MMP-9 triggered self-assembly of doxorubicin nanofiber depots halts tumor growth
A central challenge in cancer care is to ensure that therapeutic compounds reach their targets. One approach is to use enzyme-responsive biomaterials, which reconfigure in response to endogenous enzymes that are overexpressed in diseased tissues, as potential site-specific anti-tumoral therapies. He...
Gespeichert in:
| Veröffentlicht in: | Biomaterials Jg. 98; S. 192 - 202 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Netherlands
Elsevier Ltd
01.08.2016
|
| Schlagworte: | |
| ISSN: | 0142-9612, 1878-5905, 1878-5905 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A central challenge in cancer care is to ensure that therapeutic compounds reach their targets. One approach is to use enzyme-responsive biomaterials, which reconfigure in response to endogenous enzymes that are overexpressed in diseased tissues, as potential site-specific anti-tumoral therapies. Here we report peptide micelles that upon MMP-9 catalyzed hydrolysis reconfigure to form fibrillar nanostructures. These structures slowly release a doxorubicin payload at the site of action. Using both in vitro and in vivo models, we demonstrate that the fibrillar depots are formed at the sites of MMP-9 overexpression giving rise to enhanced efficacy of doxorubicin, resulting in inhibition of tumor growth in an animal model. |
|---|---|
| AbstractList | A central challenge in cancer care is to ensure that therapeutic compounds reach their targets. One approach is to use enzyme-responsive biomaterials, which reconfigure in response to endogenous enzymes that are overexpressed in diseased tissues, as potential site-specific anti-tumoral therapies. Here we report peptide micelles that upon MMP-9 catalyzed hydrolysis reconfigure to form fibrillar nanostructures. These structures slowly release a doxorubicin payload at the site of action. Using both in vitro and in vivo models, we demonstrate that the fibrillar depots are formed at the sites of MMP-9 overexpression giving rise to enhanced efficacy of doxorubicin, resulting in inhibition of tumor growth in an animal model. A central challenge in cancer care is to ensure that therapeutic compounds reach their targets. One approach is to use enzyme-responsive biomaterials, which reconfigure in response to endogenous enzymes that are overexpressed in diseased tissues, as potential site-specific anti-tumoral therapies. Here we report peptide micelles that upon MMP-9 catalyzed hydrolysis reconfigure to form fibrillar nanostructures. These structures slowly release a doxorubicin payload at the site of action. Using both in vitro and in vivo models, we demonstrate that the fibrillar depots are formed at the sites of MMP-9 overexpression giving rise to enhanced efficacy of doxorubicin, resulting in inhibition of tumor growth in an animal model. A central challenge in cancer care is to ensure that therapeutic compounds reach their targets. One approach is to use enzyme-responsive biomaterials, which reconfigure in response to endogenous enzymes that are overexpressed in diseased tissues, as potential site-specific anti-tumoral therapies. Here we report peptide micelles that upon MMP-9 catalyzed hydrolysis reconfigure to form fibrillar nanostructures. These structures slowly release a doxorubicin payload at the site of action. Using both in vitro and in vivo models, we demonstrate that the fibrillar depots are formed at the sites of MMP-9 overexpression giving rise to enhanced efficacy of doxorubicin, resulting in inhibition of tumor growth in an animal model.A central challenge in cancer care is to ensure that therapeutic compounds reach their targets. One approach is to use enzyme-responsive biomaterials, which reconfigure in response to endogenous enzymes that are overexpressed in diseased tissues, as potential site-specific anti-tumoral therapies. Here we report peptide micelles that upon MMP-9 catalyzed hydrolysis reconfigure to form fibrillar nanostructures. These structures slowly release a doxorubicin payload at the site of action. Using both in vitro and in vivo models, we demonstrate that the fibrillar depots are formed at the sites of MMP-9 overexpression giving rise to enhanced efficacy of doxorubicin, resulting in inhibition of tumor growth in an animal model. Abstract A central challenge in cancer care is to ensure that therapeutic compounds reach their targets. One approach is to use enzyme-responsive biomaterials, which reconfigure in response to endogenous enzymes that are overexpressed in diseased tissues, as potential site-specific anti-tumoral therapies. Here we report peptide micelles that upon MMP-9 catalyzed hydrolysis reconfigure to form fibrillar nanostructures. These structures slowly release a doxorubicin payload at the site of action. Using both in vitro and in vivo models, we demonstrate that the fibrillar depots are formed at the sites of MMP-9 overexpression giving rise to enhanced efficacy of doxorubicin, resulting in inhibition of tumor growth in an animal model. |
| Author | Kalafatovic, Daniela Nobis, Max Son, Jiye Ulijn, Rein V. Anderson, Kurt I. |
| Author_xml | – sequence: 1 givenname: Daniela surname: Kalafatovic fullname: Kalafatovic, Daniela email: daniela.kalafatovic@irbbarcelona.org organization: Advanced Science Research Center (ASRC), City University New York, 85 St Nicholas Terrace, New York, NY 10031, USA – sequence: 2 givenname: Max surname: Nobis fullname: Nobis, Max organization: CRUK Beatson Institute, Garscube Estate, Glasgow, G61 1BD, UK – sequence: 3 givenname: Jiye surname: Son fullname: Son, Jiye organization: Advanced Science Research Center (ASRC), City University New York, 85 St Nicholas Terrace, New York, NY 10031, USA – sequence: 4 givenname: Kurt I. surname: Anderson fullname: Anderson, Kurt I. email: kurt.anderson@crick.ac.uk organization: CRUK Beatson Institute, Garscube Estate, Glasgow, G61 1BD, UK – sequence: 5 givenname: Rein V. surname: Ulijn fullname: Ulijn, Rein V. email: Rein.Ulijn@asrc.cuny.edu organization: Advanced Science Research Center (ASRC), City University New York, 85 St Nicholas Terrace, New York, NY 10031, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27192421$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl2P1CAUholZ437oXzCNV9505FBoixdGXT-T3biJek0onM4ytmUEqs6_l2Z2E7OJ2bmBQJ7z8nLec0qOJj8hIc-AroBC_WKz6pwfdcLg9BBXLN-tKF_RSj4gJ9A2bSkkFUfkhAJnpayBHZPTGDc0nylnj8gxa0AyzuCEXF1eXpWySMGt1xjQFhGHvtQx4tgNu8L3hfV_fJg7Z9xUTHryveswFBa3PsXiWg95TfPoQ7EO_ne6fkwe9tkVPrnZz8j3D--_nX8qL758_Hz-5qI0tZCp5LSVIAAaidrqTgJC3xtgtajyP2RthDCNqIW2PQdetxXYtpeW6arjVkNfnZHne91t8D9njEmNLhocBj2hn6NilFLGBKfiXhTazLVcVtUBKG1z70TV3I82kvOGCrEYeHqDzt2IVm2DG3XYqdsYMvB6D5jgYwzYK-OSTs5PKWg3KKBqSV5t1L_JqyV5RbnKHcsSL-9I3L5yUPG7fTHmxH45DCoah5NB6wKapKx3h8m8uiNjBjc5o4cfuMO48XOYlhpQkSmqvi7zuYwn1BUF0bIs8Pb_Aoe6-Asjxfs_ |
| CitedBy_id | crossref_primary_10_1016_j_apsb_2021_01_017 crossref_primary_10_2147_IJN_S526497 crossref_primary_10_3390_polym15051160 crossref_primary_10_1016_j_actbio_2022_08_016 crossref_primary_10_1016_j_dyepig_2025_112863 crossref_primary_10_2217_nnm_2019_0298 crossref_primary_10_1016_j_pmatsci_2025_101428 crossref_primary_10_1016_j_nantod_2020_100851 crossref_primary_10_1002_adma_202307675 crossref_primary_10_1038_s41467_024_45019_2 crossref_primary_10_1016_j_cej_2018_07_126 crossref_primary_10_1039_D2NR06621A crossref_primary_10_1007_s11705_017_1613_7 crossref_primary_10_3390_molecules23030568 crossref_primary_10_1002_chem_202000389 crossref_primary_10_3390_pharmaceutics14010212 crossref_primary_10_1016_j_tips_2018_06_003 crossref_primary_10_1016_j_matt_2019_09_015 crossref_primary_10_1016_j_ijpharm_2021_121066 crossref_primary_10_1016_j_jconrel_2019_12_027 crossref_primary_10_1088_1748_605X_abc2e9 crossref_primary_10_1021_jacs_2c09820 crossref_primary_10_1002_advs_201903718 crossref_primary_10_1039_C8NR07534D crossref_primary_10_3390_ph14090835 crossref_primary_10_1002_advs_202104165 crossref_primary_10_1002_mabi_202500153 crossref_primary_10_1002_adfm_202104645 crossref_primary_10_1002_anie_201708629 crossref_primary_10_1016_j_biomaterials_2021_121182 crossref_primary_10_1039_C8NR08781D crossref_primary_10_1021_acsbiomaterials_9b00153 crossref_primary_10_3390_pharmaceutics16111441 crossref_primary_10_1002_anie_202000983 crossref_primary_10_1002_adfm_201701798 crossref_primary_10_1016_j_bioactmat_2023_09_006 crossref_primary_10_1039_D3NR01332D crossref_primary_10_1186_s12951_020_00595_5 crossref_primary_10_1007_s12247_022_09653_x crossref_primary_10_1002_adtp_201800067 crossref_primary_10_1021_acsnano_5c00670 crossref_primary_10_1039_D0SC00954G crossref_primary_10_1016_j_bpc_2024_107202 crossref_primary_10_3390_cancers13040670 crossref_primary_10_1002_advs_202501775 crossref_primary_10_1002_ange_201708629 crossref_primary_10_2174_0929867324666170921104010 crossref_primary_10_1016_j_molliq_2017_12_086 crossref_primary_10_1016_j_biomaterials_2017_03_014 crossref_primary_10_1021_jacs_7b12368 crossref_primary_10_1002_adma_202104962 crossref_primary_10_1016_j_colsurfa_2019_124185 crossref_primary_10_1002_smll_201802417 crossref_primary_10_1016_S1875_5364_25_60861_2 crossref_primary_10_1155_2022_3249766 crossref_primary_10_1002_marc_201800099 crossref_primary_10_1002_btpr_2598 crossref_primary_10_1039_D3BM00840A crossref_primary_10_1016_j_jcis_2023_02_033 crossref_primary_10_1002_smll_202002780 crossref_primary_10_1002_adhm_202001239 crossref_primary_10_3389_fchem_2021_723473 crossref_primary_10_1246_bcsj_20180038 crossref_primary_10_1039_C8NR09671F crossref_primary_10_1002_ange_202000983 crossref_primary_10_1002_chem_201602624 crossref_primary_10_1016_j_reactfunctpolym_2021_104970 crossref_primary_10_1007_s10311_020_01031_8 crossref_primary_10_3389_fchem_2021_770102 crossref_primary_10_1016_j_tips_2019_08_003 crossref_primary_10_1002_slct_202402920 crossref_primary_10_1016_j_pbiomolbio_2021_07_011 crossref_primary_10_3389_fbioe_2021_598050 crossref_primary_10_3390_molecules22111929 crossref_primary_10_1016_j_biomaterials_2021_121139 crossref_primary_10_1016_j_jconrel_2022_04_006 crossref_primary_10_1002_adfm_202009765 crossref_primary_10_1002_anie_201913087 crossref_primary_10_1016_j_jconrel_2024_12_052 crossref_primary_10_1002_cplu_202400396 crossref_primary_10_1039_D5TB00625B crossref_primary_10_1016_j_pnsc_2020_09_002 crossref_primary_10_3390_pharmaceutics14112346 crossref_primary_10_1021_jacs_7b07147 crossref_primary_10_1002_psc_3301 crossref_primary_10_3390_ijms23158581 crossref_primary_10_1021_jacs_4c03751 crossref_primary_10_1002_adhm_202300153 crossref_primary_10_1016_j_carbpol_2017_02_067 crossref_primary_10_1002_adma_201707408 crossref_primary_10_1016_j_addr_2021_05_010 crossref_primary_10_1016_j_addr_2024_115327 crossref_primary_10_3390_gels8050301 crossref_primary_10_1016_j_bios_2021_113653 crossref_primary_10_1002_adhm_202000834 crossref_primary_10_1002_cbic_202100323 crossref_primary_10_1002_ange_201913087 |
| Cites_doi | 10.1002/anie.201402216 10.1021/jacs.5b00922 10.1002/adma.201501803 10.1021/la400994v 10.1021/acs.bioconjchem.5b00196 10.1002/jbm.a.33020 10.1017/S0033583502003815 10.1002/1097-0215(20000801)87:3<336::AID-IJC5>3.0.CO;2-3 10.1039/C4BM00297K 10.1038/ncomms4321 10.1002/(SICI)1096-9896(199910)189:2<161::AID-PATH406>3.0.CO;2-2 10.1021/jp904251j 10.1039/c1sm05610g 10.1038/mtm.2015.5 10.1002/adma.200304621 10.1021/nn403664n 10.1039/c3cc40472b 10.1002/adhm.201300645 10.1016/j.biomaterials.2014.07.059 10.1016/j.biomaterials.2016.01.006 10.1016/j.cell.2010.03.015 10.1023/A:1006762425323 10.1158/0008-5472.CAN-15-0888 10.1038/nrc3180 10.1038/ncomms8939 10.1016/j.biomaterials.2013.10.063 10.1038/ncomms2040 10.1021/nn401667z 10.1021/ja5111893 10.1126/scitranslmed.3008778 10.1021/bm500296n 10.1074/jbc.M114.610931 10.1039/c1cc15220c 10.1038/ncomms7295 10.1039/c3cc48132h 10.1002/ijc.21989 10.1016/j.pharmthera.2010.07.007 10.1039/C2BM00041E 10.1093/nar/27.1.325 10.1021/bm500020j 10.1038/nmeth.3047 10.1200/JCO.2013.53.7076 10.1002/bip.22240 10.7150/thno.5195 10.1023/A:1008365716693 10.1002/ijc.28165 10.1038/nbt874 10.1016/S0959-8049(00)00363-4 10.1039/B920359A 10.1002/anie.201200076 10.1021/ja510156v 10.1002/adma.201300823 10.1007/978-1-61779-452-0_15 10.1016/j.semcdb.2007.05.011 10.1523/JNEUROSCI.16-24-07910.1996 10.1007/BF00300234 |
| ContentType | Journal Article |
| Copyright | 2016 Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
| Copyright_xml | – notice: 2016 – notice: Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M 7S9 L.6 |
| DOI | 10.1016/j.biomaterials.2016.04.039 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX ANTE: Abstracts in New Technology & Engineering Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Materials Research Database Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic Materials Research Database Engineering Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Dentistry |
| EISSN | 1878-5905 |
| EndPage | 202 |
| ExternalDocumentID | 27192421 10_1016_j_biomaterials_2016_04_039 S0142961216301582 1_s2_0_S0142961216301582 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- ~HD AACTN AAYOK AFCTW AFKWA AJOXV AMFUW PKN RIG AAIAV ABYKQ AJBFU DOVZS 9DU AAYXX CITATION BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M 7S9 L.6 |
| ID | FETCH-LOGICAL-c659t-4089151179eadab91e1ffc1265303996c55c7565adf4146831d8f9d2a3b4da1f3 |
| ISICitedReferencesCount | 145 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000379278400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-9612 1878-5905 |
| IngestDate | Sun Nov 09 12:01:12 EST 2025 Sat Sep 27 18:56:57 EDT 2025 Tue Oct 07 09:38:48 EDT 2025 Tue Oct 21 14:10:22 EDT 2025 Thu Apr 03 07:09:18 EDT 2025 Sat Nov 29 07:23:26 EST 2025 Tue Nov 18 22:25:14 EST 2025 Fri Feb 23 02:31:39 EST 2024 Tue Feb 25 19:57:26 EST 2025 Tue Oct 14 19:32:37 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | MMP Self-assembly Peptides Morphology transition Cancer therapy |
| Language | English |
| License | Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c659t-4089151179eadab91e1ffc1265303996c55c7565adf4146831d8f9d2a3b4da1f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 27192421 |
| PQID | 1794470555 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2000225405 proquest_miscellaneous_1825484933 proquest_miscellaneous_1808719537 proquest_miscellaneous_1794470555 pubmed_primary_27192421 crossref_citationtrail_10_1016_j_biomaterials_2016_04_039 crossref_primary_10_1016_j_biomaterials_2016_04_039 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2016_04_039 elsevier_clinicalkeyesjournals_1_s2_0_S0142961216301582 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2016_04_039 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-08-01 |
| PublicationDateYYYYMMDD | 2016-08-01 |
| PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Biomaterials |
| PublicationTitleAlternate | Biomaterials |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Miele, Spinelli, Miele, Tomao, Tomao (bib7) 2009; 4 Peng, Kopecek (bib16) 2015; 137 Da Silva, Rueda, Löwik, Ossendorp, Cruz (bib3) 2016; 83 Kalafatovic (bib43) 2015; 3 Gao (bib57) 2013; 7 Hahn, Gianneschi (bib19) 2011; 47 Tanaka (bib21) 2015; 137 Zelzer, Todd, Hirst, McDonald, Ulijn (bib24) 2013; 1 Ventola (bib1) 2012; 37 Hahn, Randolph, Adamiak, Thompson, Gianneschi (bib46) 2013; 49 Vemula (bib29) 2011; 97A Backstrom, Lim, Cullen, Tökés (bib49) 1996; 16 Balduyck (bib62) 2000; 18 Barnard, Smith (bib17) 2012; 51 Yang, Ma, Xu (bib27) 2009; 9 Kuang, Du, Zhou, Xu (bib52) 2014; 3 Bharali, Mousa (bib2) 2010; 128 Barth, Zscherp (bib51) 2002; 35 Li (bib18) 2014; 35 Bacinello, Garanger, Taton, Tam, Lecommandoux (bib34) 2014; 15 Jones, Glynn, Walker (bib58) 1999; 168 Chien (bib37) 2013; 25 Webber, Newcomb, Bitton, Stupp (bib23) 2011; 7 Safra (bib5) 2000 Lutolf, Raeber, Zisch, Tirelli, Hubbell (bib28) 2003; 15 Lin, Ou, Cheetham, Cui (bib31) 2014; 15 Morini (bib61) 2000; 87 Zhang, Cheetham, Lin, Cui (bib66) 2013; 7 Naskar, Palui, Banerjee (bib65) 2009; 113 Fleming (bib50) 2013; 29 Li (bib38) 2015 Bremmer, McNeil, Soellner (bib33) 2014; 50 Frankowski, Gu, Heo, Milner, del Zoppo (bib54) 2012; 814 Hong, Zu (bib64) 2013; 3 Dilly (bib45) 2013; 133 Timpson (bib40) 2011; 56 Somiari (bib53) 2006; 119 Björklund, Koivunen (bib55) 2005; 1755 Zhou, Xu (bib22) 2015; 26 Richter (bib59) 2015 Pires (bib36) 2015; 137 Gajanayake (bib30) 2014; 6 Yoo (bib60) 2015; 75 Hennigan, Hawker, Ozanne (bib42) 1994; 9 Sanjana, Shalem, Zhang (bib39) 2014; 11 Patel (bib6) 2014; 32 Smith (bib10) 2015 Schroeder (bib4) 2011; 12 Huang, Shi, Yuan, Zhou, Xu (bib47) 2013; 100 Callmann (bib20) 2015; 27 Koda, Maruyama, Minakuchi, Nakashima, Goto (bib32) 2010; 46 Hernandez-Guillamon (bib48) 2015; 290 Kuang (bib35) 2014; 53 Rawlings, Barrett (bib44) 1999; 27 Zhang, Zhao, Spirio (bib15) 2005 Appel (bib9) 2015; 6 Zhang (bib14) 2003; 21 Newcomb (bib12) 2014; 5 Noël, Jost, Maquoi (bib25) 2008; 19 Lee (bib63) 2001; 37 Zhao (bib13) 2014; 35 Wang, Yang, Chen, Shin (bib8) 2008; 58 Gao, Shi, Yuan, Xu (bib56) 2012; 3 Kessenbrock, Plaks, Werb (bib26) 2010; 141 Tomayko, Reynolds (bib41) 1989; 24 Bhattacharyya (bib11) 2015; 6 Patel (10.1016/j.biomaterials.2016.04.039_bib6) 2014; 32 Wang (10.1016/j.biomaterials.2016.04.039_bib8) 2008; 58 Ventola (10.1016/j.biomaterials.2016.04.039_bib1) 2012; 37 Zhang (10.1016/j.biomaterials.2016.04.039_bib14) 2003; 21 Vemula (10.1016/j.biomaterials.2016.04.039_bib29) 2011; 97A Balduyck (10.1016/j.biomaterials.2016.04.039_bib62) 2000; 18 Hahn (10.1016/j.biomaterials.2016.04.039_bib19) 2011; 47 Li (10.1016/j.biomaterials.2016.04.039_bib18) 2014; 35 Yoo (10.1016/j.biomaterials.2016.04.039_bib60) 2015; 75 Da Silva (10.1016/j.biomaterials.2016.04.039_bib3) 2016; 83 Hong (10.1016/j.biomaterials.2016.04.039_bib64) 2013; 3 Jones (10.1016/j.biomaterials.2016.04.039_bib58) 1999; 168 Zelzer (10.1016/j.biomaterials.2016.04.039_bib24) 2013; 1 Dilly (10.1016/j.biomaterials.2016.04.039_bib45) 2013; 133 Peng (10.1016/j.biomaterials.2016.04.039_bib16) 2015; 137 Timpson (10.1016/j.biomaterials.2016.04.039_bib40) 2011; 56 Zhou (10.1016/j.biomaterials.2016.04.039_bib22) 2015; 26 Richter (10.1016/j.biomaterials.2016.04.039_bib59) 2015 Barth (10.1016/j.biomaterials.2016.04.039_bib51) 2002; 35 Zhao (10.1016/j.biomaterials.2016.04.039_bib13) 2014; 35 Noël (10.1016/j.biomaterials.2016.04.039_bib25) 2008; 19 Tomayko (10.1016/j.biomaterials.2016.04.039_bib41) 1989; 24 Lee (10.1016/j.biomaterials.2016.04.039_bib63) 2001; 37 Rawlings (10.1016/j.biomaterials.2016.04.039_bib44) 1999; 27 Kuang (10.1016/j.biomaterials.2016.04.039_bib35) 2014; 53 Chien (10.1016/j.biomaterials.2016.04.039_bib37) 2013; 25 Kuang (10.1016/j.biomaterials.2016.04.039_bib52) 2014; 3 Kessenbrock (10.1016/j.biomaterials.2016.04.039_bib26) 2010; 141 Hahn (10.1016/j.biomaterials.2016.04.039_bib46) 2013; 49 Somiari (10.1016/j.biomaterials.2016.04.039_bib53) 2006; 119 Schroeder (10.1016/j.biomaterials.2016.04.039_bib4) 2011; 12 Newcomb (10.1016/j.biomaterials.2016.04.039_bib12) 2014; 5 Lutolf (10.1016/j.biomaterials.2016.04.039_bib28) 2003; 15 Frankowski (10.1016/j.biomaterials.2016.04.039_bib54) 2012; 814 Gao (10.1016/j.biomaterials.2016.04.039_bib57) 2013; 7 Kalafatovic (10.1016/j.biomaterials.2016.04.039_bib43) 2015; 3 Fleming (10.1016/j.biomaterials.2016.04.039_bib50) 2013; 29 Morini (10.1016/j.biomaterials.2016.04.039_bib61) 2000; 87 Naskar (10.1016/j.biomaterials.2016.04.039_bib65) 2009; 113 Koda (10.1016/j.biomaterials.2016.04.039_bib32) 2010; 46 Pires (10.1016/j.biomaterials.2016.04.039_bib36) 2015; 137 Hernandez-Guillamon (10.1016/j.biomaterials.2016.04.039_bib48) 2015; 290 Huang (10.1016/j.biomaterials.2016.04.039_bib47) 2013; 100 Webber (10.1016/j.biomaterials.2016.04.039_bib23) 2011; 7 Lin (10.1016/j.biomaterials.2016.04.039_bib31) 2014; 15 Yang (10.1016/j.biomaterials.2016.04.039_bib27) 2009; 9 Li (10.1016/j.biomaterials.2016.04.039_bib38) 2015 Gajanayake (10.1016/j.biomaterials.2016.04.039_bib30) 2014; 6 Zhang (10.1016/j.biomaterials.2016.04.039_bib66) 2013; 7 Barnard (10.1016/j.biomaterials.2016.04.039_bib17) 2012; 51 Callmann (10.1016/j.biomaterials.2016.04.039_bib20) 2015; 27 Backstrom (10.1016/j.biomaterials.2016.04.039_bib49) 1996; 16 Bhattacharyya (10.1016/j.biomaterials.2016.04.039_bib11) 2015; 6 Björklund (10.1016/j.biomaterials.2016.04.039_bib55) 2005; 1755 Smith (10.1016/j.biomaterials.2016.04.039_bib10) 2015 Zhang (10.1016/j.biomaterials.2016.04.039_bib15) 2005 Tanaka (10.1016/j.biomaterials.2016.04.039_bib21) 2015; 137 Appel (10.1016/j.biomaterials.2016.04.039_bib9) 2015; 6 Miele (10.1016/j.biomaterials.2016.04.039_bib7) 2009; 4 Hennigan (10.1016/j.biomaterials.2016.04.039_bib42) 1994; 9 Bharali (10.1016/j.biomaterials.2016.04.039_bib2) 2010; 128 Sanjana (10.1016/j.biomaterials.2016.04.039_bib39) 2014; 11 Safra (10.1016/j.biomaterials.2016.04.039_bib5) 2000 Gao (10.1016/j.biomaterials.2016.04.039_bib56) 2012; 3 Bacinello (10.1016/j.biomaterials.2016.04.039_bib34) 2014; 15 Bremmer (10.1016/j.biomaterials.2016.04.039_bib33) 2014; 50 |
| References_xml | – volume: 97A start-page: 103 year: 2011 end-page: 110 ident: bib29 article-title: On-demand drug delivery from self-assembled nanofibrous gels: a new approach for treatment of proteolytic disease publication-title: J. Biomed. Mater. Res. Part A – volume: 9 start-page: 3591 year: 1994 end-page: 3600 ident: bib42 article-title: Fos-transformation activates genes associated with invasion publication-title: Oncogene – volume: 25 start-page: 3599 year: 2013 end-page: 3604 ident: bib37 article-title: Enzyme-directed assembly of a nanoparticle probe in tumor tissue publication-title: Adv. Mater. – volume: 87 start-page: 336 year: 2000 end-page: 342 ident: bib61 article-title: The α3β1 integrin is associated with mammary carcinoma cell metastasis, invasion, and gelatinase B (mmp-9) activity publication-title: Int. J. Cancer – volume: 24 start-page: 148 year: 1989 end-page: 154 ident: bib41 article-title: Determination of subcutaneous tumor size in athymic (nude) mice publication-title: Cancer Chemother. Pharmacol. – volume: 56 start-page: e3089 year: 2011 ident: bib40 article-title: Organotypic collagen I assay: a malleable platform to assess cell behaviour in a 3-dimensional context publication-title: J. Vis. Exp. – start-page: 1029 year: 2000 end-page: 1033 ident: bib5 article-title: Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2 publication-title: Ann. Oncol. – start-page: 217 year: 2005 end-page: 238 ident: bib15 article-title: PuraMatrix: self-assembling peptide nanofiber scaffolds publication-title: Scaffolding Tissue Eng. – volume: 168 start-page: 161 year: 1999 end-page: 168 ident: bib58 article-title: Expression of MMP-2 and MMP-9, their inhibitors, and the activator MT1-MMP in primary breast carcinomas publication-title: J. Pathol. – volume: 1755 start-page: 37 year: 2005 end-page: 69 ident: bib55 article-title: Gelatinase-mediated migration and invasion of cancer cells publication-title: Biochim. Biophys. Acta – volume: 15 start-page: 888 year: 2003 end-page: 892 ident: bib28 article-title: Cell-responsive synthetic hydrogels publication-title: Adv. Mater. – volume: 75 start-page: 4407 year: 2015 end-page: 4415 ident: bib60 article-title: Combining miR-10b-targeted nanotherapy with low-dose doxorubicin elicits durable regressions of metastatic breast Cancer publication-title: Cancer Res. – volume: 3 start-page: 246 year: 2015 end-page: 249 ident: bib43 article-title: MMP-9 triggered micelle-to-fibre transitions for slow release of doxorubicin publication-title: Biomater. Sci. – volume: 50 start-page: 1691 year: 2014 end-page: 1693 ident: bib33 article-title: Enzyme-triggered gelation: targeting proteases with internal cleavage sites publication-title: Chem. Commun. – volume: 27 start-page: 4611 year: 2015 end-page: 4615 ident: bib20 article-title: Therapeutic enzyme-responsive nanoparticles for targeted delivery and accumulation in tumors publication-title: Adv. Mater. – volume: 35 start-page: 9529 year: 2014 end-page: 9545 ident: bib18 article-title: Amphiphilic peptide dendritic copolymer-doxorubicin nanoscale conjugate self-assembled to enzyme-responsive anti-cancer agent publication-title: Biomaterials – volume: 46 start-page: 979 year: 2010 end-page: 981 ident: bib32 article-title: Proteinase-mediated drastic morphological change of peptide-amphiphile to induce supramolecular hydrogelation publication-title: Chem. Commun. (Camb). – volume: 6 start-page: 7939 year: 2015 ident: bib11 article-title: A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models publication-title: Nat. Commun. – volume: 137 start-page: 6726 year: 2015 end-page: 6729 ident: bib16 article-title: Enhancing accumulation and penetration of HPMA copolymer doxorubicin conjugates in 2D and 3D prostate Cancer cells via iRGD conjugation with an MMP-2 cleavable spacer publication-title: J. Am. Chem. Soc. – volume: 128 start-page: 324 year: 2010 end-page: 335 ident: bib2 article-title: Emerging nanomedicines for early cancer detection and improved treatment: current perspective and future promise publication-title: Pharmacol. Ther. – volume: 53 start-page: 8104 year: 2014 end-page: 8107 ident: bib35 article-title: Pericellular hydrogel/nanonets inhibit Cancer cells publication-title: Angew. Chem. Int. Ed. – volume: 133 start-page: 1784 year: 2013 end-page: 1791 ident: bib45 article-title: Platelet-type 12-lipoxygenase induces MMP9 expression and cellular invasion via activation of PI3K/Akt/NF-κB publication-title: Int. J. Cancer – volume: 51 start-page: 6572 year: 2012 end-page: 6581 ident: bib17 article-title: Self-assembled multivalency: dynamic ligand arrays for high-affinity binding publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 1217 year: 2014 end-page: 1221 ident: bib52 article-title: Supramolecular nanofibrils inhibit Cancer progression in vitro and in vivo publication-title: Adv. Healthc. Mater. – volume: 83 start-page: 308 year: 2016 end-page: 320 ident: bib3 article-title: Combinatorial prospects of nano-targeted chemoimmunotherapy publication-title: Biomaterials – year: 2015 ident: bib10 article-title: A multiphase transitioning peptide hydrogel for suturing ultrasmall vessels publication-title: Nat. Nanotechnol. – volume: 141 start-page: 52 year: 2010 end-page: 67 ident: bib26 article-title: Matrix metalloproteinases: regulators of the tumor microenvironment publication-title: Cell – volume: 100 start-page: 790 year: 2013 end-page: 795 ident: bib47 article-title: Length-dependent proteolytic cleavage of short oligopeptides catalyzed by matrix metalloprotease-9 publication-title: Biopolymers – volume: 47 start-page: 11814 year: 2011 ident: bib19 article-title: Enzyme-directed assembly and manipulation of organic nanomaterials publication-title: Chem. Commun. – volume: 7 start-page: 9665 year: 2011 ident: bib23 article-title: Switching of self-assembly in a peptide nanostructure with a specific enzyme publication-title: Soft Matter – volume: 3 start-page: 377 year: 2013 end-page: 394 ident: bib64 article-title: Detecting circulating tumor cells: current challenges and new trends publication-title: Theranostics – volume: 6 start-page: 1 year: 2015 end-page: 9 ident: bib9 article-title: Self-assembled hydrogels utilizing polymer–nanoparticle interactions publication-title: Nat. Commun. – volume: 49 start-page: 2873 year: 2013 end-page: 2875 ident: bib46 article-title: Polymerization of a peptide-based enzyme substrate publication-title: Chem. Commun. (Camb). – volume: 3 start-page: 1033 year: 2012 ident: bib56 article-title: Imaging enzyme-triggered self-assembly of small molecules inside live cells publication-title: Nat. Commun. – volume: 35 start-page: 1284 year: 2014 end-page: 1301 ident: bib13 article-title: A review of polypeptide-based polymersomes publication-title: Biomaterials – volume: 15 start-page: 1419 year: 2014 end-page: 1427 ident: bib31 article-title: Rational design of MMP degradable peptide-based supramolecular filaments publication-title: Biomacromolecules – volume: 26 start-page: 987 year: 2015 end-page: 999 ident: bib22 article-title: Enzyme-instructed self-assembly: a multi-step process for potential Cancer therapy publication-title: Bioconjug. Chem. – volume: 27 start-page: 325 year: 1999 end-page: 331 ident: bib44 article-title: MEROPS: the peptidase database publication-title: Nucleic Acids Res. – volume: 6 year: 2014 ident: bib30 article-title: A single localized dose of enzyme-responsive hydrogel improves long-term survival of a vascularized composite allograft publication-title: Sci. Transl. Med. – volume: 35 start-page: 369 year: 2002 end-page: 430 ident: bib51 article-title: What vibrations tell us about proteins publication-title: Q. Rev. Biophys. – year: 2015 ident: bib59 article-title: Preclinical safety and efficacy studies with an affinity-enhanced epithelial junction opener and PEGylated liposomal doxorubicin publication-title: Mol. Ther. Methods Clin. Dev. – volume: 7 start-page: 9055 year: 2013 end-page: 9063 ident: bib57 article-title: Probing nanoscale self-assembly of nonfluorescent small molecules inside live mammalian cells publication-title: ACS Nano – volume: 9 start-page: 2546 year: 2009 end-page: 2548 ident: bib27 article-title: Using matrix metalloprotease-9 (MMP-9) to trigger supramolecular hydrogelation publication-title: Soft Matter – volume: 37 start-page: 106 year: 2001 end-page: 113 ident: bib63 article-title: A matrix metalloproteinase inhibitor, batimastat, retards the development of osteolytic bone metastases by MDA-MB-231 human breast cancer cells in Balb C nu/nu mice publication-title: Eur. J. Cancer – volume: 32 start-page: 129 year: 2014 end-page: 160 ident: bib6 article-title: Clinical cancer advances 2013: annual report on progress against cancer from the American society of clinical oncology publication-title: J. Clin. Oncol. – volume: 29 start-page: 9510 year: 2013 end-page: 9515 ident: bib50 article-title: Assessing the utility of infrared spectroscopy as a structural diagnostic tool for β-sheets in self-assembling aromatic peptide amphiphiles publication-title: Langmuir – volume: 58 start-page: 97 year: 2008 end-page: 110 ident: bib8 article-title: Application of nanotechnology in cancer therapy and imaging publication-title: CA. Cancer J. Clin. – volume: 19 start-page: 52 year: 2008 end-page: 60 ident: bib25 article-title: Matrix metalloproteinases at cancer tumor-host interface publication-title: Semin. Cell Dev. Biol. – volume: 18 start-page: 171 year: 2000 end-page: 178 ident: bib62 article-title: Specific expression of matrix metalloproteinases 1, 3, 9 and 13 associated with invasiveness of breast cancer cells in vitro publication-title: Clin. Exp. Metastasis – volume: 16 start-page: 7910 year: 1996 end-page: 7919 ident: bib49 article-title: Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-beta peptide (1-40) publication-title: J. Neurosci. – volume: 113 start-page: 11787 year: 2009 end-page: 11792 ident: bib65 article-title: Tetrapeptide-based hydrogels: for encapsulation and slow release of an anticancer drug at physiological ph publication-title: J. Phys. Chem. B – year: 2015 ident: bib38 article-title: Enzyme-Instructed intracellular molecular self-assembly to boost activity of cisplatin against drug-resistant Ovarian Cancer cells publication-title: Angew. Chem. – volume: 12 start-page: 39 year: 2011 end-page: 50 ident: bib4 article-title: Treating metastatic cancer with nanotechnology publication-title: Nat. Rev. Cancer – volume: 5 start-page: 3321 year: 2014 ident: bib12 article-title: Cell death versus cell survival instructed by supramolecular cohesion of nanostructures publication-title: Nat. Commun. – volume: 290 start-page: 15078 year: 2015 end-page: 15091 ident: bib48 article-title: Sequential Abeta degradation by the matrix metalloproteases MMP-2 and MMP-9 publication-title: J. Biol. Chem. – volume: 137 start-page: 770 year: 2015 end-page: 775 ident: bib21 article-title: Cancer cell death induced by the intracellular self-assembly of an enzyme-responsive supramolecular gelator publication-title: J. Am. Chem. Soc. – volume: 119 start-page: 1403 year: 2006 end-page: 1411 ident: bib53 article-title: Circulating MMP2 and MMP9 in breast cancer – potential role in classification of patients into low risk, high risk, benign disease and breast cancer categories publication-title: Int. J. Cancer – volume: 814 start-page: 221 year: 2012 end-page: 233 ident: bib54 article-title: Use of gel zymography to examine matrix metalloproteinase (gelatinase) expression in brain tissue or in primary glial cultures publication-title: Astrocytes Methods Protoc. – volume: 21 start-page: 1171 year: 2003 end-page: 1178 ident: bib14 article-title: Fabrication of novel biomaterials through molecular self-assembly publication-title: Nat. Biotechnol. – volume: 7 start-page: 5965 year: 2013 end-page: 5977 ident: bib66 article-title: Self-assembled tat nano fibers as E ffective drug carrier and transporter publication-title: ACS Nano – volume: 137 start-page: 576 year: 2015 end-page: 579 ident: bib36 article-title: Controlling Cancer cell fate using localized biocatalytic self-assembly of an aromatic carbohydrate amphiphile publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 99 year: 2009 end-page: 105 ident: bib7 article-title: Albumin-bound formulation of paclitaxel (Abraxane publication-title: Int. J. Nanomed. – volume: 37 start-page: 512 year: 2012 end-page: 525 ident: bib1 article-title: The nanomedicine revolution: part 1: emerging concepts publication-title: Pharm. Ther. – volume: 1 start-page: 11 year: 2013 end-page: 39 ident: bib24 article-title: Enzyme responsive materials: design strategies and future developments publication-title: Biomater. Sci. – volume: 11 start-page: 006726 year: 2014 ident: bib39 article-title: Improved vectors and genome-wide libraries for CRISPR screening publication-title: Nat. Methods – volume: 15 start-page: 1882 year: 2014 end-page: 1888 ident: bib34 article-title: Enzyme-degradable self-assembled nanostructures from polymer-peptide hybrids publication-title: Biomacromolecules – volume: 53 start-page: 8104 year: 2014 ident: 10.1016/j.biomaterials.2016.04.039_bib35 article-title: Pericellular hydrogel/nanonets inhibit Cancer cells publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402216 – volume: 58 start-page: 97 year: 2008 ident: 10.1016/j.biomaterials.2016.04.039_bib8 article-title: Application of nanotechnology in cancer therapy and imaging publication-title: CA. Cancer J. Clin. – volume: 137 start-page: 6726 year: 2015 ident: 10.1016/j.biomaterials.2016.04.039_bib16 article-title: Enhancing accumulation and penetration of HPMA copolymer doxorubicin conjugates in 2D and 3D prostate Cancer cells via iRGD conjugation with an MMP-2 cleavable spacer publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b00922 – volume: 27 start-page: 4611 year: 2015 ident: 10.1016/j.biomaterials.2016.04.039_bib20 article-title: Therapeutic enzyme-responsive nanoparticles for targeted delivery and accumulation in tumors publication-title: Adv. Mater. doi: 10.1002/adma.201501803 – volume: 29 start-page: 9510 year: 2013 ident: 10.1016/j.biomaterials.2016.04.039_bib50 article-title: Assessing the utility of infrared spectroscopy as a structural diagnostic tool for β-sheets in self-assembling aromatic peptide amphiphiles publication-title: Langmuir doi: 10.1021/la400994v – volume: 26 start-page: 987 year: 2015 ident: 10.1016/j.biomaterials.2016.04.039_bib22 article-title: Enzyme-instructed self-assembly: a multi-step process for potential Cancer therapy publication-title: Bioconjug. Chem. doi: 10.1021/acs.bioconjchem.5b00196 – volume: 97A start-page: 103 year: 2011 ident: 10.1016/j.biomaterials.2016.04.039_bib29 article-title: On-demand drug delivery from self-assembled nanofibrous gels: a new approach for treatment of proteolytic disease publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.33020 – volume: 35 start-page: 369 year: 2002 ident: 10.1016/j.biomaterials.2016.04.039_bib51 article-title: What vibrations tell us about proteins publication-title: Q. Rev. Biophys. doi: 10.1017/S0033583502003815 – start-page: 217 year: 2005 ident: 10.1016/j.biomaterials.2016.04.039_bib15 article-title: PuraMatrix: self-assembling peptide nanofiber scaffolds publication-title: Scaffolding Tissue Eng. – volume: 87 start-page: 336 year: 2000 ident: 10.1016/j.biomaterials.2016.04.039_bib61 article-title: The α3β1 integrin is associated with mammary carcinoma cell metastasis, invasion, and gelatinase B (mmp-9) activity publication-title: Int. J. Cancer doi: 10.1002/1097-0215(20000801)87:3<336::AID-IJC5>3.0.CO;2-3 – volume: 3 start-page: 246 year: 2015 ident: 10.1016/j.biomaterials.2016.04.039_bib43 article-title: MMP-9 triggered micelle-to-fibre transitions for slow release of doxorubicin publication-title: Biomater. Sci. doi: 10.1039/C4BM00297K – volume: 5 start-page: 3321 year: 2014 ident: 10.1016/j.biomaterials.2016.04.039_bib12 article-title: Cell death versus cell survival instructed by supramolecular cohesion of nanostructures publication-title: Nat. Commun. doi: 10.1038/ncomms4321 – volume: 168 start-page: 161 year: 1999 ident: 10.1016/j.biomaterials.2016.04.039_bib58 article-title: Expression of MMP-2 and MMP-9, their inhibitors, and the activator MT1-MMP in primary breast carcinomas publication-title: J. Pathol. doi: 10.1002/(SICI)1096-9896(199910)189:2<161::AID-PATH406>3.0.CO;2-2 – volume: 113 start-page: 11787 year: 2009 ident: 10.1016/j.biomaterials.2016.04.039_bib65 article-title: Tetrapeptide-based hydrogels: for encapsulation and slow release of an anticancer drug at physiological ph publication-title: J. Phys. Chem. B doi: 10.1021/jp904251j – volume: 7 start-page: 9665 year: 2011 ident: 10.1016/j.biomaterials.2016.04.039_bib23 article-title: Switching of self-assembly in a peptide nanostructure with a specific enzyme publication-title: Soft Matter doi: 10.1039/c1sm05610g – year: 2015 ident: 10.1016/j.biomaterials.2016.04.039_bib59 article-title: Preclinical safety and efficacy studies with an affinity-enhanced epithelial junction opener and PEGylated liposomal doxorubicin publication-title: Mol. Ther. Methods Clin. Dev. doi: 10.1038/mtm.2015.5 – volume: 15 start-page: 888 year: 2003 ident: 10.1016/j.biomaterials.2016.04.039_bib28 article-title: Cell-responsive synthetic hydrogels publication-title: Adv. Mater. doi: 10.1002/adma.200304621 – volume: 7 start-page: 9055 year: 2013 ident: 10.1016/j.biomaterials.2016.04.039_bib57 article-title: Probing nanoscale self-assembly of nonfluorescent small molecules inside live mammalian cells publication-title: ACS Nano doi: 10.1021/nn403664n – volume: 49 start-page: 2873 year: 2013 ident: 10.1016/j.biomaterials.2016.04.039_bib46 article-title: Polymerization of a peptide-based enzyme substrate publication-title: Chem. Commun. (Camb). doi: 10.1039/c3cc40472b – volume: 3 start-page: 1217 year: 2014 ident: 10.1016/j.biomaterials.2016.04.039_bib52 article-title: Supramolecular nanofibrils inhibit Cancer progression in vitro and in vivo publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201300645 – volume: 35 start-page: 9529 year: 2014 ident: 10.1016/j.biomaterials.2016.04.039_bib18 article-title: Amphiphilic peptide dendritic copolymer-doxorubicin nanoscale conjugate self-assembled to enzyme-responsive anti-cancer agent publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.07.059 – volume: 37 start-page: 512 year: 2012 ident: 10.1016/j.biomaterials.2016.04.039_bib1 article-title: The nanomedicine revolution: part 1: emerging concepts publication-title: Pharm. Ther. – volume: 83 start-page: 308 year: 2016 ident: 10.1016/j.biomaterials.2016.04.039_bib3 article-title: Combinatorial prospects of nano-targeted chemoimmunotherapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.01.006 – volume: 141 start-page: 52 year: 2010 ident: 10.1016/j.biomaterials.2016.04.039_bib26 article-title: Matrix metalloproteinases: regulators of the tumor microenvironment publication-title: Cell doi: 10.1016/j.cell.2010.03.015 – volume: 56 start-page: e3089 year: 2011 ident: 10.1016/j.biomaterials.2016.04.039_bib40 article-title: Organotypic collagen I assay: a malleable platform to assess cell behaviour in a 3-dimensional context publication-title: J. Vis. Exp. – volume: 18 start-page: 171 year: 2000 ident: 10.1016/j.biomaterials.2016.04.039_bib62 article-title: Specific expression of matrix metalloproteinases 1, 3, 9 and 13 associated with invasiveness of breast cancer cells in vitro publication-title: Clin. Exp. Metastasis doi: 10.1023/A:1006762425323 – year: 2015 ident: 10.1016/j.biomaterials.2016.04.039_bib38 article-title: Enzyme-Instructed intracellular molecular self-assembly to boost activity of cisplatin against drug-resistant Ovarian Cancer cells publication-title: Angew. Chem. – volume: 75 start-page: 4407 year: 2015 ident: 10.1016/j.biomaterials.2016.04.039_bib60 article-title: Combining miR-10b-targeted nanotherapy with low-dose doxorubicin elicits durable regressions of metastatic breast Cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-0888 – volume: 12 start-page: 39 year: 2011 ident: 10.1016/j.biomaterials.2016.04.039_bib4 article-title: Treating metastatic cancer with nanotechnology publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3180 – volume: 6 start-page: 7939 year: 2015 ident: 10.1016/j.biomaterials.2016.04.039_bib11 article-title: A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models publication-title: Nat. Commun. doi: 10.1038/ncomms8939 – volume: 9 start-page: 3591 year: 1994 ident: 10.1016/j.biomaterials.2016.04.039_bib42 article-title: Fos-transformation activates genes associated with invasion publication-title: Oncogene – year: 2015 ident: 10.1016/j.biomaterials.2016.04.039_bib10 article-title: A multiphase transitioning peptide hydrogel for suturing ultrasmall vessels publication-title: Nat. Nanotechnol. – volume: 35 start-page: 1284 year: 2014 ident: 10.1016/j.biomaterials.2016.04.039_bib13 article-title: A review of polypeptide-based polymersomes publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.10.063 – volume: 3 start-page: 1033 year: 2012 ident: 10.1016/j.biomaterials.2016.04.039_bib56 article-title: Imaging enzyme-triggered self-assembly of small molecules inside live cells publication-title: Nat. Commun. doi: 10.1038/ncomms2040 – volume: 7 start-page: 5965 year: 2013 ident: 10.1016/j.biomaterials.2016.04.039_bib66 article-title: Self-assembled tat nano fibers as E ffective drug carrier and transporter publication-title: ACS Nano doi: 10.1021/nn401667z – volume: 137 start-page: 576 year: 2015 ident: 10.1016/j.biomaterials.2016.04.039_bib36 article-title: Controlling Cancer cell fate using localized biocatalytic self-assembly of an aromatic carbohydrate amphiphile publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5111893 – volume: 6 year: 2014 ident: 10.1016/j.biomaterials.2016.04.039_bib30 article-title: A single localized dose of enzyme-responsive hydrogel improves long-term survival of a vascularized composite allograft publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3008778 – volume: 15 start-page: 1882 year: 2014 ident: 10.1016/j.biomaterials.2016.04.039_bib34 article-title: Enzyme-degradable self-assembled nanostructures from polymer-peptide hybrids publication-title: Biomacromolecules doi: 10.1021/bm500296n – volume: 290 start-page: 15078 year: 2015 ident: 10.1016/j.biomaterials.2016.04.039_bib48 article-title: Sequential Abeta degradation by the matrix metalloproteases MMP-2 and MMP-9 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.610931 – volume: 47 start-page: 11814 year: 2011 ident: 10.1016/j.biomaterials.2016.04.039_bib19 article-title: Enzyme-directed assembly and manipulation of organic nanomaterials publication-title: Chem. Commun. doi: 10.1039/c1cc15220c – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.biomaterials.2016.04.039_bib9 article-title: Self-assembled hydrogels utilizing polymer–nanoparticle interactions publication-title: Nat. Commun. doi: 10.1038/ncomms7295 – volume: 50 start-page: 1691 year: 2014 ident: 10.1016/j.biomaterials.2016.04.039_bib33 article-title: Enzyme-triggered gelation: targeting proteases with internal cleavage sites publication-title: Chem. Commun. doi: 10.1039/c3cc48132h – volume: 119 start-page: 1403 year: 2006 ident: 10.1016/j.biomaterials.2016.04.039_bib53 article-title: Circulating MMP2 and MMP9 in breast cancer – potential role in classification of patients into low risk, high risk, benign disease and breast cancer categories publication-title: Int. J. Cancer doi: 10.1002/ijc.21989 – volume: 128 start-page: 324 year: 2010 ident: 10.1016/j.biomaterials.2016.04.039_bib2 article-title: Emerging nanomedicines for early cancer detection and improved treatment: current perspective and future promise publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2010.07.007 – volume: 1 start-page: 11 year: 2013 ident: 10.1016/j.biomaterials.2016.04.039_bib24 article-title: Enzyme responsive materials: design strategies and future developments publication-title: Biomater. Sci. doi: 10.1039/C2BM00041E – volume: 27 start-page: 325 year: 1999 ident: 10.1016/j.biomaterials.2016.04.039_bib44 article-title: MEROPS: the peptidase database publication-title: Nucleic Acids Res. doi: 10.1093/nar/27.1.325 – volume: 15 start-page: 1419 year: 2014 ident: 10.1016/j.biomaterials.2016.04.039_bib31 article-title: Rational design of MMP degradable peptide-based supramolecular filaments publication-title: Biomacromolecules doi: 10.1021/bm500020j – volume: 11 start-page: 006726 year: 2014 ident: 10.1016/j.biomaterials.2016.04.039_bib39 article-title: Improved vectors and genome-wide libraries for CRISPR screening publication-title: Nat. Methods doi: 10.1038/nmeth.3047 – volume: 32 start-page: 129 year: 2014 ident: 10.1016/j.biomaterials.2016.04.039_bib6 article-title: Clinical cancer advances 2013: annual report on progress against cancer from the American society of clinical oncology publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2013.53.7076 – volume: 100 start-page: 790 year: 2013 ident: 10.1016/j.biomaterials.2016.04.039_bib47 article-title: Length-dependent proteolytic cleavage of short oligopeptides catalyzed by matrix metalloprotease-9 publication-title: Biopolymers doi: 10.1002/bip.22240 – volume: 1755 start-page: 37 year: 2005 ident: 10.1016/j.biomaterials.2016.04.039_bib55 article-title: Gelatinase-mediated migration and invasion of cancer cells publication-title: Biochim. Biophys. Acta – volume: 3 start-page: 377 year: 2013 ident: 10.1016/j.biomaterials.2016.04.039_bib64 article-title: Detecting circulating tumor cells: current challenges and new trends publication-title: Theranostics doi: 10.7150/thno.5195 – volume: 9 start-page: 2546 year: 2009 ident: 10.1016/j.biomaterials.2016.04.039_bib27 article-title: Using matrix metalloprotease-9 (MMP-9) to trigger supramolecular hydrogelation publication-title: Soft Matter – start-page: 1029 year: 2000 ident: 10.1016/j.biomaterials.2016.04.039_bib5 article-title: Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2 publication-title: Ann. Oncol. doi: 10.1023/A:1008365716693 – volume: 133 start-page: 1784 year: 2013 ident: 10.1016/j.biomaterials.2016.04.039_bib45 article-title: Platelet-type 12-lipoxygenase induces MMP9 expression and cellular invasion via activation of PI3K/Akt/NF-κB publication-title: Int. J. Cancer doi: 10.1002/ijc.28165 – volume: 21 start-page: 1171 year: 2003 ident: 10.1016/j.biomaterials.2016.04.039_bib14 article-title: Fabrication of novel biomaterials through molecular self-assembly publication-title: Nat. Biotechnol. doi: 10.1038/nbt874 – volume: 37 start-page: 106 year: 2001 ident: 10.1016/j.biomaterials.2016.04.039_bib63 article-title: A matrix metalloproteinase inhibitor, batimastat, retards the development of osteolytic bone metastases by MDA-MB-231 human breast cancer cells in Balb C nu/nu mice publication-title: Eur. J. Cancer doi: 10.1016/S0959-8049(00)00363-4 – volume: 46 start-page: 979 year: 2010 ident: 10.1016/j.biomaterials.2016.04.039_bib32 article-title: Proteinase-mediated drastic morphological change of peptide-amphiphile to induce supramolecular hydrogelation publication-title: Chem. Commun. (Camb). doi: 10.1039/B920359A – volume: 51 start-page: 6572 year: 2012 ident: 10.1016/j.biomaterials.2016.04.039_bib17 article-title: Self-assembled multivalency: dynamic ligand arrays for high-affinity binding publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201200076 – volume: 137 start-page: 770 year: 2015 ident: 10.1016/j.biomaterials.2016.04.039_bib21 article-title: Cancer cell death induced by the intracellular self-assembly of an enzyme-responsive supramolecular gelator publication-title: J. Am. Chem. Soc. doi: 10.1021/ja510156v – volume: 4 start-page: 99 year: 2009 ident: 10.1016/j.biomaterials.2016.04.039_bib7 article-title: Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer publication-title: Int. J. Nanomed. – volume: 25 start-page: 3599 year: 2013 ident: 10.1016/j.biomaterials.2016.04.039_bib37 article-title: Enzyme-directed assembly of a nanoparticle probe in tumor tissue publication-title: Adv. Mater. doi: 10.1002/adma.201300823 – volume: 814 start-page: 221 year: 2012 ident: 10.1016/j.biomaterials.2016.04.039_bib54 article-title: Use of gel zymography to examine matrix metalloproteinase (gelatinase) expression in brain tissue or in primary glial cultures publication-title: Astrocytes Methods Protoc. doi: 10.1007/978-1-61779-452-0_15 – volume: 19 start-page: 52 year: 2008 ident: 10.1016/j.biomaterials.2016.04.039_bib25 article-title: Matrix metalloproteinases at cancer tumor-host interface publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2007.05.011 – volume: 16 start-page: 7910 year: 1996 ident: 10.1016/j.biomaterials.2016.04.039_bib49 article-title: Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-beta peptide (1-40) publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-24-07910.1996 – volume: 24 start-page: 148 year: 1989 ident: 10.1016/j.biomaterials.2016.04.039_bib41 article-title: Determination of subcutaneous tumor size in athymic (nude) mice publication-title: Cancer Chemother. Pharmacol. doi: 10.1007/BF00300234 |
| SSID | ssj0014042 |
| Score | 2.564805 |
| Snippet | A central challenge in cancer care is to ensure that therapeutic compounds reach their targets. One approach is to use enzyme-responsive biomaterials, which... Abstract A central challenge in cancer care is to ensure that therapeutic compounds reach their targets. One approach is to use enzyme-responsive biomaterials,... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 192 |
| SubjectTerms | Advanced Basic Science animal models Animals biocompatible materials Biomaterials Biomedical materials Cancer therapy Cell Line, Tumor Cell Proliferation - drug effects Dentistry Doxorubicin Doxorubicin - pharmacology Doxorubicin - therapeutic use Drug Carriers - chemistry Enzymes Humans hydrolysis Matrix Metalloproteinase 9 - metabolism Mice, Nude Micelles MMP Morphology transition nanofibers Nanofibers - chemistry Nanofibers - ultrastructure Nanostructure Neoplasm Invasiveness neoplasms Neoplasms - drug therapy Neoplasms - pathology Peptides Peptides - pharmacology Self assembly Surgical implants tissues Tumors |
| Title | MMP-9 triggered self-assembly of doxorubicin nanofiber depots halts tumor growth |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961216301582 https://www.clinicalkey.es/playcontent/1-s2.0-S0142961216301582 https://dx.doi.org/10.1016/j.biomaterials.2016.04.039 https://www.ncbi.nlm.nih.gov/pubmed/27192421 https://www.proquest.com/docview/1794470555 https://www.proquest.com/docview/1808719537 https://www.proquest.com/docview/1825484933 https://www.proquest.com/docview/2000225405 |
| Volume | 98 |
| WOSCitedRecordID | wos000379278400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014042 issn: 0142-9612 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbYXYTggGB5lccqSNyqoMRxYluIwwotgkWt9rBIvVnOw0tXbVI1KSr_nvEjblfQVTlwsaokjpvMl88znvEMQu-01lpGKgljFRUhkYUMOU6TUNKKKUUIp1KZYhN0PGaTCb9wobytKSdA65qt13zxX0UNx0DYeuvsP4jb3xQOwG8QOrQgdmj3EvxodBHyYQdW95Wuwzlsq5kKQUWu5vnMuNPLZt0sV7l2qQ9rWcNguSkTvmg6U1sF2m41b5bDKzDRux833L7TBjRc-xSequVMKjDdgXI2e9Y92Y-b3GYxGMm1X82xnv7z6a8N3sweG3v822rZucVctxwRZz4YDmYTS6EM7NKUR-k2x9pK044kY1v97g_ytusI1-_zrWfRwXeZSUZrcx5tCXAxNxLEVNuQON5MaD7MsD91gI4wTTmQ3tHp17PJuXczEaCsPhOtCfrbNbTOGe1utkuB2WWgGEXl8hF66CyM4NQi4zG6U9XH6MFW3sljdG_kIiqeoAsDl8DDJbgBl6BRwRZcAg-XwMIlMHAJDFwCC5en6Pvns8tPX0JXZSMsspR3IYkYB7UPiBlIReY8rmKlihhnKWg3YA0XaVpQUPtlqYjep5fEJVO8xDLJSSljlTxDh3VTVy9QUHEakSIiqsgLUqo4JzTCZcIwh1vILBsg3r86UbgU9LoSykz0sYbXYlsCQktARETAHxmgxPdd2EQse_X60EtI9FuNYXIUALm9etO_9a5a97m3IhYtFpEJkcRcJ-PLYMJMGR6gj76nU2Wtirr3yG97OAnge-3Ek3XVrGBEmECJToGV3nINixjV_nF62zU4JYzwJNl9DTbpsbRNN0DPLab9u-8_h5c7z7xC9zcE8RoddstV9QbdLX5203Z5gg7ohJ24D_I3uQL3aw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MMP-9+triggered+self-assembly+of+doxorubicin+nanofiber+depots+halts+tumor+growth&rft.jtitle=Biomaterials&rft.au=Kalafatovic%2C+Daniela&rft.au=Nobis%2C+Max&rft.au=Son%2C+Jiye&rft.au=Anderson%2C+Kurt+I&rft.date=2016-08-01&rft.eissn=1878-5905&rft.volume=98&rft.spage=192&rft_id=info:doi/10.1016%2Fj.biomaterials.2016.04.039&rft_id=info%3Apmid%2F27192421&rft.externalDocID=27192421 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961216X00178%2Fcov150h.gif |