How do leaf and ecosystem measures of water-use efficiency compare?
The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water-use efficiency (WUE), is a...
Uloženo v:
| Vydáno v: | The New phytologist Ročník 216; číslo 3; s. 758 - 770 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
New Phytologist Trust
01.11.2017
Wiley Subscription Services, Inc Wiley Wiley-Blackwell |
| Témata: | |
| ISSN: | 0028-646X, 1469-8137, 1469-8137 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water-use efficiency (WUE), is a useful indicator of vegetation function.
WUE can be estimated using several techniques, including leaf gas exchange, stable isotope discrimination, and eddy covariance. Here we compare global compilations of data for each of these three techniques.
We show that patterns of variation in WUE across plant functional types (PFTs) are not consistent among the three datasets. Key discrepancies include the following: leaf-scale data indicate differences between needleleaf and broadleaf forests, but ecosystem-scale data do not; leaf-scale data indicate differences between C3 and C4 species, whereas at ecosystem scale there is a difference between C3 and C4 crops but not grasslands; and isotope-based estimates of WUE are higher than estimates based on gas exchange for most PFTs.
Our study quantifies the uncertainty associated with different methods of measuring WUE, indicates potential for bias when using WUE measures to parameterize or validate models, and indicates key research directions needed to reconcile alternative measures of WUE. |
|---|---|
| AbstractList | Summary
<list list-type='bullet'>
The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water‐use efficiency (WUE), is a useful indicator of vegetation function.
WUE can be estimated using several techniques, including leaf gas exchange, stable isotope discrimination, and eddy covariance. Here we compare global compilations of data for each of these three techniques.
We show that patterns of variation in WUE across plant functional types (PFTs) are not consistent among the three datasets. Key discrepancies include the following: leaf‐scale data indicate differences between needleleaf and broadleaf forests, but ecosystem‐scale data do not; leaf‐scale data indicate differences between C
3
and C
4
species, whereas at ecosystem scale there is a difference between C
3
and C
4
crops but not grasslands; and isotope‐based estimates of WUE are higher than estimates based on gas exchange for most PFTs.
Our study quantifies the uncertainty associated with different methods of measuring WUE, indicates potential for bias when using WUE measures to parameterize or validate models, and indicates key research directions needed to reconcile alternative measures of WUE. Summary The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water‐use efficiency (WUE), is a useful indicator of vegetation function. WUE can be estimated using several techniques, including leaf gas exchange, stable isotope discrimination, and eddy covariance. Here we compare global compilations of data for each of these three techniques. We show that patterns of variation in WUE across plant functional types (PFTs) are not consistent among the three datasets. Key discrepancies include the following: leaf‐scale data indicate differences between needleleaf and broadleaf forests, but ecosystem‐scale data do not; leaf‐scale data indicate differences between C3 and C4 species, whereas at ecosystem scale there is a difference between C3 and C4 crops but not grasslands; and isotope‐based estimates of WUE are higher than estimates based on gas exchange for most PFTs. Our study quantifies the uncertainty associated with different methods of measuring WUE, indicates potential for bias when using WUE measures to parameterize or validate models, and indicates key research directions needed to reconcile alternative measures of WUE. The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water-use efficiency (WUE), is a useful indicator of vegetation function. WUE can be estimated using several techniques, including leaf gas exchange, stable isotope discrimination, and eddy covariance. Here we compare global compilations of data for each of these three techniques. We show that patterns of variation in WUE across plant functional types (PFTs) are not consistent among the three datasets. Key discrepancies include the following: leaf-scale data indicate differences between needleleaf and broadleaf forests, but ecosystem-scale data do not; leaf-scale data indicate differences between C3 and C4 species, whereas at ecosystem scale there is a difference between C3 and C4 crops but not grasslands; and isotope-based estimates of WUE are higher than estimates based on gas exchange for most PFTs. Our study quantifies the uncertainty associated with different methods of measuring WUE, indicates potential for bias when using WUE measures to parameterize or validate models, and indicates key research directions needed to reconcile alternative measures of WUE. The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water-use efficiency (WUE), is a useful indicator of vegetation function. WUE can be estimated using several techniques, including leaf gas exchange, stable isotope discrimination, and eddy covariance. Here we compare global compilations of data for each of these three techniques. We show that patterns of variation in WUE across plant functional types (PFTs) are not consistent among the three datasets. Key discrepancies include the following: leaf-scale data indicate differences between needleleaf and broadleaf forests, but ecosystem-scale data do not; leaf-scale data indicate differences between C and C species, whereas at ecosystem scale there is a difference between C and C crops but not grasslands; and isotope-based estimates of WUE are higher than estimates based on gas exchange for most PFTs. Our study quantifies the uncertainty associated with different methods of measuring WUE, indicates potential for bias when using WUE measures to parameterize or validate models, and indicates key research directions needed to reconcile alternative measures of WUE. The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water‐use efficiency (WUE), is a useful indicator of vegetation function. WUE can be estimated using several techniques, including leaf gas exchange, stable isotope discrimination, and eddy covariance. Here we compare global compilations of data for each of these three techniques. We show that patterns of variation in WUE across plant functional types (PFTs) are not consistent among the three datasets. Key discrepancies include the following: leaf‐scale data indicate differences between needleleaf and broadleaf forests, but ecosystem‐scale data do not; leaf‐scale data indicate differences between C 3 and C 4 species, whereas at ecosystem scale there is a difference between C 3 and C 4 crops but not grasslands; and isotope‐based estimates of WUE are higher than estimates based on gas exchange for most PFTs. Our study quantifies the uncertainty associated with different methods of measuring WUE, indicates potential for bias when using WUE measures to parameterize or validate models, and indicates key research directions needed to reconcile alternative measures of WUE. The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water-use efficiency (WUE), is a useful indicator of vegetation function. WUE can be estimated using several techniques, including leaf gas exchange, stable isotope discrimination, and eddy covariance. Here we compare global compilations of data for each of these three techniques. We show that patterns of variation in WUE across plant functional types (PFTs) are not consistent among the three datasets. Key discrepancies include the following: leaf-scale data indicate differences between needleleaf and broadleaf forests, but ecosystem-scale data do not; leaf-scale data indicate differences between C3 and C4 species, whereas at ecosystem scale there is a difference between C3 and C4 crops but not grasslands; and isotope-based estimates of WUE are higher than estimates based on gas exchange for most PFTs. Our study quantifies the uncertainty associated with different methods of measuring WUE, indicates potential for bias when using WUE measures to parameterize or validate models, and indicates key research directions needed to reconcile alternative measures of WUE. The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water‐use efficiency (WUE), is a useful indicator of vegetation function. WUE can be estimated using several techniques, including leaf gas exchange, stable isotope discrimination, and eddy covariance. Here we compare global compilations of data for each of these three techniques. We show that patterns of variation in WUE across plant functional types (PFTs) are not consistent among the three datasets. Key discrepancies include the following: leaf‐scale data indicate differences between needleleaf and broadleaf forests, but ecosystem‐scale data do not; leaf‐scale data indicate differences between C₃ and C₄ species, whereas at ecosystem scale there is a difference between C₃ and C₄ crops but not grasslands; and isotope‐based estimates of WUE are higher than estimates based on gas exchange for most PFTs. Our study quantifies the uncertainty associated with different methods of measuring WUE, indicates potential for bias when using WUE measures to parameterize or validate models, and indicates key research directions needed to reconcile alternative measures of WUE. Summary The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water-use efficiency (WUE), is a useful indicator of vegetation function. WUE can be estimated using several techniques, including leaf gas exchange, stable isotope discrimination, and eddy covariance. Here we compare global compilations of data for each of these three techniques. We show that patterns of variation in WUE across plant functional types (PFTs) are not consistent among the three datasets. Key discrepancies include the following: leaf-scale data indicate differences between needleleaf and broadleaf forests, but ecosystem-scale data do not; leaf-scale data indicate differences between C3 and C4 species, whereas at ecosystem scale there is a difference between C3 and C4 crops but not grasslands; and isotope-based estimates of WUE are higher than estimates based on gas exchange for most PFTs. Our study quantifies the uncertainty associated with different methods of measuring WUE, indicates potential for bias when using WUE measures to parameterize or validate models, and indicates key research directions needed to reconcile alternative measures of WUE. The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water-use efficiency (WUE), is a useful indicator of vegetation function. WUE can be estimated using several techniques, including leaf gas exchange, stable isotope discrimination, and eddy covariance. Here we compare global compilations of data for each of these three techniques. We show that patterns of variation in WUE across plant functional types (PFTs) are not consistent among the three datasets. Key discrepancies include the following: leaf-scale data indicate differences between needleleaf and broadleaf forests, but ecosystem-scale data do not; leaf-scale data indicate differences between C3 and C4 species, whereas at ecosystem scale there is a difference between C3 and C4 crops but not grasslands; and isotope-based estimates of WUE are higher than estimates based on gas exchange for most PFTs. Our study quantifies the uncertainty associated with different methods of measuring WUE, indicates potential for bias when using WUE measures to parameterize or validate models, and indicates key research directions needed to reconcile alternative measures of WUE.The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water-use efficiency (WUE), is a useful indicator of vegetation function. WUE can be estimated using several techniques, including leaf gas exchange, stable isotope discrimination, and eddy covariance. Here we compare global compilations of data for each of these three techniques. We show that patterns of variation in WUE across plant functional types (PFTs) are not consistent among the three datasets. Key discrepancies include the following: leaf-scale data indicate differences between needleleaf and broadleaf forests, but ecosystem-scale data do not; leaf-scale data indicate differences between C3 and C4 species, whereas at ecosystem scale there is a difference between C3 and C4 crops but not grasslands; and isotope-based estimates of WUE are higher than estimates based on gas exchange for most PFTs. Our study quantifies the uncertainty associated with different methods of measuring WUE, indicates potential for bias when using WUE measures to parameterize or validate models, and indicates key research directions needed to reconcile alternative measures of WUE. |
| Author | Jean-Marc Limousin Peter Isaac Yan-Shih Lin Almut Arneth Belinda E. Medlyn Remko A. Duursma Patrick Meir Christopher A. Williams Jürgen Knauer Martin G. De Kauwe Lisa Wingate Maj-Lena Linderson Nicolas Martin-St Paul Rob Clement |
| Author_xml | – sequence: 1 givenname: Belinda E. surname: Medlyn fullname: Medlyn, Belinda E. email: b.medlyn@westernsydney.edu.au organization: Western Sydney University – sequence: 2 givenname: Martin G. surname: De Kauwe fullname: De Kauwe, Martin G. organization: Macquarie University – sequence: 3 givenname: Yan‐Shih orcidid: 0000-0003-3177-5186 surname: Lin fullname: Lin, Yan‐Shih organization: Centre INRA de Nancy‐Lorraine – sequence: 4 givenname: Jürgen orcidid: 0000-0002-4947-7067 surname: Knauer fullname: Knauer, Jürgen organization: Max Planck Institute for Biogeochemistry – sequence: 5 givenname: Remko A. orcidid: 0000-0002-8499-5580 surname: Duursma fullname: Duursma, Remko A. organization: Western Sydney University – sequence: 6 givenname: Christopher A. surname: Williams fullname: Williams, Christopher A. organization: Clark University – sequence: 7 givenname: Almut surname: Arneth fullname: Arneth, Almut organization: Karlsruhe Institute of Technology – sequence: 8 givenname: Rob surname: Clement fullname: Clement, Rob organization: University of Edinburgh – sequence: 9 givenname: Peter surname: Isaac fullname: Isaac, Peter organization: OzFlux – sequence: 10 givenname: Jean‐Marc surname: Limousin fullname: Limousin, Jean‐Marc organization: CNRS – Université de Montpellier – Université Paul‐Valéry Montpellier – EPHE – sequence: 11 givenname: Maj‐Lena surname: Linderson fullname: Linderson, Maj‐Lena organization: Lund University – sequence: 12 givenname: Patrick surname: Meir fullname: Meir, Patrick organization: Australian National University – sequence: 13 givenname: Nicolas surname: Martin‐StPaul fullname: Martin‐StPaul, Nicolas organization: INRA – sequence: 14 givenname: Lisa surname: Wingate fullname: Wingate, Lisa organization: INRA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28574148$$D View this record in MEDLINE/PubMed https://hal.science/hal-01606915$$DView record in HAL https://www.osti.gov/biblio/1399625$$D View this record in Osti.gov |
| BookMark | eNqFkk2L1EAQhoOsuB968AcoQS96yG71ZzqnZRnUEQb1oOCt6XSqmQxJOnYnDvPv7dnZHWVB7UtB87xVb32cZyeDHzDLnhO4JOldDeP6knBJ5aPsLMWqUISVJ9kZAFWF5PL7aXYe4wYAKiHpk-yUKlFywtVZtlj6bd74vEPjcjM0OVofd3HCPu_RxDlgzL3Lt2bCUMwRc3SutS0Odpdb348m4PXT7LEzXcRnd_Ei-_b-3dfFslh9_vBxcbMqrJQgC0VLI9AyRkrkAJwRaIDVTllubW0YYcwhdcqRmlhhGqlQSuYYaWqGghl2kZlD3rjFca71GNrehJ32ptWjD5PpdLKLJti17mYdUSeqa62ZWj9EbRsBTFrQKBuuuZRUm7IkWkmBjiFjQlWpxqtDDR-nVkfbTmjX1g8D2kkTVlWSigS9PUDrVPJPF8ubld7_AUkNV0T8JIl9c2DH4H_MGCfdt9Fi15kB_Rw1BQpKQan-j5IK0tpAij36-gG68XMY0vQTJQhwynmZqJd31Fz32Byt3q__dyM2-BgDuiNCQO9PS6fT0renldirB2wazu1op2Da7l-Kbdvh7u-p9acvy3vFi4NiEycfjooKgAgogf0CFSjltQ |
| CitedBy_id | crossref_primary_10_5194_bg_16_3747_2019 crossref_primary_10_1016_j_jhydrol_2023_129578 crossref_primary_10_3390_agriculture11080739 crossref_primary_10_1016_j_agrformet_2021_108605 crossref_primary_10_1029_2019JG005446 crossref_primary_10_1007_s11056_023_09986_6 crossref_primary_10_1016_j_rse_2023_113987 crossref_primary_10_3389_fpls_2022_892096 crossref_primary_10_1186_s12870_024_05924_6 crossref_primary_10_1016_j_agrformet_2021_108322 crossref_primary_10_1111_pce_14704 crossref_primary_10_1111_gcb_14807 crossref_primary_10_1111_pce_14305 crossref_primary_10_1016_j_agrformet_2023_109782 crossref_primary_10_1029_2022JG007135 crossref_primary_10_3389_fpls_2024_1405343 crossref_primary_10_1016_j_rse_2024_114150 crossref_primary_10_1016_j_agwat_2023_108527 crossref_primary_10_1186_s41610_019_0122_7 crossref_primary_10_1016_j_agrformet_2025_110800 crossref_primary_10_1111_gcb_16141 crossref_primary_10_1029_2020JG006005 crossref_primary_10_1016_j_agrformet_2024_109929 crossref_primary_10_1038_s43247_023_00757_x crossref_primary_10_1007_s11104_020_04427_1 crossref_primary_10_1016_j_jhydrol_2021_126970 crossref_primary_10_1016_j_rse_2024_113999 crossref_primary_10_1111_gcb_15203 crossref_primary_10_1029_2020JG005839 crossref_primary_10_1111_gcb_14634 crossref_primary_10_3390_su14020968 crossref_primary_10_1111_jac_70091 crossref_primary_10_1016_j_agrformet_2017_12_078 crossref_primary_10_1029_2020WR027106 crossref_primary_10_1111_pce_14712 crossref_primary_10_1016_j_agrformet_2022_109254 crossref_primary_10_1016_j_agrformet_2024_110074 crossref_primary_10_1016_j_envpol_2023_122735 crossref_primary_10_1016_j_rse_2024_114325 crossref_primary_10_1007_s10546_019_00460_5 crossref_primary_10_1007_s13595_021_01063_2 crossref_primary_10_1111_nph_15384 crossref_primary_10_1007_s00704_020_03303_3 crossref_primary_10_1007_s10342_025_01779_0 crossref_primary_10_1186_s12870_025_06912_0 crossref_primary_10_1016_j_jhydrol_2021_127179 crossref_primary_10_1016_j_agrformet_2023_109478 crossref_primary_10_5194_acp_25_8613_2025 crossref_primary_10_1029_2017MS001169 crossref_primary_10_3390_land12010077 crossref_primary_10_1016_j_agrformet_2025_110382 crossref_primary_10_1111_pce_14134 crossref_primary_10_1016_j_scitotenv_2023_162036 crossref_primary_10_3389_fsufs_2021_650727 crossref_primary_10_1038_s41598_022_21514_8 crossref_primary_10_1016_j_rse_2020_112030 crossref_primary_10_1111_nph_20170 crossref_primary_10_1016_j_agrformet_2021_108635 crossref_primary_10_3390_f15050849 crossref_primary_10_1111_nph_15495 crossref_primary_10_1029_2024WR039252 crossref_primary_10_1016_j_earscirev_2022_104055 crossref_primary_10_1016_j_scitotenv_2024_170581 crossref_primary_10_5194_essd_16_1811_2024 crossref_primary_10_1088_1748_9326_ac263b crossref_primary_10_3390_rs13132593 crossref_primary_10_3389_fagro_2023_1228407 crossref_primary_10_1038_s41467_023_39572_5 crossref_primary_10_1111_nph_17392 crossref_primary_10_1111_pce_14778 crossref_primary_10_1016_j_agrformet_2025_110430 crossref_primary_10_1016_j_foreco_2022_120759 crossref_primary_10_1016_j_jhydrol_2025_133283 crossref_primary_10_1016_j_scitotenv_2022_159356 crossref_primary_10_1088_1748_9326_abf0d1 crossref_primary_10_1111_gcb_70381 crossref_primary_10_1093_treephys_tpy043 crossref_primary_10_3389_fpls_2020_00374 crossref_primary_10_1016_j_agwat_2024_108813 crossref_primary_10_3390_rs13122393 crossref_primary_10_3390_rs15194831 crossref_primary_10_1029_2018GL079093 crossref_primary_10_1029_2020JG005862 crossref_primary_10_1111_gcb_16673 crossref_primary_10_1111_nph_18649 crossref_primary_10_1111_nph_18800 crossref_primary_10_1002_eco_2360 crossref_primary_10_1111_nph_16866 crossref_primary_10_5194_bg_14_4435_2017 crossref_primary_10_3390_f15040654 crossref_primary_10_1007_s00468_022_02374_1 crossref_primary_10_1111_nph_17540 crossref_primary_10_3389_fpls_2023_1119101 crossref_primary_10_1016_j_watres_2023_120246 crossref_primary_10_1016_j_ecolind_2023_109964 crossref_primary_10_1016_j_jhydrol_2024_131852 crossref_primary_10_1016_j_agrformet_2023_109857 crossref_primary_10_1029_2021WR030629 crossref_primary_10_1029_2023JG007875 crossref_primary_10_1016_j_agrformet_2017_11_005 crossref_primary_10_1111_gcb_15491 crossref_primary_10_1007_s00484_020_01892_2 crossref_primary_10_1016_j_agrformet_2024_110283 crossref_primary_10_1038_s41561_018_0212_7 crossref_primary_10_1016_j_scitotenv_2022_160992 crossref_primary_10_1016_j_agrformet_2020_108251 crossref_primary_10_1016_j_envexpbot_2023_105484 crossref_primary_10_3390_agronomy10101601 crossref_primary_10_1093_jxb_erz020 crossref_primary_10_1016_j_tplants_2020_02_007 crossref_primary_10_1016_j_scitotenv_2024_178208 crossref_primary_10_1029_2019MS001790 crossref_primary_10_1016_j_agrformet_2025_110737 crossref_primary_10_1016_j_envexpbot_2023_105529 crossref_primary_10_1016_j_compag_2022_107261 crossref_primary_10_1016_j_foreco_2025_122528 crossref_primary_10_1016_j_agrformet_2023_109744 crossref_primary_10_1016_j_agwat_2021_107242 crossref_primary_10_1029_2022JG007347 crossref_primary_10_3390_f13122189 crossref_primary_10_1016_j_agrformet_2018_11_017 crossref_primary_10_1139_cjfr_2021_0134 crossref_primary_10_1111_nph_18901 crossref_primary_10_1016_j_agrformet_2022_108919 crossref_primary_10_1111_gcb_15364 crossref_primary_10_1038_s43017_021_00144_0 crossref_primary_10_1111_pce_15293 crossref_primary_10_1016_j_agrformet_2025_110456 crossref_primary_10_1111_nph_16846 crossref_primary_10_1016_j_catena_2025_109403 crossref_primary_10_1016_j_catena_2022_106874 crossref_primary_10_1016_j_jhydrol_2022_128102 crossref_primary_10_1111_nph_17088 crossref_primary_10_1111_gcb_14866 crossref_primary_10_1073_pnas_2014286118 crossref_primary_10_1111_gcb_15314 crossref_primary_10_1016_j_agrformet_2021_108385 crossref_primary_10_1016_j_agrformet_2022_109157 crossref_primary_10_1016_j_agrformet_2022_109158 crossref_primary_10_1029_2020WR028866 crossref_primary_10_1016_j_agrformet_2019_107642 crossref_primary_10_3390_su14095126 crossref_primary_10_1016_j_gloplacha_2021_103674 crossref_primary_10_1088_1748_9326_ada170 crossref_primary_10_1016_j_jag_2021_102329 crossref_primary_10_1016_j_rse_2019_111362 crossref_primary_10_1007_s13351_023_3022_9 crossref_primary_10_1111_nph_19308 crossref_primary_10_1111_gcb_13893 crossref_primary_10_1111_nph_15451 crossref_primary_10_1093_treephys_tpad119 crossref_primary_10_3389_fpls_2024_1500624 crossref_primary_10_5194_bg_16_903_2019 crossref_primary_10_1016_j_agrformet_2021_108430 crossref_primary_10_1186_s13021_020_00159_y crossref_primary_10_5194_bg_19_1753_2022 crossref_primary_10_1016_j_agrformet_2022_109305 crossref_primary_10_1016_j_jhydrol_2024_130756 crossref_primary_10_1016_j_agrformet_2019_02_035 crossref_primary_10_1002_2017JG003890 crossref_primary_10_1016_j_foreco_2023_120853 crossref_primary_10_1016_j_jhydrol_2025_133760 crossref_primary_10_5194_bg_15_2433_2018 crossref_primary_10_1371_journal_pone_0201114 crossref_primary_10_1111_plb_12939 crossref_primary_10_1016_j_agwat_2023_108433 crossref_primary_10_1186_s13021_023_00232_2 |
| Cites_doi | 10.1038/srep23418 10.1071/FP09306 10.5194/gmd-7-2193-2014 10.1016/j.agrformet.2011.09.019 10.1071/FP11090 10.1146/annurev.pp.40.060189.002443 10.1073/pnas.0910513107 10.1111/nph.12423 10.1007/s00442-007-0932-7 10.1016/j.agrformet.2011.07.012 10.1071/FP08216 10.1016/j.agrformet.2011.02.013 10.1046/j.0269-8463.2001.00591.x 10.1007/s00442-009-1465-z 10.5194/bg-10-2011-2013 10.1016/j.agrformet.2004.12.004 10.1071/PP9920263 10.5194/gmd-8-3877-2015 10.1016/S0168-1923(01)00240-4 10.1002/2015WR017766 10.1111/pce.12841 10.5194/esd-7-525-2016 10.1002/2015JG002947 10.1071/PP95033 10.1016/j.agrformet.2010.01.018 10.1093/treephys/27.12.1687 10.1038/nclimate2614 10.1016/j.agrformet.2011.07.001 10.1093/jxb/erp063 10.1038/nature12291 10.1111/gcb.12717 10.1038/nclimate2550 10.1007/BF00627732 10.1111/j.1365-3040.2007.01647.x 10.1007/s00442-013-2703-y 10.1007/BF00349020 10.1111/j.1600-0889.2007.00262.x 10.1029/2006JG000293 10.1111/j.1365-2486.2011.02526.x 10.3354/cr021001 10.1071/PP9860281 10.2307/1309424 10.1111/j.1365-2486.2003.00687.x 10.1016/S0168-1923(02)00109-0 10.1016/S0168-1923(02)00104-1 10.1890/06-0922.1 10.1016/j.agrformet.2007.11.012 10.1111/j.1365-2486.2010.02375.x 10.1098/rsta.1986.0007 10.5194/bg-14-389-2017 10.1029/2004GB002316 10.1016/j.agrformet.2010.08.013 10.1104/pp.71.4.789 10.1111/j.1365-2486.2008.01610.x 10.1029/2011JG001913 10.1038/nature17966 10.1002/qj.49709841510 10.1029/2008GB003233 10.1016/j.rse.2006.01.020 10.1016/S0065-2504(08)60119-1 |
| ContentType | Journal Article |
| Copyright | 2017 New Phytologist Trust 2017 The Authors. New Phytologist © 2017 New Phytologist Trust 2017 The Authors. New Phytologist © 2017 New Phytologist Trust. Copyright © 2017 New Phytologist Trust licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: 2017 New Phytologist Trust – notice: 2017 The Authors. New Phytologist © 2017 New Phytologist Trust – notice: 2017 The Authors. New Phytologist © 2017 New Phytologist Trust. – notice: Copyright © 2017 New Phytologist Trust – notice: licence_http://creativecommons.org/publicdomain/zero |
| CorporateAuthor | Strategiska forskningsområden (SFO) Dept of Physical Geography and Ecosystem Science Strategic research areas (SRA) Lunds universitet Naturvetenskapliga fakulteten Profile areas and other strong research environments BECC: Biodiversity and Ecosystem services in a Changing Climate Faculty of Science Lund University Profilområden och andra starka forskningsmiljöer Institutionen för naturgeografi och ekosystemvetenskap |
| CorporateAuthor_xml | – name: Dept of Physical Geography and Ecosystem Science – name: Naturvetenskapliga fakulteten – name: Strategiska forskningsområden (SFO) – name: Profilområden och andra starka forskningsmiljöer – name: Lund University – name: BECC: Biodiversity and Ecosystem services in a Changing Climate – name: Institutionen för naturgeografi och ekosystemvetenskap – name: Profile areas and other strong research environments – name: Strategic research areas (SRA) – name: Faculty of Science – name: Lunds universitet |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 1XC OTOTI ADTPV AOWAS D95 |
| DOI | 10.1111/nph.14626 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) OSTI.GOV SwePub SwePub Articles SWEPUB Lunds universitet |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE CrossRef AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany |
| EISSN | 1469-8137 |
| EndPage | 770 |
| ExternalDocumentID | oai_portal_research_lu_se_publications_cd5036c0_e6d4_4662_a771_865ef3e33589 1399625 oai:HAL:hal-01606915v1 28574148 10_1111_nph_14626 NPH14626 90015070 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: FAO‐GTOS‐TCO – fundername: National Science Foundation – fundername: Université Laval and Environment Canada – fundername: Max Planck Institute for Biogeochemistry – fundername: ARC Discovery Grant funderid: DP120104055 – fundername: CarboEuropeIP – fundername: Lawrence Berkeley National Laboratory – fundername: Berkeley Water Center – fundername: University of California‐Berkeley – fundername: University of Virginia |
| GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 31~ AASVR ABEFU ABEML ABGDZ ACQPF ADXHL AS~ CAG COF FIJ GTFYD HF~ HGD HQ2 HTVGU LPU MVM NEJ RCA WHG YXE ZCG AAYXX ABUFD CITATION O8X 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE CGR CUY CVF DOOOF ECM EIF ESX IPNFZ JSODD NPM PKN WRC XOL 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 1XC AAPBV ABHUG ABPTK ABWRO ACXME ADAWD ADDAD ADZLD AESBF AFVGU AGJLS CWIXF DWIUU LW7 OTOTI ADTPV AOWAS D95 |
| ID | FETCH-LOGICAL-c6606-827a5ec3317e4004310d03bf8c4ccba3133fe2f8f1b1c5ad68e663f31db3e53a3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 177 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000417215200015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-646X 1469-8137 |
| IngestDate | Thu Nov 27 03:11:38 EST 2025 Mon Sep 11 05:25:23 EDT 2023 Tue Nov 25 06:20:46 EST 2025 Fri Sep 05 17:23:57 EDT 2025 Tue Nov 11 05:11:47 EST 2025 Mon Sep 08 01:10:36 EDT 2025 Wed Feb 19 02:41:50 EST 2025 Tue Nov 18 21:56:26 EST 2025 Sat Nov 29 04:38:27 EST 2025 Sun Sep 21 06:20:09 EDT 2025 Thu Jul 03 22:32:24 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | stable isotopes stomatal conductance plant functional type (PFT) leaf gas exchange eddy covariance water-use efficiency dynamique des écosystèmes réserve en eau de la plante bilan hydrique isotope stable covariance carbon cycle photosynthèse utilisation de l'eau conductance stomatique photosynthesis cycle du carbone Efficience d'utilisation de l'eau |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 The Authors. New Phytologist © 2017 New Phytologist Trust. licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6606-827a5ec3317e4004310d03bf8c4ccba3133fe2f8f1b1c5ad68e663f31db3e53a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE |
| ORCID | 0000-0002-4947-7067 0000-0002-8499-5580 0000-0003-3177-5186 0000-0001-7574-0108 0000-0002-2734-2495 0000-0002-5047-0639 0000-0001-6616-0822 0000-0003-1921-1556 0000000331775186 0000000249477067 0000000284995580 |
| OpenAccessLink | https://www.pure.ed.ac.uk/ws/files/35104823/35104771._AAM._Meir..pdf |
| PMID | 28574148 |
| PQID | 1951042447 |
| PQPubID | 2026848 |
| PageCount | 13 |
| ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_cd5036c0_e6d4_4662_a771_865ef3e33589 osti_scitechconnect_1399625 hal_primary_oai_HAL_hal_01606915v1 proquest_miscellaneous_2020880781 proquest_miscellaneous_1905740651 proquest_journals_1951042447 pubmed_primary_28574148 crossref_primary_10_1111_nph_14626 crossref_citationtrail_10_1111_nph_14626 wiley_primary_10_1111_nph_14626_NPH14626 jstor_primary_90015070 |
| PublicationCentury | 2000 |
| PublicationDate | November 2017 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: November 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Lancaster – name: United Kingdom |
| PublicationTitle | The New phytologist |
| PublicationTitleAlternate | New Phytol |
| PublicationYear | 2017 |
| Publisher | New Phytologist Trust Wiley Subscription Services, Inc Wiley Wiley-Blackwell |
| Publisher_xml | – name: New Phytologist Trust – name: Wiley Subscription Services, Inc – name: Wiley – name: Wiley-Blackwell |
| References | 2002; 16 1989; 40 2010; 107 1982; 52 2002; 113 2013; 200 1992; 19 2012; 18 2008; 148 2007; 30 2001; 108 2011; 17 2016; 39 2011; 151 1977 2014; 20 2013; 10 2003; 9 2010; 150 1972; 98 2008; 155 2014; 7 2007; 27 2009; 23 1986; 316 2015; 5 2010; 37 2011 2009; 60 2008; 18 1986; 13 2015; 120 1986; 15 2008; 14 2016; 52 1983; 71 2010; 162 2012; 39 2015; 8 1998; 25 2007; 59 1999 2009; 36 2016; 6 2012; 152 2007; 112 2012; 153 2016; 7 2005; 19 2017; 14 2002; 21 1984; 34 2005; 129 1994; 99 2013; 499 2017 2013; 173 2016; 534 2014 2012; 117 2006; 101 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 Cowan IR (e_1_2_7_16_1) 1977 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Ghannoum O (e_1_2_7_25_1) 2011 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
| References_xml | – volume: 39 start-page: 25 year: 2012 end-page: 37 article-title: Photosynthetic sensitivity to drought varies among populations of along a rainfall gradient publication-title: Functional Plant Biology – start-page: 471 year: 1977 end-page: 505 – volume: 120 start-page: 887 year: 2015 end-page: 902 article-title: Daily underlying water use efficiency for AmeriFlux sites publication-title: Journal of Geophysical Research–Biogeosciences – volume: 107 start-page: 5738 year: 2010 end-page: 5743 article-title: Global patterns in leaf C‐13 discrimination and implications for studies of past and future climate publication-title: Proceedings of the National Academy of Sciences, USA – volume: 534 start-page: 680 year: 2016 end-page: 683 article-title: Seasonality of temperate forest photosynthesis and daytime respiration publication-title: Nature – volume: 101 start-page: 534 year: 2006 end-page: 553 article-title: Exploiting synergies of global land cover products for carbon cycle modeling publication-title: Remote Sensing of Environment – volume: 9 start-page: 1813 year: 2003 end-page: 1824 article-title: Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy publication-title: Global Change Biology – start-page: 129 year: 2011 end-page: 146 – year: 2014 – volume: 60 start-page: 2271 year: 2009 end-page: 2282 article-title: Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field publication-title: Journal of Experimental Botany – volume: 316 start-page: 245 year: 1986 end-page: 259 article-title: How do crops manipulate water‐supply and demand publication-title: Philosophical Transactions of the Royal Society a‐Mathematical Physical and Engineering Sciences – volume: 18 start-page: 585 year: 2012 end-page: 595 article-title: Effects of elevated atmospheric CO on instantaneous transpiration efficiency at leaf and canopy scales in publication-title: Global Change Biology – volume: 36 start-page: 199 year: 2009 end-page: 213 article-title: Viewpoint: why are non‐photosynthetic tissues generally C enriched compared with leaves in C plants? Review and synthesis of current hypotheses publication-title: Functional Plant Biology – volume: 499 start-page: 324 year: 2013 end-page: 327 article-title: Increase in forest water‐use efficiency as atmospheric carbon dioxide concentrations rise publication-title: Nature – volume: 173 start-page: 1179 year: 2013 end-page: 1189 article-title: Weak vertical canopy gradients of photosynthetic capacities and stomatal responses in a fertile Norway spruce stand publication-title: Oecologia – volume: 155 start-page: 441 year: 2008 end-page: 454 article-title: Carbon isotopes and water use efficiency: sense and sensitivity publication-title: Oecologia – volume: 8 start-page: 3877 year: 2015 end-page: 3889 article-title: Implementation of an optimal stomatal conductance scheme in the Australian Community Climate Earth Systems Simulator (ACCESS1.3b) publication-title: Geoscientific Model Development – volume: 5 start-page: 459 year: 2015 end-page: 464 article-title: Optimal stomatal behaviour around the world publication-title: Nature Climate Change – volume: 27 start-page: 1687 year: 2007 end-page: 1699 article-title: Linking leaf and tree water use with an individual‐tree model publication-title: Tree Physiology – volume: 129 start-page: 151 year: 2005 end-page: 173 article-title: Carbon and water fluxes over a temperate Eucalyptus forest and a tropical wet/dry savanna in Australia: measurements and comparison with MODIS remote sensing estimates publication-title: Agricultural and Forest Meteorology – volume: 71 start-page: 789 year: 1983 end-page: 796 article-title: Stomatal sensitivity to carbon‐dioxide and huditity – a comparison of 2 C and 2 C grass species publication-title: Plant Physiology – volume: 14 start-page: 1917 year: 2008 end-page: 1933 article-title: Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana publication-title: Global Change Biology – volume: 19 start-page: GB2001 year: 2005 article-title: Effect of thinning on surface fluxes in a boreal forest publication-title: Global Biogeochemical Cycles – volume: 148 start-page: 821 year: 2008 end-page: 838 article-title: Cross‐site evaluation of eddy covariance GPP and RE decomposition techniques publication-title: Agricultural and Forest Meteorology – volume: 150 start-page: 531 year: 2010 end-page: 540 article-title: A comparison of photosynthesis‐dependent stomatal models using twig cuvette field data for adult beech ( L.) publication-title: Agricultural and Forest Meteorology – volume: 6 start-page: 23418 year: 2016 article-title: Impact of the representation of stomatal conductance on model projections of heatwave intensity publication-title: Scientific Reports – volume: 21 start-page: 1 year: 2002 end-page: 25 article-title: A high‐resolution data set of surface climate over global land areas publication-title: Climate Research – volume: 13 start-page: 281 year: 1986 end-page: 292 article-title: Carbon isotope discrimination measured concurrently with gas‐exchange to investigate CO diffusion in leaves of higher‐plants publication-title: Australian Journal of Plant Physiology – volume: 7 start-page: 525 year: 2016 end-page: 533 article-title: Spatial and temporal variations in plant water‐use efficiency inferred from tree‐ring, eddy covariance and atmospheric observations publication-title: Earth System Dynamics – volume: 5 start-page: 579 year: 2015 end-page: 583 article-title: Water‐use efficiency and transpiration across European forests during the Anthropocene publication-title: Nature Climate Change – volume: 153 start-page: 106 year: 2012 end-page: 123 article-title: Carbon dioxide exchange of a Sitka spruce plantation in Scotland over five years publication-title: Agricultural and Forest Meteorology – volume: 30 start-page: 600 year: 2007 end-page: 616 article-title: Variations in C discrimination during CO exchange by branches in the field publication-title: Plant, Cell & Environment – volume: 99 start-page: 201 year: 1994 end-page: 215 article-title: C‐13 discrimination during CO assimilation by the terrestrial biosphere publication-title: Oecologia – volume: 152 start-page: 201 year: 2012 end-page: 211 article-title: Up‐scaling of water use efficiency from leaf to canopy as based on leaf gas exchange relationships and the modeled in‐canopy light distribution publication-title: Agricultural and Forest Meteorology – volume: 40 start-page: 503 year: 1989 end-page: 537 article-title: Carbon isotope discrimination and photosynthesis publication-title: Annual Review of Plant Physiology and Plant Molecular Biology – volume: 19 start-page: 263 year: 1992 end-page: 285 article-title: Short‐term measurements of carbon isotope discrimination in several C species publication-title: Australian Journal of Plant Physiology – volume: 162 start-page: 491 year: 2010 end-page: 504 article-title: Tree species effects on ecosystem water‐use efficiency in a high‐elevation, subalpine forest publication-title: Oecologia – volume: 17 start-page: 2134 year: 2011 end-page: 2144 article-title: Reconciling the optimal and empirical approaches to modelling stomatal conductance publication-title: Global Change Biology – volume: 98 start-page: 124 year: 1972 end-page: 134 article-title: Momentum, mass and heat‐exchange of vegetation publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 52 start-page: 121 year: 1982 end-page: 124 article-title: Effect of salinity and humidity on delta C values of halophytes – evidence for diffusional isotope fractionation determined by the ratio of inter‐cellular atmospheric partial‐pressure of CO under different environmental conditions publication-title: Oecologia – volume: 117 start-page: G02026 year: 2012 article-title: Reconciling leaf physiological traits and canopy flux data: use of the TRY and FLUXNET databases in the Community Land Model version 4 publication-title: Journal of Geophysical Research‐Biogeosciences – volume: 14 start-page: 389 year: 2017 end-page: 401 article-title: Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake publication-title: Biogeosciences – volume: 151 start-page: 22 year: 2011 end-page: 38 article-title: Assessing parameter variability in a photosynthesis model within and between plant functional types using global Fluxnet eddy covariance data publication-title: Agricultural and Forest Meteorology – volume: 15 start-page: 1 year: 1986 end-page: 49 article-title: Stomatal control of transpiration – scaling up from leaf to region publication-title: Advances in Ecological Research – volume: 59 start-page: 542 year: 2007 end-page: 552 article-title: Relationship between temperature and the seasonal course of photosynthesis in Scots pine at northern timberline and in southern boreal zone publication-title: Tellus Series B‐Chemical and Physical Meteorology – volume: 23 start-page: GB2018 year: 2009 article-title: Temporal and among‐site variability of inherent water use efficiency at the ecosystem level publication-title: Global Biogeochemical Cycles – volume: 16 start-page: 49 year: 2002 end-page: 57 article-title: Predicting daytime carbon isotope ratios of atmospheric CO within forest canopies publication-title: Functional Ecology – volume: 112 start-page: G02020 year: 2007 article-title: Factors controlling CO exchange on timescales from hourly to decadal at Harvard Forest publication-title: Journal of Geophysical Research‐Biogeosciences – volume: 113 start-page: 223 year: 2002 end-page: 243 article-title: Energy balance closure at FLUXNET sites publication-title: Agricultural and Forest Meteorology – volume: 52 start-page: 1160 year: 2016 end-page: 1175 article-title: Partitioning evapotranspiration based on the concept of underlying water use efficiency publication-title: Water Resources Research – volume: 25 start-page: 111 year: 1998 end-page: 123 article-title: Correlation between carbon isotope discrimination and transpiration efficiency in lines of the C species in the glasshouse and the field publication-title: Australian Journal of Plant Physiology – volume: 18 start-page: 1351 year: 2008 end-page: 1367 article-title: The energy balance closure problem: an overview publication-title: Ecological Applications – volume: 39 start-page: 2762 year: 2016 end-page: 2773 article-title: Coupled response of stomatal and mesophyll conductance to light enhances photosynthesis of shade leaves under sunflecks publication-title: Plant, Cell & Environment – volume: 113 start-page: 97 year: 2002 end-page: 120 article-title: Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation publication-title: Agricultural and Forest Meteorology – year: 2017 – volume: 10 start-page: 2011 year: 2013 end-page: 2040 article-title: Multiple observation types reduce uncertainty in Australia's terrestrial carbon and water cycles publication-title: Biogeosciences – volume: 108 start-page: 183 year: 2001 end-page: 197 article-title: CO and water vapour fluxes for 2 years above Euroflux forest site publication-title: Agricultural & Forest Meteorology – volume: 151 start-page: 934 year: 2011 end-page: 946 article-title: Increasing net CO uptake by a Danish beech forest during the period from 1996 to 2009 publication-title: Agricultural and Forest Meteorology – volume: 34 start-page: 36 year: 1984 end-page: 40 article-title: Water‐use efficiency in crop production publication-title: BioScience – volume: 20 start-page: 3700 year: 2014 end-page: 3712 article-title: Spatial variability and temporal trends in water‐use efficiency of European forests publication-title: Global Change Biology – volume: 37 start-page: 1050 year: 2010 end-page: 1060 article-title: Photosynthesis and water‐use efficiency of seedlings from northern Australian monsoon forest, savanna and swamp habitats grown in a common garden publication-title: Functional Plant Biology – volume: 200 start-page: 950 year: 2013 end-page: 965 article-title: Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants publication-title: New Phytologist – volume: 7 start-page: 2193 year: 2014 end-page: 2222 article-title: Modeling stomatal conductance in the earth system: linking leaf water‐use efficiency and water transport along the soil‐plant‐atmosphere continuum publication-title: Geoscientific Model Development – volume: 151 start-page: 1672 year: 2011 end-page: 1689 article-title: Empirical and optimal stomatal controls on leaf and ecosystem level CO and H O exchange rates publication-title: Agricultural and Forest Meteorology – year: 1999 – ident: e_1_2_7_33_1 doi: 10.1038/srep23418 – ident: e_1_2_7_51_1 doi: 10.1071/FP09306 – ident: e_1_2_7_8_1 doi: 10.5194/gmd-7-2193-2014 – ident: e_1_2_7_40_1 doi: 10.1016/j.agrformet.2011.09.019 – ident: e_1_2_7_57_1 doi: 10.1071/FP11090 – ident: e_1_2_7_22_1 doi: 10.1146/annurev.pp.40.060189.002443 – ident: e_1_2_7_48_1 – ident: e_1_2_7_3_1 – ident: e_1_2_7_19_1 doi: 10.1073/pnas.0910513107 – ident: e_1_2_7_13_1 doi: 10.1111/nph.12423 – ident: e_1_2_7_55_1 doi: 10.1007/s00442-007-0932-7 – ident: e_1_2_7_14_1 doi: 10.1016/j.agrformet.2011.07.012 – ident: e_1_2_7_12_1 doi: 10.1071/FP08216 – ident: e_1_2_7_52_1 doi: 10.1016/j.agrformet.2011.02.013 – ident: e_1_2_7_10_1 doi: 10.1046/j.0269-8463.2001.00591.x – ident: e_1_2_7_44_1 doi: 10.1007/s00442-009-1465-z – ident: e_1_2_7_27_1 doi: 10.5194/bg-10-2011-2013 – start-page: 129 volume-title: C4 photosynthesis and related CO2 concentrating mechanisms year: 2011 ident: e_1_2_7_25_1 – ident: e_1_2_7_38_1 doi: 10.1016/j.agrformet.2004.12.004 – ident: e_1_2_7_28_1 doi: 10.1071/PP9920263 – ident: e_1_2_7_32_1 doi: 10.5194/gmd-8-3877-2015 – ident: e_1_2_7_5_1 doi: 10.1016/S0168-1923(01)00240-4 – ident: e_1_2_7_67_1 doi: 10.1002/2015WR017766 – ident: e_1_2_7_11_1 doi: 10.1111/pce.12841 – ident: e_1_2_7_17_1 doi: 10.5194/esd-7-525-2016 – ident: e_1_2_7_66_1 doi: 10.1002/2015JG002947 – ident: e_1_2_7_29_1 doi: 10.1071/PP95033 – ident: e_1_2_7_50_1 doi: 10.1016/j.agrformet.2010.01.018 – ident: e_1_2_7_43_1 doi: 10.1093/treephys/27.12.1687 – ident: e_1_2_7_24_1 doi: 10.1038/nclimate2614 – ident: e_1_2_7_36_1 doi: 10.1016/j.agrformet.2011.07.001 – ident: e_1_2_7_49_1 doi: 10.1093/jxb/erp063 – ident: e_1_2_7_34_1 doi: 10.1038/nature12291 – ident: e_1_2_7_54_1 doi: 10.1111/gcb.12717 – ident: e_1_2_7_39_1 doi: 10.1038/nclimate2550 – ident: e_1_2_7_41_1 doi: 10.1007/BF00627732 – ident: e_1_2_7_65_1 doi: 10.1111/j.1365-3040.2007.01647.x – ident: e_1_2_7_58_1 doi: 10.1007/s00442-013-2703-y – ident: e_1_2_7_21_1 doi: 10.1007/BF00349020 – ident: e_1_2_7_35_1 doi: 10.1111/j.1600-0889.2007.00262.x – ident: e_1_2_7_60_1 doi: 10.1029/2006JG000293 – ident: e_1_2_7_2_1 doi: 10.1111/j.1365-2486.2011.02526.x – ident: e_1_2_7_47_1 doi: 10.3354/cr021001 – ident: e_1_2_7_20_1 doi: 10.1071/PP9860281 – ident: e_1_2_7_56_1 doi: 10.2307/1309424 – ident: e_1_2_7_53_1 doi: 10.1111/j.1365-2486.2003.00687.x – ident: e_1_2_7_64_1 doi: 10.1016/S0168-1923(02)00109-0 – ident: e_1_2_7_37_1 doi: 10.1016/S0168-1923(02)00104-1 – ident: e_1_2_7_23_1 doi: 10.1890/06-0922.1 – ident: e_1_2_7_18_1 doi: 10.1016/j.agrformet.2007.11.012 – ident: e_1_2_7_42_1 doi: 10.1111/j.1365-2486.2010.02375.x – ident: e_1_2_7_45_1 doi: 10.1098/rsta.1986.0007 – ident: e_1_2_7_62_1 doi: 10.5194/bg-14-389-2017 – ident: e_1_2_7_61_1 doi: 10.1029/2004GB002316 – start-page: 471 volume-title: Integration of activity in the higher plant year: 1977 ident: e_1_2_7_16_1 – ident: e_1_2_7_26_1 doi: 10.1016/j.agrformet.2010.08.013 – ident: e_1_2_7_46_1 doi: 10.1104/pp.71.4.789 – ident: e_1_2_7_6_1 doi: 10.1111/j.1365-2486.2008.01610.x – ident: e_1_2_7_7_1 doi: 10.1029/2011JG001913 – ident: e_1_2_7_63_1 doi: 10.1038/nature17966 – ident: e_1_2_7_59_1 doi: 10.1002/qj.49709841510 – ident: e_1_2_7_9_1 – ident: e_1_2_7_4_1 doi: 10.1029/2008GB003233 – ident: e_1_2_7_31_1 doi: 10.1016/j.rse.2006.01.020 – ident: e_1_2_7_15_1 – ident: e_1_2_7_30_1 doi: 10.1016/S0065-2504(08)60119-1 |
| SSID | ssj0009562 |
| Score | 2.6206305 |
| Snippet | The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by... Summary The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by... Summary The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by... Summary <list list-type='bullet'> The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water... |
| SourceID | swepub osti hal proquest pubmed crossref wiley jstor |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 758 |
| SubjectTerms | C3 plants C4 plants carbon Carbon cycle Conductance Covariance crops Data data collection Databases, Factual deciduous forests Ecosystem Ecosystems eddy covariance Fluxes Forests Gas exchange Grasslands Hydrologic cycle Isotopes leaf gas exchange Leaves Life Sciences Measurement methods Photosynthesis plant functional type (PFT) Plant Leaves - physiology Plant Transpiration Poaceae - physiology Resistance Stable isotopes Stomata Stomatal conductance Transpiration uncertainty Vegetal Biology Vortices Water Water balance Water use water use efficiency |
| Title | How do leaf and ecosystem measures of water-use efficiency compare? |
| URI | https://www.jstor.org/stable/90015070 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.14626 https://www.ncbi.nlm.nih.gov/pubmed/28574148 https://www.proquest.com/docview/1951042447 https://www.proquest.com/docview/1905740651 https://www.proquest.com/docview/2020880781 https://hal.science/hal-01606915 https://www.osti.gov/biblio/1399625 |
| Volume | 216 |
| WOSCitedRecordID | wos000417215200015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1469-8137 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0009562 issn: 1469-8137 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1469-8137 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009562 issn: 1469-8137 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1da9swFBVt14e97Lud1y5oYw97MUSyLcvsYXRbQwYhlLFuYS9ClmQyyOwQJy1720_Yb9wv2b3yBwm0MNhbsK8hvrrHPke-OiLkFZBiaY21ociFCGOWZ6EeyjjkiWSgiRgv_If2L5N0OpWzWXaxR950a2Eaf4h-wg2R4Z_XCHCd11sgL5dzhDlHu20WM9y94OvH6ZbhruCdA7OIxax1FcIunv7KnXfR_hw7IZumRHg-V4Cwm1hnbym6y2b962h0_79u5AG517JQetaUzUOy58pH5PBdBUzx52NyPq6uqa3owumC6tJSkKiN4zP90Uwp1rQq6DXQ1NWfX783taPOO1HgMk7adrW_fUIuR-ef34_DdruF0AiQMaHkqU6ciYBROEQ2ED87jPJCmtiYXEegZgvHC1mwnJlEWyEd0JUiYjaPXBLp6IgclFXpnhIKqjdmLgEuEIP0dkApGNc2NpIZYZ2wAXndJV6Z1osct8RYqE6TQFKUT0pAXvahy8aA48YgGL3-PFpmj88mCo-hg57IWHLFAnLkB7cPy7y_YjoMyAmOtgLOgca5BjuMzFoBN85AHQbktCsC1eK7VgyJKa4RTAPyoj8NyMTPLbp01QZjgAsDX0rY7TEc90hFy3-IOW4KrP97XMLloFYD8q2puJ37a9SZai2h5mqxUbVTy625XmVsAvzEDBVkPFaxEFzpNGVKisQVkYuiRGYwEr42b8-tml6M_Y9n_x56Qu5ypD9-zeYpOVivNu45OTRX6-_1akD205kckDsfPo0uJwMP278xLT8j |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1da9RAFL20taAvftfGVh3FB18CO5NkMgFBqrRscV36UHXxZUhmJmxhmyz70eKbP8Hf6C_x3kk27EILgm9LcgObO_ck50zunAF4i6RYWWNtKAspw5gXWZj3VByKRHHURFyU_kP7t0E6HKrRKDvbgvertTCNP0Q34UbI8M9rAjhNSK-hvJqOCedCbsOdGIkGbdzw_XS4ZrkrxcqDWcZy1PoKUR9Pd-nG22h7TL2QTVsiPqFrxNhNvLMzFd3ks_6FdPLg_27lIdxviSg7airnEWy56jHsfqyRLP58Asf9-prZmk1cXrK8sgxVamP6zC6bWcU5q0t2jUx19ufX7-XcMefNKGglJ2sb2z88ha8nx-ef-mG740JoJCqZUIk0T5yJkFQ4AjdyP9uLilKZ2Jgij1DQlk6UquQFN0lupXLIWMqI2yJySZRHe7BT1ZXbB4bCN-YuQToQo_p2yCq4yG1sFDfSOmkDeLfKvDatHTntijHRK1mCSdE-KQG86UKnjQfHjUE4fN15cs3uHw00HSMTPZnx5IoHsOdHtwvLvMVi2gvggIZbI-0g71xDTUZmoZEeZygQAzhcVYFuIT7XnLgpLRNMA3jdnUZw0heXvHL1kmKQDiNlSvjtMYK2SSXXf4x51lRY9_eEwstRsAbwoym5jftrBJpuXaHGerLUc6ena9O92tgEKYrpacx4rGMphc7TlGslE1dGLooSleFI-OK8Pbd6eNb3P57_e-gruNs__zLQg9Ph5wO4J4gN-SWch7CzmC3dC9g1V4uL-eylR-1fgrpAuQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1di9NAFL3sdhfxxe_VuKuO4oMvgc4kM5mCIKu7pWIpRVwpvgzJzIQKNSn92MU3f4K_0V_ivUkaWtgFwbeS3EBz557knMmdMwCvkRRrZ50LVaZUGPOsF6ZdHYdCao6aiIu8-tD-dZiMRnoy6Y334O1mLUztD9FOuBEyquc1AdzPXb6F8mI-JZwLtQ8HMW0i04GDs8_9i-GW6a4SGxdmFatJ4yxEnTztxTvvo_0pdUPWjYn4jC4RZdcxz9ZWdJfRVq-k_t3_u5l7cKehouy0rp37sOeLB3D4vkS6-PMhnA_KK-ZKNvNpztLCMdSpte0z-1HPKy5ZmbMr5KqLP79-r5ee-cqOgtZysqa1_d0juOiff_kwCJs9F0KrUMuEWiSp9DZCWuEJ3sj-XDfKcm1ja7M0Qkmbe5HrnGfcytQp7ZGz5BF3WeRllEZH0CnKwj8BhtI35l4iIYhRf3vkFVykLraaW-W8cgG82WTe2MaQnPbFmJmNMMGkmCopAbxqQ-e1C8e1QTh87XnyzR6cDg0dIxs91ePykgdwVI1uG9arTBaTbgDHNNwGiQe551pqM7IrgwQZK0sGcLKpAtOAfGk4sVNaKJgE8LI9jfCkby5p4cs1xSAhRtIk-c0xgjZKJd9_jHlcV1j794TGy1GyBvCtLrmd-6slmml8oaZmtjZLb-ZbE77GOokkxXYNZjw2sVLCpEnCjVbS55GPIql7OBJVcd6cWzMaD6ofT_899AXcGp_1zfDj6NMx3BZEh6o1nCfQWS3W_hkc2svV9-XieQPbv7xoQWI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+do+leaf+and+ecosystem+measures+of+water-use+efficiency+compare%3F&rft.jtitle=The+New+phytologist&rft.au=Medlyn%2C+Belinda+E.&rft.au=de+Kauwe%2C+Martin+G.&rft.au=Lin%2C+Yan-Shih&rft.au=Knauer%2C+J%C3%BCrgen&rft.date=2017-11-01&rft.pub=Wiley&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=Epub+ahead+of+print&rft.issue=3&rft_id=info:doi/10.1111%2Fnph.14626&rft_id=info%3Apmid%2F28574148&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01606915v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |