Dysgraphia detection through machine learning

Dysgraphia, a disorder affecting the written expression of symbols and words, negatively impacts the academic results of pupils as well as their overall well-being. The use of automated procedures can make dysgraphia testing available to larger populations, thereby facilitating early intervention fo...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 10; no. 1; pp. 21541 - 11
Main Authors: Drotár, Peter, Dobeš, Marek
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 09.12.2020
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Dysgraphia, a disorder affecting the written expression of symbols and words, negatively impacts the academic results of pupils as well as their overall well-being. The use of automated procedures can make dysgraphia testing available to larger populations, thereby facilitating early intervention for those who need it. In this paper, we employed a machine learning approach to identify handwriting deteriorated by dysgraphia. To achieve this goal, we collected a new handwriting dataset consisting of several handwriting tasks and extracted a broad range of features to capture different aspects of handwriting. These were fed to a machine learning algorithm to predict whether handwriting is affected by dysgraphia. We compared several machine learning algorithms and discovered that the best results were achieved by the adaptive boosting (AdaBoost) algorithm. The results show that machine learning can be used to detect dysgraphia with almost 80% accuracy, even when dealing with a heterogeneous set of subjects differing in age, sex and handedness.
AbstractList Dysgraphia, a disorder affecting the written expression of symbols and words, negatively impacts the academic results of pupils as well as their overall well-being. The use of automated procedures can make dysgraphia testing available to larger populations, thereby facilitating early intervention for those who need it. In this paper, we employed a machine learning approach to identify handwriting deteriorated by dysgraphia. To achieve this goal, we collected a new handwriting dataset consisting of several handwriting tasks and extracted a broad range of features to capture different aspects of handwriting. These were fed to a machine learning algorithm to predict whether handwriting is affected by dysgraphia. We compared several machine learning algorithms and discovered that the best results were achieved by the adaptive boosting (AdaBoost) algorithm. The results show that machine learning can be used to detect dysgraphia with almost 80% accuracy, even when dealing with a heterogeneous set of subjects differing in age, sex and handedness.
Abstract Dysgraphia, a disorder affecting the written expression of symbols and words, negatively impacts the academic results of pupils as well as their overall well-being. The use of automated procedures can make dysgraphia testing available to larger populations, thereby facilitating early intervention for those who need it. In this paper, we employed a machine learning approach to identify handwriting deteriorated by dysgraphia. To achieve this goal, we collected a new handwriting dataset consisting of several handwriting tasks and extracted a broad range of features to capture different aspects of handwriting. These were fed to a machine learning algorithm to predict whether handwriting is affected by dysgraphia. We compared several machine learning algorithms and discovered that the best results were achieved by the adaptive boosting (AdaBoost) algorithm. The results show that machine learning can be used to detect dysgraphia with almost 80% accuracy, even when dealing with a heterogeneous set of subjects differing in age, sex and handedness.
Dysgraphia, a disorder affecting the written expression of symbols and words, negatively impacts the academic results of pupils as well as their overall well-being. The use of automated procedures can make dysgraphia testing available to larger populations, thereby facilitating early intervention for those who need it. In this paper, we employed a machine learning approach to identify handwriting deteriorated by dysgraphia. To achieve this goal, we collected a new handwriting dataset consisting of several handwriting tasks and extracted a broad range of features to capture different aspects of handwriting. These were fed to a machine learning algorithm to predict whether handwriting is affected by dysgraphia. We compared several machine learning algorithms and discovered that the best results were achieved by the adaptive boosting (AdaBoost) algorithm. The results show that machine learning can be used to detect dysgraphia with almost 80% accuracy, even when dealing with a heterogeneous set of subjects differing in age, sex and handedness.Dysgraphia, a disorder affecting the written expression of symbols and words, negatively impacts the academic results of pupils as well as their overall well-being. The use of automated procedures can make dysgraphia testing available to larger populations, thereby facilitating early intervention for those who need it. In this paper, we employed a machine learning approach to identify handwriting deteriorated by dysgraphia. To achieve this goal, we collected a new handwriting dataset consisting of several handwriting tasks and extracted a broad range of features to capture different aspects of handwriting. These were fed to a machine learning algorithm to predict whether handwriting is affected by dysgraphia. We compared several machine learning algorithms and discovered that the best results were achieved by the adaptive boosting (AdaBoost) algorithm. The results show that machine learning can be used to detect dysgraphia with almost 80% accuracy, even when dealing with a heterogeneous set of subjects differing in age, sex and handedness.
ArticleNumber 21541
Author Dobeš, Marek
Drotár, Peter
Author_xml – sequence: 1
  givenname: Peter
  orcidid: 0000-0002-6634-4696
  surname: Drotár
  fullname: Drotár, Peter
  organization: Department of Computers and Informatics, Technical University of Košice
– sequence: 2
  givenname: Marek
  surname: Dobeš
  fullname: Dobeš, Marek
  email: dobes@saske.sk
  organization: Centre for Social and Psychological Sciences, Slovak Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33299092$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vFSEYhYmpsbX2D7gwN3HjZpSPYeDdmJj61aSJG10ThnmZ4WYuXGGuSf-9tFNr20XZQOA5hwPnJTmKKSIhrxl9z6jQH0rLJOiGctoo3THWwDNywmkrGy44P7q3PiZnpWxpHZJDy-AFORaCA1DgJ6T5fFXGbPdTsJsBF3RLSHGzTDkdxmmzs24KETcz2hxDHF-R597OBc9u51Py6-uXn-ffm8sf3y7OP102rpOwNECdRGE9yoHzbhACW_BaWem5tt773jo1eCZQag-d64F5KSVT1rbSW3TilFysvkOyW7PPYWfzlUk2mJuNlEdj8xLcjMZyjeBoP2jHW-VE36ODQclBOY60x-r1cfXaH_odDg7jku38wPThSQyTGdMfoxSXALwavLs1yOn3ActidqE4nGcbMR2K4W0HVANjXUXfPkK36ZBj_apKKcEpKKYq9eZ-orso_1qpAF8Bl1MpGf0dwqi5bt-s7Zvavrlp30AV6UciFxZ7XWd9VZiflopVWuo9ccT8P_YTqr9EiMR-
CitedBy_id crossref_primary_10_1007_s10439_025_03820_0
crossref_primary_10_1007_s10032_024_00464_z
crossref_primary_10_1016_j_neubiorev_2022_105021
crossref_primary_10_3390_children10071096
crossref_primary_10_3390_life13030598
crossref_primary_10_1007_s00542_024_05741_9
crossref_primary_10_1109_ACCESS_2025_3593240
crossref_primary_10_57197_JDR_2024_0010
crossref_primary_10_1016_j_eswa_2023_120328
crossref_primary_10_1080_19404158_2024_2326686
crossref_primary_10_1016_j_sna_2025_116287
crossref_primary_10_3233_JIFS_221708
crossref_primary_10_1016_j_eswa_2023_120740
crossref_primary_10_3390_app13074275
crossref_primary_10_1007_s12559_024_10360_7
crossref_primary_10_5014_ajot_2023_050029
crossref_primary_10_3390_children10121925
crossref_primary_10_3390_s21217026
crossref_primary_10_1007_s11042_021_11806_y
crossref_primary_10_3389_fpsyt_2021_596055
crossref_primary_10_1016_j_bspc_2025_108560
crossref_primary_10_3390_s24196357
crossref_primary_10_3389_frai_2025_1426455
crossref_primary_10_1038_s41598_023_37253_3
crossref_primary_10_1016_j_dib_2024_110534
crossref_primary_10_1177_1932202X251348549
crossref_primary_10_1007_s42979_025_03825_5
crossref_primary_10_1080_19404158_2021_1999997
crossref_primary_10_1016_j_procs_2024_09_186
crossref_primary_10_3389_frobt_2023_1193388
crossref_primary_10_1038_s41598_022_26038_9
crossref_primary_10_3390_s23115215
crossref_primary_10_1016_j_bspc_2023_104715
crossref_primary_10_1109_ACCESS_2025_3606359
crossref_primary_10_1007_s42979_025_03927_0
Cites_doi 10.23919/MIPRO.2019.8756872
10.17239/jowr-2017.09.01.01
10.1109/IECBES.2018.8626700
10.1111/dmcn.12310
10.1016/S0004-3702(97)00043-X
10.1016/j.cmpb.2019.03.005
10.1093/brain/awv348
10.1109/ICUMT48472.2019.8970811
10.1515/9783110670905-005
10.1109/THMS.2016.2586605
10.1038/s41746-019-0114-0
10.1038/s41746-018-0049-x
10.1002/mds.25990
10.1371/journal.pone.0237575
10.1080/02643294.2017.1376630
10.1109/ICIIS47346.2019.9063301
10.1016/j.humov.2006.07.005
10.1016/j.inffus.2020.07.007
10.1007/s11145-015-9565-0
10.1109/ICAIIT.2019.8834520
10.1016/j.knosys.2018.10.004
10.1016/j.ridd.2013.06.005
10.5014/ajot.63.2.182
10.1023/A:1010933404324
10.1016/j.cortex.2009.08.016
10.1016/j.humov.2013.11.005
10.1080/02643294.2017.1369016
10.1016/j.ridd.2013.09.012
10.1016/j.cortex.2010.09.003
10.3389/fpsyg.2016.00527
10.1109/ICITISEE.2017.8285552
10.1109/TNSRE.2014.2359997
10.1109/THMS.2016.2628799
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-020-78611-9
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Publicly Available Content Database


CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_a28e9c0bd8c247c3bbec9d75d7c2e0be
PMC7725992
33299092
10_1038_s41598_020_78611_9
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: This work was supported by the Slovak Research and Development Agency under the contract No. APVV-16-0211.
– fundername: This work was supported by the Slovak Research and Development Agency under the contract No. APVV-16-0211 and by the Scientific grant agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and of Slovak Academy of Sciences VEGA under contract no. VEGA 2/0043/17.
– fundername: ;
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c659t-90c5e3afe5d226d33e49f87a5f28afffbac7df13e58f96cb91f55517aa45faec3
IEDL.DBID DOA
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000608953600050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 19:07:57 EDT 2025
Tue Nov 04 01:57:37 EST 2025
Sun Nov 09 08:59:49 EST 2025
Tue Oct 07 08:23:33 EDT 2025
Thu Jan 02 22:57:29 EST 2025
Sat Nov 29 04:03:02 EST 2025
Tue Nov 18 21:30:38 EST 2025
Fri Feb 21 02:38:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c659t-90c5e3afe5d226d33e49f87a5f28afffbac7df13e58f96cb91f55517aa45faec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6634-4696
OpenAccessLink https://doaj.org/article/a28e9c0bd8c247c3bbec9d75d7c2e0be
PMID 33299092
PQID 2473209717
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_a28e9c0bd8c247c3bbec9d75d7c2e0be
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7725992
proquest_miscellaneous_2469089116
proquest_journals_2473209717
pubmed_primary_33299092
crossref_primary_10_1038_s41598_020_78611_9
crossref_citationtrail_10_1038_s41598_020_78611_9
springer_journals_10_1038_s41598_020_78611_9
PublicationCentury 2000
PublicationDate 2020-12-09
PublicationDateYYYYMMDD 2020-12-09
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References McCloskeyMRappBDevelopmental dysgraphia: An overview and framework for researchCogn. Neuropsychol.201734658210.1080/02643294.2017.1369016
Van Hoorn, J. F., Maathuis, C. G. B. & Hadders-Algra, M. Neural correlates of paediatric dysgraphia. Dev. Med. Child Neurol.55, 65–68.
Saha, R., Mukherjee, A., Sarkar, A. & Dey, S. 5 Extraction of Common Feature of Dysgraphia Patients by Handwriting Analysis Using Variational Autoencoder, 85–104 (De Gruyter, Berlin, Boston, 2020).
Engel-Yeger, B., Nagauker-Yanuv, L. & Rosenblum, S. Handwriting performance, self-reports, and perceived self-efficacy among children with dysgraphia. Am. J. Occup. Ther.63, (2009).
MekyskaJIdentification and rating of developmental dysgraphia by handwriting analysisIEEE Trans. Hum. Mach. Syst.20174723524810.1109/THMS.2016.2586605
RosenblumSDvorkinAYWeissPLAutomatic segmentation as a tool for examining the handriting process of children with dysgraphic and proficient handwritingHum. Mov. Sci.20062560862110.1016/j.humov.2006.07.005
ZhuJZouHRossetSHastieTMulti-class adaboost. Statistics and itsInterface2009234936025400921245.62080
Paz-VillagránVDannaJVelayJ-LLifts and stops in proficient and dysgraphic handwritingHum. Mov. Sci.20143338139410.1016/j.humov.2013.11.005
DannaJPaz-VillagránVVelayJ-LSignal-to-noise velocity peaks difference: A new method for evaluating the handwriting movement fluency in children with dysgraphiaRes. Dev. Disabil.2013344375438410.1016/j.ridd.2013.09.012
Kurniawan, D. A., Sihwi, S. W. & Gunarhadi. An expert system for diagnosing dysgraphia. In 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), 468–472 (2017).
DrotárPDecision support framework for Parkinson’s disease based on novel handwriting markersIEEE Trans. Neural Syst. Rehabil. Eng.20142350851625265632
LetanneuxADannaJVelayJ-LVialletFPintoSFrom micrographia to Parkinson’s disease dysgraphiaMov. Disord.2014291467147510.1002/mds.25990
Samodro, P. W., Sihwi, S. W. & Winarno. Backpropagation implementation to classify dysgraphia in children. In 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT), 437–442 (2019).
KohaviRJohnGHWrappers for feature subset selectionArtif. Intell.19979727332410.1016/S0004-3702(97)00043-X
AsselbornTAutomated human-level diagnosis of dysgraphia using a consumer tabletNPJ Digit. Med.201814210.1038/s41746-018-0049-x
RosenblumSDrorGIdentifying developmental dysgraphia characteristics utilizing handwriting classification methodsIEEE Trans. Hum. Mach. Syst.20174729329810.1109/THMS.2016.2628799
PruntyMBarnettALUnderstanding handwriting difficulties: A comparison of children with and without motor impairmentCogn. Neuropsychol.20173420521810.1080/02643294.2017.1376630
MaatenLHintonGVisualizing data using t-SNEJ. Mach. Learn. Res.20082008257926051225.68219
Rios-UrregoCAnalysis and evaluation of handwriting in patients with Parkinson’s disease using kinematic, geometrical, and non-linear featuresComput. Methods Prog. Biomed.201917343521:STN:280:DC%2BB3M7hs1Wjsg%3D%3D10.1016/j.cmpb.2019.03.005
PruntyMMBarnettALWilmutKPlumbMSHandwriting speed in children with developmental coordination disorder: Are they really slower?Res. Dev. Disabil.2013342927293610.1016/j.ridd.2013.06.005
VapnikVStatistical Learning Theory19981LondonWilley0935.62007
PedregosaFScikit-learn: Machine learning in PythonJ. Mach. Learn. Res.2011122825283028543481280.68189
DeschampsLMethodological issues in the creation of a diagnosis tool for dysgraphiaNPJ Digit. Med.201923610.1038/s41746-019-0114-0
RappBPurcellJHillisAECapassoRMiceliGNeural bases of orthographic long-term memory and working memory in dysgraphiaBrain201513958860410.1093/brain/awv348
BugataPDrotarPWeighted nearest neighbors feature selectionKnowl. Based Syst.201916374976110.1016/j.knosys.2018.10.004
BreimanLRandom forestsMach. Learn.20014553210.1023/A:1010933404324
AngelelliPSpelling impairments in Italian dyslexic children with and without a history of early language delay. Are there any differences?Front. Psychol.2016752710.3389/fpsyg.2016.00527
NicolsonRIFawcettAJDyslexia, dysgraphia, procedural learning and the cerebellumCortex20114711712710.1016/j.cortex.2009.08.016
BerningerVWRichardsTAbbottRDDifferential diagnosis of dysgraphia, dyslexia, and owl ld: Behavioral and neuroimaging evidenceRead. Writ.2015281119115310.1007/s11145-015-9565-0
Kariyawasam, R. et al. Pubudu: Deep learning based screening and intervention of dyslexia, dysgraphia and dyscalculia. In 2019 14th Conference on Industrial and Information Systems (ICIIS), 476–481 (2019).
Zvoncak, V. et al. Fractional order derivatives evaluation in computerized assessment of handwriting difficulties in school-aged children. In 2019 11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 1–6 (2019).
RichardsRGThe Source for Dyslexia and Dysgraphia1999East MolineLinguiSystems
ZoccolottiPFriedmannNFrom dyslexia to dyslexias, from dysgraphia to dysgraphias, from a cause to causes: A look at current research on developmental dyslexia and dysgraphiaCortex2010461211121510.1016/j.cortex.2010.09.003
BeersSFMickailTAbbottRBerningerVEffects of transcription ability and transcription mode on translation: Evidence from written compositions, language bursts and pauses when students in grades 4 to 9, with and without persisting dyslexia or dysgraphia, compose by pen or by keyboardJ. Writ. Res.2017912510.17239/jowr-2017.09.01.01
Mahmoodin, Z., Y. Lee, K., Mansor, W. & Ahmad Zainuddin, A. Z. Support vector machine with theta-beta band power features generated from writing of dyslexic children. Int. J. Integr. Eng.11 (2019).
Zainuddin, A. Z. A., Lee, K. Y., Mansor, W. & Mahmoodin, Z. Extreme learning machine for distinction of eeg signal pattern of dyslexic children in writing. In 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), 652–656 (2018).
GargotTAcquisition of handwriting in children with and without dysgraphia: A computational approachPLoS One20201512210.1371/journal.pone.0237575
Zvoncak, V., Mekyska, J., Safarova, K., Smekal, Z. & Brezany, P. New approach of dysgraphic handwriting analysis based on the tunable q-factor wavelet transform. In 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 289–294 (2019).
GonzálezSGarcíaSDel SerJRokachLHerreraFA practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunitiesInf. Fus.20206420523710.1016/j.inffus.2020.07.007
OlsonRSMooreJHTPOT: A Tree-Based Pipeline Optimization Tool for Automating Machine Learning, 151–1602019ChamSpringer International Publishing
P Angelelli (78611_CR14) 2016; 7
J Zhu (78611_CR32) 2009; 2
SF Beers (78611_CR15) 2017; 9
V Vapnik (78611_CR34) 1998
RG Richards (78611_CR3) 1999
J Danna (78611_CR17) 2013; 34
P Zoccolotti (78611_CR8) 2010; 46
78611_CR21
78611_CR22
RS Olson (78611_CR31) 2019
78611_CR23
P Bugata (78611_CR29) 2019; 163
M McCloskey (78611_CR10) 2017; 34
78611_CR24
78611_CR25
78611_CR26
L Maaten (78611_CR28) 2008; 2008
RI Nicolson (78611_CR4) 2011; 47
MM Prunty (78611_CR6) 2013; 34
T Gargot (78611_CR35) 2020; 15
VW Berninger (78611_CR7) 2015; 28
B Rapp (78611_CR40) 2015; 139
78611_CR20
S Rosenblum (78611_CR2) 2006; 25
A Letanneux (78611_CR11) 2014; 29
L Deschamps (78611_CR39) 2019; 2
S González (78611_CR36) 2020; 64
F Pedregosa (78611_CR30) 2011; 12
V Paz-Villagrán (78611_CR16) 2014; 33
C Rios-Urrego (78611_CR27) 2019; 173
L Breiman (78611_CR33) 2001; 45
M Prunty (78611_CR5) 2017; 34
S Rosenblum (78611_CR19) 2017; 47
J Mekyska (78611_CR18) 2017; 47
78611_CR13
78611_CR38
78611_CR1
P Drotár (78611_CR12) 2014; 23
T Asselborn (78611_CR9) 2018; 1
R Kohavi (78611_CR37) 1997; 97
References_xml – reference: AsselbornTAutomated human-level diagnosis of dysgraphia using a consumer tabletNPJ Digit. Med.201814210.1038/s41746-018-0049-x
– reference: AngelelliPSpelling impairments in Italian dyslexic children with and without a history of early language delay. Are there any differences?Front. Psychol.2016752710.3389/fpsyg.2016.00527
– reference: OlsonRSMooreJHTPOT: A Tree-Based Pipeline Optimization Tool for Automating Machine Learning, 151–1602019ChamSpringer International Publishing
– reference: Rios-UrregoCAnalysis and evaluation of handwriting in patients with Parkinson’s disease using kinematic, geometrical, and non-linear featuresComput. Methods Prog. Biomed.201917343521:STN:280:DC%2BB3M7hs1Wjsg%3D%3D10.1016/j.cmpb.2019.03.005
– reference: Kariyawasam, R. et al. Pubudu: Deep learning based screening and intervention of dyslexia, dysgraphia and dyscalculia. In 2019 14th Conference on Industrial and Information Systems (ICIIS), 476–481 (2019).
– reference: BeersSFMickailTAbbottRBerningerVEffects of transcription ability and transcription mode on translation: Evidence from written compositions, language bursts and pauses when students in grades 4 to 9, with and without persisting dyslexia or dysgraphia, compose by pen or by keyboardJ. Writ. Res.2017912510.17239/jowr-2017.09.01.01
– reference: ZhuJZouHRossetSHastieTMulti-class adaboost. Statistics and itsInterface2009234936025400921245.62080
– reference: VapnikVStatistical Learning Theory19981LondonWilley0935.62007
– reference: Engel-Yeger, B., Nagauker-Yanuv, L. & Rosenblum, S. Handwriting performance, self-reports, and perceived self-efficacy among children with dysgraphia. Am. J. Occup. Ther.63, (2009).
– reference: RosenblumSDvorkinAYWeissPLAutomatic segmentation as a tool for examining the handriting process of children with dysgraphic and proficient handwritingHum. Mov. Sci.20062560862110.1016/j.humov.2006.07.005
– reference: DannaJPaz-VillagránVVelayJ-LSignal-to-noise velocity peaks difference: A new method for evaluating the handwriting movement fluency in children with dysgraphiaRes. Dev. Disabil.2013344375438410.1016/j.ridd.2013.09.012
– reference: Zvoncak, V., Mekyska, J., Safarova, K., Smekal, Z. & Brezany, P. New approach of dysgraphic handwriting analysis based on the tunable q-factor wavelet transform. In 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 289–294 (2019).
– reference: MaatenLHintonGVisualizing data using t-SNEJ. Mach. Learn. Res.20082008257926051225.68219
– reference: PruntyMMBarnettALWilmutKPlumbMSHandwriting speed in children with developmental coordination disorder: Are they really slower?Res. Dev. Disabil.2013342927293610.1016/j.ridd.2013.06.005
– reference: LetanneuxADannaJVelayJ-LVialletFPintoSFrom micrographia to Parkinson’s disease dysgraphiaMov. Disord.2014291467147510.1002/mds.25990
– reference: RichardsRGThe Source for Dyslexia and Dysgraphia1999East MolineLinguiSystems
– reference: Van Hoorn, J. F., Maathuis, C. G. B. & Hadders-Algra, M. Neural correlates of paediatric dysgraphia. Dev. Med. Child Neurol.55, 65–68.
– reference: Kurniawan, D. A., Sihwi, S. W. & Gunarhadi. An expert system for diagnosing dysgraphia. In 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), 468–472 (2017).
– reference: Mahmoodin, Z., Y. Lee, K., Mansor, W. & Ahmad Zainuddin, A. Z. Support vector machine with theta-beta band power features generated from writing of dyslexic children. Int. J. Integr. Eng.11 (2019).
– reference: GargotTAcquisition of handwriting in children with and without dysgraphia: A computational approachPLoS One20201512210.1371/journal.pone.0237575
– reference: NicolsonRIFawcettAJDyslexia, dysgraphia, procedural learning and the cerebellumCortex20114711712710.1016/j.cortex.2009.08.016
– reference: GonzálezSGarcíaSDel SerJRokachLHerreraFA practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunitiesInf. Fus.20206420523710.1016/j.inffus.2020.07.007
– reference: BerningerVWRichardsTAbbottRDDifferential diagnosis of dysgraphia, dyslexia, and owl ld: Behavioral and neuroimaging evidenceRead. Writ.2015281119115310.1007/s11145-015-9565-0
– reference: PruntyMBarnettALUnderstanding handwriting difficulties: A comparison of children with and without motor impairmentCogn. Neuropsychol.20173420521810.1080/02643294.2017.1376630
– reference: Paz-VillagránVDannaJVelayJ-LLifts and stops in proficient and dysgraphic handwritingHum. Mov. Sci.20143338139410.1016/j.humov.2013.11.005
– reference: DrotárPDecision support framework for Parkinson’s disease based on novel handwriting markersIEEE Trans. Neural Syst. Rehabil. Eng.20142350851625265632
– reference: RosenblumSDrorGIdentifying developmental dysgraphia characteristics utilizing handwriting classification methodsIEEE Trans. Hum. Mach. Syst.20174729329810.1109/THMS.2016.2628799
– reference: MekyskaJIdentification and rating of developmental dysgraphia by handwriting analysisIEEE Trans. Hum. Mach. Syst.20174723524810.1109/THMS.2016.2586605
– reference: RappBPurcellJHillisAECapassoRMiceliGNeural bases of orthographic long-term memory and working memory in dysgraphiaBrain201513958860410.1093/brain/awv348
– reference: Samodro, P. W., Sihwi, S. W. & Winarno. Backpropagation implementation to classify dysgraphia in children. In 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT), 437–442 (2019).
– reference: Zvoncak, V. et al. Fractional order derivatives evaluation in computerized assessment of handwriting difficulties in school-aged children. In 2019 11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 1–6 (2019).
– reference: DeschampsLMethodological issues in the creation of a diagnosis tool for dysgraphiaNPJ Digit. Med.201923610.1038/s41746-019-0114-0
– reference: BugataPDrotarPWeighted nearest neighbors feature selectionKnowl. Based Syst.201916374976110.1016/j.knosys.2018.10.004
– reference: KohaviRJohnGHWrappers for feature subset selectionArtif. Intell.19979727332410.1016/S0004-3702(97)00043-X
– reference: BreimanLRandom forestsMach. Learn.20014553210.1023/A:1010933404324
– reference: Zainuddin, A. Z. A., Lee, K. Y., Mansor, W. & Mahmoodin, Z. Extreme learning machine for distinction of eeg signal pattern of dyslexic children in writing. In 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), 652–656 (2018).
– reference: PedregosaFScikit-learn: Machine learning in PythonJ. Mach. Learn. Res.2011122825283028543481280.68189
– reference: Saha, R., Mukherjee, A., Sarkar, A. & Dey, S. 5 Extraction of Common Feature of Dysgraphia Patients by Handwriting Analysis Using Variational Autoencoder, 85–104 (De Gruyter, Berlin, Boston, 2020).
– reference: ZoccolottiPFriedmannNFrom dyslexia to dyslexias, from dysgraphia to dysgraphias, from a cause to causes: A look at current research on developmental dyslexia and dysgraphiaCortex2010461211121510.1016/j.cortex.2010.09.003
– reference: McCloskeyMRappBDevelopmental dysgraphia: An overview and framework for researchCogn. Neuropsychol.201734658210.1080/02643294.2017.1369016
– ident: 78611_CR24
  doi: 10.23919/MIPRO.2019.8756872
– volume: 9
  start-page: 1
  year: 2017
  ident: 78611_CR15
  publication-title: J. Writ. Res.
  doi: 10.17239/jowr-2017.09.01.01
– volume: 2
  start-page: 349
  year: 2009
  ident: 78611_CR32
  publication-title: Interface
– ident: 78611_CR26
  doi: 10.1109/IECBES.2018.8626700
– ident: 78611_CR13
  doi: 10.1111/dmcn.12310
– volume: 97
  start-page: 273
  year: 1997
  ident: 78611_CR37
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(97)00043-X
– ident: 78611_CR25
– volume: 173
  start-page: 43
  year: 2019
  ident: 78611_CR27
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2019.03.005
– volume: 139
  start-page: 588
  year: 2015
  ident: 78611_CR40
  publication-title: Brain
  doi: 10.1093/brain/awv348
– ident: 78611_CR23
  doi: 10.1109/ICUMT48472.2019.8970811
– ident: 78611_CR38
  doi: 10.1515/9783110670905-005
– volume: 47
  start-page: 235
  year: 2017
  ident: 78611_CR18
  publication-title: IEEE Trans. Hum. Mach. Syst.
  doi: 10.1109/THMS.2016.2586605
– volume: 2
  start-page: 36
  year: 2019
  ident: 78611_CR39
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-019-0114-0
– volume: 1
  start-page: 42
  year: 2018
  ident: 78611_CR9
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-018-0049-x
– volume: 29
  start-page: 1467
  year: 2014
  ident: 78611_CR11
  publication-title: Mov. Disord.
  doi: 10.1002/mds.25990
– volume-title: TPOT: A Tree-Based Pipeline Optimization Tool for Automating Machine Learning, 151–160
  year: 2019
  ident: 78611_CR31
– volume: 15
  start-page: 1
  year: 2020
  ident: 78611_CR35
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0237575
– volume: 34
  start-page: 205
  year: 2017
  ident: 78611_CR5
  publication-title: Cogn. Neuropsychol.
  doi: 10.1080/02643294.2017.1376630
– volume-title: The Source for Dyslexia and Dysgraphia
  year: 1999
  ident: 78611_CR3
– ident: 78611_CR22
  doi: 10.1109/ICIIS47346.2019.9063301
– volume: 25
  start-page: 608
  year: 2006
  ident: 78611_CR2
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2006.07.005
– volume: 2008
  start-page: 2579
  year: 2008
  ident: 78611_CR28
  publication-title: J. Mach. Learn. Res.
– volume: 64
  start-page: 205
  year: 2020
  ident: 78611_CR36
  publication-title: Inf. Fus.
  doi: 10.1016/j.inffus.2020.07.007
– volume: 28
  start-page: 1119
  year: 2015
  ident: 78611_CR7
  publication-title: Read. Writ.
  doi: 10.1007/s11145-015-9565-0
– ident: 78611_CR21
  doi: 10.1109/ICAIIT.2019.8834520
– volume: 163
  start-page: 749
  year: 2019
  ident: 78611_CR29
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.10.004
– volume: 34
  start-page: 2927
  year: 2013
  ident: 78611_CR6
  publication-title: Res. Dev. Disabil.
  doi: 10.1016/j.ridd.2013.06.005
– ident: 78611_CR1
  doi: 10.5014/ajot.63.2.182
– volume-title: Statistical Learning Theory
  year: 1998
  ident: 78611_CR34
– volume: 45
  start-page: 5
  year: 2001
  ident: 78611_CR33
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 47
  start-page: 117
  year: 2011
  ident: 78611_CR4
  publication-title: Cortex
  doi: 10.1016/j.cortex.2009.08.016
– volume: 33
  start-page: 381
  year: 2014
  ident: 78611_CR16
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2013.11.005
– volume: 12
  start-page: 2825
  year: 2011
  ident: 78611_CR30
  publication-title: J. Mach. Learn. Res.
– volume: 34
  start-page: 65
  year: 2017
  ident: 78611_CR10
  publication-title: Cogn. Neuropsychol.
  doi: 10.1080/02643294.2017.1369016
– volume: 34
  start-page: 4375
  year: 2013
  ident: 78611_CR17
  publication-title: Res. Dev. Disabil.
  doi: 10.1016/j.ridd.2013.09.012
– volume: 46
  start-page: 1211
  year: 2010
  ident: 78611_CR8
  publication-title: Cortex
  doi: 10.1016/j.cortex.2010.09.003
– volume: 7
  start-page: 527
  year: 2016
  ident: 78611_CR14
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2016.00527
– ident: 78611_CR20
  doi: 10.1109/ICITISEE.2017.8285552
– volume: 23
  start-page: 508
  year: 2014
  ident: 78611_CR12
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2359997
– volume: 47
  start-page: 293
  year: 2017
  ident: 78611_CR19
  publication-title: IEEE Trans. Hum. Mach. Syst.
  doi: 10.1109/THMS.2016.2628799
SSID ssj0000529419
Score 2.5851943
Snippet Dysgraphia, a disorder affecting the written expression of symbols and words, negatively impacts the academic results of pupils as well as their overall...
Abstract Dysgraphia, a disorder affecting the written expression of symbols and words, negatively impacts the academic results of pupils as well as their...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 21541
SubjectTerms 639/166/987
692/308/2778
Adolescent
Agraphia - diagnosis
Algorithms
Case-Control Studies
Child
Data Accuracy
Female
Handedness
Handwriting
Humanities and Social Sciences
Humans
Learning algorithms
Machine Learning
Male
multidisciplinary
Science
Science (multidisciplinary)
Well being
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9UwEB5BAYkL-xIoKEjcIGq82yfEVnGh6gGk3iyv7ZMgr7y8IvXfYzt-qR5LL1xjW7LzzXjGnvF8AC-Ji9JwSzvHkeuo4b6zfaQdMRhxyXoj4kQ2IQ4O5NGROqwXbmNNq9zsiWWj9kuX78j3MBUE54JH4s3pjy6zRuXoaqXQuArXkmeDckrXZ3w437HkKBZFqr6V6YncG5O9ym_KcE6j4wh1asselbL9f_M1_0yZ_C1uWszR_u3_XcgduFUd0fbtJDl34UoY7sGNiZry_D50H87HUsx6YVof1iVha2grq0_7vaRghrZyThw_gK_7H7-8_9RVaoWECVPrTvWOBWJiYD75X56QQFWUwrCIpYkxWuOEj4gEJqPizioUWfKthDGURRMceQg7w3IIj6F1nArLkYw2pmN2HwwPlHhskyMSkCCuAbT5wdrVuuOZ_uKbLvFvIvUEik6g6AKKVg28msecTlU3Lu39LuM298wVs8uH5epYVwXUBsugXG-9dAkBR2wSXuUF88Lh0NvQwO4GLl3VeNQXWDXwYm5OCpijKmYIy7Pch-fYKUK8gUeTkMwzISRbe4UbEFviszXV7ZZhcVKKfKdTD1N55OuNoF1M69-_4snlq3gKN3GW_ZyOo3ZhZ706C8_guvu5Xoyr50V5fgEFKCHm
  priority: 102
  providerName: ProQuest
Title Dysgraphia detection through machine learning
URI https://link.springer.com/article/10.1038/s41598-020-78611-9
https://www.ncbi.nlm.nih.gov/pubmed/33299092
https://www.proquest.com/docview/2473209717
https://www.proquest.com/docview/2469089116
https://pubmed.ncbi.nlm.nih.gov/PMC7725992
https://doaj.org/article/a28e9c0bd8c247c3bbec9d75d7c2e0be
Volume 10
WOSCitedRecordID wos000608953600050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BCxKXimcJlFWQuEHU-G0fW2gFh64iBNJysmzHLivRFHW3SP33-JFdujwvXOaQjBXr8zgz1oy_AXhBXJCGW9o4jlxDDe8b2wbaEIMRl6w1IpRmE2I6lbOZ6q61-ko1YYUeuAC3b7D0yrW2lw5T4YiNH1W9YL1w2LfWp79vK9S1w1Rh9caKIjXekmmJ3F9ET5Vuk-FUQMcRatSGJ8qE_b-LMn8tlvwpY5od0fFd2BkjyPqgzPwe3PDDfbhdekpePYDmzdUis1DPTd37Za60GuqxHU99lmsnfT02izh9CB-Pjz68ftuMPREimEwtG9U65okJnvUxcOoJ8VQFKQwLWJoQgjVO9AERz2RQ3FmFAotBkTCGsmC8I49gazgf_GOoHafCciSDDfF83HrDPSU9tjGC8EgQVwFa4aPdSBie-lZ80TlxTaQumOqIqc6YalXBy_WYr4Uu46_ahwn2tWaius4PogHo0QD0vwyggr3Voulx_y101CQ40WOJCp6vX8edk9IhZvDnl0mHp6QnQryC3bLG65kQkty0whWIjdXfmOrmm2H-ObNzx-MKU2nkq5Wd_JjWn6F48j-geAp3cDLwVG2j9mBreXHpn8Et9205X1xM4KaYiSzlBLYPj6bd-0neNVGe4C5JEeV29-6k-_QdDvwc0Q
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70egQJDgBFHjR_w4IASUqlXLqoci9WYcP8pKbbZstqD9U_xGbCfZann01gPX2I4m9jfjiWc8H8ALYrzQrKaFYcgUVDNb1KWnBdEYMVGVmvuObIKPRuLgQO6twM_hLkxMqxxsYjLUdmLiGfk6ppzgWPCIvz35VkTWqBhdHSg0OljsuPmP8MvWvtneCOv7EuPNj_sftoqeVSCIU8lZIUtTOaK9q2xwPSwhjkovuK48Ftp7X2vDrUfEVcJLZmqJfBXcCq41rbx2hoT3XoLLNFYWi6mCeG9xphOjZhTJ_m5OScR6G_bHeIcNx7Q9hlAhl_a_RBPwN9_2zxTN3-K0afvbvPm_TdwtuNE72vm7TjNuw4pr7sDVjnpzfheKjXmbinWPdW7dLCWkNXnPWpQfpxRTl_ecGof34POFyHofVptJ4x5CbhjlNUPC155TXDrNHCUW18HRcogTkwEaFlSZvq56pPc4Uim-T4TqQKACCFQCgZIZvFqMOemqipzb-33EyaJnrAieHkymh6o3MEpj4aQpaytMWHFD6qCc0vLKcoNdWbsM1gZ4qN5MteoMGxk8XzQHAxOjRrpxk9PYh8XYMEIsgwcdKBeSEBK9GYkz4EtwXRJ1uaUZf01FzMNfXSXjyNcDsM_E-vdUPDr_K57Bta39T7tqd3u08xiu46h3MfVIrsHqbHrqnsAV8302bqdPk-Lm8OWiAf8LTiiCxw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuvB-BAkGCE0Qb24kfB4SAZcWqsNoDSOXkOo7drlSyZbMF7V_j12EnTqrl0VsPXGM7mng-jyee8XwAT4m2XNEiSzRFOskULZMitVlCFEaU56litiWbYNMp39sTsy342d2F8WmVnU1sDHW50P6MfIgzRrAveMSGNqRFzEbjV8ffEs8g5SOtHZ1GC5Fds_7hft_ql5OR0_UzjMfvPr19nwSGASdaLlaJSHVuiLImL50bUhJiMmE5U7nFXFlrC6VZaRExObeC6kIgmzsXgymV5VYZTdx7L8C2c8kzPIDt2eTj7Et_wuNjaBkS4aZOSviwdrulv9GGfRIfRSgRG7thQxrwN0_3z4TN36K2zWY4vvY_T-N1uBpc8Ph1u2ZuwJapbsKllpRzfQuS0bpuynjPVVyaVZOqVsWBzyj-2iSfmjiwbRzchs_nIusdGFSLytyDWNOMFRRxW1in_9QoajJS4sK5YAYxoiNAnXKlDhXXPfHHkWwi_4TLFhDSAUI2gJAiguf9mOO23siZvd94zPQ9fa3w5sFieSCD6ZEKcyN0WpRcO-1rUrhlK0qWl0xjkxYmgp0OKjIYsFqe4iSCJ32zMz0-nqQqszjxfaiPGiNEI7jbArSXhBDv5wgcAduA7oaomy3V_LApb-7-93LhR77oQH4q1r-n4v7ZX_EYLjucyw-T6e4DuIL9EvQ5SWIHBqvliXkIF_X31bxePgqrOIb980b8L_LijRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dysgraphia+detection+through+machine+learning&rft.jtitle=Scientific+reports&rft.au=Drot%C3%A1r%2C+Peter&rft.au=Dobe%C5%A1%2C+Marek&rft.date=2020-12-09&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-78611-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_020_78611_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon