BioConceptVec: Creating and evaluating literature-based biomedical concept embeddings on a large scale
A massive number of biological entities, such as genes and mutations, are mentioned in the biomedical literature. The capturing of the semantic relatedness of biological entities is vital to many biological applications, such as protein-protein interaction prediction and literature-based discovery....
Saved in:
| Published in: | PLoS computational biology Vol. 16; no. 4; p. e1007617 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Public Library of Science
01.04.2020
Public Library of Science (PLoS) |
| Subjects: | |
| ISSN: | 1553-7358, 1553-734X, 1553-7358 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A massive number of biological entities, such as genes and mutations, are mentioned in the biomedical literature. The capturing of the semantic relatedness of biological entities is vital to many biological applications, such as protein-protein interaction prediction and literature-based discovery. Concept embeddings-which involve the learning of vector representations of concepts using machine learning models-have been employed to capture the semantics of concepts. To develop concept embeddings, named-entity recognition (NER) tools are first used to identify and normalize concepts from the literature, and then different machine learning models are used to train the embeddings. Despite multiple attempts, existing biomedical concept embeddings generally suffer from suboptimal NER tools, small-scale evaluation, and limited availability. In response, we employed high-performance machine learning-based NER tools for concept recognition and trained our concept embeddings, BioConceptVec, via four different machine learning models on ~30 million PubMed abstracts. BioConceptVec covers over 400,000 biomedical concepts mentioned in the literature and is of the largest among the publicly available biomedical concept embeddings to date. To evaluate the validity and utility of BioConceptVec, we respectively performed two intrinsic evaluations (identifying related concepts based on drug-gene and gene-gene interactions) and two extrinsic evaluations (protein-protein interaction prediction and drug-drug interaction extraction), collectively using over 25 million instances from nine independent datasets (17 million instances from six intrinsic evaluation tasks and 8 million instances from three extrinsic evaluation tasks), which is, by far, the most comprehensive to our best knowledge. The intrinsic evaluation results demonstrate that BioConceptVec consistently has, by a large margin, better performance than existing concept embeddings in identifying similar and related concepts. More importantly, the extrinsic evaluation results demonstrate that using BioConceptVec with advanced deep learning models can significantly improve performance in downstream bioinformatics studies and biomedical text-mining applications. Our BioConceptVec embeddings and benchmarking datasets are publicly available at https://github.com/ncbi-nlp/BioConceptVec. |
|---|---|
| AbstractList | A massive number of biological entities, such as genes and mutations, are mentioned in the biomedical literature. The capturing of the semantic relatedness of biological entities is vital to many biological applications, such as protein-protein interaction prediction and literature-based discovery. Concept embeddings-which involve the learning of vector representations of concepts using machine learning models-have been employed to capture the semantics of concepts. To develop concept embeddings, named-entity recognition (NER) tools are first used to identify and normalize concepts from the literature, and then different machine learning models are used to train the embeddings. Despite multiple attempts, existing biomedical concept embeddings generally suffer from suboptimal NER tools, small-scale evaluation, and limited availability. In response, we employed high-performance machine learning-based NER tools for concept recognition and trained our concept embeddings, BioConceptVec, via four different machine learning models on ~30 million PubMed abstracts. BioConceptVec covers over 400,000 biomedical concepts mentioned in the literature and is of the largest among the publicly available biomedical concept embeddings to date. To evaluate the validity and utility of BioConceptVec, we respectively performed two intrinsic evaluations (identifying related concepts based on drug-gene and gene-gene interactions) and two extrinsic evaluations (protein-protein interaction prediction and drug-drug interaction extraction), collectively using over 25 million instances from nine independent datasets (17 million instances from six intrinsic evaluation tasks and 8 million instances from three extrinsic evaluation tasks), which is, by far, the most comprehensive to our best knowledge. The intrinsic evaluation results demonstrate that BioConceptVec consistently has, by a large margin, better performance than existing concept embeddings in identifying similar and related concepts. More importantly, the extrinsic evaluation results demonstrate that using BioConceptVec with advanced deep learning models can significantly improve performance in downstream bioinformatics studies and biomedical text-mining applications. Our BioConceptVec embeddings and benchmarking datasets are publicly available at A massive number of biological entities, such as genes and mutations, are mentioned in the biomedical literature. The capturing of the semantic relatedness of biological entities is vital to many biological applications, such as protein-protein interaction prediction and literature-based discovery. Concept embeddings-which involve the learning of vector representations of concepts using machine learning models-have been employed to capture the semantics of concepts. To develop concept embeddings, named-entity recognition (NER) tools are first used to identify and normalize concepts from the literature, and then different machine learning models are used to train the embeddings. Despite multiple attempts, existing biomedical concept embeddings generally suffer from suboptimal NER tools, small-scale evaluation, and limited availability. In response, we employed high-performance machine learning-based NER tools for concept recognition and trained our concept embeddings, BioConceptVec, via four different machine learning models on ~30 million PubMed abstracts. BioConceptVec covers over 400,000 biomedical concepts mentioned in the literature and is of the largest among the publicly available biomedical concept embeddings to date. To evaluate the validity and utility of BioConceptVec, we respectively performed two intrinsic evaluations (identifying related concepts based on drug-gene and gene-gene interactions) and two extrinsic evaluations (protein-protein interaction prediction and drug-drug interaction extraction), collectively using over 25 million instances from nine independent datasets (17 million instances from six intrinsic evaluation tasks and 8 million instances from three extrinsic evaluation tasks), which is, by far, the most comprehensive to our best knowledge. The intrinsic evaluation results demonstrate that BioConceptVec consistently has, by a large margin, better performance than existing concept embeddings in identifying similar and related concepts. More importantly, the extrinsic evaluation results demonstrate that using BioConceptVec with advanced deep learning models can significantly improve performance in downstream bioinformatics studies and biomedical text-mining applications. Our BioConceptVec embeddings and benchmarking datasets are publicly available at https://github.com/ncbi-nlp/BioConceptVec. A massive number of biological entities, such as genes and mutations, are mentioned in the biomedical literature. The capturing of the semantic relatedness of biological entities is vital to many biological applications, such as protein-protein interaction prediction and literature-based discovery. Concept embeddings-which involve the learning of vector representations of concepts using machine learning models-have been employed to capture the semantics of concepts. To develop concept embeddings, named-entity recognition (NER) tools are first used to identify and normalize concepts from the literature, and then different machine learning models are used to train the embeddings. Despite multiple attempts, existing biomedical concept embeddings generally suffer from suboptimal NER tools, small-scale evaluation, and limited availability. In response, we employed high-performance machine learning-based NER tools for concept recognition and trained our concept embeddings, BioConceptVec, via four different machine learning models on ~30 million PubMed abstracts. BioConceptVec covers over 400,000 biomedical concepts mentioned in the literature and is of the largest among the publicly available biomedical concept embeddings to date. To evaluate the validity and utility of BioConceptVec, we respectively performed two intrinsic evaluations (identifying related concepts based on drug-gene and gene-gene interactions) and two extrinsic evaluations (protein-protein interaction prediction and drug-drug interaction extraction), collectively using over 25 million instances from nine independent datasets (17 million instances from six intrinsic evaluation tasks and 8 million instances from three extrinsic evaluation tasks), which is, by far, the most comprehensive to our best knowledge. The intrinsic evaluation results demonstrate that BioConceptVec consistently has, by a large margin, better performance than existing concept embeddings in identifying similar and related concepts. More importantly, the extrinsic evaluation results demonstrate that using BioConceptVec with advanced deep learning models can significantly improve performance in downstream bioinformatics studies and biomedical text-mining applications. Our BioConceptVec embeddings and benchmarking datasets are publicly available at https://github.com/ncbi-nlp/BioConceptVec.A massive number of biological entities, such as genes and mutations, are mentioned in the biomedical literature. The capturing of the semantic relatedness of biological entities is vital to many biological applications, such as protein-protein interaction prediction and literature-based discovery. Concept embeddings-which involve the learning of vector representations of concepts using machine learning models-have been employed to capture the semantics of concepts. To develop concept embeddings, named-entity recognition (NER) tools are first used to identify and normalize concepts from the literature, and then different machine learning models are used to train the embeddings. Despite multiple attempts, existing biomedical concept embeddings generally suffer from suboptimal NER tools, small-scale evaluation, and limited availability. In response, we employed high-performance machine learning-based NER tools for concept recognition and trained our concept embeddings, BioConceptVec, via four different machine learning models on ~30 million PubMed abstracts. BioConceptVec covers over 400,000 biomedical concepts mentioned in the literature and is of the largest among the publicly available biomedical concept embeddings to date. To evaluate the validity and utility of BioConceptVec, we respectively performed two intrinsic evaluations (identifying related concepts based on drug-gene and gene-gene interactions) and two extrinsic evaluations (protein-protein interaction prediction and drug-drug interaction extraction), collectively using over 25 million instances from nine independent datasets (17 million instances from six intrinsic evaluation tasks and 8 million instances from three extrinsic evaluation tasks), which is, by far, the most comprehensive to our best knowledge. The intrinsic evaluation results demonstrate that BioConceptVec consistently has, by a large margin, better performance than existing concept embeddings in identifying similar and related concepts. More importantly, the extrinsic evaluation results demonstrate that using BioConceptVec with advanced deep learning models can significantly improve performance in downstream bioinformatics studies and biomedical text-mining applications. Our BioConceptVec embeddings and benchmarking datasets are publicly available at https://github.com/ncbi-nlp/BioConceptVec. A massive number of biological entities, such as genes and mutations, are mentioned in the biomedical literature. The capturing of the semantic relatedness of biological entities is vital to many biological applications, such as protein-protein interaction prediction and literature-based discovery. Concept embeddings—which involve the learning of vector representations of concepts using machine learning models—have been employed to capture the semantics of concepts. To develop concept embeddings, named-entity recognition (NER) tools are first used to identify and normalize concepts from the literature, and then different machine learning models are used to train the embeddings. Despite multiple attempts, existing biomedical concept embeddings generally suffer from suboptimal NER tools, small-scale evaluation, and limited availability. In response, we employed high-performance machine learning-based NER tools for concept recognition and trained our concept embeddings, BioConceptVec, via four different machine learning models on ~30 million PubMed abstracts. BioConceptVec covers over 400,000 biomedical concepts mentioned in the literature and is of the largest among the publicly available biomedical concept embeddings to date. To evaluate the validity and utility of BioConceptVec, we respectively performed two intrinsic evaluations (identifying related concepts based on drug-gene and gene-gene interactions) and two extrinsic evaluations (protein-protein interaction prediction and drug-drug interaction extraction), collectively using over 25 million instances from nine independent datasets (17 million instances from six intrinsic evaluation tasks and 8 million instances from three extrinsic evaluation tasks), which is, by far, the most comprehensive to our best knowledge. The intrinsic evaluation results demonstrate that BioConceptVec consistently has, by a large margin, better performance than existing concept embeddings in identifying similar and related concepts. More importantly, the extrinsic evaluation results demonstrate that using BioConceptVec with advanced deep learning models can significantly improve performance in downstream bioinformatics studies and biomedical text-mining applications. Our BioConceptVec embeddings and benchmarking datasets are publicly available at https://github.com/ncbi-nlp/BioConceptVec. Capturing the semantics of related biological concepts, such as genes and mutations, is of significant importance to many research tasks in computational biology such as protein-protein interaction detection, gene-drug association prediction, and biomedical literature-based discovery. Here, we propose to leverage state-of-the-art text mining tools and machine learning models to learn the semantics via vector representations (aka. embeddings) of over 400,000 biological concepts mentioned in the entire PubMed abstracts. Our learned embeddings, namely BioConceptVec, can capture related concepts based on their surrounding contextual information in the literature, which is beyond exact term match or co-occurrence-based methods. BioConceptVec has been thoroughly evaluated in multiple bioinformatics tasks consisting of over 25 million instances from nine different biological datasets. The evaluation results demonstrate that BioConceptVec has better performance than existing methods in all tasks. Finally, BioConceptVec is made freely available to the research community and general public. |
| Audience | Academic |
| Author | Wei, Chih-Hsuan Chen, Qingyu Lu, Zhiyong Kim, Sun Yan, Shankai Lee, Kyubum |
| AuthorAffiliation | National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, Maryland, United States of America University of Maryland Baltimore County, UNITED STATES |
| AuthorAffiliation_xml | – name: University of Maryland Baltimore County, UNITED STATES – name: National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, Maryland, United States of America |
| Author_xml | – sequence: 1 givenname: Qingyu orcidid: 0000-0002-6036-1516 surname: Chen fullname: Chen, Qingyu – sequence: 2 givenname: Kyubum orcidid: 0000-0003-2015-3939 surname: Lee fullname: Lee, Kyubum – sequence: 3 givenname: Shankai orcidid: 0000-0003-0369-4979 surname: Yan fullname: Yan, Shankai – sequence: 4 givenname: Sun surname: Kim fullname: Kim, Sun – sequence: 5 givenname: Chih-Hsuan surname: Wei fullname: Wei, Chih-Hsuan – sequence: 6 givenname: Zhiyong orcidid: 0000-0001-9998-916X surname: Lu fullname: Lu, Zhiyong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32324731$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVk1uL1DAYhousuAf9B6IFb9aLGXNqku6FsA4eBhYFT7chTb7WDJlmTNpl_fdmnI7sLIsgvWgOz_t-zdt8p8VRH3ooiqcYzTEV-NUqjLHXfr4xjZtjhATH4kFxgquKzgSt5NGt8XFxmtIKoTys-aPimBJKmKD4pGjfuLAIvYHN8B3MRbmIoAfXd6XubQnX2o-7qXcDRD2MEWaNTmDLxoU1WGe0L81OX8K6AWszncrQl7r0OnZQpozA4-Jhq32CJ9P7rPj27u3XxYfZ1af3y8Xl1cxwjocZxrLlCBrBhKmsRNJaTgVBLSVCMsSaqm6IEQQoSGyR0bxhFTZcA-Z1DS09K57vfDc-JDVFlBRhiArBKJKZWO4IG_RKbaJb6_hLBe3Un4UQO6Xj4IwHxQVhNWkl0FYyQURTUcsaXIM2klCNs9frqdrY5DAM9EPU_sD0cKd3P1QXrpUgVCCKssH5ZBDDzxHSoNYuGfBe9xDG_N20ZrJGuN7WenEHvf90E9Xl0JXr25Drmq2puuSU1AxxLjI1v4fKj4W1y38TWpfXDwQvDwSZGeBm6PSYklp--fwf7MdD9tntAP8mt7-fGbjYASaGlCK0yrgh38iwzdN5hZHaNsM-C7VtBjU1QxazO-K9_z9lvwGR9g1t |
| CitedBy_id | crossref_primary_10_1038_s41551_024_01284_6 crossref_primary_10_3389_fphar_2023_1205144 crossref_primary_10_1093_jamia_ocaa151 crossref_primary_10_1038_s41467_025_56989_2 crossref_primary_10_1371_journal_pone_0276539 crossref_primary_10_1002_asi_25005 crossref_primary_10_1038_s41598_025_01418_z crossref_primary_10_1186_s12859_022_05083_1 crossref_primary_10_2196_27386 crossref_primary_10_3390_genes11111264 crossref_primary_10_2478_dim_2021_0007 crossref_primary_10_2196_29667 crossref_primary_10_1109_TCBB_2022_3173562 crossref_primary_10_1007_s00779_021_01595_4 crossref_primary_10_1371_journal_pntd_0008895 crossref_primary_10_1016_j_drudis_2021_06_009 crossref_primary_10_1093_nar_gkaa952 crossref_primary_10_1007_s12539_024_00605_2 crossref_primary_10_3390_ijerph18178985 crossref_primary_10_1371_journal_pone_0253847 crossref_primary_10_1093_bib_bbab282 crossref_primary_10_1186_s13326_021_00247_z crossref_primary_10_1007_s12559_021_09903_z crossref_primary_10_1016_j_eswa_2022_118930 crossref_primary_10_1371_journal_pone_0258623 crossref_primary_10_1017_S0021859623000618 crossref_primary_10_1371_journal_pone_0248663 crossref_primary_10_1109_ACCESS_2021_3130956 crossref_primary_10_7717_peerj_cs_1085 crossref_primary_10_1016_j_ins_2023_01_007 crossref_primary_10_2174_1574893618666230612161210 |
| Cites_doi | 10.1136/amiajnl-2013-002544 10.3115/v1/D14-1162 10.1016/j.jbi.2019.103182 10.1371/journal.pcbi.1006390 10.1093/nar/gkx1037 10.1109/BIBE.2018.00073 10.2196/medinform.4321 10.1093/nar/gkz289 10.1093/nar/gky868 10.1093/nar/gky1131 10.1093/bioinformatics/btx541 10.1186/s12911-018-0654-2 10.1093/nar/gkt441 10.18653/v1/N18-1202 10.1371/journal.pone.0038460 10.1007/978-3-319-53817-4_4 10.1038/s41597-019-0055-0 10.1109/ICHI.2019.8904728 10.1038/35011540 10.1186/s12864-018-5370-x 10.1093/bioinformatics/btw343 10.1093/bioinformatics/bty933 10.24963/ijcai.2018/554 10.18653/v1/P17-1161 10.1145/2939672.2939823 10.1186/1472-6947-15-S1-S4 10.18653/v1/W16-2922 10.18653/v1/W19-5004 10.1016/j.jbi.2013.07.011 10.18653/v1/D15-1036 10.1186/s12911-020-1044-0 10.1093/bioinformatics/btr260 10.1142/9789811215636_0027 10.1007/978-3-319-69751-2_1 10.1145/3307339.3342162 10.1002/lnco.362 10.1162/tacl_a_00051 10.1093/bioinformatics/btx659 10.1038/nrg1272 10.1145/2661829.2661974 10.1007/978-1-4614-3223-4 10.18653/v1/D18-1349 10.1016/j.cell.2015.06.043 10.1093/bioinformatics/bty259 10.1016/j.jbi.2017.08.011 10.1016/j.jbi.2019.103118 10.1093/nar/gkh061 10.1186/s12911-019-0766-3 10.1186/s12859-018-2543-1 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2020 Public Library of Science This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2020 Public Library of Science – notice: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION NPM ISN ISR 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pcbi.1007617 |
| DatabaseName | CrossRef PubMed Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Biological Sciences Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Medicine |
| DocumentTitleAlternate | Biomedical concept embeddings in bioinformatics and biomedical text mining applications |
| EISSN | 1553-7358 |
| ExternalDocumentID | 2403774308 oai_doaj_org_article_672492f8e3f84727b53d4b19eac823a1 PMC7237030 A632940667 32324731 10_1371_journal_pcbi_1007617 |
| Genre | Journal Article |
| GeographicLocations | United States United States--US Maryland |
| GeographicLocations_xml | – name: United States – name: Maryland – name: United States--US |
| GrantInformation_xml | – fundername: ; |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ADRAZ ALIPV C1A H13 IPNFZ NPM RIG WOQ 3V. 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M0N P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM - AAPBV ABPTK ACDSR BBAFP M~E UMP |
| ID | FETCH-LOGICAL-c661t-118f60eb747c5d808dd63720f3278404b59b2c72e3e81d0ca6b451c6ae1699ef3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 31 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000531366700040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1553-7358 1553-734X |
| IngestDate | Sun Sep 04 00:10:37 EDT 2022 Mon Nov 10 04:34:58 EST 2025 Tue Nov 04 01:54:55 EST 2025 Sun Nov 09 13:16:16 EST 2025 Sat Nov 29 14:53:10 EST 2025 Tue Nov 11 07:43:24 EST 2025 Tue Nov 04 18:00:10 EST 2025 Thu Nov 13 14:58:56 EST 2025 Thu Nov 13 14:47:41 EST 2025 Thu Apr 03 06:58:19 EDT 2025 Sat Nov 29 06:10:48 EST 2025 Tue Nov 18 22:12:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Creative Commons CC0 public domain |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c661t-118f60eb747c5d808dd63720f3278404b59b2c72e3e81d0ca6b451c6ae1699ef3 |
| Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors have declared that no competing interests exist. |
| ORCID | 0000-0003-0369-4979 0000-0002-6036-1516 0000-0003-2015-3939 0000-0001-9998-916X |
| OpenAccessLink | https://doaj.org/article/672492f8e3f84727b53d4b19eac823a1 |
| PMID | 32324731 |
| PQID | 2403774308 |
| PQPubID | 1436340 |
| ParticipantIDs | plos_journals_2403774308 doaj_primary_oai_doaj_org_article_672492f8e3f84727b53d4b19eac823a1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7237030 proquest_miscellaneous_2394890191 proquest_journals_2403774308 gale_infotracmisc_A632940667 gale_infotracacademiconefile_A632940667 gale_incontextgauss_ISR_A632940667 gale_incontextgauss_ISN_A632940667 pubmed_primary_32324731 crossref_citationtrail_10_1371_journal_pcbi_1007617 crossref_primary_10_1371_journal_pcbi_1007617 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PLoS computational biology |
| PublicationTitleAlternate | PLoS Comput Biol |
| PublicationYear | 2020 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | J Du (pcbi.1007617.ref022) 2019; 20 S Henry (pcbi.1007617.ref003) 2017; 74 RI Doğan (pcbi.1007617.ref006) 2019 R Reátegui (pcbi.1007617.ref026) 2018; 18 pcbi.1007617.ref030 JG Zheng (pcbi.1007617.ref005) 2015; 15 pcbi.1007617.ref031 D Szklarczyk (pcbi.1007617.ref033) 2018; 47 pcbi.1007617.ref034 S Pradhan (pcbi.1007617.ref028) 2014; 22 C-H Wei (pcbi.1007617.ref039) 2019 C-H Wei (pcbi.1007617.ref036) 2015; 2015 A-L Barabasi (pcbi.1007617.ref049) 2004; 5 AP Davis (pcbi.1007617.ref051) 2018; 47 Y Zhang (pcbi.1007617.ref063) 2017; 34 C-H Wei (pcbi.1007617.ref037) 2017; 34 Y Choi (pcbi.1007617.ref012) 2016; 2016 pcbi.1007617.ref041 pcbi.1007617.ref042 pcbi.1007617.ref043 pcbi.1007617.ref044 pcbi.1007617.ref045 pcbi.1007617.ref046 pcbi.1007617.ref047 pcbi.1007617.ref004 A Singhal (pcbi.1007617.ref001) 2016 CC Aggarwal (pcbi.1007617.ref017) 2012 LH Hartwell (pcbi.1007617.ref050) 1999; 402 EL Huttlin (pcbi.1007617.ref055) 2015; 162 Y Li (pcbi.1007617.ref008) 2018 Y Xiang (pcbi.1007617.ref010) 2019; 19 C-H Wei (pcbi.1007617.ref032) 2013; 41 K Erk (pcbi.1007617.ref007) 2012; 6 pcbi.1007617.ref054 pcbi.1007617.ref011 FZ Smaili (pcbi.1007617.ref056) 2018; 34 J Park (pcbi.1007617.ref009) 2019 pcbi.1007617.ref013 pcbi.1007617.ref057 pcbi.1007617.ref014 pcbi.1007617.ref015 pcbi.1007617.ref016 R Leaman (pcbi.1007617.ref035) 2016; 32 pcbi.1007617.ref029 Y Wang (pcbi.1007617.ref040) 2018; 19 M Herrero-Zazo (pcbi.1007617.ref059) 2013; 46 K Lee (pcbi.1007617.ref018) 2018; 14 H Suominen (pcbi.1007617.ref027) 2015; 3 D Dimitriadis (pcbi.1007617.ref020) 2019; 92 Y Zhang (pcbi.1007617.ref053) 2019; 6 A Liberzon (pcbi.1007617.ref052) 2011; 27 Y Wang (pcbi.1007617.ref048) 2018 Z Lu (pcbi.1007617.ref002) 2012 A Allot (pcbi.1007617.ref019) 2019 pcbi.1007617.ref060 O Bodenreider (pcbi.1007617.ref023) 2004; 32 pcbi.1007617.ref061 pcbi.1007617.ref062 DS Wishart (pcbi.1007617.ref058) 2017; 46 pcbi.1007617.ref064 pcbi.1007617.ref021 pcbi.1007617.ref065 pcbi.1007617.ref066 pcbi.1007617.ref024 pcbi.1007617.ref025 CH Wei (pcbi.1007617.ref038) 2012; 7 |
| References_xml | – volume: 22 start-page: 143 issue: 1 year: 2014 ident: pcbi.1007617.ref028 article-title: Evaluating the state of the art in disorder recognition and normalization of the clinical narrative publication-title: Journal of the American Medical Informatics Association doi: 10.1136/amiajnl-2013-002544 – ident: pcbi.1007617.ref015 doi: 10.3115/v1/D14-1162 – ident: pcbi.1007617.ref043 – start-page: 103182 year: 2019 ident: pcbi.1007617.ref009 article-title: Concept Embedding to Measure Semantic Relatedness for Biomedical Information Ontologies publication-title: Journal of Biomedical Informatics doi: 10.1016/j.jbi.2019.103182 – volume: 14 start-page: e1006390 issue: 8 year: 2018 ident: pcbi.1007617.ref018 article-title: Scaling up data curation using deep learning: An application to literature triage in genomic variation resources publication-title: PLoS computational biology doi: 10.1371/journal.pcbi.1006390 – volume: 46 start-page: D1074 issue: D1 year: 2017 ident: pcbi.1007617.ref058 article-title: DrugBank 5.0: a major update to the DrugBank database for 2018 publication-title: Nucleic acids research doi: 10.1093/nar/gkx1037 – ident: pcbi.1007617.ref066 doi: 10.1109/BIBE.2018.00073 – volume: 3 start-page: e19 issue: 2 year: 2015 ident: pcbi.1007617.ref027 article-title: Benchmarking clinical speech recognition and information extraction: new data, methods, and evaluations publication-title: JMIR medical informatics doi: 10.2196/medinform.4321 – ident: pcbi.1007617.ref014 – year: 2019 ident: pcbi.1007617.ref019 article-title: LitSense: making sense of biomedical literature at sentence level publication-title: Nucleic acids research doi: 10.1093/nar/gkz289 – volume: 47 start-page: D948 issue: D1 year: 2018 ident: pcbi.1007617.ref051 article-title: The comparative toxicogenomics database: Update 2019 publication-title: Nucleic acids research doi: 10.1093/nar/gky868 – ident: pcbi.1007617.ref030 – volume: 47 start-page: D607 issue: D1 year: 2018 ident: pcbi.1007617.ref033 article-title: STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets publication-title: Nucleic acids research doi: 10.1093/nar/gky1131 – volume: 34 start-page: 80 issue: 1 year: 2017 ident: pcbi.1007617.ref037 article-title: tmVar 2.0: integrating genomic variant information from literature with dbSNP and ClinVar for precision medicine publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx541 – ident: pcbi.1007617.ref024 – volume: 18 start-page: 74 issue: 3 year: 2018 ident: pcbi.1007617.ref026 article-title: Comparison of MetaMap and cTAKES for entity extraction in clinical notes publication-title: BMC medical informatics and decision making doi: 10.1186/s12911-018-0654-2 – volume: 41 start-page: W518 issue: W1 year: 2013 ident: pcbi.1007617.ref032 article-title: PubTator: a web-based text mining tool for assisting biocuration publication-title: Nucleic acids research doi: 10.1093/nar/gkt441 – ident: pcbi.1007617.ref060 doi: 10.18653/v1/N18-1202 – volume: 7 start-page: e38460 issue: 6 year: 2012 ident: pcbi.1007617.ref038 article-title: SR4GN: a species recognition software tool for gene normalization publication-title: PLoS One doi: 10.1371/journal.pone.0038460 – start-page: 83 volume-title: Guide to Big Data Applications year: 2018 ident: pcbi.1007617.ref008 doi: 10.1007/978-3-319-53817-4_4 – year: 2012 ident: pcbi.1007617.ref002 article-title: Biocuration workflows and text mining: overview of the BioCreative 2012 Workshop Track II publication-title: Database – volume-title: PubTator central: automated concept annotation for biomedical full text articles year: 2019 ident: pcbi.1007617.ref039 – volume: 6 start-page: 52 issue: 1 year: 2019 ident: pcbi.1007617.ref053 article-title: BioWordVec, improving biomedical word embeddings with subword information and MeSH publication-title: Scientific data doi: 10.1038/s41597-019-0055-0 – ident: pcbi.1007617.ref034 doi: 10.1109/ICHI.2019.8904728 – volume: 2015 year: 2015 ident: pcbi.1007617.ref036 article-title: GNormPlus: an integrative approach for tagging genes, gene families, and protein domains publication-title: BioMed research international – volume: 402 start-page: C47 issue: 6761supp year: 1999 ident: pcbi.1007617.ref050 article-title: From molecular to modular cell biology publication-title: Nature doi: 10.1038/35011540 – volume: 20 start-page: 82 issue: 1 year: 2019 ident: pcbi.1007617.ref022 article-title: Gene2vec: distributed representation of genes based on co-expression publication-title: BMC genomics doi: 10.1186/s12864-018-5370-x – volume: 32 start-page: 2839 issue: 18 year: 2016 ident: pcbi.1007617.ref035 article-title: TaggerOne: joint named entity recognition and normalization with semi-Markov Models publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw343 – year: 2019 ident: pcbi.1007617.ref006 article-title: Overview of the BioCreative VI Precision Medicine Track: mining protein interactions and mutations for precision medicine publication-title: Database: the journal of biological databases and curation – ident: pcbi.1007617.ref057 doi: 10.1093/bioinformatics/bty933 – ident: pcbi.1007617.ref004 – ident: pcbi.1007617.ref016 – ident: pcbi.1007617.ref065 doi: 10.24963/ijcai.2018/554 – ident: pcbi.1007617.ref062 doi: 10.18653/v1/P17-1161 – ident: pcbi.1007617.ref064 doi: 10.1145/2939672.2939823 – volume: 15 start-page: S4 issue: 1 year: 2015 ident: pcbi.1007617.ref005 article-title: Entity linking for biomedical literature publication-title: BMC medical informatics and decision making doi: 10.1186/1472-6947-15-S1-S4 – ident: pcbi.1007617.ref046 doi: 10.18653/v1/W16-2922 – ident: pcbi.1007617.ref061 doi: 10.18653/v1/W19-5004 – ident: pcbi.1007617.ref031 – volume: 46 start-page: 914 issue: 5 year: 2013 ident: pcbi.1007617.ref059 article-title: The DDI corpus: An annotated corpus with pharmacological substances and drug–drug interactions publication-title: Journal of biomedical informatics doi: 10.1016/j.jbi.2013.07.011 – volume: 2016 start-page: 41 year: 2016 ident: pcbi.1007617.ref012 article-title: Learning low-dimensional representations of medical concepts publication-title: AMIA Summits on Translational Science Proceedings – ident: pcbi.1007617.ref029 doi: 10.18653/v1/D15-1036 – year: 2016 ident: pcbi.1007617.ref001 article-title: Pressing needs of biomedical text mining in biocuration and beyond: opportunities and challenges publication-title: Database – ident: pcbi.1007617.ref044 doi: 10.1186/s12911-020-1044-0 – volume: 27 start-page: 1739 issue: 12 year: 2011 ident: pcbi.1007617.ref052 article-title: Molecular signatures database (MSigDB) 3.0 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr260 – ident: pcbi.1007617.ref011 doi: 10.1142/9789811215636_0027 – ident: pcbi.1007617.ref025 doi: 10.1007/978-3-319-69751-2_1 – ident: pcbi.1007617.ref045 – ident: pcbi.1007617.ref021 doi: 10.1145/3307339.3342162 – volume: 6 start-page: 635 issue: 10 year: 2012 ident: pcbi.1007617.ref007 article-title: Vector space models of word meaning and phrase meaning: A survey publication-title: Language and Linguistics Compass doi: 10.1002/lnco.362 – ident: pcbi.1007617.ref042 doi: 10.1162/tacl_a_00051 – volume: 34 start-page: 828 issue: 5 year: 2017 ident: pcbi.1007617.ref063 article-title: Drug–drug interaction extraction via hierarchical RNNs on sequence and shortest dependency paths publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx659 – year: 2018 ident: pcbi.1007617.ref048 article-title: A comparison of word embeddings for the biomedical natural language processing publication-title: Journal of biomedical informatics – ident: pcbi.1007617.ref013 – volume: 5 start-page: 101 issue: 2 year: 2004 ident: pcbi.1007617.ref049 article-title: Network biology: understanding the cell's functional organization publication-title: Nature reviews genetics doi: 10.1038/nrg1272 – ident: pcbi.1007617.ref047 doi: 10.1145/2661829.2661974 – ident: pcbi.1007617.ref054 – volume-title: Mining text data year: 2012 ident: pcbi.1007617.ref017 doi: 10.1007/978-1-4614-3223-4 – ident: pcbi.1007617.ref041 doi: 10.18653/v1/D18-1349 – volume: 162 start-page: 425 issue: 2 year: 2015 ident: pcbi.1007617.ref055 article-title: The BioPlex network: a systematic exploration of the human interactome publication-title: Cell doi: 10.1016/j.cell.2015.06.043 – volume: 34 start-page: i52 issue: 13 year: 2018 ident: pcbi.1007617.ref056 article-title: Onto2vec: joint vector-based representation of biological entities and their ontology-based annotations publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty259 – volume: 74 start-page: 20 year: 2017 ident: pcbi.1007617.ref003 article-title: Literature based discovery: models, methods, and trends publication-title: Journal of biomedical informatics doi: 10.1016/j.jbi.2017.08.011 – volume: 92 start-page: 103118 year: 2019 ident: pcbi.1007617.ref020 article-title: Word embeddings and external resources for answer processing in biomedical factoid question answering publication-title: Journal of biomedical informatics doi: 10.1016/j.jbi.2019.103118 – volume: 32 start-page: D267 issue: suppl_1 year: 2004 ident: pcbi.1007617.ref023 article-title: The unified medical language system (UMLS): integrating biomedical terminology publication-title: Nucleic acids research doi: 10.1093/nar/gkh061 – volume: 19 start-page: 58 issue: 2 year: 2019 ident: pcbi.1007617.ref010 article-title: Time-sensitive clinical concept embeddings learned from large electronic health records publication-title: BMC medical informatics and decision making doi: 10.1186/s12911-019-0766-3 – volume: 19 start-page: 507 issue: 20 year: 2018 ident: pcbi.1007617.ref040 article-title: Bidirectional long short-term memory with CRF for detecting biomedical event trigger in FastText semantic space publication-title: BMC bioinformatics doi: 10.1186/s12859-018-2543-1 |
| SSID | ssj0035896 |
| Score | 2.5057387 |
| Snippet | A massive number of biological entities, such as genes and mutations, are mentioned in the biomedical literature. The capturing of the semantic relatedness of... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e1007617 |
| SubjectTerms | Bioinformatics Biology and Life Sciences Biotechnology Computational biology Computer and Information Sciences Concept mapping Data mining Datasets Deep learning Drug interaction Drug interactions Electronic health records Evaluation Heart failure Influence Kinases Knowledge Learning algorithms Machine learning Medical literature Medicine Medicine and Health Sciences Methods Mutation National libraries OLE (Standard) Performance enhancement Principal components analysis Protein interaction Proteins Recognition Semantics Social Sciences Software Studies |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagwIoLj-WxhQUZhMTJbBMndsIFLRUrOFCteKm3yHbsUqmblKZF4t8z4zhZghY4cEw8jmJ7PA_P-BtCnrnYpUYowZIk5SxRwjGtuGEOXA1pLSg9k_liE3I2y-bz_DQcuDUhrbKTiV5Ql7XBM_IjxI0DU4VPslfrbwyrRmF0NZTQuEyuIEoC96l7p50k5mnm63NhaRwmeTIPV-e4jI7CSr1YG730mQLClyw7V00ewb-X06P1qm4uMkJ_z6X8RTmd3PzfYd0iN4JZSo9bPrpNLtlqn1xrC1X-2Cd770MI_g5x8HLa3nX8Ys1LOvVWZ7Wgqipphx0Oj6ser5mhpixpe9EfeYKatj-1Z9qWPvhF64oqusK0dNoAib1LPp-8-TR9y0KxBmZAxW8ZOCpOTKwG98SkZTbJylJgBRzHMbQ5SXSa69jI2HILJvLEKKGTNAI2sZHIc-v4PTKq6soeEAoeu8u1MwKxC0uM3JVKZZGSljsbRXZMeLdOhQlI5lhQY1X48JwEj6adtQJXtwirOyas77VukTz-Qf8aWaCnRRxu_6LeLIqwrQshEXHRZfBnoOZjqVNeJjrKQZ1lMVfRmDxFBioQaaPCVJ6F2jVN8e7jrDgWPM4TzDH-I9GHAdHzQORqGKxR4foETBkieA0oDweUIC_MoPkAmbkbc1OcsyD07Jj04uYnfTN-FNPzKlvvgIbnSQaWZQ4Dvt_uh37eONrskkOLHOyUwcQOW6rlVw90LmOOCunB33_rIbke4yGIT6c6JKPtZmcfkavm-3bZbB57ifATGqppEQ priority: 102 providerName: ProQuest – databaseName: Public Library of Science (PLoS) Journals Open Access dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegfIgXPgZshYEMQuIpkMSJHfM2KiqQoJr40t4sx7FHpS6plhaJ_547xwlkWoV4THyO7Luz7y53_pmQFy51ueGaR1mWsyjT3EWlZiZyEGoIa8HomcJfNiEWi-LkRB7_CRQvZPCZSF4Hnr5am3Lpc_pgc6-SaynjHEu45scf-52X5YXk4Xjcrp4j8-NR-oe9eLJeNe1ljubFesm_DND8zv8O_S65HVxNetTpxj1yxdZ75EZ3-eSvPXLzU0ir3ycOXs6684vfrXlDZ96TrE-priva44HD42rAYI7Q-lW0O7yPcqam60_tWWkrn9CiTU01XWGpOW2BxD4g3-bvvs7eR-EChsiA2d5EEHw4HtsSQg6TV0VcVBXHW20cw3RlnJW5LFMjUsssuL2x0bzM8gREbxMupXXsIZnUTW0PCIUo3MnSGY54hBVm4yqti0QLy5xNEjslrJeLMgGdHC_JWCmfchMQpXRcU8hMFZg5JdHQa92hc_yD_i2KfKBFbG3_AqSmwlJVXCCKoitgZGC6U1HmrMrKRIKJKlKmkyl5jgqjED2jxvKcU71tW_Xhy0IdcZbKDOuGdxJ9HhG9DESugckaHY5EAMsQlWtEeTiihD3AjJoPUHn7ObcKURbBsWdxAT17hb68-dnQjB_FkrvaNlugYTIrwFuUMOH9Tv8HvjH0wwWDFjFaGSPGjlvq5Q8PXi5Shkbm0e4RPya3Uvyp4cujDslkc761T8h183OzbM-f-hX_GxIFVT0 priority: 102 providerName: Public Library of Science |
| Title | BioConceptVec: Creating and evaluating literature-based biomedical concept embeddings on a large scale |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32324731 https://www.proquest.com/docview/2403774308 https://www.proquest.com/docview/2394890191 https://pubmed.ncbi.nlm.nih.gov/PMC7237030 https://doaj.org/article/672492f8e3f84727b53d4b19eac823a1 http://dx.doi.org/10.1371/journal.pcbi.1007617 |
| Volume | 16 |
| WOSCitedRecordID | wos000531366700040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: P5Z dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: M7P dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: K7- dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 7X7 dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: BENPR dateStart: 20050601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: PIMPY dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: FPL dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELeggMQL4nuFURmExJNZEye2w9tWrWICqmh8qPASOY49KpW0Wlok_nvu7DQsaGgvvFht7xzJdxffXX3-HSEvXexSI7RgSZJylmjhWKm5YQ5SDWktOD2jfLMJOZup-TzLL7T6wpqwAA8cBHcgJGLaOWW5g400lmXKq6SMMtgwVMy1T3wg6tklU2EP5qnynbmwKQ6TPJm3l-a4jA5aHb1em3LhawSEb1b2xyl57P5uhx6sl6vmsvDz7yrKC25pepfcaeNJehjWcY9cs_V9cit0mPz1gDj4NAk3E79Y84ZOfIxYn1FdV3SH9A1flx26MkO_VtFwLR81SE2YT-2P0lb-qIquaqrpEovIaQMs9iH5PD3-NHnL2tYKzIBD3jBIK5wY2xKSCZNWaqyqSmC_GsfxIHKclGlWxkbGllsIaMdGizJJI1CqjUSWWccfkUG9qu0eoZBfu6x0RiDSYIXnbJXWKtISNGajyA4J38m2MC3uOLa_WBb-ME1C_hFEVaBGilYjQ8K6WeuAu3EF_xGqreNF1Gz_A9hS0dpScZUtDckLVHqBuBg1Ft6c6W3TFCcfZ8Wh4HGWYEXwP5lOe0yvWia3gsUa3V52AJEh3laPc7_HCW-36ZH30AB3a24KxE-EkJ2PFczcGeXl5OcdGR-KxXS1XW2Bh2eJgjgwgwU_DjbcyY1jhC05UGTPunuC7VPqxXcPSy5jju7jyf_QxFNyO8Y_NnyJ1D4ZbM639hm5aX5uFs35iFyXc-lHNSI3jo5n-enIv_8wTvP3ML6TbIRlvDmMefoNuPKTD_nX35QuYBo |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGub5wGZcVBhgE4smsiRM7QUJoFKZV2yrEBupbcBy7VCpJaVrQ_hS_kXOcpCNowNMeeEx8HMXOuTk-_j5CnljfhloowYIg5CxQwrJUcc0sLDWkMRD0dOTIJuRwGI1G8bs18qM5C4NllY1PdI46KzT-I99C3DhIVXgvejX7ypA1CndXGwqNSi32zPF3WLKVLwdv4Ps-9f2dt0f9XVazCjANsWjBIKO2omdSyKN1mEW9KMsEUrVYjntwvSAN49TX0jfcQC7X00qkQejBeIwn4thYDs89R84HPJKI1b8nWeP5eRg5PjCk4mGSB6P6qB6X3latGc9nOp24ygThKNJOQqFjDFjFhc5sWpSnJb2_127-Egx3rv1v03idXK3Tbrpd2ckNsmbydXKxIuI8XieXDuoSg5vEws1-dZbzo9EvaN9l1fmYqjyjDTY6XE5XeNQMM4GMVkAGqPNUV_2p-ZKazG3u0SKnik6x7J6WIGJukQ9nMt7bpJMXudkgNBCxjVOrBWIzZrgzmSkVeUoabo3nmS7hjV4kukZqR8KQaeK2HyWs2KpZS1CbklqbuoStes0qpJJ_yL9GlVvJIs64u1HMx0ntthIhEVHSRvBmkMb4Mg15FqReDOE68rnyuuQxKmyCSCI5liqN1bIsk8HhMNkW3I8DrKH-o9D7ltCzWsgWMFit6uMhMGWIUNaS3GxJgj_UreYNNJ5mzGVyovLQszGK05sfrZrxoVh-mJtiCTI8DiLInGMY8J3K_lbzxnFNIjm0yJZltia23ZJPPjsgd-lzDLh3__5aD8nl3aOD_WR_MNy7R674-MPHlY5tks5ivjT3yQX9bTEp5w-cN6Lk01nb7U_XUcRg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWAisuPJbHFhYwCMQptIkTO0FCaOlSURWqFSyot-A4dqlUktK0oP1r_DpmnMcStMBpDxwbjyOPO-MZx-PvI-SR8UyguOSO7wfM8SU3TiKZcgxsNYTWEPRUaMkmxGQSTqfR4Rb5Ud-FwbLKek20C3WaK_xG3kPcOEhVWD_smaos4vBg-GL51UEGKTxprek0ShMZ6-PvsH0rno8O4L9-7HnDV0eD107FMOAoiEtrB7Jrw_s6gZxaBWnYD9OUI22LYXge1_eTIEo8JTzNNOR1fSV54gcu6KZdHkXaMHjvOXIehhWgj42FU0cBFoSWGwxpeRzB_Gl1bY8Jt1dZydOlSua2SoFburSTsGjZA5oY0Vku8uK0BPj3Os5fAuPwyv88pVfJ5Sodp_ul_1wjWzrbIRdLgs7jHbL9tio9uE4MPByUdzw_avWMDmy2nc2ozFJaY6bDz0WDU-1ghpDSEuAAfYGqsj_VXxKd2kM_mmdU0gWW49MCRPQN8uFM9L1JOlme6V1CfR6ZKDGKI2ZjiieWqZShK4VmRruu7hJW20isKgR3JBJZxPZYUsBOrpy1GC0rriyrS5ym17JEMPmH_Es0v0YW8cftg3w1i6vlLOYCkSZNCCOD9MYTScBSP3EjCOOhx6TbJQ_ReGNEGMnQsGZyUxTx6P0k3ufMi3ysrf6j0LuW0JNKyOSgrJLVtRGYMkQua0nutSRhnVSt5l10pFrnIj4xf-hZO8jpzQ-aZnwpliVmOt-ADIv8EDLqCBS-VfpiM28M9yqCQYtoeWlrYtst2fyzBXgXHsNAfPvvw7pPtsFd4zejyfgOueThdyBbUbZHOuvVRt8lF9S39bxY3bMLEyWfztptfwKIac0a |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BioConceptVec%3A+Creating+and+evaluating+literature-based+biomedical+concept+embeddings+on+a+large+scale&rft.jtitle=PLoS+computational+biology&rft.au=Chen%2C+Qingyu&rft.au=Lee%2C+Kyubum&rft.au=Yan%2C+Shankai&rft.au=Kim%2C+Sun&rft.date=2020-04-01&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=16&rft.issue=4&rft_id=info:doi/10.1371%2Fjournal.pcbi.1007617&rft.externalDBID=ISN&rft.externalDocID=A632940667 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |