Dysgraphia detection through machine learning
Dysgraphia, a disorder affecting the written expression of symbols and words, negatively impacts the academic results of pupils as well as their overall well-being. The use of automated procedures can make dysgraphia testing available to larger populations, thereby facilitating early intervention fo...
Saved in:
| Published in: | Scientific reports Vol. 10; no. 1; pp. 21541 - 11 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
09.12.2020
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Dysgraphia, a disorder affecting the written expression of symbols and words, negatively impacts the academic results of pupils as well as their overall well-being. The use of automated procedures can make dysgraphia testing available to larger populations, thereby facilitating early intervention for those who need it. In this paper, we employed a machine learning approach to identify handwriting deteriorated by dysgraphia. To achieve this goal, we collected a new handwriting dataset consisting of several handwriting tasks and extracted a broad range of features to capture different aspects of handwriting. These were fed to a machine learning algorithm to predict whether handwriting is affected by dysgraphia. We compared several machine learning algorithms and discovered that the best results were achieved by the adaptive boosting (AdaBoost) algorithm. The results show that machine learning can be used to detect dysgraphia with almost 80% accuracy, even when dealing with a heterogeneous set of subjects differing in age, sex and handedness. |
|---|---|
| AbstractList | Dysgraphia, a disorder affecting the written expression of symbols and words, negatively impacts the academic results of pupils as well as their overall well-being. The use of automated procedures can make dysgraphia testing available to larger populations, thereby facilitating early intervention for those who need it. In this paper, we employed a machine learning approach to identify handwriting deteriorated by dysgraphia. To achieve this goal, we collected a new handwriting dataset consisting of several handwriting tasks and extracted a broad range of features to capture different aspects of handwriting. These were fed to a machine learning algorithm to predict whether handwriting is affected by dysgraphia. We compared several machine learning algorithms and discovered that the best results were achieved by the adaptive boosting (AdaBoost) algorithm. The results show that machine learning can be used to detect dysgraphia with almost 80% accuracy, even when dealing with a heterogeneous set of subjects differing in age, sex and handedness. Abstract Dysgraphia, a disorder affecting the written expression of symbols and words, negatively impacts the academic results of pupils as well as their overall well-being. The use of automated procedures can make dysgraphia testing available to larger populations, thereby facilitating early intervention for those who need it. In this paper, we employed a machine learning approach to identify handwriting deteriorated by dysgraphia. To achieve this goal, we collected a new handwriting dataset consisting of several handwriting tasks and extracted a broad range of features to capture different aspects of handwriting. These were fed to a machine learning algorithm to predict whether handwriting is affected by dysgraphia. We compared several machine learning algorithms and discovered that the best results were achieved by the adaptive boosting (AdaBoost) algorithm. The results show that machine learning can be used to detect dysgraphia with almost 80% accuracy, even when dealing with a heterogeneous set of subjects differing in age, sex and handedness. Dysgraphia, a disorder affecting the written expression of symbols and words, negatively impacts the academic results of pupils as well as their overall well-being. The use of automated procedures can make dysgraphia testing available to larger populations, thereby facilitating early intervention for those who need it. In this paper, we employed a machine learning approach to identify handwriting deteriorated by dysgraphia. To achieve this goal, we collected a new handwriting dataset consisting of several handwriting tasks and extracted a broad range of features to capture different aspects of handwriting. These were fed to a machine learning algorithm to predict whether handwriting is affected by dysgraphia. We compared several machine learning algorithms and discovered that the best results were achieved by the adaptive boosting (AdaBoost) algorithm. The results show that machine learning can be used to detect dysgraphia with almost 80% accuracy, even when dealing with a heterogeneous set of subjects differing in age, sex and handedness.Dysgraphia, a disorder affecting the written expression of symbols and words, negatively impacts the academic results of pupils as well as their overall well-being. The use of automated procedures can make dysgraphia testing available to larger populations, thereby facilitating early intervention for those who need it. In this paper, we employed a machine learning approach to identify handwriting deteriorated by dysgraphia. To achieve this goal, we collected a new handwriting dataset consisting of several handwriting tasks and extracted a broad range of features to capture different aspects of handwriting. These were fed to a machine learning algorithm to predict whether handwriting is affected by dysgraphia. We compared several machine learning algorithms and discovered that the best results were achieved by the adaptive boosting (AdaBoost) algorithm. The results show that machine learning can be used to detect dysgraphia with almost 80% accuracy, even when dealing with a heterogeneous set of subjects differing in age, sex and handedness. |
| ArticleNumber | 21541 |
| Author | Dobeš, Marek Drotár, Peter |
| Author_xml | – sequence: 1 givenname: Peter orcidid: 0000-0002-6634-4696 surname: Drotár fullname: Drotár, Peter organization: Department of Computers and Informatics, Technical University of Košice – sequence: 2 givenname: Marek surname: Dobeš fullname: Dobeš, Marek email: dobes@saske.sk organization: Centre for Social and Psychological Sciences, Slovak Academy of Sciences |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33299092$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1vFSEYhYmpsbX2D7gwN3HjZpSPYeDdmJj61aSJG10ThnmZ4WYuXGGuSf-9tFNr20XZQOA5hwPnJTmKKSIhrxl9z6jQH0rLJOiGctoo3THWwDNywmkrGy44P7q3PiZnpWxpHZJDy-AFORaCA1DgJ6T5fFXGbPdTsJsBF3RLSHGzTDkdxmmzs24KETcz2hxDHF-R597OBc9u51Py6-uXn-ffm8sf3y7OP102rpOwNECdRGE9yoHzbhACW_BaWem5tt773jo1eCZQag-d64F5KSVT1rbSW3TilFysvkOyW7PPYWfzlUk2mJuNlEdj8xLcjMZyjeBoP2jHW-VE36ODQclBOY60x-r1cfXaH_odDg7jku38wPThSQyTGdMfoxSXALwavLs1yOn3ActidqE4nGcbMR2K4W0HVANjXUXfPkK36ZBj_apKKcEpKKYq9eZ-orso_1qpAF8Bl1MpGf0dwqi5bt-s7Zvavrlp30AV6UciFxZ7XWd9VZiflopVWuo9ccT8P_YTqr9EiMR- |
| CitedBy_id | crossref_primary_10_1007_s10439_025_03820_0 crossref_primary_10_1007_s10032_024_00464_z crossref_primary_10_1016_j_neubiorev_2022_105021 crossref_primary_10_3390_children10071096 crossref_primary_10_3390_life13030598 crossref_primary_10_1007_s00542_024_05741_9 crossref_primary_10_1109_ACCESS_2025_3593240 crossref_primary_10_57197_JDR_2024_0010 crossref_primary_10_1016_j_eswa_2023_120328 crossref_primary_10_1080_19404158_2024_2326686 crossref_primary_10_1016_j_sna_2025_116287 crossref_primary_10_3233_JIFS_221708 crossref_primary_10_1016_j_eswa_2023_120740 crossref_primary_10_3390_app13074275 crossref_primary_10_1007_s12559_024_10360_7 crossref_primary_10_5014_ajot_2023_050029 crossref_primary_10_3390_children10121925 crossref_primary_10_3390_s21217026 crossref_primary_10_1007_s11042_021_11806_y crossref_primary_10_3389_fpsyt_2021_596055 crossref_primary_10_1016_j_bspc_2025_108560 crossref_primary_10_3390_s24196357 crossref_primary_10_3389_frai_2025_1426455 crossref_primary_10_1038_s41598_023_37253_3 crossref_primary_10_1016_j_dib_2024_110534 crossref_primary_10_1177_1932202X251348549 crossref_primary_10_1007_s42979_025_03825_5 crossref_primary_10_1080_19404158_2021_1999997 crossref_primary_10_1016_j_procs_2024_09_186 crossref_primary_10_3389_frobt_2023_1193388 crossref_primary_10_1038_s41598_022_26038_9 crossref_primary_10_3390_s23115215 crossref_primary_10_1016_j_bspc_2023_104715 crossref_primary_10_1109_ACCESS_2025_3606359 crossref_primary_10_1007_s42979_025_03927_0 |
| Cites_doi | 10.23919/MIPRO.2019.8756872 10.17239/jowr-2017.09.01.01 10.1109/IECBES.2018.8626700 10.1111/dmcn.12310 10.1016/S0004-3702(97)00043-X 10.1016/j.cmpb.2019.03.005 10.1093/brain/awv348 10.1109/ICUMT48472.2019.8970811 10.1515/9783110670905-005 10.1109/THMS.2016.2586605 10.1038/s41746-019-0114-0 10.1038/s41746-018-0049-x 10.1002/mds.25990 10.1371/journal.pone.0237575 10.1080/02643294.2017.1376630 10.1109/ICIIS47346.2019.9063301 10.1016/j.humov.2006.07.005 10.1016/j.inffus.2020.07.007 10.1007/s11145-015-9565-0 10.1109/ICAIIT.2019.8834520 10.1016/j.knosys.2018.10.004 10.1016/j.ridd.2013.06.005 10.5014/ajot.63.2.182 10.1023/A:1010933404324 10.1016/j.cortex.2009.08.016 10.1016/j.humov.2013.11.005 10.1080/02643294.2017.1369016 10.1016/j.ridd.2013.09.012 10.1016/j.cortex.2010.09.003 10.3389/fpsyg.2016.00527 10.1109/ICITISEE.2017.8285552 10.1109/TNSRE.2014.2359997 10.1109/THMS.2016.2628799 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-020-78611-9 |
| DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 11 |
| ExternalDocumentID | oai_doaj_org_article_a28e9c0bd8c247c3bbec9d75d7c2e0be PMC7725992 33299092 10_1038_s41598_020_78611_9 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: This work was supported by the Slovak Research and Development Agency under the contract No. APVV-16-0211. – fundername: This work was supported by the Slovak Research and Development Agency under the contract No. APVV-16-0211 and by the Scientific grant agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and of Slovak Academy of Sciences VEGA under contract no. VEGA 2/0043/17. – fundername: ; |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c659t-90c5e3afe5d226d33e49f87a5f28afffbac7df13e58f96cb91f55517aa45faec3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000608953600050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 19:07:57 EDT 2025 Tue Nov 04 01:57:37 EST 2025 Sun Nov 09 08:59:49 EST 2025 Tue Oct 07 08:23:33 EDT 2025 Thu Jan 02 22:57:29 EST 2025 Sat Nov 29 04:03:02 EST 2025 Tue Nov 18 21:30:38 EST 2025 Fri Feb 21 02:38:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c659t-90c5e3afe5d226d33e49f87a5f28afffbac7df13e58f96cb91f55517aa45faec3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6634-4696 |
| OpenAccessLink | https://doaj.org/article/a28e9c0bd8c247c3bbec9d75d7c2e0be |
| PMID | 33299092 |
| PQID | 2473209717 |
| PQPubID | 2041939 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a28e9c0bd8c247c3bbec9d75d7c2e0be pubmedcentral_primary_oai_pubmedcentral_nih_gov_7725992 proquest_miscellaneous_2469089116 proquest_journals_2473209717 pubmed_primary_33299092 crossref_primary_10_1038_s41598_020_78611_9 crossref_citationtrail_10_1038_s41598_020_78611_9 springer_journals_10_1038_s41598_020_78611_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-09 |
| PublicationDateYYYYMMDD | 2020-12-09 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | McCloskeyMRappBDevelopmental dysgraphia: An overview and framework for researchCogn. Neuropsychol.201734658210.1080/02643294.2017.1369016 Van Hoorn, J. F., Maathuis, C. G. B. & Hadders-Algra, M. Neural correlates of paediatric dysgraphia. Dev. Med. Child Neurol.55, 65–68. Saha, R., Mukherjee, A., Sarkar, A. & Dey, S. 5 Extraction of Common Feature of Dysgraphia Patients by Handwriting Analysis Using Variational Autoencoder, 85–104 (De Gruyter, Berlin, Boston, 2020). Engel-Yeger, B., Nagauker-Yanuv, L. & Rosenblum, S. Handwriting performance, self-reports, and perceived self-efficacy among children with dysgraphia. Am. J. Occup. Ther.63, (2009). MekyskaJIdentification and rating of developmental dysgraphia by handwriting analysisIEEE Trans. Hum. Mach. Syst.20174723524810.1109/THMS.2016.2586605 RosenblumSDvorkinAYWeissPLAutomatic segmentation as a tool for examining the handriting process of children with dysgraphic and proficient handwritingHum. Mov. Sci.20062560862110.1016/j.humov.2006.07.005 ZhuJZouHRossetSHastieTMulti-class adaboost. Statistics and itsInterface2009234936025400921245.62080 Paz-VillagránVDannaJVelayJ-LLifts and stops in proficient and dysgraphic handwritingHum. Mov. Sci.20143338139410.1016/j.humov.2013.11.005 DannaJPaz-VillagránVVelayJ-LSignal-to-noise velocity peaks difference: A new method for evaluating the handwriting movement fluency in children with dysgraphiaRes. Dev. Disabil.2013344375438410.1016/j.ridd.2013.09.012 Kurniawan, D. A., Sihwi, S. W. & Gunarhadi. An expert system for diagnosing dysgraphia. In 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), 468–472 (2017). DrotárPDecision support framework for Parkinson’s disease based on novel handwriting markersIEEE Trans. Neural Syst. Rehabil. Eng.20142350851625265632 LetanneuxADannaJVelayJ-LVialletFPintoSFrom micrographia to Parkinson’s disease dysgraphiaMov. Disord.2014291467147510.1002/mds.25990 Samodro, P. W., Sihwi, S. W. & Winarno. Backpropagation implementation to classify dysgraphia in children. In 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT), 437–442 (2019). KohaviRJohnGHWrappers for feature subset selectionArtif. Intell.19979727332410.1016/S0004-3702(97)00043-X AsselbornTAutomated human-level diagnosis of dysgraphia using a consumer tabletNPJ Digit. Med.201814210.1038/s41746-018-0049-x RosenblumSDrorGIdentifying developmental dysgraphia characteristics utilizing handwriting classification methodsIEEE Trans. Hum. Mach. Syst.20174729329810.1109/THMS.2016.2628799 PruntyMBarnettALUnderstanding handwriting difficulties: A comparison of children with and without motor impairmentCogn. Neuropsychol.20173420521810.1080/02643294.2017.1376630 MaatenLHintonGVisualizing data using t-SNEJ. Mach. Learn. Res.20082008257926051225.68219 Rios-UrregoCAnalysis and evaluation of handwriting in patients with Parkinson’s disease using kinematic, geometrical, and non-linear featuresComput. Methods Prog. Biomed.201917343521:STN:280:DC%2BB3M7hs1Wjsg%3D%3D10.1016/j.cmpb.2019.03.005 PruntyMMBarnettALWilmutKPlumbMSHandwriting speed in children with developmental coordination disorder: Are they really slower?Res. Dev. Disabil.2013342927293610.1016/j.ridd.2013.06.005 VapnikVStatistical Learning Theory19981LondonWilley0935.62007 PedregosaFScikit-learn: Machine learning in PythonJ. Mach. Learn. Res.2011122825283028543481280.68189 DeschampsLMethodological issues in the creation of a diagnosis tool for dysgraphiaNPJ Digit. Med.201923610.1038/s41746-019-0114-0 RappBPurcellJHillisAECapassoRMiceliGNeural bases of orthographic long-term memory and working memory in dysgraphiaBrain201513958860410.1093/brain/awv348 BugataPDrotarPWeighted nearest neighbors feature selectionKnowl. Based Syst.201916374976110.1016/j.knosys.2018.10.004 BreimanLRandom forestsMach. Learn.20014553210.1023/A:1010933404324 AngelelliPSpelling impairments in Italian dyslexic children with and without a history of early language delay. Are there any differences?Front. Psychol.2016752710.3389/fpsyg.2016.00527 NicolsonRIFawcettAJDyslexia, dysgraphia, procedural learning and the cerebellumCortex20114711712710.1016/j.cortex.2009.08.016 BerningerVWRichardsTAbbottRDDifferential diagnosis of dysgraphia, dyslexia, and owl ld: Behavioral and neuroimaging evidenceRead. Writ.2015281119115310.1007/s11145-015-9565-0 Kariyawasam, R. et al. Pubudu: Deep learning based screening and intervention of dyslexia, dysgraphia and dyscalculia. In 2019 14th Conference on Industrial and Information Systems (ICIIS), 476–481 (2019). Zvoncak, V. et al. Fractional order derivatives evaluation in computerized assessment of handwriting difficulties in school-aged children. In 2019 11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 1–6 (2019). RichardsRGThe Source for Dyslexia and Dysgraphia1999East MolineLinguiSystems ZoccolottiPFriedmannNFrom dyslexia to dyslexias, from dysgraphia to dysgraphias, from a cause to causes: A look at current research on developmental dyslexia and dysgraphiaCortex2010461211121510.1016/j.cortex.2010.09.003 BeersSFMickailTAbbottRBerningerVEffects of transcription ability and transcription mode on translation: Evidence from written compositions, language bursts and pauses when students in grades 4 to 9, with and without persisting dyslexia or dysgraphia, compose by pen or by keyboardJ. Writ. Res.2017912510.17239/jowr-2017.09.01.01 Mahmoodin, Z., Y. Lee, K., Mansor, W. & Ahmad Zainuddin, A. Z. Support vector machine with theta-beta band power features generated from writing of dyslexic children. Int. J. Integr. Eng.11 (2019). Zainuddin, A. Z. A., Lee, K. Y., Mansor, W. & Mahmoodin, Z. Extreme learning machine for distinction of eeg signal pattern of dyslexic children in writing. In 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), 652–656 (2018). GargotTAcquisition of handwriting in children with and without dysgraphia: A computational approachPLoS One20201512210.1371/journal.pone.0237575 Zvoncak, V., Mekyska, J., Safarova, K., Smekal, Z. & Brezany, P. New approach of dysgraphic handwriting analysis based on the tunable q-factor wavelet transform. In 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 289–294 (2019). GonzálezSGarcíaSDel SerJRokachLHerreraFA practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunitiesInf. Fus.20206420523710.1016/j.inffus.2020.07.007 OlsonRSMooreJHTPOT: A Tree-Based Pipeline Optimization Tool for Automating Machine Learning, 151–1602019ChamSpringer International Publishing P Angelelli (78611_CR14) 2016; 7 J Zhu (78611_CR32) 2009; 2 SF Beers (78611_CR15) 2017; 9 V Vapnik (78611_CR34) 1998 RG Richards (78611_CR3) 1999 J Danna (78611_CR17) 2013; 34 P Zoccolotti (78611_CR8) 2010; 46 78611_CR21 78611_CR22 RS Olson (78611_CR31) 2019 78611_CR23 P Bugata (78611_CR29) 2019; 163 M McCloskey (78611_CR10) 2017; 34 78611_CR24 78611_CR25 78611_CR26 L Maaten (78611_CR28) 2008; 2008 RI Nicolson (78611_CR4) 2011; 47 MM Prunty (78611_CR6) 2013; 34 T Gargot (78611_CR35) 2020; 15 VW Berninger (78611_CR7) 2015; 28 B Rapp (78611_CR40) 2015; 139 78611_CR20 S Rosenblum (78611_CR2) 2006; 25 A Letanneux (78611_CR11) 2014; 29 L Deschamps (78611_CR39) 2019; 2 S González (78611_CR36) 2020; 64 F Pedregosa (78611_CR30) 2011; 12 V Paz-Villagrán (78611_CR16) 2014; 33 C Rios-Urrego (78611_CR27) 2019; 173 L Breiman (78611_CR33) 2001; 45 M Prunty (78611_CR5) 2017; 34 S Rosenblum (78611_CR19) 2017; 47 J Mekyska (78611_CR18) 2017; 47 78611_CR13 78611_CR38 78611_CR1 P Drotár (78611_CR12) 2014; 23 T Asselborn (78611_CR9) 2018; 1 R Kohavi (78611_CR37) 1997; 97 |
| References_xml | – reference: AsselbornTAutomated human-level diagnosis of dysgraphia using a consumer tabletNPJ Digit. Med.201814210.1038/s41746-018-0049-x – reference: AngelelliPSpelling impairments in Italian dyslexic children with and without a history of early language delay. Are there any differences?Front. Psychol.2016752710.3389/fpsyg.2016.00527 – reference: OlsonRSMooreJHTPOT: A Tree-Based Pipeline Optimization Tool for Automating Machine Learning, 151–1602019ChamSpringer International Publishing – reference: Rios-UrregoCAnalysis and evaluation of handwriting in patients with Parkinson’s disease using kinematic, geometrical, and non-linear featuresComput. Methods Prog. Biomed.201917343521:STN:280:DC%2BB3M7hs1Wjsg%3D%3D10.1016/j.cmpb.2019.03.005 – reference: Kariyawasam, R. et al. Pubudu: Deep learning based screening and intervention of dyslexia, dysgraphia and dyscalculia. In 2019 14th Conference on Industrial and Information Systems (ICIIS), 476–481 (2019). – reference: BeersSFMickailTAbbottRBerningerVEffects of transcription ability and transcription mode on translation: Evidence from written compositions, language bursts and pauses when students in grades 4 to 9, with and without persisting dyslexia or dysgraphia, compose by pen or by keyboardJ. Writ. Res.2017912510.17239/jowr-2017.09.01.01 – reference: ZhuJZouHRossetSHastieTMulti-class adaboost. Statistics and itsInterface2009234936025400921245.62080 – reference: VapnikVStatistical Learning Theory19981LondonWilley0935.62007 – reference: Engel-Yeger, B., Nagauker-Yanuv, L. & Rosenblum, S. Handwriting performance, self-reports, and perceived self-efficacy among children with dysgraphia. Am. J. Occup. Ther.63, (2009). – reference: RosenblumSDvorkinAYWeissPLAutomatic segmentation as a tool for examining the handriting process of children with dysgraphic and proficient handwritingHum. Mov. Sci.20062560862110.1016/j.humov.2006.07.005 – reference: DannaJPaz-VillagránVVelayJ-LSignal-to-noise velocity peaks difference: A new method for evaluating the handwriting movement fluency in children with dysgraphiaRes. Dev. Disabil.2013344375438410.1016/j.ridd.2013.09.012 – reference: Zvoncak, V., Mekyska, J., Safarova, K., Smekal, Z. & Brezany, P. New approach of dysgraphic handwriting analysis based on the tunable q-factor wavelet transform. In 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 289–294 (2019). – reference: MaatenLHintonGVisualizing data using t-SNEJ. Mach. Learn. Res.20082008257926051225.68219 – reference: PruntyMMBarnettALWilmutKPlumbMSHandwriting speed in children with developmental coordination disorder: Are they really slower?Res. Dev. Disabil.2013342927293610.1016/j.ridd.2013.06.005 – reference: LetanneuxADannaJVelayJ-LVialletFPintoSFrom micrographia to Parkinson’s disease dysgraphiaMov. Disord.2014291467147510.1002/mds.25990 – reference: RichardsRGThe Source for Dyslexia and Dysgraphia1999East MolineLinguiSystems – reference: Van Hoorn, J. F., Maathuis, C. G. B. & Hadders-Algra, M. Neural correlates of paediatric dysgraphia. Dev. Med. Child Neurol.55, 65–68. – reference: Kurniawan, D. A., Sihwi, S. W. & Gunarhadi. An expert system for diagnosing dysgraphia. In 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), 468–472 (2017). – reference: Mahmoodin, Z., Y. Lee, K., Mansor, W. & Ahmad Zainuddin, A. Z. Support vector machine with theta-beta band power features generated from writing of dyslexic children. Int. J. Integr. Eng.11 (2019). – reference: GargotTAcquisition of handwriting in children with and without dysgraphia: A computational approachPLoS One20201512210.1371/journal.pone.0237575 – reference: NicolsonRIFawcettAJDyslexia, dysgraphia, procedural learning and the cerebellumCortex20114711712710.1016/j.cortex.2009.08.016 – reference: GonzálezSGarcíaSDel SerJRokachLHerreraFA practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunitiesInf. Fus.20206420523710.1016/j.inffus.2020.07.007 – reference: BerningerVWRichardsTAbbottRDDifferential diagnosis of dysgraphia, dyslexia, and owl ld: Behavioral and neuroimaging evidenceRead. Writ.2015281119115310.1007/s11145-015-9565-0 – reference: PruntyMBarnettALUnderstanding handwriting difficulties: A comparison of children with and without motor impairmentCogn. Neuropsychol.20173420521810.1080/02643294.2017.1376630 – reference: Paz-VillagránVDannaJVelayJ-LLifts and stops in proficient and dysgraphic handwritingHum. Mov. Sci.20143338139410.1016/j.humov.2013.11.005 – reference: DrotárPDecision support framework for Parkinson’s disease based on novel handwriting markersIEEE Trans. Neural Syst. Rehabil. Eng.20142350851625265632 – reference: RosenblumSDrorGIdentifying developmental dysgraphia characteristics utilizing handwriting classification methodsIEEE Trans. Hum. Mach. Syst.20174729329810.1109/THMS.2016.2628799 – reference: MekyskaJIdentification and rating of developmental dysgraphia by handwriting analysisIEEE Trans. Hum. Mach. Syst.20174723524810.1109/THMS.2016.2586605 – reference: RappBPurcellJHillisAECapassoRMiceliGNeural bases of orthographic long-term memory and working memory in dysgraphiaBrain201513958860410.1093/brain/awv348 – reference: Samodro, P. W., Sihwi, S. W. & Winarno. Backpropagation implementation to classify dysgraphia in children. In 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT), 437–442 (2019). – reference: Zvoncak, V. et al. Fractional order derivatives evaluation in computerized assessment of handwriting difficulties in school-aged children. In 2019 11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 1–6 (2019). – reference: DeschampsLMethodological issues in the creation of a diagnosis tool for dysgraphiaNPJ Digit. Med.201923610.1038/s41746-019-0114-0 – reference: BugataPDrotarPWeighted nearest neighbors feature selectionKnowl. Based Syst.201916374976110.1016/j.knosys.2018.10.004 – reference: KohaviRJohnGHWrappers for feature subset selectionArtif. Intell.19979727332410.1016/S0004-3702(97)00043-X – reference: BreimanLRandom forestsMach. Learn.20014553210.1023/A:1010933404324 – reference: Zainuddin, A. Z. A., Lee, K. Y., Mansor, W. & Mahmoodin, Z. Extreme learning machine for distinction of eeg signal pattern of dyslexic children in writing. In 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), 652–656 (2018). – reference: PedregosaFScikit-learn: Machine learning in PythonJ. Mach. Learn. Res.2011122825283028543481280.68189 – reference: Saha, R., Mukherjee, A., Sarkar, A. & Dey, S. 5 Extraction of Common Feature of Dysgraphia Patients by Handwriting Analysis Using Variational Autoencoder, 85–104 (De Gruyter, Berlin, Boston, 2020). – reference: ZoccolottiPFriedmannNFrom dyslexia to dyslexias, from dysgraphia to dysgraphias, from a cause to causes: A look at current research on developmental dyslexia and dysgraphiaCortex2010461211121510.1016/j.cortex.2010.09.003 – reference: McCloskeyMRappBDevelopmental dysgraphia: An overview and framework for researchCogn. Neuropsychol.201734658210.1080/02643294.2017.1369016 – ident: 78611_CR24 doi: 10.23919/MIPRO.2019.8756872 – volume: 9 start-page: 1 year: 2017 ident: 78611_CR15 publication-title: J. Writ. Res. doi: 10.17239/jowr-2017.09.01.01 – volume: 2 start-page: 349 year: 2009 ident: 78611_CR32 publication-title: Interface – ident: 78611_CR26 doi: 10.1109/IECBES.2018.8626700 – ident: 78611_CR13 doi: 10.1111/dmcn.12310 – volume: 97 start-page: 273 year: 1997 ident: 78611_CR37 publication-title: Artif. Intell. doi: 10.1016/S0004-3702(97)00043-X – ident: 78611_CR25 – volume: 173 start-page: 43 year: 2019 ident: 78611_CR27 publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2019.03.005 – volume: 139 start-page: 588 year: 2015 ident: 78611_CR40 publication-title: Brain doi: 10.1093/brain/awv348 – ident: 78611_CR23 doi: 10.1109/ICUMT48472.2019.8970811 – ident: 78611_CR38 doi: 10.1515/9783110670905-005 – volume: 47 start-page: 235 year: 2017 ident: 78611_CR18 publication-title: IEEE Trans. Hum. Mach. Syst. doi: 10.1109/THMS.2016.2586605 – volume: 2 start-page: 36 year: 2019 ident: 78611_CR39 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-019-0114-0 – volume: 1 start-page: 42 year: 2018 ident: 78611_CR9 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-018-0049-x – volume: 29 start-page: 1467 year: 2014 ident: 78611_CR11 publication-title: Mov. Disord. doi: 10.1002/mds.25990 – volume-title: TPOT: A Tree-Based Pipeline Optimization Tool for Automating Machine Learning, 151–160 year: 2019 ident: 78611_CR31 – volume: 15 start-page: 1 year: 2020 ident: 78611_CR35 publication-title: PLoS One doi: 10.1371/journal.pone.0237575 – volume: 34 start-page: 205 year: 2017 ident: 78611_CR5 publication-title: Cogn. Neuropsychol. doi: 10.1080/02643294.2017.1376630 – volume-title: The Source for Dyslexia and Dysgraphia year: 1999 ident: 78611_CR3 – ident: 78611_CR22 doi: 10.1109/ICIIS47346.2019.9063301 – volume: 25 start-page: 608 year: 2006 ident: 78611_CR2 publication-title: Hum. Mov. Sci. doi: 10.1016/j.humov.2006.07.005 – volume: 2008 start-page: 2579 year: 2008 ident: 78611_CR28 publication-title: J. Mach. Learn. Res. – volume: 64 start-page: 205 year: 2020 ident: 78611_CR36 publication-title: Inf. Fus. doi: 10.1016/j.inffus.2020.07.007 – volume: 28 start-page: 1119 year: 2015 ident: 78611_CR7 publication-title: Read. Writ. doi: 10.1007/s11145-015-9565-0 – ident: 78611_CR21 doi: 10.1109/ICAIIT.2019.8834520 – volume: 163 start-page: 749 year: 2019 ident: 78611_CR29 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2018.10.004 – volume: 34 start-page: 2927 year: 2013 ident: 78611_CR6 publication-title: Res. Dev. Disabil. doi: 10.1016/j.ridd.2013.06.005 – ident: 78611_CR1 doi: 10.5014/ajot.63.2.182 – volume-title: Statistical Learning Theory year: 1998 ident: 78611_CR34 – volume: 45 start-page: 5 year: 2001 ident: 78611_CR33 publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 47 start-page: 117 year: 2011 ident: 78611_CR4 publication-title: Cortex doi: 10.1016/j.cortex.2009.08.016 – volume: 33 start-page: 381 year: 2014 ident: 78611_CR16 publication-title: Hum. Mov. Sci. doi: 10.1016/j.humov.2013.11.005 – volume: 12 start-page: 2825 year: 2011 ident: 78611_CR30 publication-title: J. Mach. Learn. Res. – volume: 34 start-page: 65 year: 2017 ident: 78611_CR10 publication-title: Cogn. Neuropsychol. doi: 10.1080/02643294.2017.1369016 – volume: 34 start-page: 4375 year: 2013 ident: 78611_CR17 publication-title: Res. Dev. Disabil. doi: 10.1016/j.ridd.2013.09.012 – volume: 46 start-page: 1211 year: 2010 ident: 78611_CR8 publication-title: Cortex doi: 10.1016/j.cortex.2010.09.003 – volume: 7 start-page: 527 year: 2016 ident: 78611_CR14 publication-title: Front. Psychol. doi: 10.3389/fpsyg.2016.00527 – ident: 78611_CR20 doi: 10.1109/ICITISEE.2017.8285552 – volume: 23 start-page: 508 year: 2014 ident: 78611_CR12 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2014.2359997 – volume: 47 start-page: 293 year: 2017 ident: 78611_CR19 publication-title: IEEE Trans. Hum. Mach. Syst. doi: 10.1109/THMS.2016.2628799 |
| SSID | ssj0000529419 |
| Score | 2.5851943 |
| Snippet | Dysgraphia, a disorder affecting the written expression of symbols and words, negatively impacts the academic results of pupils as well as their overall... Abstract Dysgraphia, a disorder affecting the written expression of symbols and words, negatively impacts the academic results of pupils as well as their... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 21541 |
| SubjectTerms | 639/166/987 692/308/2778 Adolescent Agraphia - diagnosis Algorithms Case-Control Studies Child Data Accuracy Female Handedness Handwriting Humanities and Social Sciences Humans Learning algorithms Machine Learning Male multidisciplinary Science Science (multidisciplinary) Well being |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9UwEB5BAYkL-xIoKEjcIGq82yfEVnGh6gGk3iyv7ZMgr7y8IvXfYzt-qR5LL1xjW7LzzXjGnvF8AC-Ji9JwSzvHkeuo4b6zfaQdMRhxyXoj4kQ2IQ4O5NGROqwXbmNNq9zsiWWj9kuX78j3MBUE54JH4s3pjy6zRuXoaqXQuArXkmeDckrXZ3w437HkKBZFqr6V6YncG5O9ym_KcE6j4wh1asselbL9f_M1_0yZ_C1uWszR_u3_XcgduFUd0fbtJDl34UoY7sGNiZry_D50H87HUsx6YVof1iVha2grq0_7vaRghrZyThw_gK_7H7-8_9RVaoWECVPrTvWOBWJiYD75X56QQFWUwrCIpYkxWuOEj4gEJqPizioUWfKthDGURRMceQg7w3IIj6F1nArLkYw2pmN2HwwPlHhskyMSkCCuAbT5wdrVuuOZ_uKbLvFvIvUEik6g6AKKVg28msecTlU3Lu39LuM298wVs8uH5epYVwXUBsugXG-9dAkBR2wSXuUF88Lh0NvQwO4GLl3VeNQXWDXwYm5OCpijKmYIy7Pch-fYKUK8gUeTkMwzISRbe4UbEFviszXV7ZZhcVKKfKdTD1N55OuNoF1M69-_4snlq3gKN3GW_ZyOo3ZhZ706C8_guvu5Xoyr50V5fgEFKCHm priority: 102 providerName: ProQuest |
| Title | Dysgraphia detection through machine learning |
| URI | https://link.springer.com/article/10.1038/s41598-020-78611-9 https://www.ncbi.nlm.nih.gov/pubmed/33299092 https://www.proquest.com/docview/2473209717 https://www.proquest.com/docview/2469089116 https://pubmed.ncbi.nlm.nih.gov/PMC7725992 https://doaj.org/article/a28e9c0bd8c247c3bbec9d75d7c2e0be |
| Volume | 10 |
| WOSCitedRecordID | wos000608953600050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BCxKXimcJlFWQuEHU-G0fW2gFh64iBNJysmzHLivRFHW3SP33-JFdujwvXOaQjBXr8zgz1oy_AXhBXJCGW9o4jlxDDe8b2wbaEIMRl6w1IpRmE2I6lbOZ6q61-ko1YYUeuAC3b7D0yrW2lw5T4YiNH1W9YL1w2LfWp79vK9S1w1Rh9caKIjXekmmJ3F9ET5Vuk-FUQMcRatSGJ8qE_b-LMn8tlvwpY5od0fFd2BkjyPqgzPwe3PDDfbhdekpePYDmzdUis1DPTd37Za60GuqxHU99lmsnfT02izh9CB-Pjz68ftuMPREimEwtG9U65okJnvUxcOoJ8VQFKQwLWJoQgjVO9AERz2RQ3FmFAotBkTCGsmC8I49gazgf_GOoHafCciSDDfF83HrDPSU9tjGC8EgQVwFa4aPdSBie-lZ80TlxTaQumOqIqc6YalXBy_WYr4Uu46_ahwn2tWaius4PogHo0QD0vwyggr3Voulx_y101CQ40WOJCp6vX8edk9IhZvDnl0mHp6QnQryC3bLG65kQkty0whWIjdXfmOrmm2H-ObNzx-MKU2nkq5Wd_JjWn6F48j-geAp3cDLwVG2j9mBreXHpn8Et9205X1xM4KaYiSzlBLYPj6bd-0neNVGe4C5JEeV29-6k-_QdDvwc0Q |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70egQJDgBFHjR_w4IASUqlXLqoci9WYcP8pKbbZstqD9U_xGbCfZann01gPX2I4m9jfjiWc8H8ALYrzQrKaFYcgUVDNb1KWnBdEYMVGVmvuObIKPRuLgQO6twM_hLkxMqxxsYjLUdmLiGfk6ppzgWPCIvz35VkTWqBhdHSg0OljsuPmP8MvWvtneCOv7EuPNj_sftoqeVSCIU8lZIUtTOaK9q2xwPSwhjkovuK48Ftp7X2vDrUfEVcJLZmqJfBXcCq41rbx2hoT3XoLLNFYWi6mCeG9xphOjZhTJ_m5OScR6G_bHeIcNx7Q9hlAhl_a_RBPwN9_2zxTN3-K0afvbvPm_TdwtuNE72vm7TjNuw4pr7sDVjnpzfheKjXmbinWPdW7dLCWkNXnPWpQfpxRTl_ecGof34POFyHofVptJ4x5CbhjlNUPC155TXDrNHCUW18HRcogTkwEaFlSZvq56pPc4Uim-T4TqQKACCFQCgZIZvFqMOemqipzb-33EyaJnrAieHkymh6o3MEpj4aQpaytMWHFD6qCc0vLKcoNdWbsM1gZ4qN5MteoMGxk8XzQHAxOjRrpxk9PYh8XYMEIsgwcdKBeSEBK9GYkz4EtwXRJ1uaUZf01FzMNfXSXjyNcDsM_E-vdUPDr_K57Bta39T7tqd3u08xiu46h3MfVIrsHqbHrqnsAV8302bqdPk-Lm8OWiAf8LTiiCxw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuvB-BAkGCE0Qb24kfB4SAZcWqsNoDSOXkOo7drlSyZbMF7V_j12EnTqrl0VsPXGM7mng-jyee8XwAT4m2XNEiSzRFOskULZMitVlCFEaU56litiWbYNMp39sTsy342d2F8WmVnU1sDHW50P6MfIgzRrAveMSGNqRFzEbjV8ffEs8g5SOtHZ1GC5Fds_7hft_ql5OR0_UzjMfvPr19nwSGASdaLlaJSHVuiLImL50bUhJiMmE5U7nFXFlrC6VZaRExObeC6kIgmzsXgymV5VYZTdx7L8C2c8kzPIDt2eTj7Et_wuNjaBkS4aZOSviwdrulv9GGfRIfRSgRG7thQxrwN0_3z4TN36K2zWY4vvY_T-N1uBpc8Ph1u2ZuwJapbsKllpRzfQuS0bpuynjPVVyaVZOqVsWBzyj-2iSfmjiwbRzchs_nIusdGFSLytyDWNOMFRRxW1in_9QoajJS4sK5YAYxoiNAnXKlDhXXPfHHkWwi_4TLFhDSAUI2gJAiguf9mOO23siZvd94zPQ9fa3w5sFieSCD6ZEKcyN0WpRcO-1rUrhlK0qWl0xjkxYmgp0OKjIYsFqe4iSCJ32zMz0-nqQqszjxfaiPGiNEI7jbArSXhBDv5wgcAduA7oaomy3V_LApb-7-93LhR77oQH4q1r-n4v7ZX_EYLjucyw-T6e4DuIL9EvQ5SWIHBqvliXkIF_X31bxePgqrOIb980b8L_LijRA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dysgraphia+detection+through+machine+learning&rft.jtitle=Scientific+reports&rft.au=Drot%C3%A1r%2C+Peter&rft.au=Dobe%C5%A1%2C+Marek&rft.date=2020-12-09&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-78611-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_020_78611_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |