Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford ExercIse Testing (FIT) Project
This study evaluates and compares the performance of different machine learning techniques on predicting the individuals at risk of developing hypertension, and who are likely to benefit most from interventions, using the cardiorespiratory fitness data. The dataset of this study contains information...
Saved in:
| Published in: | PloS one Vol. 13; no. 4; p. e0195344 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Public Library of Science
18.04.2018
Public Library of Science (PLoS) |
| Subjects: | |
| ISSN: | 1932-6203, 1932-6203 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This study evaluates and compares the performance of different machine learning techniques on predicting the individuals at risk of developing hypertension, and who are likely to benefit most from interventions, using the cardiorespiratory fitness data. The dataset of this study contains information of 23,095 patients who underwent clinician- referred exercise treadmill stress testing at Henry Ford Health Systems between 1991 and 2009 and had a complete 10-year follow-up. The variables of the dataset include information on vital signs, diagnosis and clinical laboratory measurements. Six machine learning techniques were investigated: LogitBoost (LB), Bayesian Network classifier (BN), Locally Weighted Naive Bayes (LWB), Artificial Neural Network (ANN), Support Vector Machine (SVM) and Random Tree Forest (RTF). Using different validation methods, the RTF model has shown the best performance (AUC = 0.93) and outperformed all other machine learning techniques examined in this study. The results have also shown that it is critical to carefully explore and evaluate the performance of the machine learning models using various model evaluation methods as the prediction accuracy can significantly differ. |
|---|---|
| AbstractList | This study evaluates and compares the performance of different machine learning techniques on predicting the individuals at risk of developing hypertension, and who are likely to benefit most from interventions, using the cardiorespiratory fitness data. The dataset of this study contains information of 23,095 patients who underwent clinician- referred exercise treadmill stress testing at Henry Ford Health Systems between 1991 and 2009 and had a complete 10-year follow-up. The variables of the dataset include information on vital signs, diagnosis and clinical laboratory measurements. Six machine learning techniques were investigated: LogitBoost (LB), Bayesian Network classifier (BN), Locally Weighted Naive Bayes (LWB), Artificial Neural Network (ANN), Support Vector Machine (SVM) and Random Tree Forest (RTF). Using different validation methods, the RTF model has shown the best performance (AUC = 0.93) and outperformed all other machine learning techniques examined in this study. The results have also shown that it is critical to carefully explore and evaluate the performance of the machine learning models using various model evaluation methods as the prediction accuracy can significantly differ. This study evaluates and compares the performance of different machine learning techniques on predicting the individuals at risk of developing hypertension, and who are likely to benefit most from interventions, using the cardiorespiratory fitness data. The dataset of this study contains information of 23,095 patients who underwent clinician- referred exercise treadmill stress testing at Henry Ford Health Systems between 1991 and 2009 and had a complete 10-year follow-up. The variables of the dataset include information on vital signs, diagnosis and clinical laboratory measurements. Six machine learning techniques were investigated: LogitBoost (LB), Bayesian Network classifier (BN), Locally Weighted Naive Bayes (LWB), Artificial Neural Network (ANN), Support Vector Machine (SVM) and Random Tree Forest (RTF). Using different validation methods, the RTF model has shown the best performance (AUC = 0.93) and outperformed all other machine learning techniques examined in this study. The results have also shown that it is critical to carefully explore and evaluate the performance of the machine learning models using various model evaluation methods as the prediction accuracy can significantly differ.This study evaluates and compares the performance of different machine learning techniques on predicting the individuals at risk of developing hypertension, and who are likely to benefit most from interventions, using the cardiorespiratory fitness data. The dataset of this study contains information of 23,095 patients who underwent clinician- referred exercise treadmill stress testing at Henry Ford Health Systems between 1991 and 2009 and had a complete 10-year follow-up. The variables of the dataset include information on vital signs, diagnosis and clinical laboratory measurements. Six machine learning techniques were investigated: LogitBoost (LB), Bayesian Network classifier (BN), Locally Weighted Naive Bayes (LWB), Artificial Neural Network (ANN), Support Vector Machine (SVM) and Random Tree Forest (RTF). Using different validation methods, the RTF model has shown the best performance (AUC = 0.93) and outperformed all other machine learning techniques examined in this study. The results have also shown that it is critical to carefully explore and evaluate the performance of the machine learning models using various model evaluation methods as the prediction accuracy can significantly differ. |
| Audience | Academic |
| Author | Qureshi, Waqas T. Blaha, Michael J. Elshawi, Radwa Al-Mallah, Mouaz H. Sakr, Sherif Ahmed, Amjad Brawner, Clinton Keteyian, Steven |
| AuthorAffiliation | 2 King Abdullah International Medical Research Center, Riyadh, Saudia Arabia Northeast Normal University, CHINA 3 Heart and Vascular Institute, Henry Ford Hospital System, Detroit, MI, United States of America 6 Johns Hopkins Medicine, Baltimore, Maryland, United States of America 1 King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia 5 Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, United States of America 4 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia 7 University of Taru, Taru, Estonia |
| AuthorAffiliation_xml | – name: 3 Heart and Vascular Institute, Henry Ford Hospital System, Detroit, MI, United States of America – name: 7 University of Taru, Taru, Estonia – name: 5 Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, United States of America – name: 1 King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia – name: 2 King Abdullah International Medical Research Center, Riyadh, Saudia Arabia – name: 4 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia – name: Northeast Normal University, CHINA – name: 6 Johns Hopkins Medicine, Baltimore, Maryland, United States of America |
| Author_xml | – sequence: 1 givenname: Sherif orcidid: 0000-0002-2503-523X surname: Sakr fullname: Sakr, Sherif – sequence: 2 givenname: Radwa surname: Elshawi fullname: Elshawi, Radwa – sequence: 3 givenname: Amjad surname: Ahmed fullname: Ahmed, Amjad – sequence: 4 givenname: Waqas T. surname: Qureshi fullname: Qureshi, Waqas T. – sequence: 5 givenname: Clinton surname: Brawner fullname: Brawner, Clinton – sequence: 6 givenname: Steven surname: Keteyian fullname: Keteyian, Steven – sequence: 7 givenname: Michael J. surname: Blaha fullname: Blaha, Michael J. – sequence: 8 givenname: Mouaz H. surname: Al-Mallah fullname: Al-Mallah, Mouaz H. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29668729$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kl1r2zAUhs3oWD-2fzA2w266i2T6sGypF4NSmjVQ2C7SayFLx4mCI3mSU5br_fHJjVuaUoYvZI6e99U50nuaHTnvIMs-YjTFtMLf1n4bnGqnXSpPERaMFsWb7AQLSiYlQfTo2f9xdhrjGiFGeVm-y46JKEteEXGS_b2L1i3zjdIr6yBvQQU3FLzLtQrG-gCxs0H1PuzyxvYOYsyN6lXe-JB3AYzV_SBY7ToIPbhovbvIFyvIb8AlzcwHk1__gaDnEfIFxAf6fDZffM1_Bb8G3b_P3jaqjfBhXM-yu9n14upmcvvzx_zq8naiSyb6SV0LhQvBWU2LSiPBgSkkiBFalUTQxmCquKg4NlVhKsPS3NjQhlaaaQKU0rPs8963a32U4_1FSRCpEGVIoETM94Txai27YDcq7KRXVj4UfFhKFXqrW5CKYFGoptDAigIJUwOvaV0pYzSHhlfJ6_t42rbegNHg-qDaA9PDHWdXcunvJROICUaSwfloEPzvbbo4ubFRQ9sqB36775vx4UkT-uUF-vp0I7VUaQDrGp_O1YOpvGSUYU44HfqevkKlz8DG6hS2xqb6geDT80GfJnwMWQKKPaCDjzFA84RgJIcsP3YrhyzLMctJdvFCpm2v-pSv1JBt_y_-B4ae_bs |
| CitedBy_id | crossref_primary_10_1007_s11906_022_01212_6 crossref_primary_10_1186_s13040_022_00299_6 crossref_primary_10_1177_2053951719848781 crossref_primary_10_1016_j_eswa_2022_119351 crossref_primary_10_1097_HJH_0000000000003406 crossref_primary_10_1186_s12911_019_0874_0 crossref_primary_10_1038_s41598_020_67640_z crossref_primary_10_1080_02564602_2021_1950578 crossref_primary_10_3390_jcm8091298 crossref_primary_10_3390_app8081325 crossref_primary_10_1016_j_ijmedinf_2020_104122 crossref_primary_10_1016_j_atherosclerosis_2020_04_019 crossref_primary_10_3389_fcvm_2022_839379 crossref_primary_10_2196_19739 crossref_primary_10_1016_j_atherosclerosis_2019_06_914 crossref_primary_10_32604_cmc_2022_026077 crossref_primary_10_3390_s18124132 crossref_primary_10_1155_2021_2794888 crossref_primary_10_3389_fcvm_2022_928948 crossref_primary_10_1016_j_ypmed_2019_105886 crossref_primary_10_1080_21681163_2021_1901784 crossref_primary_10_1016_j_eswa_2019_04_029 crossref_primary_10_3390_diagnostics11050792 crossref_primary_10_2147_IJGM_S250334 crossref_primary_10_15829_1560_4071_2021_4618 crossref_primary_10_3390_s20010167 crossref_primary_10_3390_jcdd10020074 crossref_primary_10_1007_s00210_024_03229_x crossref_primary_10_2196_34717 crossref_primary_10_1038_s41598_022_27264_x crossref_primary_10_1155_2021_6633832 crossref_primary_10_7717_peerj_cs_2430 crossref_primary_10_1016_j_engappai_2025_110877 crossref_primary_10_1007_s11257_019_09229_4 crossref_primary_10_1016_j_isci_2024_110792 crossref_primary_10_3389_fpubh_2022_984621 crossref_primary_10_3390_ijerph18168510 crossref_primary_10_1371_journal_pone_0266334 crossref_primary_10_1007_s10462_022_10304_3 crossref_primary_10_1016_j_jhydrol_2019_124006 crossref_primary_10_1371_journal_pone_0299932 crossref_primary_10_1038_s41598_024_59401_z crossref_primary_10_1080_14779072_2024_2363393 crossref_primary_10_1186_s12911_024_02451_0 crossref_primary_10_1109_ACCESS_2021_3110336 crossref_primary_10_1016_j_asej_2025_103490 crossref_primary_10_3390_electronics10010097 crossref_primary_10_3390_diagnostics13122051 crossref_primary_10_3389_fcvm_2021_758589 crossref_primary_10_1093_ajh_hpaa102 crossref_primary_10_1371_journal_pone_0300201 crossref_primary_10_1186_s40537_020_00384_9 crossref_primary_10_1016_j_entcom_2024_100837 crossref_primary_10_2196_11757 crossref_primary_10_3233_JCB_230118 crossref_primary_10_1016_j_dsx_2021_03_035 crossref_primary_10_1016_j_cmpb_2024_108557 crossref_primary_10_1177_0361198119845899 crossref_primary_10_1007_s12652_021_03612_z crossref_primary_10_1016_j_jacasi_2021_07_005 crossref_primary_10_1155_2018_2964816 crossref_primary_10_1109_ACCESS_2019_2945129 crossref_primary_10_1186_s44147_023_00240_6 crossref_primary_10_1038_s41598_024_56170_7 crossref_primary_10_3389_fcvm_2023_1224795 |
| Cites_doi | 10.1145/1143844.1143865 10.1109/2.73514 10.1016/j.eswa.2005.04.014 10.1161/01.HYP.36.2.226 10.1161/JAHA.114.001268 10.1109/69.494161 10.1136/bmj.g1903 10.1093/biomet/70.1.163 10.5120/14067-2331 10.1109/5254.708428 10.1007/s10021-005-0054-1 10.1023/A:1007465528199 10.1201/b17320 10.1186/2047-2501-2-3 10.1371/journal.pone.0179805 10.1109/ISKE.2008.4731075 10.1109/ISMS.2011.27 10.1214/aos/1016218223 10.1002/clc.22302 10.1371/journal.pone.0067370 10.2337/dc14-2714 10.1109/ICDAR.1995.598994 10.1613/jair.953 10.1038/ajg.2010.173 10.1007/BF00994110 10.1016/0002-8703(73)90502-4 10.2501/IJA-33-1-181-183 10.1016/j.eswa.2006.10.010 10.1186/s12911-017-0566-6 10.1021/ci0342472 10.1016/S0140-6736(14)62286-8 10.1007/BF00994016 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2018 Public Library of Science 2018 Sakr et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 Sakr et al 2018 Sakr et al |
| Copyright_xml | – notice: COPYRIGHT 2018 Public Library of Science – notice: 2018 Sakr et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 Sakr et al 2018 Sakr et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pone.0195344 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest : Agricultural & Environmental Science Collection [unlimited simultaneous users] ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Agricultural Science Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Using machine learning on cardiorespiratory fitness data for predicting hypertension: The FIT Project |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2027035090 oai_doaj_org_article_a2194af4ce54409dbe8b3b7addc8ef87 PMC5905952 A535182837 29668729 10_1371_journal_pone_0195344 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Saudi Arabia Detroit Michigan United States--US Riyadh Saudi Arabia Estonia |
| GeographicLocations_xml | – name: Saudi Arabia – name: Riyadh Saudi Arabia – name: Detroit Michigan – name: Estonia – name: United States--US |
| GrantInformation_xml | – fundername: ; |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO ESTFP FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 PUEGO 5PM AAPBV ABPTK BBORY |
| ID | FETCH-LOGICAL-c659t-bb9a14985b347c098e5a092d9ca6293fd13a89781d74d7d52031d3f37c5c2e333 |
| IEDL.DBID | FPL |
| ISICitedReferencesCount | 75 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430290200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-6203 |
| IngestDate | Sun Nov 05 00:20:49 EDT 2023 Fri Oct 03 12:52:07 EDT 2025 Tue Nov 04 02:03:05 EST 2025 Mon Sep 08 10:06:48 EDT 2025 Tue Oct 07 08:04:37 EDT 2025 Sat Nov 29 13:03:43 EST 2025 Sat Nov 29 10:11:51 EST 2025 Mon Jul 21 05:56:46 EDT 2025 Sat Nov 29 07:48:10 EST 2025 Tue Nov 18 20:40:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c659t-bb9a14985b347c098e5a092d9ca6293fd13a89781d74d7d52031d3f37c5c2e333 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-2503-523X |
| OpenAccessLink | http://dx.doi.org/10.1371/journal.pone.0195344 |
| PMID | 29668729 |
| PQID | 2027035090 |
| PQPubID | 1436336 |
| ParticipantIDs | plos_journals_2027035090 doaj_primary_oai_doaj_org_article_a2194af4ce54409dbe8b3b7addc8ef87 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5905952 proquest_miscellaneous_2027585386 proquest_journals_2027035090 gale_infotracmisc_A535182837 gale_infotracacademiconefile_A535182837 pubmed_primary_29668729 crossref_primary_10_1371_journal_pone_0195344 crossref_citationtrail_10_1371_journal_pone_0195344 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-18 |
| PublicationDateYYYYMMDD | 2018-04-18 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-18 day: 18 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2018 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | AM Prasad (ref42) 2006; 9 ref56 ref52 S Haykin (ref45) 1994 CT Su (ref55) 2008; 34 ref17 PK Whelton (ref2) 2017 DM Hawkins (ref43) 2004; 44 AK Waljee (ref18) 2010; 105 S Marsland (ref15) 2015 D Heckerman (ref48) 1995; 20 HC Kung (ref6) 2015 SM Lee (ref47) 2003; 36 N Friedman (ref32) 1997; 29 W Buntine (ref34) 1996; 8 B Kayyali (ref19) 2013; 2 ref46 JL Carson (ref5) 2015; 385 E Alpaydin (ref14) 2014 ref41 ref44 J Jeppesen (ref1) 2000; 36 I Guyon (ref27) 2003; 3 R Samant (ref51) 2013; 81 NV Chawla (ref26) 2002; 16 MA Arbib (ref29) 2003 ref3 ref40 W Raghupathi (ref20) 2014; 2 ref35 ref37 ref36 ref31 WT Qureshi (ref13) 2015 MH Al-Mallah (ref7) 2014; 37 GF Cooper (ref33) 1992; 9 MA Hearst (ref39) 1998; 13 MM Al-Nozha (ref54) 2007; 28 ref38 M Ture (ref53) 2005; 29 SP Juraschek (ref12) 2015; 38 SP Juraschek (ref10) 2014; 3 M Alghamdi (ref22) 2017; 12 R Bruce (ref8) 1973; 85 ref23 J Friedman (ref30) 2000; 28 ref25 JB Echouffo-Tcheugui (ref49) 2013; 8 CC Aggarwal (ref16) 2014 NV Chawla (ref24) 2009 S Sakr (ref21) 2017; 17 JT Kent (ref28) 1983; 70 R Chowdhury (ref4) 2014; 348 R Poli (ref50) 1991; 24 RK Hung (ref11) 2014; vol. 89 C Members (ref9) 2002; 40 |
| References_xml | – ident: ref37 – ident: ref46 doi: 10.1145/1143844.1143865 – volume: 24 start-page: 64 issue: 3 year: 1991 ident: ref50 article-title: A neural network expert system for diagnosing and treating hypertension publication-title: Computer doi: 10.1109/2.73514 – volume: 28 start-page: 77 issue: 1 year: 2007 ident: ref54 article-title: Hypertension in Saudi Arabia publication-title: Saudi medical journal – year: 1994 ident: ref45 article-title: Neural networks: a comprehensive foundation – volume: 29 start-page: 583 issue: 3 year: 2005 ident: ref53 article-title: Comparing classification techniques for predicting essential hypertension publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2005.04.014 – volume: 36 start-page: 226 issue: 2 year: 2000 ident: ref1 article-title: High triglycerides and low HDL cholesterol and blood pressure and risk of ischemic heart disease publication-title: Hypertension doi: 10.1161/01.HYP.36.2.226 – volume: 3 start-page: e001268 issue: 6 year: 2014 ident: ref10 article-title: Physical fitness and hypertension in a population at risk for cardiovascular disease: the Henry Ford ExercIse Testing (FIT) Project publication-title: Journal of the American Heart Association doi: 10.1161/JAHA.114.001268 – year: 2015 ident: ref13 article-title: Cardiorespiratory fitness and risk of incident atrial fibrillation: results from the Henry Ford ExercIse Tesing (FIT) project publication-title: Circulation – year: 2014 ident: ref14 article-title: Introduction to machine learning – volume: 8 start-page: 195 issue: 2 year: 1996 ident: ref34 article-title: A guide to the literature on learning probabilistic networks from data publication-title: IEEE Transactions on knowledge and data engineering doi: 10.1109/69.494161 – volume: 348 start-page: g1903 year: 2014 ident: ref4 article-title: Vitamin D and risk of cause specific death: systematic review and meta-analysis of observational cohort and randomised intervention studies publication-title: Bmj doi: 10.1136/bmj.g1903 – volume: 70 start-page: 163 issue: 1 year: 1983 ident: ref28 article-title: Information gain and a general measure of correlation publication-title: Biometrika doi: 10.1093/biomet/70.1.163 – ident: ref36 – volume: 81 issue: 12 year: 2013 ident: ref51 article-title: Evaluation of artificial neural networks in prediction of essential hypertension publication-title: International Journal of Computer Applications doi: 10.5120/14067-2331 – ident: ref44 – volume: 13 start-page: 18 issue: 4 year: 1998 ident: ref39 article-title: Support vector machines publication-title: IEEE Intelligent Systems and their applications doi: 10.1109/5254.708428 – ident: ref23 – volume: 9 start-page: 181 issue: 2 year: 2006 ident: ref42 article-title: Newer classification and regression tree techniques: bagging and random forests for ecological prediction publication-title: Ecosystems doi: 10.1007/s10021-005-0054-1 – volume: 29 start-page: 131 issue: 2-3 year: 1997 ident: ref32 article-title: Bayesian network classifiers publication-title: Machine learning doi: 10.1023/A:1007465528199 – year: 2014 ident: ref16 article-title: Data classification: algorithms and applications doi: 10.1201/b17320 – volume: 2 start-page: 3 issue: 1 year: 2014 ident: ref20 article-title: Big data analytics in healthcare: promise and potential publication-title: Health information science and systems doi: 10.1186/2047-2501-2-3 – volume: 12 start-page: e0179805 issue: 7 year: 2017 ident: ref22 article-title: Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford ExercIse Testing (FIT) project publication-title: PLoS One doi: 10.1371/journal.pone.0179805 – volume: 36 start-page: 389 issue: 4 year: 2003 ident: ref47 article-title: Bayesian networks for knowledge discovery in large datasets: basics for nurse researchers publication-title: Journal of biomedical informatics – ident: ref40 doi: 10.1109/ISKE.2008.4731075 – ident: ref3 – volume: vol. 89 start-page: 1644 year: 2014 ident: ref11 article-title: Mayo Clinic Proceedings – ident: ref52 doi: 10.1109/ISMS.2011.27 – start-page: 875 year: 2009 ident: ref24 article-title: Data mining and knowledge discovery handbook – start-page: 1 issue: 193 year: 2015 ident: ref6 article-title: Hypertension-related Mortality in the United States, 2000-2013 publication-title: NCHS data brief – volume: 40 start-page: 1531 issue: 8 year: 2002 ident: ref9 article-title: Journal of the American College of Cardiology publication-title: Journal of the American College of Cardiology – year: 2015 ident: ref15 article-title: Machine learning: an algorithmic perspective – ident: ref25 – volume: 28 start-page: 337 issue: 2 year: 2000 ident: ref30 article-title: Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors) publication-title: The annals of statistics doi: 10.1214/aos/1016218223 – volume: 37 start-page: 456 issue: 8 year: 2014 ident: ref7 article-title: Rationale and design of the Henry Ford Exercise Testing Project (the FIT project) publication-title: Clinical cardiology doi: 10.1002/clc.22302 – volume: 2 start-page: 1 issue: 8 year: 2013 ident: ref19 article-title: The big-data revolution in US health care: Accelerating value and innovation publication-title: Mc Kinsey & Company – year: 2003 ident: ref29 article-title: The handbook of brain theory and neural networks – volume: 8 start-page: e67370 issue: 7 year: 2013 ident: ref49 article-title: Risk models to predict hypertension: a systematic review publication-title: PloS one doi: 10.1371/journal.pone.0067370 – ident: ref38 – volume: 38 start-page: 1075 issue: 6 year: 2015 ident: ref12 article-title: Cardiorespiratory fitness and incident diabetes: the FIT (Henry Ford ExercIse Testing) project publication-title: Diabetes Care doi: 10.2337/dc14-2714 – ident: ref41 doi: 10.1109/ICDAR.1995.598994 – volume: 16 start-page: 321 year: 2002 ident: ref26 article-title: SMOTE: synthetic minority over-sampling technique publication-title: Journal of artificial intelligence research doi: 10.1613/jair.953 – volume: 105 start-page: 1224 issue: 6 year: 2010 ident: ref18 article-title: Machine learning in medicine: a primer for physicians publication-title: The American journal of gastroenterology doi: 10.1038/ajg.2010.173 – volume: 9 start-page: 309 issue: 4 year: 1992 ident: ref33 article-title: A Bayesian method for the induction of probabilistic networks from data publication-title: Machine learning doi: 10.1007/BF00994110 – volume: 85 start-page: 546 issue: 4 year: 1973 ident: ref8 article-title: Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease publication-title: American heart journal doi: 10.1016/0002-8703(73)90502-4 – ident: ref17 doi: 10.2501/IJA-33-1-181-183 – volume: 3 start-page: 1157 issue: Mar year: 2003 ident: ref27 article-title: An introduction to variable and feature selection publication-title: Journal of machine learning research – ident: ref56 – volume: 34 start-page: 754 issue: 1 year: 2008 ident: ref55 article-title: Feature selection for the SVM: An application to hypertension diagnosis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2006.10.010 – year: 2017 ident: ref2 article-title: 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults publication-title: Journal of the American College of Cardiology – volume: 17 start-page: 174 issue: 1 year: 2017 ident: ref21 article-title: Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project publication-title: BMC medical informatics and decision making doi: 10.1186/s12911-017-0566-6 – volume: 44 start-page: 1 issue: 1 year: 2004 ident: ref43 article-title: The problem of overfitting publication-title: Journal of chemical information and computer sciences doi: 10.1021/ci0342472 – volume: 385 start-page: 1183 issue: 9974 year: 2015 ident: ref5 article-title: Liberal versus restrictive blood transfusion strategy: 3-year survival and cause of death results from the FOCUS randomised controlled trial publication-title: The Lancet doi: 10.1016/S0140-6736(14)62286-8 – ident: ref35 – ident: ref31 – volume: 20 start-page: 197 issue: 3 year: 1995 ident: ref48 article-title: Learning Bayesian networks: The combination of knowledge and statistical data publication-title: Machine learning doi: 10.1007/BF00994016 |
| SSID | ssj0053866 |
| Score | 2.5185196 |
| Snippet | This study evaluates and compares the performance of different machine learning techniques on predicting the individuals at risk of developing hypertension,... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0195344 |
| SubjectTerms | Adolescent Adult Aged Aged, 80 and over Algorithms Analysis Area Under Curve Artificial intelligence Artificial neural networks Bayes Theorem Bayesian analysis Biology and Life Sciences Cardiorespiratory fitness Cardiorespiratory Fitness - physiology Cardiovascular disease Computer and Information Sciences Databases, Factual Ecology and Environmental Sciences Electronic health records Exercise Exercise Test - methods Family medical history Female Fitness equipment Health sciences Heart Hospital systems Hospitals Humans Hypertension Hypertension - etiology International conferences Learning algorithms Learning theory Machine Learning Male Mathematical models Medical records Medical research Medicine and Health Sciences Middle Aged Model accuracy Neural networks Neural Networks, Computer Optimization techniques Patients Physical fitness Physical Sciences Predictions Research and Analysis Methods Studies Support Vector Machine Support vector machines Variables Young Adult |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZl6aGX0vQVt0lRodDk4MRrSZbUW1qyNFBCDlvIzUiy3Cwk9mJv-gf6xzMja924BHLp1ZLX2nnI81kz3xDyyWU241YDOlHGp9zXPDXSmNTVSJ_G88r7wDP7Q56fq8tLfXGv1RfmhA30wIPgjg24FDc1d15wwCKV9coyK8EtnfK1CnXkmdRbMDXsweDFRREL5ZicH0e9HK3bxh9hiRzjfPIiCnz94648W1-3_UMh57-Zk_deRYsX5HmMIenJsPYd8sQ3L8lO9NKeHkQq6cNX5E_ICKA3IWPS09gi4hdtG-pCImr396Sd1qsN7nsUk0YpxLJ03eEpDuZF0yuAq11Idm-bLxRsi4bqBroA7EpPsW3TWe_pEik7YPbB4mx5SC-Gjzyvyc_F6fLb9zS2XUhdIfQmtVYbwE1KWMaly7TywmQ6r7QzBQQHdTVnRiFVViV5JSuRw75QsZpJJ1zuGWNvyKwBQe8SWhcqoLqaG9C7tlYZxjUzTAGSYlYlhG11ULrISY6tMa7LcNAmAZsMIi1Rc2XUXELS8a71wMnxyPyvqN5xLjJqhwtgZ2W0s_IxO0vIZzSOEv0eluhMLF-A5yCDVnkimACsBng_IXuTmeCvbjK8i-a1XWlf4ucnPN_VGdy5NbmHhz-Ow_ijmB7X-PZ2mAO4D6w-IW8HCx3_bQ6AVgGESoic2O5EHNORZnUViMaFhuBb5O_-h_zek2cQayo8iJurPTLbdLd-nzx1vzervvsQvPcOa5pOnQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVg4cAFKF8NFGQkJNpDSjZ21jYXVFBXVELVHhapt8h2nHalkoRkyx_gjzPjOClBFRy4rifZJJ4Zz_OM3xDyxiYm4UYBOpHaxdyVPNZC69iWSJ_G08I5zzP7RZyeyrMztQobbl0oqxx8onfURW1xj9yDdMyCqeRD8z3GrlGYXQ0tNG6TO8iSkPrSvdXgicGWF4twXI6J-bswO4dNXblDPCjHOJ8sR561f_TNs-ay7m4KPP-sn_xtQVo--N9XeUjuh1CUHvW6s0NuueoR2QnG3tH9wEh98Jj89IUF9JsvvHQ0dJo4p3VFra9nba8T9rTcbNF9Uqw9pRAS06bFZBCWV9MLQL2tr5mvq_cUVJT6QxJ0CRCYHmP3p5PO0TUyf4D0_vJkfUBX_V7RE_J1ebz-9DkO3Rtiu8jUNjZGaYBfMjOMC5so6TKdqLRQVi8gxiiLOdMSGbcKwQtRZCm4l4KVTNjMpo4x9pTMKpipXULLhfTgsOQa1EcZIzXjimkmAZAxIyPChknMbaA2xw4bl7nP1wmAOP0nzXHq8zD1EYnHq5qe2uMf8h9RP0ZZJOb2P9TteR7sPNewAnBdcusyDtC5ME4aZgSsIla6UoqIvEXtytF9wCNaHU5BwP8gEVd-lLEMIJ9kILk3kQSzt5PhXdTP4Um7_Fqr4MpB724efj0O402xyq5y9VUvA_ARzCYiz3oVH982BVwsAYlFREyUf_I5piPV5sLzlWcKYvgsff73x3pB7kEwKjFTN5d7ZLZtr9xLctf-2G669pU37F9v7lrd priority: 102 providerName: ProQuest |
| Title | Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford ExercIse Testing (FIT) Project |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29668729 https://www.proquest.com/docview/2027035090 https://www.proquest.com/docview/2027585386 https://pubmed.ncbi.nlm.nih.gov/PMC5905952 https://doaj.org/article/a2194af4ce54409dbe8b3b7addc8ef87 http://dx.doi.org/10.1371/journal.pone.0195344 |
| Volume | 13 |
| WOSCitedRecordID | wos000430290200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: P5Z dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M0K dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7P dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7S dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PATMY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KB. dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7RV dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PIMPY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: FPL dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELdYxwMvwPi3wqiMhMT2kC2NndjmbZ1aUW2rolFQ4SWyHYdVGmnVdnwBvjh3TtqRaRPi5R7qc-te7i73853PhLy3oQm5UYBOpHYBdwUPtNA6sAW2T-NR7pzvM3smRiM5maj0BijeyuAz0T2qZXo4n5XuEI-3Mc63yHbEkgSvahikZ2vPC7abJPXxuPtmNl4_vkv_xhe35lez5V2B5u16yb9eQIMn_7v0p-RxHWrS40o3dsgDVz4jO7UxL-l-3XH64Dn57QsH6E9fWOlofZPEDzorqfX1qoubhDwtpit0jxRrSymEvHS-wGQPlk_TS0C1C18TPys_UlBB6g9B0AFAXNrH252GS0fH2NkDuPcHw_EBTau9oBfky6A_PvkU1LczBDaJ1SowRmmAVzI2jAsbKuliHaooV1YnEEMUeZdpiR21csFzkccRuI-cFUzY2EaOMfaStEoQzC6hRSI9-Cu4BvVQxkjNuGKaSQBczMg2YeuHltm6dTneoHGV-XycAAhTiTRDSWe1pNsk2MyaV607_sHfQ33Y8GLjbf8BPNKstuNMg4fnuuDWxRygcW6cNMwIeEtY6Qop2uQDalOG7gGWaHV9ygF-BxttZccxiwHSSQacew1OMGvbGN5FfVyvdJnhLhWmgVUIM9c6evfwu80wfilW0ZVudl3xADwEM2mTV5VKb_5tBLhXAtJqE9FQ9oY4miPl9NL3I48VxOhx9Pr-Fb8hjyDQlJiF68o90lotrt1b8tD-Wk2Xiw7ZEhdfkU6EpxKoPOl2yHavP0ovOn6fpONNHehp7xDoeXiKVKSefgaaxt9hRjo8T7_9AZa9VdU |
| linkProvider | Public Library of Science |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFLemggQXYHwtMMBIILZDRho7tY2E0IBVq9pVOxRpt8xxnK3SSErSgTjz__A38p6TdARNcNqBa_3SOu7vveef_T4IeWGCJOCJAnYitfW5zbivhda-ybB8Gg9Ta12d2YmYTuXRkTpcIz_bXBgMq2xtojPUaWHwjNyRdLwFU8G7xRcfu0bh7WrbQqOGxdh-_waUrXo7-gj_78swHO7NPuz7TVcB3wwitfSTRGmgBTJKGBcmUNJGOlBhqowegO_L0j7TEitBpYKnIo1CgH3KMiZMZELL8AAUTP41DsQLQ8gOgnFr-cF2DAZNeh4T_dcNGnYWRW53MDGPcd5xf65LwMoX9BZnRXXZRvfPeM3fHODw9v-2dHfIrWarTXdr3Vgnaza_S9YbY1bRrabi9vY98sMFTtDPLrDU0qaTxgktcmpcvG55EZBAs_kS3QPF2FoKW366KPGyC8PH6Smw-tLlBBT5GwoqSF0SCB3CS9M97G41qiydYWUTkN4ajmbb9LA-C7tPPl3JYjwgvRyQsUFoNpCO_GZcg3qoJJGaccU0k0A4WSI9wlrQxKYp3Y4dRM5idx8pgMLVSxoj1OIGah7xV08t6tIl_5B_j3hcyWLhcfdBUZ7EjR2LNXg4rjNubAQaoNLEyoQlArykkTaTwiOvEM0xmkeYotFNlgf8DhYai3cjFgGllQwkNzuSYNZMZ3gD9aGdaRVfoBiebHF--fDz1TB-KUYR5rY4r2WAHoOaeuRhrVKrtw2B90tgmh4RHWXrLEd3JJ-funrskQKOEoWP_j6tZ-TG_uxgEk9G0_FjchM23hJvJftyk_SW5bl9Qq6br8t5VT51RoWS46tWxV9GELXu |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFLemghAXYHytMMBIILZDtjR2YhsJocFWUW2qeijSbsFxnK3SSErTgTjzX_HX8Z7jdARNcNqBa_3SOu778M_-vfcIeWHCLOSZAnQitQ24LXighdaBKbB8Go9ya12d2SMxHsvjYzVZIz_bXBikVbY-0TnqvDJ4Ru5AOt6CqXC38LSIyf7w7fxLgB2k8Ka1bafRqMih_f4N4Fv9ZrQP__XLKBoeTN9_CHyHgcAksVoGWaY0QAQZZ4wLEyppYx2qKFdGJxAHi3zAtMSqULngucjjCEwgZwUTJjaRZXgYCu7_muBJGDna4KSNAuBHksSn6jEx2PWasTOvSruDSXqM804odB0DVnGhNz-r6ss2vX9yN38LhsPb__My3iG3_Bac7jU2s07WbHmXrHsnV9MtX4l7-x754QgV9LMjnFrqO2yc0KqkxvF4FxdEBVrMlhg2KHJuKUABOl_gJRjSyukpoP2FyxWoytcUTJO65BA6hJemB9j1alRbOsWKJyC9NRxNt-mkOSO7Tz5eyWI8IL0StGSD0CKRDhQXXIPZqCyTmnHFNJMARFkm-4S1CpQaX9IdO4ucpe6eUgC0a5Y0RbVLvdr1SbB6at6UNPmH_DvUzZUsFiR3H1SLk9T7t1RD5OO64MbGnIcqz6zMWCYgehppCyn65BVqdopuE6ZotM_-gN_BAmTpXsxigLqSgeRmRxLcnekMb6BttDOt0wuNhidbnb98-PlqGL8U2YWlrc4bGYDNYLJ98rAxr9XbRipJJCDQPhEdw-ssR3eknJ26Ou2xAuwSR4_-Pq1n5AZYYHo0Gh8-JjdhPy7xsnIgN0lvuTi3T8h183U5qxdPnX-h5NNVW-Ive_6-xQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+machine+learning+on+cardiorespiratory+fitness+data+for+predicting+hypertension%3A+The+Henry+Ford+ExercIse+Testing+%28FIT%29+Project&rft.jtitle=PloS+one&rft.au=Sakr%2C+Sherif&rft.au=Elshawi%2C+Radwa&rft.au=Ahmed%2C+Amjad&rft.au=Qureshi%2C+Waqas&rft.date=2018-04-18&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=13&rft.issue=4&rft_id=info:doi/10.1371%2Fjournal.pone.0195344&rft.externalDocID=2027035090 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |