCB.17.2.545
10.1038/nbt890
10.1073/pnas.0407365101
10.1016/j.febslet.2004.11.019
10.1093/nar/25.1.28
10.1186/gb-2005-6-7-r62
10.1046/j.1365-2958.2002.03262.x
10.1093/bioinformatics/15.7.607
ContentType Journal Article
Copyright COPYRIGHT 2006 Public Library of Science
2006 Beyer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Beyer A, Workman C, Hollunder J, Radke D, Möller U, et al. (2006) Integrated Assessment and Prediction of Transcription Factor Binding. PLoS Comput Biol 2(6): e70. doi:10.1371/journal.pcbi.0020070
2006 Beyer et al. 2006
Copyright_xml – notice: COPYRIGHT 2006 Public Library of Science
– notice: 2006 Beyer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Beyer A, Workman C, Hollunder J, Radke D, Möller U, et al. (2006) Integrated Assessment and Prediction of Transcription Factor Binding. PLoS Comput Biol 2(6): e70. doi:10.1371/journal.pcbi.0020070
– notice: 2006 Beyer et al. 2006
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.0020070
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE


Publicly Available Content Database
Nucleic Acids Abstracts
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Integrated Assessment of TF Binding
EISSN 1553-7358
ExternalDocumentID 1314383770
oai_doaj_org_article_d9fb2bb2b27b4d79be60638eb14ca499
PMC1479087
2906814111
A151715254
16789814
10_1371_journal_pcbi_0020070
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: R01 ES014811
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
IPNFZ
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M0N
P64
PKEHL
PQEST
PQUKI
Q9U
RC3
PUEGO
7X8
5PM
AAPBV
ABPTK
M~E
ID FETCH-LOGICAL-c662t-15c373f4409c948fc7ad6c0f44da1c8f494dc7cedb98cdf9990fa26b42b4db4f3
IEDL.DBID DOA
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000239494000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7358
1553-734X
IngestDate Sun Oct 01 00:20:27 EDT 2023
Fri Oct 03 12:37:17 EDT 2025
Tue Nov 04 01:32:12 EST 2025
Thu Sep 04 16:24:09 EDT 2025
Fri Sep 05 13:31:30 EDT 2025
Sat Nov 29 14:52:23 EST 2025
Tue Nov 04 18:34:57 EST 2025
Thu Nov 13 16:32:52 EST 2025
Thu Nov 13 16:29:44 EST 2025
Fri May 30 11:01:04 EDT 2025
Sat Nov 29 04:52:40 EST 2025
Tue Nov 18 22:09:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Models, Chemical
Systems Integration
Molecular Sequence Data
Sequence Analysis, DNA
Sequence Alignment
Algorithms
Chromatin Immunoprecipitation
Base Sequence
Computer Simulation
Protein Binding
Transcription, Genetic
Models, Genetic
Transcription Factors
Binding Sites
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c662t-15c373f4409c948fc7ad6c0f44da1c8f494dc7cedb98cdf9990fa26b42b4db4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/d9fb2bb2b27b4d79be60638eb14ca499
PMID 16789814
PQID 1314383770
PQPubID 1436340
PageCount 12
ParticipantIDs plos_journals_1314383770
doaj_primary_oai_doaj_org_article_d9fb2bb2b27b4d79be60638eb14ca499
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1479087
proquest_miscellaneous_68567108
proquest_miscellaneous_19349132
proquest_journals_1314383770
gale_infotracacademiconefile_A151715254
gale_incontextgauss_ISR_A151715254
gale_incontextgauss_ISN_A151715254
pubmed_primary_16789814
crossref_citationtrail_10_1371_journal_pcbi_0020070
crossref_primary_10_1371_journal_pcbi_0020070
PublicationCentury 2000
PublicationDate 2006-06-01
PublicationDateYYYYMMDD 2006-06-01
PublicationDate_xml – month: 06
  year: 2006
  text: 2006-06-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2006
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References (pcbi-0020070-b036) 1975; 405
(pcbi-0020070-b009) 2001; 106
(pcbi-0020070-b026) 2005; 5
(pcbi-0020070-b002) 2001; 29
(pcbi-0020070-b003) 2005; 33
(pcbi-0020070-b017) 2004; 578
(pcbi-0020070-b025) 2004; 101
(pcbi-0020070-b040) 2003; 19
(pcbi-0020070-b044) 1998; 282
(pcbi-0020070-b005) 2004; 11
(pcbi-0020070-b028) 1999; 285
(pcbi-0020070-b001) 2000; 11
(pcbi-0020070-b035) 2003; 2
(pcbi-0020070-b027) 2004; 101
(pcbi-0020070-b007) 2001; 292
(pcbi-0020070-b013) 2004; 5
(pcbi-0020070-b041) 2005; 6
(pcbi-0020070-b015) 2002; 31
(pcbi-0020070-b042) 2004; 20
(pcbi-0020070-b014) 2004; 101
(pcbi-0020070-b018) 2005; 21
(pcbi-0020070-b020) 2004; 101
(pcbi-0020070-b008) 2003; 424
(pcbi-0020070-b024) 2005; 23
(pcbi-0020070-b031) 1997; 387
(pcbi-0020070-b046) 2002; 3
(pcbi-0020070-b010) 2002; 298
(pcbi-0020070-b038) 1999; 15
(pcbi-0020070-b004) 2003; 21
(pcbi-0020070-b016) 2003; 34
(pcbi-0020070-b033) 2002; 46
(pcbi-0020070-b011) 2004; 431
(pcbi-0020070-b030) 1997; 17
(pcbi-0020070-b032) 1997; 25
(pcbi-0020070-b006) 2005; 102
(pcbi-0020070-b039) 2001; 29
(pcbi-0020070-b045) 2004; 20
pcbi-0020070-b037
(pcbi-0020070-b034) 2002; 43
(pcbi-0020070-b043) 2001; 12
(pcbi-0020070-b022) 2005; 6
(pcbi-0020070-b021) 2004; 306
(pcbi-0020070-b023) 2003; 302
(pcbi-0020070-b019) 2005; 6
(pcbi-0020070-b029) 1999; 96
(pcbi-0020070-b047) 2000; 7
(pcbi-0020070-b012) 2005; 25
References_xml – volume: 5
  start-page: 2082
  year: 2005
  ident: pcbi-0020070-b026
  article-title: Identification and characterization of protein subcomplexes in yeast.
  publication-title: Proteomics
  doi: 10.1002/pmic.200401121
– volume: 34
  start-page: 166
  year: 2003
  ident: pcbi-0020070-b016
  article-title: Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data.
  publication-title: Nat Genet
  doi: 10.1038/ng1165
– volume: 285
  start-page: 751
  year: 1999
  ident: pcbi-0020070-b028
  article-title: Detecting protein function and protein-protein interactions from genome sequences.
  publication-title: Science
  doi: 10.1126/science.285.5428.751
– volume: 405
  start-page: 442
  year: 1975
  ident: pcbi-0020070-b036
  article-title: Comparison of the predicted and observed secondary structure of T4 phage lysozyme.
  publication-title: Biochim Biophys Acta
  doi: 10.1016/0005-2795(75)90109-9
– volume: 19
  start-page: i273
  issue: (Suppl 1)
  year: 2003
  ident: pcbi-0020070-b040
  article-title: Genome-wide discovery of transcriptional modules from DNA sequence and gene expression.
  publication-title: Bioinformatics
– volume: 101
  start-page: 2981
  year: 2004
  ident: pcbi-0020070-b020
  article-title: Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0308661100
– volume: 20
  start-page: i23
  issue: (Suppl 1)
  year: 2004
  ident: pcbi-0020070-b045
  article-title: Deconvolving cell cycle expression data with complementary information.
  publication-title: Bioinformatics
– volume: 29
  start-page: 153
  year: 2001
  ident: pcbi-0020070-b002
  article-title: Identifying regulatory networks by combinatorial analysis of promotor elements.
  publication-title: Nat Genet
  doi: 10.1038/ng724
– volume: 302
  start-page: 449
  year: 2003
  ident: pcbi-0020070-b023
  article-title: A Bayesian networks approach for predicting protein-protein interactions from genomic data.
  publication-title: Science
  doi: 10.1126/science.1087361
– volume: 424
  start-page: 147
  year: 2003
  ident: pcbi-0020070-b008
  article-title: Transcription regulation and animal diversity.
  publication-title: Nature
  doi: 10.1038/nature01763
– volume: 101
  start-page: 9033
  year: 2004
  ident: pcbi-0020070-b027
  article-title: Coevolution of gene expression among interacting proteins.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0402591101
– volume: 12
  start-page: 2987
  year: 2001
  ident: pcbi-0020070-b043
  article-title: Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p.
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.12.10.2987
– volume: 21
  start-page: ii197
  issue: (Suppl 2)
  year: 2005
  ident: pcbi-0020070-b018
  article-title: Genome-wide decoding of hierarchical modular structure of transcriptional regulation by cis-element and expression clustering.
  publication-title: Bioinformatics
– volume: 2
  start-page: 73
  year: 2003
  ident: pcbi-0020070-b035
  article-title: DNA mismatch repair and acquired cisplatin resistance in E. coli and human ovarian carcinoma cells.
  publication-title: DNA Repair (Amst)
  doi: 10.1016/S1568-7864(02)00187-8
– volume: 101
  start-page: 15682
  year: 2004
  ident: pcbi-0020070-b025
  article-title: Combining biological networks to predict genetic interactions.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0406614101
– volume: 43
  start-page: 1295
  year: 2002
  ident: pcbi-0020070-b034
  article-title: Control of 26S proteasome expression by transcription factors regulating multidrug resistance in Saccharomyces cerevisiae.
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2002.02823.x
– volume: 23
  start-page: 951
  year: 2005
  ident: pcbi-0020070-b024
  article-title: Probabilistic model of the human protein-protein interaction network.
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1103
– volume: 6
  start-page: R114
  year: 2005
  ident: pcbi-0020070-b022
  article-title: Discovery of biological networks from diverse functional genomic data.
  publication-title: Genome Biol
  doi: 10.1186/gb-2005-6-13-r114
– volume: 31
  start-page: 370
  year: 2002
  ident: pcbi-0020070-b015
  article-title: Revealing modular organization in the yeast transcriptional network.
  publication-title: Nat Genet
  doi: 10.1038/ng941
– volume: 102
  start-page: 1998
  year: 2005
  ident: pcbi-0020070-b006
  article-title: Inference of combinatorial regulation in yeast transcriptional networks: A case study of sporulation.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0405537102
– volume: 5
  start-page: R56
  year: 2004
  ident: pcbi-0020070-b013
  article-title: Identifying combinatorial regulation of transcription factors and binding motifs.
  publication-title: Genome Biol
  doi: 10.1186/gb-2004-5-8-r56
– ident: pcbi-0020070-b037
  doi: 10.1142/9789814447331_0044
– volume: 387
  start-page: 67
  year: 1997
  ident: pcbi-0020070-b031
  article-title: Genetic and physical maps of Saccharomyces cerevisiae.
  publication-title: Nature
  doi: 10.1038/387s067
– volume: 20
  start-page: 1993
  year: 2004
  ident: pcbi-0020070-b042
  article-title: Defining transcription modules using large-scale gene expression data.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth166
– volume: 292
  start-page: 929
  year: 2001
  ident: pcbi-0020070-b007
  article-title: Integrated genomic and proteomic analyses of a systematically perturbed metabolic network.
  publication-title: Science
  doi: 10.1126/science.292.5518.929
– volume: 282
  start-page: 699
  year: 1998
  ident: pcbi-0020070-b044
  article-title: The transcriptional program of sporulation in budding yeast.
  publication-title: Science
  doi: 10.1126/science.282.5389.699
– volume: 106
  start-page: 697
  year: 2001
  ident: pcbi-0020070-b009
  article-title: Serial regulation of transcriptional regulators in the yeast cell cycle.
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00494-9
– volume: 11
  start-page: 812
  year: 2004
  ident: pcbi-0020070-b005
  article-title: Combinatorial control of gene expression.
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb820
– volume: 7
  start-page: 805
  year: 2000
  ident: pcbi-0020070-b047
  article-title: Testing for differentially-expressed genes by maximum-likelihood analysis of microarray data.
  publication-title: J Comput Biol
  doi: 10.1089/10665270050514945
– volume: 33
  start-page: 605
  year: 2005
  ident: pcbi-0020070-b003
  article-title: Extraction of transcription regulatory signals from genome-wide DNA-protein interaction data.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki166
– volume: 25
  start-page: 2138
  year: 2005
  ident: pcbi-0020070-b012
  article-title: Combined global localization analysis and transcriptome data identify genes that are directly coregulated by Adr1 and Cat8.
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.25.6.2138-2146.2005
– volume: 298
  start-page: 799
  year: 2002
  ident: pcbi-0020070-b010
  article-title: Transcriptional regulatory networks in Saccharomyces cerevisiae.
  publication-title: Science
  doi: 10.1126/science.1075090
– volume: 306
  start-page: 1555
  year: 2004
  ident: pcbi-0020070-b021
  article-title: A probabilistic functional network of yeast genes.
  publication-title: Science
  doi: 10.1126/science.1099511
– volume: 6
  start-page: 557
  year: 2005
  ident: pcbi-0020070-b041
  article-title: Learning module networks.
  publication-title: J Mach Learn Res
– volume: 431
  start-page: 99
  year: 2004
  ident: pcbi-0020070-b011
  article-title: Transcriptional regulatory code of a eukaryotic genome.
  publication-title: Nature
  doi: 10.1038/nature02800
– volume: 96
  start-page: 4285
  year: 1999
  ident: pcbi-0020070-b029
  article-title: Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.96.8.4285
– volume: 11
  start-page: 4241
  year: 2000
  ident: pcbi-0020070-b001
  article-title: Genomic expression programs in the response of yeast cells to environmental changes.
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.11.12.4241
– volume: 29
  start-page: 281
  year: 2001
  ident: pcbi-0020070-b039
  article-title: The TRANSFAC system on gene expression regulation.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/29.1.281
– volume: 17
  start-page: 545
  year: 1997
  ident: pcbi-0020070-b030
  article-title: Hir1p and Hir2p function as transcriptional corepressors to regulate histone gene transcription in the Saccharomyces cerevisiae cell cycle.
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.17.2.545
– volume: 21
  start-page: 1337
  year: 2003
  ident: pcbi-0020070-b004
  article-title: Computational discovery of gene modules and regulatory networks.
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt890
– volume: 3
  start-page: 0059
  year: 2002
  ident: pcbi-0020070-b046
  article-title: Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering.
  publication-title: Genome Biol
– volume: 101
  start-page: 16234
  year: 2004
  ident: pcbi-0020070-b014
  article-title: Interacting models of cooperative gene regulation.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0407365101
– volume: 578
  start-page: 297
  year: 2004
  ident: pcbi-0020070-b017
  article-title: Learning module networks from genome-wide location and expression data.
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2004.11.019
– volume: 25
  start-page: 28
  year: 1997
  ident: pcbi-0020070-b032
  article-title: MIPS: A database for protein sequences, homology data and yeast genome information.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.1.28
– volume: 6
  start-page: R62
  year: 2005
  ident: pcbi-0020070-b019
  article-title: Validation and refinement of gene-regulatory pathways on a network of physical interactions.
  publication-title: Genome Biol
  doi: 10.1186/gb-2005-6-7-r62
– volume: 46
  start-page: 1429
  year: 2002
  ident: pcbi-0020070-b033
  article-title: The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo- and heterodimers in vivo.
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2002.03262.x
– volume: 15
  start-page: 607
  year: 1999
  ident: pcbi-0020070-b038
  article-title: SCPD: A promoter database of the yeast Saccharomyces cerevisiae.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/15.7.607
SSID ssj0035896
Score 2.1224036
Snippet Systematic chromatin immunoprecipitation (chIP-chip) experiments have become a central technique for mapping transcriptional interactions in model organisms...
  Systematic chromatin immunoprecipitation (chIP-chip) experiments have become a central technique for mapping transcriptional interactions in model organisms...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e70
SubjectTerms Algorithms
Base Sequence
Binding Sites
Bioinformatics - Computational Biology
Cell Biology
Chromatin Immunoprecipitation - methods
Computer Simulation
DNA microarrays
Experiments
Gene expression
Genetic transcription
Genetics
Genomes
Methods
Models, Chemical
Models, Genetic
Molecular Sequence Data
Observations
Protein Binding
Saccharomyces
Sequence Alignment - methods
Sequence Analysis, DNA - methods
Systems Biology
Systems Integration
Transcription Factors - chemistry
Transcription Factors - genetics
Transcription, Genetic - genetics
Yeasts
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA-6KtyL3-dVTy0i-FSvTdKkeZI9dfFAlsUv9q3kozkXjnZvuyv435tJ056VO30Q-tRMoZmZTCaT5PdD6KWxuTSE5olgULrB2iZCYJXkhnCLKy2UR_v89pHP58VyKRah4NaGY5V9TPSB2jQaauRHGQGibsJ5-mZ9ngBrFOyuBgqN6-gGoCQQf3Rv0UdikheenwuocRJO6DJcnSM8OwqWer3WagVFFYC9GU1NHsF_iNOT9VnTXpaE_nmW8rfJaXbnf7t1F90OaWk87fzoHrpW1ffRrY6o8ucD9O6kR5Uw8XTA8oxlbeLFBrZ6wLxxY2M_9fWBKJ55Mp_4eOWvzjxEX2fvv7z9kAT-hUQzhrdJlmvCiaVuCagFLazm0jCduhdGZrqwVFCjua6MEoU21qWaqZWYKYoVNYpaso8mdVNXByh2654UJCWuOGVZJmVhGMGpNpKrLK0iRHrVlzqAkwNHxlnpd9y4W6R0iijBYGUwWISS4at1B87xD_ljsOogC9Da_kWzOS3DSC2NsAor92DuusGFqhikdW5Oo1q69WGEXoBPlACeUcPpnFO5a9vy5PO8nLr0iQOhFL1S6NNI6FUQso3rrJbhRoRTGYByjSQPwAH7TrXlhdtE6LB3rMubnw_NLnDAbpCsq2bnZAShIiP4aglW5MwloEWEHnU-fqFkl-KIInP_xUfeP9LsuKVefffg5RnlIi3447__9hO019W6oNx1iCbbza56im7qH9tVu3nmR_kvokVcqA
  priority: 102
  providerName: ProQuest
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZixQxEA46KvjirTu6aiOCT63dSTrH46w6uLAMgxf71uTo6MDSPUzPLOy_t6qvtZcdROin5At0VSpJVY6vCHnrQ2Y841msBW7dUBdiramNM89koIXTtmH7_HkiFwt1eqqXl4HilRN8JtMPnU7fr51d4fYHEtTcJLcoEwKvcM2XJ_3MyzKlRfc8bl_L0fLTsPQPc_FkfVbV1zmaV-9L_rUAze__768_IPc6VzOatbbxkNwoykfkTpt88uIx-XTcM0X4aDbwc0am9NFyg8c32GVRFaJmOesnl2jeJOiJjlbNc5gn5Mf88_ePX-Iup0LshKDbOM0ckyxwCOuc5io4abxwCRR4kzoVuObeSVd4q5XzAdzHJBgqLKeWe8sDe0omZVUWBySCWCZBpKGF5CJNjVFeMJo4b6RNk2JKWK_q3HWE45j34ixvTtEkBB6tInLUT97pZ0riodW6Jdz4B_4Ie3HAIl12UwAdkXejL_c6WGrhoxLEkNoWAl01WKe4MxDzTckbtIEcCTFKvHHzy-zqOj_-tshn4BJJTBLF94K-jkDvOlCoQFhnulcOoDIk2hohD9DgeqFqEBFT0TOJMh32Rnh99euhGiYDPOExZVHtAKMZ1ymj-xFCZQKcSjUlz1qbvlQyuC1apfBfcmTtI82Oa8rV74aQPOVSJ0o-3y_RC3K33bvC7atDMtludsVLctudb1f15lUziv8AmrVIvA
  priority: 102
  providerName: Public Library of Science
Title Integrated Assessment and Prediction of Transcription Factor Binding
URI https://www.ncbi.nlm.nih.gov/pubmed/16789814
https://www.proquest.com/docview/1314383770
https://www.proquest.com/docview/19349132
https://www.proquest.com/docview/68567108
https://pubmed.ncbi.nlm.nih.gov/PMC1479087
https://doaj.org/article/d9fb2bb2b27b4d79be60638eb14ca499
http://dx.doi.org/10.1371/journal.pcbi.0020070
Volume 2
WOSCitedRecordID wos000239494000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: P5Z
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M7P
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: K7-
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: PIMPY
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: FPL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFB50VfBFvLardQ0i-BSbzEwyM4-tdnGxLqFeWH0Jc8noQkmWvQj-e8_JzUZa-iIs85D5AnsuOXPm9h1CXjmfaMd4EqoUl26o9aFS1ISJY8LTwipTs31-PRXzuVwsVHah1BeeCWvogRvFHTrlDTXwo8JwJ5QpUhxlIcRwqyFdx-gLWU83mWpiMEtkXZkLi-KEgvFFe2mOifiwtdGblTVLXE5BwpvBoFRz9_cRerQ6rzaXpZ__nqK8MCxN75N7bT4ZHDVyPCA3ivIhudNUmPz9iLybdXQQLtA9CWegSxes1rhHg3YJKh9scczqIkjQVOEJzLK-8_KYfJmefH77PmwLJ4Q2Tek2jBPLBPMc5m5Wcemt0C61ETxwOrbSc8WdFbZwRknrPOSIkdc0NZyCig337AkZlVVZ7JMAJiwRIjUtBE_jWGvpUkYj67QwcVSMCes0l9uWVRyLW5zn9VaZgNlFo4gc9Z23-h6TsH9r1bBqXIM_RqP0WOTErh-Ap-Stp-TXecqYvEST5sh6UeKxmh96t9nks0_z_AjyHoGVoPiVoLMB6HUL8hUIa3V7lQFUhmxaA-Q--k8n1AZExHrzTKBMB51PXd79ou-GLx63cXRZVDvAKMZVzOjViFQmKWSOckz2Ghf9q2TITZSM4X-JgfMONDvsKZc_a9bxmAsVSfH0f5jiGbnbLGXhatYBGW3Xu-I5uW1_bZeb9YTcFAtRt3JCbh2fzLOzSf15QzvNTqH9IMIJntLNoM2S74DKZh-zb38AWxtZAQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGAcEL37DAYBEC8RSW2E4cPyDUMapVLdUEY-pb8Ec8Kk1JaVrQ_in-RnxO0hG0wdMekPoUXyr7cj7fne3fD6EX2sRCExoHPIHSDVYm4BzLINaEGZwrLh3a59GYTSbpdMoPNtDP9i4MHKtsfaJz1LpUUCPfiQgQdRPGwrfzbwGwRsHuakuhUZvFKD_9YVO26s1wz37flxgP3h--2w8aVoFAJQleBlGsCCOG2sRGcZoaxYROVGgfaBGp1FBOtWIq15KnShsbQIVG4ERSLKmW1BD7v1fQVdsZBlj9Ixa0np_EqeMDAyqegBE6ba7qERbtNJbxeq7kDIo4ALPTWQodY8B6XejNT8rqvKD3z7Obvy2Gg9v_mxrvoFtN2O3363lyF23kxT10vSbiPL2P9oYtaob2-2usUl8U2j9YwFYWmK9fGt8t7a2j9QeOrMjfnbmrQQ_Q50sZwkPUK8oi30S-zetCkBQ4ZzSJIiFSnRAcKi2YjMLcQ6T91JlqwNeBA-QkczuKzCZhtSIyMJCsMRAPBeu35jX4yD_kd8GK1rIAHe4elIvjrPFEmeZGYml_mNlhMC7zBMJWu2ZTJWz-66HnYIMZgIMUcProWKyqKht-mmR9Gx4yIMyiFwp97Ai9aoRMaQerRHPjw6oMQMc6kptg8O2gquzMTD201Rry-c3b62brGGG3SxR5ubIynFAeEXyxRJLGiQ2wUw89qufUmZJtCMfTyPaLdWZbR7PdlmL21YGzR5TxMGWP_97tbXRj__DDOBsPJ6Mn6GZd14PS3hbqLRer_Cm6pr4vZ9XimfMwPvpy2XPxFyScvB0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj9MwFLaGsogLO0xhYCIE4hSa2E4cHxDqUCqqjqqKTb0FL_FQaZSUpgXNX-PX4ecsQ9AMnOaAlFP8EsXO9zYv70PomTaR0IRGPo9h6gYr43OOpR9pwgzOFJeu2ufnQzabJYsFn--gn81ZGNhW2dhEZ6h1oWCOfBASIOomjAUDU2-LmI_Gr1fffGCQgpXWhk6jgsg0O_lh07fy1WRk__VzjMdvP75559cMA76KY7zxw0gRRgy1SY7iNDGKCR2rwN7QIlSJoZxqxVSmJU-UNjaYCozAsaRYUi2pIfa9l9Bl64Uj0LEp8xsvQKLEcYMBLY_PCF3Ux_YICwc1Sl6ulFzChA6U3Om4Rcce0PqI3uq4KM8KgP_cx_mbYxzf_J-H9Ba6UYfj3rDSn9toJ8vvoKsVQefJXTSaNNU0tDdsa5h6ItfefA1LXABrrzCec_mNAfbGjsTIO1i6I0P30KcL6cJ91MuLPNtFns33ApAUOGM0DkMhEh0THCgtmAyDrI9I89tTVRdlB26Q49StNDKbnFUDkQJY0hosfeS3T62qoiT_kD8ARLWyUFLc3SjWR2ltoVLNjcTSXpjZbjAusxjCWevLqRI2L-6jp4DHFIqG5ICVI7Ety3TyYZYObdjIgEiLniv0viP0ohYyhe2sEvVJEDtkUIysI7kL4G86VaankO2jvQbUZzfvt83WYMIqmMizYmtlOKE8JPh8iTiJYht4J330oNKv00G2oR1PQvtdrKN5nZHttuTLr65oe0gZDxL28O-fvY-uWRVMDyez6SN0vZrugxm_PdTbrLfZY3RFfd8sy_UTZ2w89OWiVfEXXIHE1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+assessment+and+prediction+of+transcription+factor+binding&rft.jtitle=PLoS+computational+biology&rft.au=Beyer%2C+Andreas&rft.au=Workman%2C+Christopher&rft.au=Hollunder%2C+Jens&rft.au=Radke%2C+D%C3%B6rte&rft.date=2006-06-01&rft.issn=1553-7358&rft.eissn=1553-7358&rft.volume=2&rft.issue=6&rft.spage=e70&rft_id=info:doi/10.1371%2Fjournal.pcbi.0020070&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon