Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford ExercIse Testing (FIT) Project

This study evaluates and compares the performance of different machine learning techniques on predicting the individuals at risk of developing hypertension, and who are likely to benefit most from interventions, using the cardiorespiratory fitness data. The dataset of this study contains information...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 13; no. 4; p. e0195344
Main Authors: Sakr, Sherif, Elshawi, Radwa, Ahmed, Amjad, Qureshi, Waqas T., Brawner, Clinton, Keteyian, Steven, Blaha, Michael J., Al-Mallah, Mouaz H.
Format: Journal Article
Language:English
Published: United States Public Library of Science 18.04.2018
Public Library of Science (PLoS)
Subjects:
ISSN:1932-6203, 1932-6203
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study evaluates and compares the performance of different machine learning techniques on predicting the individuals at risk of developing hypertension, and who are likely to benefit most from interventions, using the cardiorespiratory fitness data. The dataset of this study contains information of 23,095 patients who underwent clinician- referred exercise treadmill stress testing at Henry Ford Health Systems between 1991 and 2009 and had a complete 10-year follow-up. The variables of the dataset include information on vital signs, diagnosis and clinical laboratory measurements. Six machine learning techniques were investigated: LogitBoost (LB), Bayesian Network classifier (BN), Locally Weighted Naive Bayes (LWB), Artificial Neural Network (ANN), Support Vector Machine (SVM) and Random Tree Forest (RTF). Using different validation methods, the RTF model has shown the best performance (AUC = 0.93) and outperformed all other machine learning techniques examined in this study. The results have also shown that it is critical to carefully explore and evaluate the performance of the machine learning models using various model evaluation methods as the prediction accuracy can significantly differ.
AbstractList This study evaluates and compares the performance of different machine learning techniques on predicting the individuals at risk of developing hypertension, and who are likely to benefit most from interventions, using the cardiorespiratory fitness data. The dataset of this study contains information of 23,095 patients who underwent clinician- referred exercise treadmill stress testing at Henry Ford Health Systems between 1991 and 2009 and had a complete 10-year follow-up. The variables of the dataset include information on vital signs, diagnosis and clinical laboratory measurements. Six machine learning techniques were investigated: LogitBoost (LB), Bayesian Network classifier (BN), Locally Weighted Naive Bayes (LWB), Artificial Neural Network (ANN), Support Vector Machine (SVM) and Random Tree Forest (RTF). Using different validation methods, the RTF model has shown the best performance (AUC = 0.93) and outperformed all other machine learning techniques examined in this study. The results have also shown that it is critical to carefully explore and evaluate the performance of the machine learning models using various model evaluation methods as the prediction accuracy can significantly differ.
This study evaluates and compares the performance of different machine learning techniques on predicting the individuals at risk of developing hypertension, and who are likely to benefit most from interventions, using the cardiorespiratory fitness data. The dataset of this study contains information of 23,095 patients who underwent clinician- referred exercise treadmill stress testing at Henry Ford Health Systems between 1991 and 2009 and had a complete 10-year follow-up. The variables of the dataset include information on vital signs, diagnosis and clinical laboratory measurements. Six machine learning techniques were investigated: LogitBoost (LB), Bayesian Network classifier (BN), Locally Weighted Naive Bayes (LWB), Artificial Neural Network (ANN), Support Vector Machine (SVM) and Random Tree Forest (RTF). Using different validation methods, the RTF model has shown the best performance (AUC = 0.93) and outperformed all other machine learning techniques examined in this study. The results have also shown that it is critical to carefully explore and evaluate the performance of the machine learning models using various model evaluation methods as the prediction accuracy can significantly differ.This study evaluates and compares the performance of different machine learning techniques on predicting the individuals at risk of developing hypertension, and who are likely to benefit most from interventions, using the cardiorespiratory fitness data. The dataset of this study contains information of 23,095 patients who underwent clinician- referred exercise treadmill stress testing at Henry Ford Health Systems between 1991 and 2009 and had a complete 10-year follow-up. The variables of the dataset include information on vital signs, diagnosis and clinical laboratory measurements. Six machine learning techniques were investigated: LogitBoost (LB), Bayesian Network classifier (BN), Locally Weighted Naive Bayes (LWB), Artificial Neural Network (ANN), Support Vector Machine (SVM) and Random Tree Forest (RTF). Using different validation methods, the RTF model has shown the best performance (AUC = 0.93) and outperformed all other machine learning techniques examined in this study. The results have also shown that it is critical to carefully explore and evaluate the performance of the machine learning models using various model evaluation methods as the prediction accuracy can significantly differ.
Audience Academic
Author Qureshi, Waqas T.
Blaha, Michael J.
Elshawi, Radwa
Al-Mallah, Mouaz H.
Sakr, Sherif
Ahmed, Amjad
Brawner, Clinton
Keteyian, Steven
AuthorAffiliation 2 King Abdullah International Medical Research Center, Riyadh, Saudia Arabia
Northeast Normal University, CHINA
3 Heart and Vascular Institute, Henry Ford Hospital System, Detroit, MI, United States of America
6 Johns Hopkins Medicine, Baltimore, Maryland, United States of America
1 King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
5 Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, United States of America
4 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
7 University of Taru, Taru, Estonia
AuthorAffiliation_xml – name: 3 Heart and Vascular Institute, Henry Ford Hospital System, Detroit, MI, United States of America
– name: 7 University of Taru, Taru, Estonia
– name: 5 Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, United States of America
– name: 1 King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
– name: 2 King Abdullah International Medical Research Center, Riyadh, Saudia Arabia
– name: 4 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
– name: Northeast Normal University, CHINA
– name: 6 Johns Hopkins Medicine, Baltimore, Maryland, United States of America
Author_xml – sequence: 1
  givenname: Sherif
  orcidid: 0000-0002-2503-523X
  surname: Sakr
  fullname: Sakr, Sherif
– sequence: 2
  givenname: Radwa
  surname: Elshawi
  fullname: Elshawi, Radwa
– sequence: 3
  givenname: Amjad
  surname: Ahmed
  fullname: Ahmed, Amjad
– sequence: 4
  givenname: Waqas T.
  surname: Qureshi
  fullname: Qureshi, Waqas T.
– sequence: 5
  givenname: Clinton
  surname: Brawner
  fullname: Brawner, Clinton
– sequence: 6
  givenname: Steven
  surname: Keteyian
  fullname: Keteyian, Steven
– sequence: 7
  givenname: Michael J.
  surname: Blaha
  fullname: Blaha, Michael J.
– sequence: 8
  givenname: Mouaz H.
  surname: Al-Mallah
  fullname: Al-Mallah, Mouaz H.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29668729$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1r2zAUhs3oWD-2fzA2w266i2T6sGypF4NSmjVQ2C7SayFLx4mCI3mSU5br_fHJjVuaUoYvZI6e99U50nuaHTnvIMs-YjTFtMLf1n4bnGqnXSpPERaMFsWb7AQLSiYlQfTo2f9xdhrjGiFGeVm-y46JKEteEXGS_b2L1i3zjdIr6yBvQQU3FLzLtQrG-gCxs0H1PuzyxvYOYsyN6lXe-JB3AYzV_SBY7ToIPbhovbvIFyvIb8AlzcwHk1__gaDnEfIFxAf6fDZffM1_Bb8G3b_P3jaqjfBhXM-yu9n14upmcvvzx_zq8naiSyb6SV0LhQvBWU2LSiPBgSkkiBFalUTQxmCquKg4NlVhKsPS3NjQhlaaaQKU0rPs8963a32U4_1FSRCpEGVIoETM94Txai27YDcq7KRXVj4UfFhKFXqrW5CKYFGoptDAigIJUwOvaV0pYzSHhlfJ6_t42rbegNHg-qDaA9PDHWdXcunvJROICUaSwfloEPzvbbo4ubFRQ9sqB36775vx4UkT-uUF-vp0I7VUaQDrGp_O1YOpvGSUYU44HfqevkKlz8DG6hS2xqb6geDT80GfJnwMWQKKPaCDjzFA84RgJIcsP3YrhyzLMctJdvFCpm2v-pSv1JBt_y_-B4ae_bs
CitedBy_id crossref_primary_10_1007_s11906_022_01212_6
crossref_primary_10_1186_s13040_022_00299_6
crossref_primary_10_1177_2053951719848781
crossref_primary_10_1016_j_eswa_2022_119351
crossref_primary_10_1097_HJH_0000000000003406
crossref_primary_10_1186_s12911_019_0874_0
crossref_primary_10_1038_s41598_020_67640_z
crossref_primary_10_1080_02564602_2021_1950578
crossref_primary_10_3390_jcm8091298
crossref_primary_10_3390_app8081325
crossref_primary_10_1016_j_ijmedinf_2020_104122
crossref_primary_10_1016_j_atherosclerosis_2020_04_019
crossref_primary_10_3389_fcvm_2022_839379
crossref_primary_10_2196_19739
crossref_primary_10_1016_j_atherosclerosis_2019_06_914
crossref_primary_10_32604_cmc_2022_026077
crossref_primary_10_3390_s18124132
crossref_primary_10_1155_2021_2794888
crossref_primary_10_3389_fcvm_2022_928948
crossref_primary_10_1016_j_ypmed_2019_105886
crossref_primary_10_1080_21681163_2021_1901784
crossref_primary_10_1016_j_eswa_2019_04_029
crossref_primary_10_3390_diagnostics11050792
crossref_primary_10_2147_IJGM_S250334
crossref_primary_10_15829_1560_4071_2021_4618
crossref_primary_10_3390_s20010167
crossref_primary_10_3390_jcdd10020074
crossref_primary_10_1007_s00210_024_03229_x
crossref_primary_10_2196_34717
crossref_primary_10_1038_s41598_022_27264_x
crossref_primary_10_1155_2021_6633832
crossref_primary_10_7717_peerj_cs_2430
crossref_primary_10_1016_j_engappai_2025_110877
crossref_primary_10_1007_s11257_019_09229_4
crossref_primary_10_1016_j_isci_2024_110792
crossref_primary_10_3389_fpubh_2022_984621
crossref_primary_10_3390_ijerph18168510
crossref_primary_10_1371_journal_pone_0266334
crossref_primary_10_1007_s10462_022_10304_3
crossref_primary_10_1016_j_jhydrol_2019_124006
crossref_primary_10_1371_journal_pone_0299932
crossref_primary_10_1038_s41598_024_59401_z
crossref_primary_10_1080_14779072_2024_2363393
crossref_primary_10_1186_s12911_024_02451_0
crossref_primary_10_1109_ACCESS_2021_3110336
crossref_primary_10_1016_j_asej_2025_103490
crossref_primary_10_3390_electronics10010097
crossref_primary_10_3390_diagnostics13122051
crossref_primary_10_3389_fcvm_2021_758589
crossref_primary_10_1093_ajh_hpaa102
crossref_primary_10_1371_journal_pone_0300201
crossref_primary_10_1186_s40537_020_00384_9
crossref_primary_10_1016_j_entcom_2024_100837
crossref_primary_10_2196_11757
crossref_primary_10_3233_JCB_230118
crossref_primary_10_1016_j_dsx_2021_03_035
crossref_primary_10_1016_j_cmpb_2024_108557
crossref_primary_10_1177_0361198119845899
crossref_primary_10_1007_s12652_021_03612_z
crossref_primary_10_1016_j_jacasi_2021_07_005
crossref_primary_10_1155_2018_2964816
crossref_primary_10_1109_ACCESS_2019_2945129
crossref_primary_10_1186_s44147_023_00240_6
crossref_primary_10_1038_s41598_024_56170_7
crossref_primary_10_3389_fcvm_2023_1224795
Cites_doi 10.1145/1143844.1143865
10.1109/2.73514
10.1016/j.eswa.2005.04.014
10.1161/01.HYP.36.2.226
10.1161/JAHA.114.001268
10.1109/69.494161
10.1136/bmj.g1903
10.1093/biomet/70.1.163
10.5120/14067-2331
10.1109/5254.708428
10.1007/s10021-005-0054-1
10.1023/A:1007465528199
10.1201/b17320
10.1186/2047-2501-2-3
10.1371/journal.pone.0179805
10.1109/ISKE.2008.4731075
10.1109/ISMS.2011.27
10.1214/aos/1016218223
10.1002/clc.22302
10.1371/journal.pone.0067370
10.2337/dc14-2714
10.1109/ICDAR.1995.598994
10.1613/jair.953
10.1038/ajg.2010.173
10.1007/BF00994110
10.1016/0002-8703(73)90502-4
10.2501/IJA-33-1-181-183
10.1016/j.eswa.2006.10.010
10.1186/s12911-017-0566-6
10.1021/ci0342472
10.1016/S0140-6736(14)62286-8
10.1007/BF00994016
ContentType Journal Article
Copyright COPYRIGHT 2018 Public Library of Science
2018 Sakr et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 Sakr et al 2018 Sakr et al
Copyright_xml – notice: COPYRIGHT 2018 Public Library of Science
– notice: 2018 Sakr et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 Sakr et al 2018 Sakr et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0195344
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest : Agricultural & Environmental Science Collection [unlimited simultaneous users]
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Agricultural Science Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Using machine learning on cardiorespiratory fitness data for predicting hypertension: The FIT Project
EISSN 1932-6203
ExternalDocumentID 2027035090
oai_doaj_org_article_a2194af4ce54409dbe8b3b7addc8ef87
PMC5905952
A535182837
29668729
10_1371_journal_pone_0195344
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Saudi Arabia
Detroit Michigan
United States--US
Riyadh Saudi Arabia
Estonia
GeographicLocations_xml – name: Saudi Arabia
– name: Riyadh Saudi Arabia
– name: Detroit Michigan
– name: Estonia
– name: United States--US
GrantInformation_xml – fundername: ;
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
PUEGO
5PM
AAPBV
ABPTK
BBORY
ID FETCH-LOGICAL-c659t-bb9a14985b347c098e5a092d9ca6293fd13a89781d74d7d52031d3f37c5c2e333
IEDL.DBID FPL
ISICitedReferencesCount 75
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430290200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Sun Nov 05 00:20:49 EDT 2023
Fri Oct 03 12:52:07 EDT 2025
Tue Nov 04 02:03:05 EST 2025
Mon Sep 08 10:06:48 EDT 2025
Tue Oct 07 08:04:37 EDT 2025
Sat Nov 29 13:03:43 EST 2025
Sat Nov 29 10:11:51 EST 2025
Mon Jul 21 05:56:46 EDT 2025
Sat Nov 29 07:48:10 EST 2025
Tue Nov 18 20:40:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c659t-bb9a14985b347c098e5a092d9ca6293fd13a89781d74d7d52031d3f37c5c2e333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-2503-523X
OpenAccessLink http://dx.doi.org/10.1371/journal.pone.0195344
PMID 29668729
PQID 2027035090
PQPubID 1436336
ParticipantIDs plos_journals_2027035090
doaj_primary_oai_doaj_org_article_a2194af4ce54409dbe8b3b7addc8ef87
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5905952
proquest_miscellaneous_2027585386
proquest_journals_2027035090
gale_infotracmisc_A535182837
gale_infotracacademiconefile_A535182837
pubmed_primary_29668729
crossref_primary_10_1371_journal_pone_0195344
crossref_citationtrail_10_1371_journal_pone_0195344
PublicationCentury 2000
PublicationDate 2018-04-18
PublicationDateYYYYMMDD 2018-04-18
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2018
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References AM Prasad (ref42) 2006; 9
ref56
ref52
S Haykin (ref45) 1994
CT Su (ref55) 2008; 34
ref17
PK Whelton (ref2) 2017
DM Hawkins (ref43) 2004; 44
AK Waljee (ref18) 2010; 105
S Marsland (ref15) 2015
D Heckerman (ref48) 1995; 20
HC Kung (ref6) 2015
SM Lee (ref47) 2003; 36
N Friedman (ref32) 1997; 29
W Buntine (ref34) 1996; 8
B Kayyali (ref19) 2013; 2
ref46
JL Carson (ref5) 2015; 385
E Alpaydin (ref14) 2014
ref41
ref44
J Jeppesen (ref1) 2000; 36
I Guyon (ref27) 2003; 3
R Samant (ref51) 2013; 81
NV Chawla (ref26) 2002; 16
MA Arbib (ref29) 2003
ref3
ref40
W Raghupathi (ref20) 2014; 2
ref35
ref37
ref36
ref31
WT Qureshi (ref13) 2015
MH Al-Mallah (ref7) 2014; 37
GF Cooper (ref33) 1992; 9
MA Hearst (ref39) 1998; 13
MM Al-Nozha (ref54) 2007; 28
ref38
M Ture (ref53) 2005; 29
SP Juraschek (ref12) 2015; 38
SP Juraschek (ref10) 2014; 3
M Alghamdi (ref22) 2017; 12
R Bruce (ref8) 1973; 85
ref23
J Friedman (ref30) 2000; 28
ref25
JB Echouffo-Tcheugui (ref49) 2013; 8
CC Aggarwal (ref16) 2014
NV Chawla (ref24) 2009
S Sakr (ref21) 2017; 17
JT Kent (ref28) 1983; 70
R Chowdhury (ref4) 2014; 348
R Poli (ref50) 1991; 24
RK Hung (ref11) 2014; vol. 89
C Members (ref9) 2002; 40
References_xml – ident: ref37
– ident: ref46
  doi: 10.1145/1143844.1143865
– volume: 24
  start-page: 64
  issue: 3
  year: 1991
  ident: ref50
  article-title: A neural network expert system for diagnosing and treating hypertension
  publication-title: Computer
  doi: 10.1109/2.73514
– volume: 28
  start-page: 77
  issue: 1
  year: 2007
  ident: ref54
  article-title: Hypertension in Saudi Arabia
  publication-title: Saudi medical journal
– year: 1994
  ident: ref45
  article-title: Neural networks: a comprehensive foundation
– volume: 29
  start-page: 583
  issue: 3
  year: 2005
  ident: ref53
  article-title: Comparing classification techniques for predicting essential hypertension
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.04.014
– volume: 36
  start-page: 226
  issue: 2
  year: 2000
  ident: ref1
  article-title: High triglycerides and low HDL cholesterol and blood pressure and risk of ischemic heart disease
  publication-title: Hypertension
  doi: 10.1161/01.HYP.36.2.226
– volume: 3
  start-page: e001268
  issue: 6
  year: 2014
  ident: ref10
  article-title: Physical fitness and hypertension in a population at risk for cardiovascular disease: the Henry Ford ExercIse Testing (FIT) Project
  publication-title: Journal of the American Heart Association
  doi: 10.1161/JAHA.114.001268
– year: 2015
  ident: ref13
  article-title: Cardiorespiratory fitness and risk of incident atrial fibrillation: results from the Henry Ford ExercIse Tesing (FIT) project
  publication-title: Circulation
– year: 2014
  ident: ref14
  article-title: Introduction to machine learning
– volume: 8
  start-page: 195
  issue: 2
  year: 1996
  ident: ref34
  article-title: A guide to the literature on learning probabilistic networks from data
  publication-title: IEEE Transactions on knowledge and data engineering
  doi: 10.1109/69.494161
– volume: 348
  start-page: g1903
  year: 2014
  ident: ref4
  article-title: Vitamin D and risk of cause specific death: systematic review and meta-analysis of observational cohort and randomised intervention studies
  publication-title: Bmj
  doi: 10.1136/bmj.g1903
– volume: 70
  start-page: 163
  issue: 1
  year: 1983
  ident: ref28
  article-title: Information gain and a general measure of correlation
  publication-title: Biometrika
  doi: 10.1093/biomet/70.1.163
– ident: ref36
– volume: 81
  issue: 12
  year: 2013
  ident: ref51
  article-title: Evaluation of artificial neural networks in prediction of essential hypertension
  publication-title: International Journal of Computer Applications
  doi: 10.5120/14067-2331
– ident: ref44
– volume: 13
  start-page: 18
  issue: 4
  year: 1998
  ident: ref39
  article-title: Support vector machines
  publication-title: IEEE Intelligent Systems and their applications
  doi: 10.1109/5254.708428
– ident: ref23
– volume: 9
  start-page: 181
  issue: 2
  year: 2006
  ident: ref42
  article-title: Newer classification and regression tree techniques: bagging and random forests for ecological prediction
  publication-title: Ecosystems
  doi: 10.1007/s10021-005-0054-1
– volume: 29
  start-page: 131
  issue: 2-3
  year: 1997
  ident: ref32
  article-title: Bayesian network classifiers
  publication-title: Machine learning
  doi: 10.1023/A:1007465528199
– year: 2014
  ident: ref16
  article-title: Data classification: algorithms and applications
  doi: 10.1201/b17320
– volume: 2
  start-page: 3
  issue: 1
  year: 2014
  ident: ref20
  article-title: Big data analytics in healthcare: promise and potential
  publication-title: Health information science and systems
  doi: 10.1186/2047-2501-2-3
– volume: 12
  start-page: e0179805
  issue: 7
  year: 2017
  ident: ref22
  article-title: Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford ExercIse Testing (FIT) project
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0179805
– volume: 36
  start-page: 389
  issue: 4
  year: 2003
  ident: ref47
  article-title: Bayesian networks for knowledge discovery in large datasets: basics for nurse researchers
  publication-title: Journal of biomedical informatics
– ident: ref40
  doi: 10.1109/ISKE.2008.4731075
– ident: ref3
– volume: vol. 89
  start-page: 1644
  year: 2014
  ident: ref11
  article-title: Mayo Clinic Proceedings
– ident: ref52
  doi: 10.1109/ISMS.2011.27
– start-page: 875
  year: 2009
  ident: ref24
  article-title: Data mining and knowledge discovery handbook
– start-page: 1
  issue: 193
  year: 2015
  ident: ref6
  article-title: Hypertension-related Mortality in the United States, 2000-2013
  publication-title: NCHS data brief
– volume: 40
  start-page: 1531
  issue: 8
  year: 2002
  ident: ref9
  article-title: Journal of the American College of Cardiology
  publication-title: Journal of the American College of Cardiology
– year: 2015
  ident: ref15
  article-title: Machine learning: an algorithmic perspective
– ident: ref25
– volume: 28
  start-page: 337
  issue: 2
  year: 2000
  ident: ref30
  article-title: Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors)
  publication-title: The annals of statistics
  doi: 10.1214/aos/1016218223
– volume: 37
  start-page: 456
  issue: 8
  year: 2014
  ident: ref7
  article-title: Rationale and design of the Henry Ford Exercise Testing Project (the FIT project)
  publication-title: Clinical cardiology
  doi: 10.1002/clc.22302
– volume: 2
  start-page: 1
  issue: 8
  year: 2013
  ident: ref19
  article-title: The big-data revolution in US health care: Accelerating value and innovation
  publication-title: Mc Kinsey & Company
– year: 2003
  ident: ref29
  article-title: The handbook of brain theory and neural networks
– volume: 8
  start-page: e67370
  issue: 7
  year: 2013
  ident: ref49
  article-title: Risk models to predict hypertension: a systematic review
  publication-title: PloS one
  doi: 10.1371/journal.pone.0067370
– ident: ref38
– volume: 38
  start-page: 1075
  issue: 6
  year: 2015
  ident: ref12
  article-title: Cardiorespiratory fitness and incident diabetes: the FIT (Henry Ford ExercIse Testing) project
  publication-title: Diabetes Care
  doi: 10.2337/dc14-2714
– ident: ref41
  doi: 10.1109/ICDAR.1995.598994
– volume: 16
  start-page: 321
  year: 2002
  ident: ref26
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: Journal of artificial intelligence research
  doi: 10.1613/jair.953
– volume: 105
  start-page: 1224
  issue: 6
  year: 2010
  ident: ref18
  article-title: Machine learning in medicine: a primer for physicians
  publication-title: The American journal of gastroenterology
  doi: 10.1038/ajg.2010.173
– volume: 9
  start-page: 309
  issue: 4
  year: 1992
  ident: ref33
  article-title: A Bayesian method for the induction of probabilistic networks from data
  publication-title: Machine learning
  doi: 10.1007/BF00994110
– volume: 85
  start-page: 546
  issue: 4
  year: 1973
  ident: ref8
  article-title: Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease
  publication-title: American heart journal
  doi: 10.1016/0002-8703(73)90502-4
– ident: ref17
  doi: 10.2501/IJA-33-1-181-183
– volume: 3
  start-page: 1157
  issue: Mar
  year: 2003
  ident: ref27
  article-title: An introduction to variable and feature selection
  publication-title: Journal of machine learning research
– ident: ref56
– volume: 34
  start-page: 754
  issue: 1
  year: 2008
  ident: ref55
  article-title: Feature selection for the SVM: An application to hypertension diagnosis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2006.10.010
– year: 2017
  ident: ref2
  article-title: 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults
  publication-title: Journal of the American College of Cardiology
– volume: 17
  start-page: 174
  issue: 1
  year: 2017
  ident: ref21
  article-title: Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project
  publication-title: BMC medical informatics and decision making
  doi: 10.1186/s12911-017-0566-6
– volume: 44
  start-page: 1
  issue: 1
  year: 2004
  ident: ref43
  article-title: The problem of overfitting
  publication-title: Journal of chemical information and computer sciences
  doi: 10.1021/ci0342472
– volume: 385
  start-page: 1183
  issue: 9974
  year: 2015
  ident: ref5
  article-title: Liberal versus restrictive blood transfusion strategy: 3-year survival and cause of death results from the FOCUS randomised controlled trial
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(14)62286-8
– ident: ref35
– ident: ref31
– volume: 20
  start-page: 197
  issue: 3
  year: 1995
  ident: ref48
  article-title: Learning Bayesian networks: The combination of knowledge and statistical data
  publication-title: Machine learning
  doi: 10.1007/BF00994016
SSID ssj0053866
Score 2.5185196
Snippet This study evaluates and compares the performance of different machine learning techniques on predicting the individuals at risk of developing hypertension,...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0195344
SubjectTerms Adolescent
Adult
Aged
Aged, 80 and over
Algorithms
Analysis
Area Under Curve
Artificial intelligence
Artificial neural networks
Bayes Theorem
Bayesian analysis
Biology and Life Sciences
Cardiorespiratory fitness
Cardiorespiratory Fitness - physiology
Cardiovascular disease
Computer and Information Sciences
Databases, Factual
Ecology and Environmental Sciences
Electronic health records
Exercise
Exercise Test - methods
Family medical history
Female
Fitness equipment
Health sciences
Heart
Hospital systems
Hospitals
Humans
Hypertension
Hypertension - etiology
International conferences
Learning algorithms
Learning theory
Machine Learning
Male
Mathematical models
Medical records
Medical research
Medicine and Health Sciences
Middle Aged
Model accuracy
Neural networks
Neural Networks, Computer
Optimization techniques
Patients
Physical fitness
Physical Sciences
Predictions
Research and Analysis Methods
Studies
Support Vector Machine
Support vector machines
Variables
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZl6aGX0vQVt0lRodDk4MRrSZbUW1qyNFBCDlvIzUiy3Cwk9mJv-gf6xzMja924BHLp1ZLX2nnI81kz3xDyyWU241YDOlHGp9zXPDXSmNTVSJ_G88r7wDP7Q56fq8tLfXGv1RfmhA30wIPgjg24FDc1d15wwCKV9coyK8EtnfK1CnXkmdRbMDXsweDFRREL5ZicH0e9HK3bxh9hiRzjfPIiCnz94648W1-3_UMh57-Zk_deRYsX5HmMIenJsPYd8sQ3L8lO9NKeHkQq6cNX5E_ICKA3IWPS09gi4hdtG-pCImr396Sd1qsN7nsUk0YpxLJ03eEpDuZF0yuAq11Idm-bLxRsi4bqBroA7EpPsW3TWe_pEik7YPbB4mx5SC-Gjzyvyc_F6fLb9zS2XUhdIfQmtVYbwE1KWMaly7TywmQ6r7QzBQQHdTVnRiFVViV5JSuRw75QsZpJJ1zuGWNvyKwBQe8SWhcqoLqaG9C7tlYZxjUzTAGSYlYlhG11ULrISY6tMa7LcNAmAZsMIi1Rc2XUXELS8a71wMnxyPyvqN5xLjJqhwtgZ2W0s_IxO0vIZzSOEv0eluhMLF-A5yCDVnkimACsBng_IXuTmeCvbjK8i-a1XWlf4ucnPN_VGdy5NbmHhz-Ow_ijmB7X-PZ2mAO4D6w-IW8HCx3_bQ6AVgGESoic2O5EHNORZnUViMaFhuBb5O_-h_zek2cQayo8iJurPTLbdLd-nzx1vzervvsQvPcOa5pOnQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVg4cAFKF8NFGQkJNpDSjZ21jYXVFBXVELVHhapt8h2nHalkoRkyx_gjzPjOClBFRy4rifZJJ4Zz_OM3xDyxiYm4UYBOpHaxdyVPNZC69iWSJ_G08I5zzP7RZyeyrMztQobbl0oqxx8onfURW1xj9yDdMyCqeRD8z3GrlGYXQ0tNG6TO8iSkPrSvdXgicGWF4twXI6J-bswO4dNXblDPCjHOJ8sR561f_TNs-ay7m4KPP-sn_xtQVo--N9XeUjuh1CUHvW6s0NuueoR2QnG3tH9wEh98Jj89IUF9JsvvHQ0dJo4p3VFra9nba8T9rTcbNF9Uqw9pRAS06bFZBCWV9MLQL2tr5mvq_cUVJT6QxJ0CRCYHmP3p5PO0TUyf4D0_vJkfUBX_V7RE_J1ebz-9DkO3Rtiu8jUNjZGaYBfMjOMC5so6TKdqLRQVi8gxiiLOdMSGbcKwQtRZCm4l4KVTNjMpo4x9pTMKpipXULLhfTgsOQa1EcZIzXjimkmAZAxIyPChknMbaA2xw4bl7nP1wmAOP0nzXHq8zD1EYnHq5qe2uMf8h9RP0ZZJOb2P9TteR7sPNewAnBdcusyDtC5ME4aZgSsIla6UoqIvEXtytF9wCNaHU5BwP8gEVd-lLEMIJ9kILk3kQSzt5PhXdTP4Um7_Fqr4MpB724efj0O402xyq5y9VUvA_ARzCYiz3oVH982BVwsAYlFREyUf_I5piPV5sLzlWcKYvgsff73x3pB7kEwKjFTN5d7ZLZtr9xLctf-2G669pU37F9v7lrd
  priority: 102
  providerName: ProQuest
Title Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford ExercIse Testing (FIT) Project
URI https://www.ncbi.nlm.nih.gov/pubmed/29668729
https://www.proquest.com/docview/2027035090
https://www.proquest.com/docview/2027585386
https://pubmed.ncbi.nlm.nih.gov/PMC5905952
https://doaj.org/article/a2194af4ce54409dbe8b3b7addc8ef87
http://dx.doi.org/10.1371/journal.pone.0195344
Volume 13
WOSCitedRecordID wos000430290200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELdYxwMvwPi3wqiMhMT2kC2NndjmbZ1aUW2rolFQ4SWyHYdVGmnVdnwBvjh3TtqRaRPi5R7qc-te7i73853PhLy3oQm5UYBOpHYBdwUPtNA6sAW2T-NR7pzvM3smRiM5maj0BijeyuAz0T2qZXo4n5XuEI-3Mc63yHbEkgSvahikZ2vPC7abJPXxuPtmNl4_vkv_xhe35lez5V2B5u16yb9eQIMn_7v0p-RxHWrS40o3dsgDVz4jO7UxL-l-3XH64Dn57QsH6E9fWOlofZPEDzorqfX1qoubhDwtpit0jxRrSymEvHS-wGQPlk_TS0C1C18TPys_UlBB6g9B0AFAXNrH252GS0fH2NkDuPcHw_EBTau9oBfky6A_PvkU1LczBDaJ1SowRmmAVzI2jAsbKuliHaooV1YnEEMUeZdpiR21csFzkccRuI-cFUzY2EaOMfaStEoQzC6hRSI9-Cu4BvVQxkjNuGKaSQBczMg2YeuHltm6dTneoHGV-XycAAhTiTRDSWe1pNsk2MyaV607_sHfQ33Y8GLjbf8BPNKstuNMg4fnuuDWxRygcW6cNMwIeEtY6Qop2uQDalOG7gGWaHV9ygF-BxttZccxiwHSSQacew1OMGvbGN5FfVyvdJnhLhWmgVUIM9c6evfwu80wfilW0ZVudl3xADwEM2mTV5VKb_5tBLhXAtJqE9FQ9oY4miPl9NL3I48VxOhx9Pr-Fb8hjyDQlJiF68o90lotrt1b8tD-Wk2Xiw7ZEhdfkU6EpxKoPOl2yHavP0ovOn6fpONNHehp7xDoeXiKVKSefgaaxt9hRjo8T7_9AZa9VdU
linkProvider Public Library of Science
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFLemggQXYHwtMMBIILZDRho7tY2E0IBVq9pVOxRpt8xxnK3SSErSgTjz__A38p6TdARNcNqBa_3SOu7vveef_T4IeWGCJOCJAnYitfW5zbivhda-ybB8Gg9Ta12d2YmYTuXRkTpcIz_bXBgMq2xtojPUaWHwjNyRdLwFU8G7xRcfu0bh7WrbQqOGxdh-_waUrXo7-gj_78swHO7NPuz7TVcB3wwitfSTRGmgBTJKGBcmUNJGOlBhqowegO_L0j7TEitBpYKnIo1CgH3KMiZMZELL8AAUTP41DsQLQ8gOgnFr-cF2DAZNeh4T_dcNGnYWRW53MDGPcd5xf65LwMoX9BZnRXXZRvfPeM3fHODw9v-2dHfIrWarTXdr3Vgnaza_S9YbY1bRrabi9vY98sMFTtDPLrDU0qaTxgktcmpcvG55EZBAs_kS3QPF2FoKW366KPGyC8PH6Smw-tLlBBT5GwoqSF0SCB3CS9M97G41qiydYWUTkN4ajmbb9LA-C7tPPl3JYjwgvRyQsUFoNpCO_GZcg3qoJJGaccU0k0A4WSI9wlrQxKYp3Y4dRM5idx8pgMLVSxoj1OIGah7xV08t6tIl_5B_j3hcyWLhcfdBUZ7EjR2LNXg4rjNubAQaoNLEyoQlArykkTaTwiOvEM0xmkeYotFNlgf8DhYai3cjFgGllQwkNzuSYNZMZ3gD9aGdaRVfoBiebHF--fDz1TB-KUYR5rY4r2WAHoOaeuRhrVKrtw2B90tgmh4RHWXrLEd3JJ-funrskQKOEoWP_j6tZ-TG_uxgEk9G0_FjchM23hJvJftyk_SW5bl9Qq6br8t5VT51RoWS46tWxV9GELXu
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFLemghAXYHytMMBIILZDtjR2YhsJocFWUW2qeijSbsFxnK3SSErTgTjzX_HX8Z7jdARNcNqBa_3SOu778M_-vfcIeWHCLOSZAnQitQ24LXighdaBKbB8Go9ya12d2SMxHsvjYzVZIz_bXBikVbY-0TnqvDJ4Ru5AOt6CqXC38LSIyf7w7fxLgB2k8Ka1bafRqMih_f4N4Fv9ZrQP__XLKBoeTN9_CHyHgcAksVoGWaY0QAQZZ4wLEyppYx2qKFdGJxAHi3zAtMSqULngucjjCEwgZwUTJjaRZXgYCu7_muBJGDna4KSNAuBHksSn6jEx2PWasTOvSruDSXqM804odB0DVnGhNz-r6ss2vX9yN38LhsPb__My3iG3_Bac7jU2s07WbHmXrHsnV9MtX4l7-x754QgV9LMjnFrqO2yc0KqkxvF4FxdEBVrMlhg2KHJuKUABOl_gJRjSyukpoP2FyxWoytcUTJO65BA6hJemB9j1alRbOsWKJyC9NRxNt-mkOSO7Tz5eyWI8IL0StGSD0CKRDhQXXIPZqCyTmnHFNJMARFkm-4S1CpQaX9IdO4ucpe6eUgC0a5Y0RbVLvdr1SbB6at6UNPmH_DvUzZUsFiR3H1SLk9T7t1RD5OO64MbGnIcqz6zMWCYgehppCyn65BVqdopuE6ZotM_-gN_BAmTpXsxigLqSgeRmRxLcnekMb6BttDOt0wuNhidbnb98-PlqGL8U2YWlrc4bGYDNYLJ98rAxr9XbRipJJCDQPhEdw-ssR3eknJ26Ou2xAuwSR4_-Pq1n5AZYYHo0Gh8-JjdhPy7xsnIgN0lvuTi3T8h183U5qxdPnX-h5NNVW-Ive_6-xQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+machine+learning+on+cardiorespiratory+fitness+data+for+predicting+hypertension%3A+The+Henry+Ford+ExercIse+Testing+%28FIT%29+Project&rft.jtitle=PloS+one&rft.au=Sakr%2C+Sherif&rft.au=Elshawi%2C+Radwa&rft.au=Ahmed%2C+Amjad&rft.au=Qureshi%2C+Waqas&rft.date=2018-04-18&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=13&rft.issue=4&rft_id=info:doi/10.1371%2Fjournal.pone.0195344&rft.externalDocID=2027035090
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon