How do leaf and ecosystem measures of water-use efficiency compare?

The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water-use efficiency (WUE), is a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The New phytologist Ročník 216; číslo 3; s. 758 - 770
Hlavní autoři: Medlyn, Belinda E., De Kauwe, Martin G., Lin, Yan‐Shih, Knauer, Jürgen, Duursma, Remko A., Williams, Christopher A., Arneth, Almut, Clement, Rob, Isaac, Peter, Limousin, Jean‐Marc, Linderson, Maj‐Lena, Meir, Patrick, Martin‐StPaul, Nicolas, Wingate, Lisa
Médium: Journal Article
Jazyk:angličtina
Vydáno: England New Phytologist Trust 01.11.2017
Wiley Subscription Services, Inc
Wiley
Wiley-Blackwell
Témata:
ISSN:0028-646X, 1469-8137, 1469-8137
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water-use efficiency (WUE), is a useful indicator of vegetation function. WUE can be estimated using several techniques, including leaf gas exchange, stable isotope discrimination, and eddy covariance. Here we compare global compilations of data for each of these three techniques. We show that patterns of variation in WUE across plant functional types (PFTs) are not consistent among the three datasets. Key discrepancies include the following: leaf-scale data indicate differences between needleleaf and broadleaf forests, but ecosystem-scale data do not; leaf-scale data indicate differences between C3 and C4 species, whereas at ecosystem scale there is a difference between C3 and C4 crops but not grasslands; and isotope-based estimates of WUE are higher than estimates based on gas exchange for most PFTs. Our study quantifies the uncertainty associated with different methods of measuring WUE, indicates potential for bias when using WUE measures to parameterize or validate models, and indicates key research directions needed to reconcile alternative measures of WUE.
AbstractList Summary <list list-type='bullet'> The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water‐use efficiency (WUE), is a useful indicator of vegetation function. WUE can be estimated using several techniques, including leaf gas exchange, stable isotope discrimination, and eddy covariance. Here we compare global compilations of data for each of these three techniques. We show that patterns of variation in WUE across plant functional types (PFTs) are not consistent among the three datasets. Key discrepancies include the following: leaf‐scale data indicate differences between needleleaf and broadleaf forests, but ecosystem‐scale data do not; leaf‐scale data indicate differences between C 3 and C 4 species, whereas at ecosystem scale there is a difference between C 3 and C 4 crops but not grasslands; and isotope‐based estimates of WUE are higher than estimates based on gas exchange for most PFTs. Our study quantifies the uncertainty associated with different methods of measuring WUE, indicates potential for bias when using WUE measures to parameterize or validate models, and indicates key research directions needed to reconcile alternative measures of WUE.
Summary The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water‐use efficiency (WUE), is a useful indicator of vegetation function. WUE can be estimated using several techniques, including leaf gas exchange, stable isotope discrimination, and eddy covariance. Here we compare global compilations of data for each of these three techniques. We show that patterns of variation in WUE across plant functional types (PFTs) are not consistent among the three datasets. Key discrepancies include the following: leaf‐scale data indicate differences between needleleaf and broadleaf forests, but ecosystem‐scale data do not; leaf‐scale data indicate differences between C3 and C4 species, whereas at ecosystem scale there is a difference between C3 and C4 crops but not grasslands; and isotope‐based estimates of WUE are higher than estimates based on gas exchange for most PFTs. Our study quantifies the uncertainty associated with different methods of measuring WUE, indicates potential for bias when using WUE measures to parameterize or validate models, and indicates key research directions needed to reconcile alternative measures of WUE.
The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water-use efficiency (WUE), is a useful indicator of vegetation function. WUE can be estimated using several techniques, including leaf gas exchange, stable isotope discrimination, and eddy covariance. Here we compare global compilations of data for each of these three techniques. We show that patterns of variation in WUE across plant functional types (PFTs) are not consistent among the three datasets. Key discrepancies include the following: leaf-scale data indicate differences between needleleaf and broadleaf forests, but ecosystem-scale data do not; leaf-scale data indicate differences between C3 and C4 species, whereas at ecosystem scale there is a difference between C3 and C4 crops but not grasslands; and isotope-based estimates of WUE are higher than estimates based on gas exchange for most PFTs. Our study quantifies the uncertainty associated with different methods of measuring WUE, indicates potential for bias when using WUE measures to parameterize or validate models, and indicates key research directions needed to reconcile alternative measures of WUE.
The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water-use efficiency (WUE), is a useful indicator of vegetation function. WUE can be estimated using several techniques, including leaf gas exchange, stable isotope discrimination, and eddy covariance. Here we compare global compilations of data for each of these three techniques. We show that patterns of variation in WUE across plant functional types (PFTs) are not consistent among the three datasets. Key discrepancies include the following: leaf-scale data indicate differences between needleleaf and broadleaf forests, but ecosystem-scale data do not; leaf-scale data indicate differences between C and C species, whereas at ecosystem scale there is a difference between C and C crops but not grasslands; and isotope-based estimates of WUE are higher than estimates based on gas exchange for most PFTs. Our study quantifies the uncertainty associated with different methods of measuring WUE, indicates potential for bias when using WUE measures to parameterize or validate models, and indicates key research directions needed to reconcile alternative measures of WUE.
The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water‐use efficiency (WUE), is a useful indicator of vegetation function. WUE can be estimated using several techniques, including leaf gas exchange, stable isotope discrimination, and eddy covariance. Here we compare global compilations of data for each of these three techniques. We show that patterns of variation in WUE across plant functional types (PFTs) are not consistent among the three datasets. Key discrepancies include the following: leaf‐scale data indicate differences between needleleaf and broadleaf forests, but ecosystem‐scale data do not; leaf‐scale data indicate differences between C 3 and C 4 species, whereas at ecosystem scale there is a difference between C 3 and C 4 crops but not grasslands; and isotope‐based estimates of WUE are higher than estimates based on gas exchange for most PFTs. Our study quantifies the uncertainty associated with different methods of measuring WUE, indicates potential for bias when using WUE measures to parameterize or validate models, and indicates key research directions needed to reconcile alternative measures of WUE.
The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water-use efficiency (WUE), is a useful indicator of vegetation function. WUE can be estimated using several techniques, including leaf gas exchange, stable isotope discrimination, and eddy covariance. Here we compare global compilations of data for each of these three techniques. We show that patterns of variation in WUE across plant functional types (PFTs) are not consistent among the three datasets. Key discrepancies include the following: leaf-scale data indicate differences between needleleaf and broadleaf forests, but ecosystem-scale data do not; leaf-scale data indicate differences between C3 and C4 species, whereas at ecosystem scale there is a difference between C3 and C4 crops but not grasslands; and isotope-based estimates of WUE are higher than estimates based on gas exchange for most PFTs. Our study quantifies the uncertainty associated with different methods of measuring WUE, indicates potential for bias when using WUE measures to parameterize or validate models, and indicates key research directions needed to reconcile alternative measures of WUE.
The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water‐use efficiency (WUE), is a useful indicator of vegetation function. WUE can be estimated using several techniques, including leaf gas exchange, stable isotope discrimination, and eddy covariance. Here we compare global compilations of data for each of these three techniques. We show that patterns of variation in WUE across plant functional types (PFTs) are not consistent among the three datasets. Key discrepancies include the following: leaf‐scale data indicate differences between needleleaf and broadleaf forests, but ecosystem‐scale data do not; leaf‐scale data indicate differences between C₃ and C₄ species, whereas at ecosystem scale there is a difference between C₃ and C₄ crops but not grasslands; and isotope‐based estimates of WUE are higher than estimates based on gas exchange for most PFTs. Our study quantifies the uncertainty associated with different methods of measuring WUE, indicates potential for bias when using WUE measures to parameterize or validate models, and indicates key research directions needed to reconcile alternative measures of WUE.
Summary The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water-use efficiency (WUE), is a useful indicator of vegetation function. WUE can be estimated using several techniques, including leaf gas exchange, stable isotope discrimination, and eddy covariance. Here we compare global compilations of data for each of these three techniques. We show that patterns of variation in WUE across plant functional types (PFTs) are not consistent among the three datasets. Key discrepancies include the following: leaf-scale data indicate differences between needleleaf and broadleaf forests, but ecosystem-scale data do not; leaf-scale data indicate differences between C3 and C4 species, whereas at ecosystem scale there is a difference between C3 and C4 crops but not grasslands; and isotope-based estimates of WUE are higher than estimates based on gas exchange for most PFTs. Our study quantifies the uncertainty associated with different methods of measuring WUE, indicates potential for bias when using WUE measures to parameterize or validate models, and indicates key research directions needed to reconcile alternative measures of WUE.
The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water-use efficiency (WUE), is a useful indicator of vegetation function. WUE can be estimated using several techniques, including leaf gas exchange, stable isotope discrimination, and eddy covariance. Here we compare global compilations of data for each of these three techniques. We show that patterns of variation in WUE across plant functional types (PFTs) are not consistent among the three datasets. Key discrepancies include the following: leaf-scale data indicate differences between needleleaf and broadleaf forests, but ecosystem-scale data do not; leaf-scale data indicate differences between C3 and C4 species, whereas at ecosystem scale there is a difference between C3 and C4 crops but not grasslands; and isotope-based estimates of WUE are higher than estimates based on gas exchange for most PFTs. Our study quantifies the uncertainty associated with different methods of measuring WUE, indicates potential for bias when using WUE measures to parameterize or validate models, and indicates key research directions needed to reconcile alternative measures of WUE.The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water-use efficiency (WUE), is a useful indicator of vegetation function. WUE can be estimated using several techniques, including leaf gas exchange, stable isotope discrimination, and eddy covariance. Here we compare global compilations of data for each of these three techniques. We show that patterns of variation in WUE across plant functional types (PFTs) are not consistent among the three datasets. Key discrepancies include the following: leaf-scale data indicate differences between needleleaf and broadleaf forests, but ecosystem-scale data do not; leaf-scale data indicate differences between C3 and C4 species, whereas at ecosystem scale there is a difference between C3 and C4 crops but not grasslands; and isotope-based estimates of WUE are higher than estimates based on gas exchange for most PFTs. Our study quantifies the uncertainty associated with different methods of measuring WUE, indicates potential for bias when using WUE measures to parameterize or validate models, and indicates key research directions needed to reconcile alternative measures of WUE.
Author Jean-Marc Limousin
Peter Isaac
Yan-Shih Lin
Almut Arneth
Belinda E. Medlyn
Remko A. Duursma
Patrick Meir
Christopher A. Williams
Jürgen Knauer
Martin G. De Kauwe
Lisa Wingate
Maj-Lena Linderson
Nicolas Martin-St Paul
Rob Clement
Author_xml – sequence: 1
  givenname: Belinda E.
  surname: Medlyn
  fullname: Medlyn, Belinda E.
  email: b.medlyn@westernsydney.edu.au
  organization: Western Sydney University
– sequence: 2
  givenname: Martin G.
  surname: De Kauwe
  fullname: De Kauwe, Martin G.
  organization: Macquarie University
– sequence: 3
  givenname: Yan‐Shih
  orcidid: 0000-0003-3177-5186
  surname: Lin
  fullname: Lin, Yan‐Shih
  organization: Centre INRA de Nancy‐Lorraine
– sequence: 4
  givenname: Jürgen
  orcidid: 0000-0002-4947-7067
  surname: Knauer
  fullname: Knauer, Jürgen
  organization: Max Planck Institute for Biogeochemistry
– sequence: 5
  givenname: Remko A.
  orcidid: 0000-0002-8499-5580
  surname: Duursma
  fullname: Duursma, Remko A.
  organization: Western Sydney University
– sequence: 6
  givenname: Christopher A.
  surname: Williams
  fullname: Williams, Christopher A.
  organization: Clark University
– sequence: 7
  givenname: Almut
  surname: Arneth
  fullname: Arneth, Almut
  organization: Karlsruhe Institute of Technology
– sequence: 8
  givenname: Rob
  surname: Clement
  fullname: Clement, Rob
  organization: University of Edinburgh
– sequence: 9
  givenname: Peter
  surname: Isaac
  fullname: Isaac, Peter
  organization: OzFlux
– sequence: 10
  givenname: Jean‐Marc
  surname: Limousin
  fullname: Limousin, Jean‐Marc
  organization: CNRS – Université de Montpellier – Université Paul‐Valéry Montpellier – EPHE
– sequence: 11
  givenname: Maj‐Lena
  surname: Linderson
  fullname: Linderson, Maj‐Lena
  organization: Lund University
– sequence: 12
  givenname: Patrick
  surname: Meir
  fullname: Meir, Patrick
  organization: Australian National University
– sequence: 13
  givenname: Nicolas
  surname: Martin‐StPaul
  fullname: Martin‐StPaul, Nicolas
  organization: INRA
– sequence: 14
  givenname: Lisa
  surname: Wingate
  fullname: Wingate, Lisa
  organization: INRA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28574148$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01606915$$DView record in HAL
https://www.osti.gov/biblio/1399625$$D View this record in Osti.gov
BookMark eNqFkk2L1EAQhoOsuB968AcoQS96yG71ZzqnZRnUEQb1oOCt6XSqmQxJOnYnDvPv7dnZHWVB7UtB87xVb32cZyeDHzDLnhO4JOldDeP6knBJ5aPsLMWqUISVJ9kZAFWF5PL7aXYe4wYAKiHpk-yUKlFywtVZtlj6bd74vEPjcjM0OVofd3HCPu_RxDlgzL3Lt2bCUMwRc3SutS0Odpdb348m4PXT7LEzXcRnd_Ei-_b-3dfFslh9_vBxcbMqrJQgC0VLI9AyRkrkAJwRaIDVTllubW0YYcwhdcqRmlhhGqlQSuYYaWqGghl2kZlD3rjFca71GNrehJ32ptWjD5PpdLKLJti17mYdUSeqa62ZWj9EbRsBTFrQKBuuuZRUm7IkWkmBjiFjQlWpxqtDDR-nVkfbTmjX1g8D2kkTVlWSigS9PUDrVPJPF8ubld7_AUkNV0T8JIl9c2DH4H_MGCfdt9Fi15kB_Rw1BQpKQan-j5IK0tpAij36-gG68XMY0vQTJQhwynmZqJd31Fz32Byt3q__dyM2-BgDuiNCQO9PS6fT0renldirB2wazu1op2Da7l-Kbdvh7u-p9acvy3vFi4NiEycfjooKgAgogf0CFSjltQ
CitedBy_id crossref_primary_10_5194_bg_16_3747_2019
crossref_primary_10_1016_j_jhydrol_2023_129578
crossref_primary_10_3390_agriculture11080739
crossref_primary_10_1016_j_agrformet_2021_108605
crossref_primary_10_1029_2019JG005446
crossref_primary_10_1007_s11056_023_09986_6
crossref_primary_10_1016_j_rse_2023_113987
crossref_primary_10_3389_fpls_2022_892096
crossref_primary_10_1186_s12870_024_05924_6
crossref_primary_10_1016_j_agrformet_2021_108322
crossref_primary_10_1111_pce_14704
crossref_primary_10_1111_gcb_14807
crossref_primary_10_1111_pce_14305
crossref_primary_10_1016_j_agrformet_2023_109782
crossref_primary_10_1029_2022JG007135
crossref_primary_10_3389_fpls_2024_1405343
crossref_primary_10_1016_j_rse_2024_114150
crossref_primary_10_1016_j_agwat_2023_108527
crossref_primary_10_1186_s41610_019_0122_7
crossref_primary_10_1016_j_agrformet_2025_110800
crossref_primary_10_1111_gcb_16141
crossref_primary_10_1029_2020JG006005
crossref_primary_10_1016_j_agrformet_2024_109929
crossref_primary_10_1038_s43247_023_00757_x
crossref_primary_10_1007_s11104_020_04427_1
crossref_primary_10_1016_j_jhydrol_2021_126970
crossref_primary_10_1016_j_rse_2024_113999
crossref_primary_10_1111_gcb_15203
crossref_primary_10_1029_2020JG005839
crossref_primary_10_1111_gcb_14634
crossref_primary_10_3390_su14020968
crossref_primary_10_1111_jac_70091
crossref_primary_10_1016_j_agrformet_2017_12_078
crossref_primary_10_1029_2020WR027106
crossref_primary_10_1111_pce_14712
crossref_primary_10_1016_j_agrformet_2022_109254
crossref_primary_10_1016_j_agrformet_2024_110074
crossref_primary_10_1016_j_envpol_2023_122735
crossref_primary_10_1016_j_rse_2024_114325
crossref_primary_10_1007_s10546_019_00460_5
crossref_primary_10_1007_s13595_021_01063_2
crossref_primary_10_1111_nph_15384
crossref_primary_10_1007_s00704_020_03303_3
crossref_primary_10_1007_s10342_025_01779_0
crossref_primary_10_1186_s12870_025_06912_0
crossref_primary_10_1016_j_jhydrol_2021_127179
crossref_primary_10_1016_j_agrformet_2023_109478
crossref_primary_10_5194_acp_25_8613_2025
crossref_primary_10_1029_2017MS001169
crossref_primary_10_3390_land12010077
crossref_primary_10_1016_j_agrformet_2025_110382
crossref_primary_10_1111_pce_14134
crossref_primary_10_1016_j_scitotenv_2023_162036
crossref_primary_10_3389_fsufs_2021_650727
crossref_primary_10_1038_s41598_022_21514_8
crossref_primary_10_1016_j_rse_2020_112030
crossref_primary_10_1111_nph_20170
crossref_primary_10_1016_j_agrformet_2021_108635
crossref_primary_10_3390_f15050849
crossref_primary_10_1111_nph_15495
crossref_primary_10_1029_2024WR039252
crossref_primary_10_1016_j_earscirev_2022_104055
crossref_primary_10_1016_j_scitotenv_2024_170581
crossref_primary_10_5194_essd_16_1811_2024
crossref_primary_10_1088_1748_9326_ac263b
crossref_primary_10_3390_rs13132593
crossref_primary_10_3389_fagro_2023_1228407
crossref_primary_10_1038_s41467_023_39572_5
crossref_primary_10_1111_nph_17392
crossref_primary_10_1111_pce_14778
crossref_primary_10_1016_j_agrformet_2025_110430
crossref_primary_10_1016_j_foreco_2022_120759
crossref_primary_10_1016_j_jhydrol_2025_133283
crossref_primary_10_1016_j_scitotenv_2022_159356
crossref_primary_10_1088_1748_9326_abf0d1
crossref_primary_10_1111_gcb_70381
crossref_primary_10_1093_treephys_tpy043
crossref_primary_10_3389_fpls_2020_00374
crossref_primary_10_1016_j_agwat_2024_108813
crossref_primary_10_3390_rs13122393
crossref_primary_10_3390_rs15194831
crossref_primary_10_1029_2018GL079093
crossref_primary_10_1029_2020JG005862
crossref_primary_10_1111_gcb_16673
crossref_primary_10_1111_nph_18649
crossref_primary_10_1111_nph_18800
crossref_primary_10_1002_eco_2360
crossref_primary_10_1111_nph_16866
crossref_primary_10_5194_bg_14_4435_2017
crossref_primary_10_3390_f15040654
crossref_primary_10_1007_s00468_022_02374_1
crossref_primary_10_1111_nph_17540
crossref_primary_10_3389_fpls_2023_1119101
crossref_primary_10_1016_j_watres_2023_120246
crossref_primary_10_1016_j_ecolind_2023_109964
crossref_primary_10_1016_j_jhydrol_2024_131852
crossref_primary_10_1016_j_agrformet_2023_109857
crossref_primary_10_1029_2021WR030629
crossref_primary_10_1029_2023JG007875
crossref_primary_10_1016_j_agrformet_2017_11_005
crossref_primary_10_1111_gcb_15491
crossref_primary_10_1007_s00484_020_01892_2
crossref_primary_10_1016_j_agrformet_2024_110283
crossref_primary_10_1038_s41561_018_0212_7
crossref_primary_10_1016_j_scitotenv_2022_160992
crossref_primary_10_1016_j_agrformet_2020_108251
crossref_primary_10_1016_j_envexpbot_2023_105484
crossref_primary_10_3390_agronomy10101601
crossref_primary_10_1093_jxb_erz020
crossref_primary_10_1016_j_tplants_2020_02_007
crossref_primary_10_1016_j_scitotenv_2024_178208
crossref_primary_10_1029_2019MS001790
crossref_primary_10_1016_j_agrformet_2025_110737
crossref_primary_10_1016_j_envexpbot_2023_105529
crossref_primary_10_1016_j_compag_2022_107261
crossref_primary_10_1016_j_foreco_2025_122528
crossref_primary_10_1016_j_agrformet_2023_109744
crossref_primary_10_1016_j_agwat_2021_107242
crossref_primary_10_1029_2022JG007347
crossref_primary_10_3390_f13122189
crossref_primary_10_1016_j_agrformet_2018_11_017
crossref_primary_10_1139_cjfr_2021_0134
crossref_primary_10_1111_nph_18901
crossref_primary_10_1016_j_agrformet_2022_108919
crossref_primary_10_1111_gcb_15364
crossref_primary_10_1038_s43017_021_00144_0
crossref_primary_10_1111_pce_15293
crossref_primary_10_1016_j_agrformet_2025_110456
crossref_primary_10_1111_nph_16846
crossref_primary_10_1016_j_catena_2025_109403
crossref_primary_10_1016_j_catena_2022_106874
crossref_primary_10_1016_j_jhydrol_2022_128102
crossref_primary_10_1111_nph_17088
crossref_primary_10_1111_gcb_14866
crossref_primary_10_1073_pnas_2014286118
crossref_primary_10_1111_gcb_15314
crossref_primary_10_1016_j_agrformet_2021_108385
crossref_primary_10_1016_j_agrformet_2022_109157
crossref_primary_10_1016_j_agrformet_2022_109158
crossref_primary_10_1029_2020WR028866
crossref_primary_10_1016_j_agrformet_2019_107642
crossref_primary_10_3390_su14095126
crossref_primary_10_1016_j_gloplacha_2021_103674
crossref_primary_10_1088_1748_9326_ada170
crossref_primary_10_1016_j_jag_2021_102329
crossref_primary_10_1016_j_rse_2019_111362
crossref_primary_10_1007_s13351_023_3022_9
crossref_primary_10_1111_nph_19308
crossref_primary_10_1111_gcb_13893
crossref_primary_10_1111_nph_15451
crossref_primary_10_1093_treephys_tpad119
crossref_primary_10_3389_fpls_2024_1500624
crossref_primary_10_5194_bg_16_903_2019
crossref_primary_10_1016_j_agrformet_2021_108430
crossref_primary_10_1186_s13021_020_00159_y
crossref_primary_10_5194_bg_19_1753_2022
crossref_primary_10_1016_j_agrformet_2022_109305
crossref_primary_10_1016_j_jhydrol_2024_130756
crossref_primary_10_1016_j_agrformet_2019_02_035
crossref_primary_10_1002_2017JG003890
crossref_primary_10_1016_j_foreco_2023_120853
crossref_primary_10_1016_j_jhydrol_2025_133760
crossref_primary_10_5194_bg_15_2433_2018
crossref_primary_10_1371_journal_pone_0201114
crossref_primary_10_1111_plb_12939
crossref_primary_10_1016_j_agwat_2023_108433
crossref_primary_10_1186_s13021_023_00232_2
Cites_doi 10.1038/srep23418
10.1071/FP09306
10.5194/gmd-7-2193-2014
10.1016/j.agrformet.2011.09.019
10.1071/FP11090
10.1146/annurev.pp.40.060189.002443
10.1073/pnas.0910513107
10.1111/nph.12423
10.1007/s00442-007-0932-7
10.1016/j.agrformet.2011.07.012
10.1071/FP08216
10.1016/j.agrformet.2011.02.013
10.1046/j.0269-8463.2001.00591.x
10.1007/s00442-009-1465-z
10.5194/bg-10-2011-2013
10.1016/j.agrformet.2004.12.004
10.1071/PP9920263
10.5194/gmd-8-3877-2015
10.1016/S0168-1923(01)00240-4
10.1002/2015WR017766
10.1111/pce.12841
10.5194/esd-7-525-2016
10.1002/2015JG002947
10.1071/PP95033
10.1016/j.agrformet.2010.01.018
10.1093/treephys/27.12.1687
10.1038/nclimate2614
10.1016/j.agrformet.2011.07.001
10.1093/jxb/erp063
10.1038/nature12291
10.1111/gcb.12717
10.1038/nclimate2550
10.1007/BF00627732
10.1111/j.1365-3040.2007.01647.x
10.1007/s00442-013-2703-y
10.1007/BF00349020
10.1111/j.1600-0889.2007.00262.x
10.1029/2006JG000293
10.1111/j.1365-2486.2011.02526.x
10.3354/cr021001
10.1071/PP9860281
10.2307/1309424
10.1111/j.1365-2486.2003.00687.x
10.1016/S0168-1923(02)00109-0
10.1016/S0168-1923(02)00104-1
10.1890/06-0922.1
10.1016/j.agrformet.2007.11.012
10.1111/j.1365-2486.2010.02375.x
10.1098/rsta.1986.0007
10.5194/bg-14-389-2017
10.1029/2004GB002316
10.1016/j.agrformet.2010.08.013
10.1104/pp.71.4.789
10.1111/j.1365-2486.2008.01610.x
10.1029/2011JG001913
10.1038/nature17966
10.1002/qj.49709841510
10.1029/2008GB003233
10.1016/j.rse.2006.01.020
10.1016/S0065-2504(08)60119-1
ContentType Journal Article
Copyright 2017 New Phytologist Trust
2017 The Authors. New Phytologist © 2017 New Phytologist Trust
2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Copyright © 2017 New Phytologist Trust
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2017 New Phytologist Trust
– notice: 2017 The Authors. New Phytologist © 2017 New Phytologist Trust
– notice: 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
– notice: Copyright © 2017 New Phytologist Trust
– notice: licence_http://creativecommons.org/publicdomain/zero
CorporateAuthor Strategiska forskningsområden (SFO)
Dept of Physical Geography and Ecosystem Science
Strategic research areas (SRA)
Lunds universitet
Naturvetenskapliga fakulteten
Profile areas and other strong research environments
BECC: Biodiversity and Ecosystem services in a Changing Climate
Faculty of Science
Lund University
Profilområden och andra starka forskningsmiljöer
Institutionen för naturgeografi och ekosystemvetenskap
CorporateAuthor_xml – name: Dept of Physical Geography and Ecosystem Science
– name: Naturvetenskapliga fakulteten
– name: Strategiska forskningsområden (SFO)
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: BECC: Biodiversity and Ecosystem services in a Changing Climate
– name: Institutionen för naturgeografi och ekosystemvetenskap
– name: Profile areas and other strong research environments
– name: Strategic research areas (SRA)
– name: Faculty of Science
– name: Lunds universitet
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
1XC
OTOTI
ADTPV
AOWAS
D95
DOI 10.1111/nph.14626
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
OSTI.GOV
SwePub
SwePub Articles
SWEPUB Lunds universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


MEDLINE
CrossRef


AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 770
ExternalDocumentID oai_portal_research_lu_se_publications_cd5036c0_e6d4_4662_a771_865ef3e33589
1399625
oai:HAL:hal-01606915v1
28574148
10_1111_nph_14626
NPH14626
90015070
Genre article
Journal Article
GrantInformation_xml – fundername: FAO‐GTOS‐TCO
– fundername: National Science Foundation
– fundername: Université Laval and Environment Canada
– fundername: Max Planck Institute for Biogeochemistry
– fundername: ARC Discovery Grant
  funderid: DP120104055
– fundername: CarboEuropeIP
– fundername: Lawrence Berkeley National Laboratory
– fundername: Berkeley Water Center
– fundername: University of California‐Berkeley
– fundername: University of Virginia
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
31~
AASVR
ABEFU
ABEML
ABGDZ
ACQPF
ADXHL
AS~
CAG
COF
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
LPU
MVM
NEJ
RCA
WHG
YXE
ZCG
AAYXX
ABUFD
CITATION
O8X
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
CGR
CUY
CVF
DOOOF
ECM
EIF
ESX
IPNFZ
JSODD
NPM
PKN
WRC
XOL
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
1XC
AAPBV
ABHUG
ABPTK
ABWRO
ACXME
ADAWD
ADDAD
ADZLD
AESBF
AFVGU
AGJLS
CWIXF
DWIUU
LW7
OTOTI
ADTPV
AOWAS
D95
ID FETCH-LOGICAL-c6606-827a5ec3317e4004310d03bf8c4ccba3133fe2f8f1b1c5ad68e663f31db3e53a3
IEDL.DBID WIN
ISICitedReferencesCount 177
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000417215200015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-646X
1469-8137
IngestDate Thu Nov 27 03:11:38 EST 2025
Mon Sep 11 05:25:23 EDT 2023
Tue Nov 25 06:20:46 EST 2025
Fri Sep 05 17:23:57 EDT 2025
Tue Nov 11 05:11:47 EST 2025
Mon Sep 08 01:10:36 EDT 2025
Wed Feb 19 02:41:50 EST 2025
Tue Nov 18 21:56:26 EST 2025
Sat Nov 29 04:38:27 EST 2025
Sun Sep 21 06:20:09 EDT 2025
Thu Jul 03 22:32:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords stable isotopes
stomatal conductance
plant functional type (PFT)
leaf gas exchange
eddy covariance
water-use efficiency
dynamique des écosystèmes
réserve en eau de la plante
bilan hydrique
isotope stable
covariance
carbon cycle
photosynthèse
utilisation de l'eau
conductance stomatique
photosynthesis
cycle du carbone
Efficience d'utilisation de l'eau
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6606-827a5ec3317e4004310d03bf8c4ccba3133fe2f8f1b1c5ad68e663f31db3e53a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
ORCID 0000-0002-4947-7067
0000-0002-8499-5580
0000-0003-3177-5186
0000-0001-7574-0108
0000-0002-2734-2495
0000-0002-5047-0639
0000-0001-6616-0822
0000-0003-1921-1556
0000000331775186
0000000249477067
0000000284995580
OpenAccessLink https://www.pure.ed.ac.uk/ws/files/35104823/35104771._AAM._Meir..pdf
PMID 28574148
PQID 1951042447
PQPubID 2026848
PageCount 13
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_cd5036c0_e6d4_4662_a771_865ef3e33589
osti_scitechconnect_1399625
hal_primary_oai_HAL_hal_01606915v1
proquest_miscellaneous_2020880781
proquest_miscellaneous_1905740651
proquest_journals_1951042447
pubmed_primary_28574148
crossref_primary_10_1111_nph_14626
crossref_citationtrail_10_1111_nph_14626
wiley_primary_10_1111_nph_14626_NPH14626
jstor_primary_90015070
PublicationCentury 2000
PublicationDate November 2017
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: November 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
– name: United Kingdom
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2017
Publisher New Phytologist Trust
Wiley Subscription Services, Inc
Wiley
Wiley-Blackwell
Publisher_xml – name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
– name: Wiley
– name: Wiley-Blackwell
References 2002; 16
1989; 40
2010; 107
1982; 52
2002; 113
2013; 200
1992; 19
2012; 18
2008; 148
2007; 30
2001; 108
2011; 17
2016; 39
2011; 151
1977
2014; 20
2013; 10
2003; 9
2010; 150
1972; 98
2008; 155
2014; 7
2007; 27
2009; 23
1986; 316
2015; 5
2010; 37
2011
2009; 60
2008; 18
1986; 13
2015; 120
1986; 15
2008; 14
2016; 52
1983; 71
2010; 162
2012; 39
2015; 8
1998; 25
2007; 59
1999
2009; 36
2016; 6
2012; 152
2007; 112
2012; 153
2016; 7
2005; 19
2017; 14
2002; 21
1984; 34
2005; 129
1994; 99
2013; 499
2017
2013; 173
2016; 534
2014
2012; 117
2006; 101
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
Cowan IR (e_1_2_7_16_1) 1977
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Ghannoum O (e_1_2_7_25_1) 2011
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 39
  start-page: 25
  year: 2012
  end-page: 37
  article-title: Photosynthetic sensitivity to drought varies among populations of along a rainfall gradient
  publication-title: Functional Plant Biology
– start-page: 471
  year: 1977
  end-page: 505
– volume: 120
  start-page: 887
  year: 2015
  end-page: 902
  article-title: Daily underlying water use efficiency for AmeriFlux sites
  publication-title: Journal of Geophysical Research–Biogeosciences
– volume: 107
  start-page: 5738
  year: 2010
  end-page: 5743
  article-title: Global patterns in leaf C‐13 discrimination and implications for studies of past and future climate
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 534
  start-page: 680
  year: 2016
  end-page: 683
  article-title: Seasonality of temperate forest photosynthesis and daytime respiration
  publication-title: Nature
– volume: 101
  start-page: 534
  year: 2006
  end-page: 553
  article-title: Exploiting synergies of global land cover products for carbon cycle modeling
  publication-title: Remote Sensing of Environment
– volume: 9
  start-page: 1813
  year: 2003
  end-page: 1824
  article-title: Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy
  publication-title: Global Change Biology
– start-page: 129
  year: 2011
  end-page: 146
– year: 2014
– volume: 60
  start-page: 2271
  year: 2009
  end-page: 2282
  article-title: Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field
  publication-title: Journal of Experimental Botany
– volume: 316
  start-page: 245
  year: 1986
  end-page: 259
  article-title: How do crops manipulate water‐supply and demand
  publication-title: Philosophical Transactions of the Royal Society a‐Mathematical Physical and Engineering Sciences
– volume: 18
  start-page: 585
  year: 2012
  end-page: 595
  article-title: Effects of elevated atmospheric CO on instantaneous transpiration efficiency at leaf and canopy scales in
  publication-title: Global Change Biology
– volume: 36
  start-page: 199
  year: 2009
  end-page: 213
  article-title: Viewpoint: why are non‐photosynthetic tissues generally C enriched compared with leaves in C plants? Review and synthesis of current hypotheses
  publication-title: Functional Plant Biology
– volume: 499
  start-page: 324
  year: 2013
  end-page: 327
  article-title: Increase in forest water‐use efficiency as atmospheric carbon dioxide concentrations rise
  publication-title: Nature
– volume: 173
  start-page: 1179
  year: 2013
  end-page: 1189
  article-title: Weak vertical canopy gradients of photosynthetic capacities and stomatal responses in a fertile Norway spruce stand
  publication-title: Oecologia
– volume: 155
  start-page: 441
  year: 2008
  end-page: 454
  article-title: Carbon isotopes and water use efficiency: sense and sensitivity
  publication-title: Oecologia
– volume: 8
  start-page: 3877
  year: 2015
  end-page: 3889
  article-title: Implementation of an optimal stomatal conductance scheme in the Australian Community Climate Earth Systems Simulator (ACCESS1.3b)
  publication-title: Geoscientific Model Development
– volume: 5
  start-page: 459
  year: 2015
  end-page: 464
  article-title: Optimal stomatal behaviour around the world
  publication-title: Nature Climate Change
– volume: 27
  start-page: 1687
  year: 2007
  end-page: 1699
  article-title: Linking leaf and tree water use with an individual‐tree model
  publication-title: Tree Physiology
– volume: 129
  start-page: 151
  year: 2005
  end-page: 173
  article-title: Carbon and water fluxes over a temperate Eucalyptus forest and a tropical wet/dry savanna in Australia: measurements and comparison with MODIS remote sensing estimates
  publication-title: Agricultural and Forest Meteorology
– volume: 71
  start-page: 789
  year: 1983
  end-page: 796
  article-title: Stomatal sensitivity to carbon‐dioxide and huditity – a comparison of 2 C and 2 C grass species
  publication-title: Plant Physiology
– volume: 14
  start-page: 1917
  year: 2008
  end-page: 1933
  article-title: Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana
  publication-title: Global Change Biology
– volume: 19
  start-page: GB2001
  year: 2005
  article-title: Effect of thinning on surface fluxes in a boreal forest
  publication-title: Global Biogeochemical Cycles
– volume: 148
  start-page: 821
  year: 2008
  end-page: 838
  article-title: Cross‐site evaluation of eddy covariance GPP and RE decomposition techniques
  publication-title: Agricultural and Forest Meteorology
– volume: 150
  start-page: 531
  year: 2010
  end-page: 540
  article-title: A comparison of photosynthesis‐dependent stomatal models using twig cuvette field data for adult beech ( L.)
  publication-title: Agricultural and Forest Meteorology
– volume: 6
  start-page: 23418
  year: 2016
  article-title: Impact of the representation of stomatal conductance on model projections of heatwave intensity
  publication-title: Scientific Reports
– volume: 21
  start-page: 1
  year: 2002
  end-page: 25
  article-title: A high‐resolution data set of surface climate over global land areas
  publication-title: Climate Research
– volume: 13
  start-page: 281
  year: 1986
  end-page: 292
  article-title: Carbon isotope discrimination measured concurrently with gas‐exchange to investigate CO diffusion in leaves of higher‐plants
  publication-title: Australian Journal of Plant Physiology
– volume: 7
  start-page: 525
  year: 2016
  end-page: 533
  article-title: Spatial and temporal variations in plant water‐use efficiency inferred from tree‐ring, eddy covariance and atmospheric observations
  publication-title: Earth System Dynamics
– volume: 5
  start-page: 579
  year: 2015
  end-page: 583
  article-title: Water‐use efficiency and transpiration across European forests during the Anthropocene
  publication-title: Nature Climate Change
– volume: 153
  start-page: 106
  year: 2012
  end-page: 123
  article-title: Carbon dioxide exchange of a Sitka spruce plantation in Scotland over five years
  publication-title: Agricultural and Forest Meteorology
– volume: 30
  start-page: 600
  year: 2007
  end-page: 616
  article-title: Variations in C discrimination during CO exchange by branches in the field
  publication-title: Plant, Cell & Environment
– volume: 99
  start-page: 201
  year: 1994
  end-page: 215
  article-title: C‐13 discrimination during CO assimilation by the terrestrial biosphere
  publication-title: Oecologia
– volume: 152
  start-page: 201
  year: 2012
  end-page: 211
  article-title: Up‐scaling of water use efficiency from leaf to canopy as based on leaf gas exchange relationships and the modeled in‐canopy light distribution
  publication-title: Agricultural and Forest Meteorology
– volume: 40
  start-page: 503
  year: 1989
  end-page: 537
  article-title: Carbon isotope discrimination and photosynthesis
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
– volume: 19
  start-page: 263
  year: 1992
  end-page: 285
  article-title: Short‐term measurements of carbon isotope discrimination in several C species
  publication-title: Australian Journal of Plant Physiology
– volume: 162
  start-page: 491
  year: 2010
  end-page: 504
  article-title: Tree species effects on ecosystem water‐use efficiency in a high‐elevation, subalpine forest
  publication-title: Oecologia
– volume: 17
  start-page: 2134
  year: 2011
  end-page: 2144
  article-title: Reconciling the optimal and empirical approaches to modelling stomatal conductance
  publication-title: Global Change Biology
– volume: 98
  start-page: 124
  year: 1972
  end-page: 134
  article-title: Momentum, mass and heat‐exchange of vegetation
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 52
  start-page: 121
  year: 1982
  end-page: 124
  article-title: Effect of salinity and humidity on delta C values of halophytes – evidence for diffusional isotope fractionation determined by the ratio of inter‐cellular atmospheric partial‐pressure of CO under different environmental conditions
  publication-title: Oecologia
– volume: 117
  start-page: G02026
  year: 2012
  article-title: Reconciling leaf physiological traits and canopy flux data: use of the TRY and FLUXNET databases in the Community Land Model version 4
  publication-title: Journal of Geophysical Research‐Biogeosciences
– volume: 14
  start-page: 389
  year: 2017
  end-page: 401
  article-title: Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake
  publication-title: Biogeosciences
– volume: 151
  start-page: 22
  year: 2011
  end-page: 38
  article-title: Assessing parameter variability in a photosynthesis model within and between plant functional types using global Fluxnet eddy covariance data
  publication-title: Agricultural and Forest Meteorology
– volume: 15
  start-page: 1
  year: 1986
  end-page: 49
  article-title: Stomatal control of transpiration – scaling up from leaf to region
  publication-title: Advances in Ecological Research
– volume: 59
  start-page: 542
  year: 2007
  end-page: 552
  article-title: Relationship between temperature and the seasonal course of photosynthesis in Scots pine at northern timberline and in southern boreal zone
  publication-title: Tellus Series B‐Chemical and Physical Meteorology
– volume: 23
  start-page: GB2018
  year: 2009
  article-title: Temporal and among‐site variability of inherent water use efficiency at the ecosystem level
  publication-title: Global Biogeochemical Cycles
– volume: 16
  start-page: 49
  year: 2002
  end-page: 57
  article-title: Predicting daytime carbon isotope ratios of atmospheric CO within forest canopies
  publication-title: Functional Ecology
– volume: 112
  start-page: G02020
  year: 2007
  article-title: Factors controlling CO exchange on timescales from hourly to decadal at Harvard Forest
  publication-title: Journal of Geophysical Research‐Biogeosciences
– volume: 113
  start-page: 223
  year: 2002
  end-page: 243
  article-title: Energy balance closure at FLUXNET sites
  publication-title: Agricultural and Forest Meteorology
– volume: 52
  start-page: 1160
  year: 2016
  end-page: 1175
  article-title: Partitioning evapotranspiration based on the concept of underlying water use efficiency
  publication-title: Water Resources Research
– volume: 25
  start-page: 111
  year: 1998
  end-page: 123
  article-title: Correlation between carbon isotope discrimination and transpiration efficiency in lines of the C species in the glasshouse and the field
  publication-title: Australian Journal of Plant Physiology
– volume: 18
  start-page: 1351
  year: 2008
  end-page: 1367
  article-title: The energy balance closure problem: an overview
  publication-title: Ecological Applications
– volume: 39
  start-page: 2762
  year: 2016
  end-page: 2773
  article-title: Coupled response of stomatal and mesophyll conductance to light enhances photosynthesis of shade leaves under sunflecks
  publication-title: Plant, Cell & Environment
– volume: 113
  start-page: 97
  year: 2002
  end-page: 120
  article-title: Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation
  publication-title: Agricultural and Forest Meteorology
– year: 2017
– volume: 10
  start-page: 2011
  year: 2013
  end-page: 2040
  article-title: Multiple observation types reduce uncertainty in Australia's terrestrial carbon and water cycles
  publication-title: Biogeosciences
– volume: 108
  start-page: 183
  year: 2001
  end-page: 197
  article-title: CO and water vapour fluxes for 2 years above Euroflux forest site
  publication-title: Agricultural & Forest Meteorology
– volume: 151
  start-page: 934
  year: 2011
  end-page: 946
  article-title: Increasing net CO uptake by a Danish beech forest during the period from 1996 to 2009
  publication-title: Agricultural and Forest Meteorology
– volume: 34
  start-page: 36
  year: 1984
  end-page: 40
  article-title: Water‐use efficiency in crop production
  publication-title: BioScience
– volume: 20
  start-page: 3700
  year: 2014
  end-page: 3712
  article-title: Spatial variability and temporal trends in water‐use efficiency of European forests
  publication-title: Global Change Biology
– volume: 37
  start-page: 1050
  year: 2010
  end-page: 1060
  article-title: Photosynthesis and water‐use efficiency of seedlings from northern Australian monsoon forest, savanna and swamp habitats grown in a common garden
  publication-title: Functional Plant Biology
– volume: 200
  start-page: 950
  year: 2013
  end-page: 965
  article-title: Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants
  publication-title: New Phytologist
– volume: 7
  start-page: 2193
  year: 2014
  end-page: 2222
  article-title: Modeling stomatal conductance in the earth system: linking leaf water‐use efficiency and water transport along the soil‐plant‐atmosphere continuum
  publication-title: Geoscientific Model Development
– volume: 151
  start-page: 1672
  year: 2011
  end-page: 1689
  article-title: Empirical and optimal stomatal controls on leaf and ecosystem level CO and H O exchange rates
  publication-title: Agricultural and Forest Meteorology
– year: 1999
– ident: e_1_2_7_33_1
  doi: 10.1038/srep23418
– ident: e_1_2_7_51_1
  doi: 10.1071/FP09306
– ident: e_1_2_7_8_1
  doi: 10.5194/gmd-7-2193-2014
– ident: e_1_2_7_40_1
  doi: 10.1016/j.agrformet.2011.09.019
– ident: e_1_2_7_57_1
  doi: 10.1071/FP11090
– ident: e_1_2_7_22_1
  doi: 10.1146/annurev.pp.40.060189.002443
– ident: e_1_2_7_48_1
– ident: e_1_2_7_3_1
– ident: e_1_2_7_19_1
  doi: 10.1073/pnas.0910513107
– ident: e_1_2_7_13_1
  doi: 10.1111/nph.12423
– ident: e_1_2_7_55_1
  doi: 10.1007/s00442-007-0932-7
– ident: e_1_2_7_14_1
  doi: 10.1016/j.agrformet.2011.07.012
– ident: e_1_2_7_12_1
  doi: 10.1071/FP08216
– ident: e_1_2_7_52_1
  doi: 10.1016/j.agrformet.2011.02.013
– ident: e_1_2_7_10_1
  doi: 10.1046/j.0269-8463.2001.00591.x
– ident: e_1_2_7_44_1
  doi: 10.1007/s00442-009-1465-z
– ident: e_1_2_7_27_1
  doi: 10.5194/bg-10-2011-2013
– start-page: 129
  volume-title: C4 photosynthesis and related CO2 concentrating mechanisms
  year: 2011
  ident: e_1_2_7_25_1
– ident: e_1_2_7_38_1
  doi: 10.1016/j.agrformet.2004.12.004
– ident: e_1_2_7_28_1
  doi: 10.1071/PP9920263
– ident: e_1_2_7_32_1
  doi: 10.5194/gmd-8-3877-2015
– ident: e_1_2_7_5_1
  doi: 10.1016/S0168-1923(01)00240-4
– ident: e_1_2_7_67_1
  doi: 10.1002/2015WR017766
– ident: e_1_2_7_11_1
  doi: 10.1111/pce.12841
– ident: e_1_2_7_17_1
  doi: 10.5194/esd-7-525-2016
– ident: e_1_2_7_66_1
  doi: 10.1002/2015JG002947
– ident: e_1_2_7_29_1
  doi: 10.1071/PP95033
– ident: e_1_2_7_50_1
  doi: 10.1016/j.agrformet.2010.01.018
– ident: e_1_2_7_43_1
  doi: 10.1093/treephys/27.12.1687
– ident: e_1_2_7_24_1
  doi: 10.1038/nclimate2614
– ident: e_1_2_7_36_1
  doi: 10.1016/j.agrformet.2011.07.001
– ident: e_1_2_7_49_1
  doi: 10.1093/jxb/erp063
– ident: e_1_2_7_34_1
  doi: 10.1038/nature12291
– ident: e_1_2_7_54_1
  doi: 10.1111/gcb.12717
– ident: e_1_2_7_39_1
  doi: 10.1038/nclimate2550
– ident: e_1_2_7_41_1
  doi: 10.1007/BF00627732
– ident: e_1_2_7_65_1
  doi: 10.1111/j.1365-3040.2007.01647.x
– ident: e_1_2_7_58_1
  doi: 10.1007/s00442-013-2703-y
– ident: e_1_2_7_21_1
  doi: 10.1007/BF00349020
– ident: e_1_2_7_35_1
  doi: 10.1111/j.1600-0889.2007.00262.x
– ident: e_1_2_7_60_1
  doi: 10.1029/2006JG000293
– ident: e_1_2_7_2_1
  doi: 10.1111/j.1365-2486.2011.02526.x
– ident: e_1_2_7_47_1
  doi: 10.3354/cr021001
– ident: e_1_2_7_20_1
  doi: 10.1071/PP9860281
– ident: e_1_2_7_56_1
  doi: 10.2307/1309424
– ident: e_1_2_7_53_1
  doi: 10.1111/j.1365-2486.2003.00687.x
– ident: e_1_2_7_64_1
  doi: 10.1016/S0168-1923(02)00109-0
– ident: e_1_2_7_37_1
  doi: 10.1016/S0168-1923(02)00104-1
– ident: e_1_2_7_23_1
  doi: 10.1890/06-0922.1
– ident: e_1_2_7_18_1
  doi: 10.1016/j.agrformet.2007.11.012
– ident: e_1_2_7_42_1
  doi: 10.1111/j.1365-2486.2010.02375.x
– ident: e_1_2_7_45_1
  doi: 10.1098/rsta.1986.0007
– ident: e_1_2_7_62_1
  doi: 10.5194/bg-14-389-2017
– ident: e_1_2_7_61_1
  doi: 10.1029/2004GB002316
– start-page: 471
  volume-title: Integration of activity in the higher plant
  year: 1977
  ident: e_1_2_7_16_1
– ident: e_1_2_7_26_1
  doi: 10.1016/j.agrformet.2010.08.013
– ident: e_1_2_7_46_1
  doi: 10.1104/pp.71.4.789
– ident: e_1_2_7_6_1
  doi: 10.1111/j.1365-2486.2008.01610.x
– ident: e_1_2_7_7_1
  doi: 10.1029/2011JG001913
– ident: e_1_2_7_63_1
  doi: 10.1038/nature17966
– ident: e_1_2_7_59_1
  doi: 10.1002/qj.49709841510
– ident: e_1_2_7_9_1
– ident: e_1_2_7_4_1
  doi: 10.1029/2008GB003233
– ident: e_1_2_7_31_1
  doi: 10.1016/j.rse.2006.01.020
– ident: e_1_2_7_15_1
– ident: e_1_2_7_30_1
  doi: 10.1016/S0065-2504(08)60119-1
SSID ssj0009562
Score 2.6206305
Snippet The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by...
Summary The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by...
Summary The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by...
Summary <list list-type='bullet'> The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water...
SourceID swepub
osti
hal
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 758
SubjectTerms C3 plants
C4 plants
carbon
Carbon cycle
Conductance
Covariance
crops
Data
data collection
Databases, Factual
deciduous forests
Ecosystem
Ecosystems
eddy covariance
Fluxes
Forests
Gas exchange
Grasslands
Hydrologic cycle
Isotopes
leaf gas exchange
Leaves
Life Sciences
Measurement methods
Photosynthesis
plant functional type (PFT)
Plant Leaves - physiology
Plant Transpiration
Poaceae - physiology
Resistance
Stable isotopes
Stomata
Stomatal conductance
Transpiration
uncertainty
Vegetal Biology
Vortices
Water
Water balance
Water use
water use efficiency
Title How do leaf and ecosystem measures of water-use efficiency compare?
URI https://www.jstor.org/stable/90015070
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.14626
https://www.ncbi.nlm.nih.gov/pubmed/28574148
https://www.proquest.com/docview/1951042447
https://www.proquest.com/docview/1905740651
https://www.proquest.com/docview/2020880781
https://hal.science/hal-01606915
https://www.osti.gov/biblio/1399625
Volume 216
WOSCitedRecordID wos000417215200015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1469-8137
  dateEnd: 20241208
  omitProxy: false
  ssIdentifier: ssj0009562
  issn: 1469-8137
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1469-8137
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009562
  issn: 1469-8137
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1da9swFBVt14e97Lud1y5oYw97MUSyLcvsYXRbQwYhlLFuYS9ClmQyyOwQJy1720_Yb9wv2b3yBwm0MNhbsK8hvrrHPke-OiLkFZBiaY21ociFCGOWZ6EeyjjkiWSgiRgv_If2L5N0OpWzWXaxR950a2Eaf4h-wg2R4Z_XCHCd11sgL5dzhDlHu20WM9y94OvH6ZbhruCdA7OIxax1FcIunv7KnXfR_hw7IZumRHg-V4Cwm1hnbym6y2b962h0_79u5AG517JQetaUzUOy58pH5PBdBUzx52NyPq6uqa3owumC6tJSkKiN4zP90Uwp1rQq6DXQ1NWfX783taPOO1HgMk7adrW_fUIuR-ef34_DdruF0AiQMaHkqU6ciYBROEQ2ED87jPJCmtiYXEegZgvHC1mwnJlEWyEd0JUiYjaPXBLp6IgclFXpnhIKqjdmLgEuEIP0dkApGNc2NpIZYZ2wAXndJV6Z1osct8RYqE6TQFKUT0pAXvahy8aA48YgGL3-PFpmj88mCo-hg57IWHLFAnLkB7cPy7y_YjoMyAmOtgLOgca5BjuMzFoBN85AHQbktCsC1eK7VgyJKa4RTAPyoj8NyMTPLbp01QZjgAsDX0rY7TEc90hFy3-IOW4KrP97XMLloFYD8q2puJ37a9SZai2h5mqxUbVTy625XmVsAvzEDBVkPFaxEFzpNGVKisQVkYuiRGYwEr42b8-tml6M_Y9n_x56Qu5ypD9-zeYpOVivNu45OTRX6-_1akD205kckDsfPo0uJwMP278xLT8j
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1da9RAFL20taAvftfGVh3FB18CO5NkMgFBqrRscV36UHXxZUhmJmxhmyz70eKbP8Hf6C_x3kk27EILgm9LcgObO_ck50zunAF4i6RYWWNtKAspw5gXWZj3VByKRHHURFyU_kP7t0E6HKrRKDvbgvertTCNP0Q34UbI8M9rAjhNSK-hvJqOCedCbsOdGIkGbdzw_XS4ZrkrxcqDWcZy1PoKUR9Pd-nG22h7TL2QTVsiPqFrxNhNvLMzFd3ks_6FdPLg_27lIdxviSg7airnEWy56jHsfqyRLP58Asf9-prZmk1cXrK8sgxVamP6zC6bWcU5q0t2jUx19ufX7-XcMefNKGglJ2sb2z88ha8nx-ef-mG740JoJCqZUIk0T5yJkFQ4AjdyP9uLilKZ2Jgij1DQlk6UquQFN0lupXLIWMqI2yJySZRHe7BT1ZXbB4bCN-YuQToQo_p2yCq4yG1sFDfSOmkDeLfKvDatHTntijHRK1mCSdE-KQG86UKnjQfHjUE4fN15cs3uHw00HSMTPZnx5IoHsOdHtwvLvMVi2gvggIZbI-0g71xDTUZmoZEeZygQAzhcVYFuIT7XnLgpLRNMA3jdnUZw0heXvHL1kmKQDiNlSvjtMYK2SSXXf4x51lRY9_eEwstRsAbwoym5jftrBJpuXaHGerLUc6ena9O92tgEKYrpacx4rGMphc7TlGslE1dGLooSleFI-OK8Pbd6eNb3P57_e-gruNs__zLQg9Ph5wO4J4gN-SWch7CzmC3dC9g1V4uL-eylR-1fgrpAuQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1di9NAFL3sdhfxxe_VuKuO4oMvgc4kM5mCIKu7pWIpRVwpvgzJzIQKNSn92MU3f4K_0V_ivUkaWtgFwbeS3EBz557knMmdMwCvkRRrZ50LVaZUGPOsF6ZdHYdCao6aiIu8-tD-dZiMRnoy6Y334O1mLUztD9FOuBEyquc1AdzPXb6F8mI-JZwLtQ8HMW0i04GDs8_9i-GW6a4SGxdmFatJ4yxEnTztxTvvo_0pdUPWjYn4jC4RZdcxz9ZWdJfRVq-k_t3_u5l7cKehouy0rp37sOeLB3D4vkS6-PMhnA_KK-ZKNvNpztLCMdSpte0z-1HPKy5ZmbMr5KqLP79-r5ee-cqOgtZysqa1_d0juOiff_kwCJs9F0KrUMuEWiSp9DZCWuEJ3sj-XDfKcm1ja7M0Qkmbe5HrnGfcytQp7ZGz5BF3WeRllEZH0CnKwj8BhtI35l4iIYhRf3vkFVykLraaW-W8cgG82WTe2MaQnPbFmJmNMMGkmCopAbxqQ-e1C8e1QTh87XnyzR6cDg0dIxs91ePykgdwVI1uG9arTBaTbgDHNNwGiQe551pqM7IrgwQZK0sGcLKpAtOAfGk4sVNaKJgE8LI9jfCkby5p4cs1xSAhRtIk-c0xgjZKJd9_jHlcV1j794TGy1GyBvCtLrmd-6slmml8oaZmtjZLb-ZbE77GOokkxXYNZjw2sVLCpEnCjVbS55GPIql7OBJVcd6cWzMaD6ofT_899AXcGp_1zfDj6NMx3BZEh6o1nCfQWS3W_hkc2svV9-XieQPbv7xoQWI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+do+leaf+and+ecosystem+measures+of+water-use+efficiency+compare%3F&rft.jtitle=The+New+phytologist&rft.au=Medlyn%2C+Belinda+E.&rft.au=de+Kauwe%2C+Martin+G.&rft.au=Lin%2C+Yan-Shih&rft.au=Knauer%2C+J%C3%BCrgen&rft.date=2017-11-01&rft.pub=Wiley&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=Epub+ahead+of+print&rft.issue=3&rft_id=info:doi/10.1111%2Fnph.14626&rft_id=info%3Apmid%2F28574148&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01606915v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon