MMP-9 triggered self-assembly of doxorubicin nanofiber depots halts tumor growth

A central challenge in cancer care is to ensure that therapeutic compounds reach their targets. One approach is to use enzyme-responsive biomaterials, which reconfigure in response to endogenous enzymes that are overexpressed in diseased tissues, as potential site-specific anti-tumoral therapies. He...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials Jg. 98; S. 192 - 202
Hauptverfasser: Kalafatovic, Daniela, Nobis, Max, Son, Jiye, Anderson, Kurt I., Ulijn, Rein V.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier Ltd 01.08.2016
Schlagworte:
ISSN:0142-9612, 1878-5905, 1878-5905
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A central challenge in cancer care is to ensure that therapeutic compounds reach their targets. One approach is to use enzyme-responsive biomaterials, which reconfigure in response to endogenous enzymes that are overexpressed in diseased tissues, as potential site-specific anti-tumoral therapies. Here we report peptide micelles that upon MMP-9 catalyzed hydrolysis reconfigure to form fibrillar nanostructures. These structures slowly release a doxorubicin payload at the site of action. Using both in vitro and in vivo models, we demonstrate that the fibrillar depots are formed at the sites of MMP-9 overexpression giving rise to enhanced efficacy of doxorubicin, resulting in inhibition of tumor growth in an animal model.
AbstractList A central challenge in cancer care is to ensure that therapeutic compounds reach their targets. One approach is to use enzyme-responsive biomaterials, which reconfigure in response to endogenous enzymes that are overexpressed in diseased tissues, as potential site-specific anti-tumoral therapies. Here we report peptide micelles that upon MMP-9 catalyzed hydrolysis reconfigure to form fibrillar nanostructures. These structures slowly release a doxorubicin payload at the site of action. Using both in vitro and in vivo models, we demonstrate that the fibrillar depots are formed at the sites of MMP-9 overexpression giving rise to enhanced efficacy of doxorubicin, resulting in inhibition of tumor growth in an animal model.
A central challenge in cancer care is to ensure that therapeutic compounds reach their targets. One approach is to use enzyme-responsive biomaterials, which reconfigure in response to endogenous enzymes that are overexpressed in diseased tissues, as potential site-specific anti-tumoral therapies. Here we report peptide micelles that upon MMP-9 catalyzed hydrolysis reconfigure to form fibrillar nanostructures. These structures slowly release a doxorubicin payload at the site of action. Using both in vitro and in vivo models, we demonstrate that the fibrillar depots are formed at the sites of MMP-9 overexpression giving rise to enhanced efficacy of doxorubicin, resulting in inhibition of tumor growth in an animal model.
A central challenge in cancer care is to ensure that therapeutic compounds reach their targets. One approach is to use enzyme-responsive biomaterials, which reconfigure in response to endogenous enzymes that are overexpressed in diseased tissues, as potential site-specific anti-tumoral therapies. Here we report peptide micelles that upon MMP-9 catalyzed hydrolysis reconfigure to form fibrillar nanostructures. These structures slowly release a doxorubicin payload at the site of action. Using both in vitro and in vivo models, we demonstrate that the fibrillar depots are formed at the sites of MMP-9 overexpression giving rise to enhanced efficacy of doxorubicin, resulting in inhibition of tumor growth in an animal model.A central challenge in cancer care is to ensure that therapeutic compounds reach their targets. One approach is to use enzyme-responsive biomaterials, which reconfigure in response to endogenous enzymes that are overexpressed in diseased tissues, as potential site-specific anti-tumoral therapies. Here we report peptide micelles that upon MMP-9 catalyzed hydrolysis reconfigure to form fibrillar nanostructures. These structures slowly release a doxorubicin payload at the site of action. Using both in vitro and in vivo models, we demonstrate that the fibrillar depots are formed at the sites of MMP-9 overexpression giving rise to enhanced efficacy of doxorubicin, resulting in inhibition of tumor growth in an animal model.
Abstract A central challenge in cancer care is to ensure that therapeutic compounds reach their targets. One approach is to use enzyme-responsive biomaterials, which reconfigure in response to endogenous enzymes that are overexpressed in diseased tissues, as potential site-specific anti-tumoral therapies. Here we report peptide micelles that upon MMP-9 catalyzed hydrolysis reconfigure to form fibrillar nanostructures. These structures slowly release a doxorubicin payload at the site of action. Using both in vitro and in vivo models, we demonstrate that the fibrillar depots are formed at the sites of MMP-9 overexpression giving rise to enhanced efficacy of doxorubicin, resulting in inhibition of tumor growth in an animal model.
Author Kalafatovic, Daniela
Nobis, Max
Son, Jiye
Ulijn, Rein V.
Anderson, Kurt I.
Author_xml – sequence: 1
  givenname: Daniela
  surname: Kalafatovic
  fullname: Kalafatovic, Daniela
  email: daniela.kalafatovic@irbbarcelona.org
  organization: Advanced Science Research Center (ASRC), City University New York, 85 St Nicholas Terrace, New York, NY 10031, USA
– sequence: 2
  givenname: Max
  surname: Nobis
  fullname: Nobis, Max
  organization: CRUK Beatson Institute, Garscube Estate, Glasgow, G61 1BD, UK
– sequence: 3
  givenname: Jiye
  surname: Son
  fullname: Son, Jiye
  organization: Advanced Science Research Center (ASRC), City University New York, 85 St Nicholas Terrace, New York, NY 10031, USA
– sequence: 4
  givenname: Kurt I.
  surname: Anderson
  fullname: Anderson, Kurt I.
  email: kurt.anderson@crick.ac.uk
  organization: CRUK Beatson Institute, Garscube Estate, Glasgow, G61 1BD, UK
– sequence: 5
  givenname: Rein V.
  surname: Ulijn
  fullname: Ulijn, Rein V.
  email: Rein.Ulijn@asrc.cuny.edu
  organization: Advanced Science Research Center (ASRC), City University New York, 85 St Nicholas Terrace, New York, NY 10031, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27192421$$D View this record in MEDLINE/PubMed
BookMark eNqNkl2P1CAUholZ437oXzCNV9505FBoixdGXT-T3biJek0onM4ytmUEqs6_l2Z2E7OJ2bmBQJ7z8nLec0qOJj8hIc-AroBC_WKz6pwfdcLg9BBXLN-tKF_RSj4gJ9A2bSkkFUfkhAJnpayBHZPTGDc0nylnj8gxa0AyzuCEXF1eXpWySMGt1xjQFhGHvtQx4tgNu8L3hfV_fJg7Z9xUTHryveswFBa3PsXiWg95TfPoQ7EO_ne6fkwe9tkVPrnZz8j3D--_nX8qL758_Hz-5qI0tZCp5LSVIAAaidrqTgJC3xtgtajyP2RthDCNqIW2PQdetxXYtpeW6arjVkNfnZHne91t8D9njEmNLhocBj2hn6NilFLGBKfiXhTazLVcVtUBKG1z70TV3I82kvOGCrEYeHqDzt2IVm2DG3XYqdsYMvB6D5jgYwzYK-OSTs5PKWg3KKBqSV5t1L_JqyV5RbnKHcsSL-9I3L5yUPG7fTHmxH45DCoah5NB6wKapKx3h8m8uiNjBjc5o4cfuMO48XOYlhpQkSmqvi7zuYwn1BUF0bIs8Pb_Aoe6-Asjxfs_
CitedBy_id crossref_primary_10_1016_j_apsb_2021_01_017
crossref_primary_10_2147_IJN_S526497
crossref_primary_10_3390_polym15051160
crossref_primary_10_1016_j_actbio_2022_08_016
crossref_primary_10_1016_j_dyepig_2025_112863
crossref_primary_10_2217_nnm_2019_0298
crossref_primary_10_1016_j_pmatsci_2025_101428
crossref_primary_10_1016_j_nantod_2020_100851
crossref_primary_10_1002_adma_202307675
crossref_primary_10_1038_s41467_024_45019_2
crossref_primary_10_1016_j_cej_2018_07_126
crossref_primary_10_1039_D2NR06621A
crossref_primary_10_1007_s11705_017_1613_7
crossref_primary_10_3390_molecules23030568
crossref_primary_10_1002_chem_202000389
crossref_primary_10_3390_pharmaceutics14010212
crossref_primary_10_1016_j_tips_2018_06_003
crossref_primary_10_1016_j_matt_2019_09_015
crossref_primary_10_1016_j_ijpharm_2021_121066
crossref_primary_10_1016_j_jconrel_2019_12_027
crossref_primary_10_1088_1748_605X_abc2e9
crossref_primary_10_1021_jacs_2c09820
crossref_primary_10_1002_advs_201903718
crossref_primary_10_1039_C8NR07534D
crossref_primary_10_3390_ph14090835
crossref_primary_10_1002_advs_202104165
crossref_primary_10_1002_mabi_202500153
crossref_primary_10_1002_adfm_202104645
crossref_primary_10_1002_anie_201708629
crossref_primary_10_1016_j_biomaterials_2021_121182
crossref_primary_10_1039_C8NR08781D
crossref_primary_10_1021_acsbiomaterials_9b00153
crossref_primary_10_3390_pharmaceutics16111441
crossref_primary_10_1002_anie_202000983
crossref_primary_10_1002_adfm_201701798
crossref_primary_10_1016_j_bioactmat_2023_09_006
crossref_primary_10_1039_D3NR01332D
crossref_primary_10_1186_s12951_020_00595_5
crossref_primary_10_1007_s12247_022_09653_x
crossref_primary_10_1002_adtp_201800067
crossref_primary_10_1021_acsnano_5c00670
crossref_primary_10_1039_D0SC00954G
crossref_primary_10_1016_j_bpc_2024_107202
crossref_primary_10_3390_cancers13040670
crossref_primary_10_1002_advs_202501775
crossref_primary_10_1002_ange_201708629
crossref_primary_10_2174_0929867324666170921104010
crossref_primary_10_1016_j_molliq_2017_12_086
crossref_primary_10_1016_j_biomaterials_2017_03_014
crossref_primary_10_1021_jacs_7b12368
crossref_primary_10_1002_adma_202104962
crossref_primary_10_1016_j_colsurfa_2019_124185
crossref_primary_10_1002_smll_201802417
crossref_primary_10_1016_S1875_5364_25_60861_2
crossref_primary_10_1155_2022_3249766
crossref_primary_10_1002_marc_201800099
crossref_primary_10_1002_btpr_2598
crossref_primary_10_1039_D3BM00840A
crossref_primary_10_1016_j_jcis_2023_02_033
crossref_primary_10_1002_smll_202002780
crossref_primary_10_1002_adhm_202001239
crossref_primary_10_3389_fchem_2021_723473
crossref_primary_10_1246_bcsj_20180038
crossref_primary_10_1039_C8NR09671F
crossref_primary_10_1002_ange_202000983
crossref_primary_10_1002_chem_201602624
crossref_primary_10_1016_j_reactfunctpolym_2021_104970
crossref_primary_10_1007_s10311_020_01031_8
crossref_primary_10_3389_fchem_2021_770102
crossref_primary_10_1016_j_tips_2019_08_003
crossref_primary_10_1002_slct_202402920
crossref_primary_10_1016_j_pbiomolbio_2021_07_011
crossref_primary_10_3389_fbioe_2021_598050
crossref_primary_10_3390_molecules22111929
crossref_primary_10_1016_j_biomaterials_2021_121139
crossref_primary_10_1016_j_jconrel_2022_04_006
crossref_primary_10_1002_adfm_202009765
crossref_primary_10_1002_anie_201913087
crossref_primary_10_1016_j_jconrel_2024_12_052
crossref_primary_10_1002_cplu_202400396
crossref_primary_10_1039_D5TB00625B
crossref_primary_10_1016_j_pnsc_2020_09_002
crossref_primary_10_3390_pharmaceutics14112346
crossref_primary_10_1021_jacs_7b07147
crossref_primary_10_1002_psc_3301
crossref_primary_10_3390_ijms23158581
crossref_primary_10_1021_jacs_4c03751
crossref_primary_10_1002_adhm_202300153
crossref_primary_10_1016_j_carbpol_2017_02_067
crossref_primary_10_1002_adma_201707408
crossref_primary_10_1016_j_addr_2021_05_010
crossref_primary_10_1016_j_addr_2024_115327
crossref_primary_10_3390_gels8050301
crossref_primary_10_1016_j_bios_2021_113653
crossref_primary_10_1002_adhm_202000834
crossref_primary_10_1002_cbic_202100323
crossref_primary_10_1002_ange_201913087
Cites_doi 10.1002/anie.201402216
10.1021/jacs.5b00922
10.1002/adma.201501803
10.1021/la400994v
10.1021/acs.bioconjchem.5b00196
10.1002/jbm.a.33020
10.1017/S0033583502003815
10.1002/1097-0215(20000801)87:3<336::AID-IJC5>3.0.CO;2-3
10.1039/C4BM00297K
10.1038/ncomms4321
10.1002/(SICI)1096-9896(199910)189:2<161::AID-PATH406>3.0.CO;2-2
10.1021/jp904251j
10.1039/c1sm05610g
10.1038/mtm.2015.5
10.1002/adma.200304621
10.1021/nn403664n
10.1039/c3cc40472b
10.1002/adhm.201300645
10.1016/j.biomaterials.2014.07.059
10.1016/j.biomaterials.2016.01.006
10.1016/j.cell.2010.03.015
10.1023/A:1006762425323
10.1158/0008-5472.CAN-15-0888
10.1038/nrc3180
10.1038/ncomms8939
10.1016/j.biomaterials.2013.10.063
10.1038/ncomms2040
10.1021/nn401667z
10.1021/ja5111893
10.1126/scitranslmed.3008778
10.1021/bm500296n
10.1074/jbc.M114.610931
10.1039/c1cc15220c
10.1038/ncomms7295
10.1039/c3cc48132h
10.1002/ijc.21989
10.1016/j.pharmthera.2010.07.007
10.1039/C2BM00041E
10.1093/nar/27.1.325
10.1021/bm500020j
10.1038/nmeth.3047
10.1200/JCO.2013.53.7076
10.1002/bip.22240
10.7150/thno.5195
10.1023/A:1008365716693
10.1002/ijc.28165
10.1038/nbt874
10.1016/S0959-8049(00)00363-4
10.1039/B920359A
10.1002/anie.201200076
10.1021/ja510156v
10.1002/adma.201300823
10.1007/978-1-61779-452-0_15
10.1016/j.semcdb.2007.05.011
10.1523/JNEUROSCI.16-24-07910.1996
10.1007/BF00300234
ContentType Journal Article
Copyright 2016
Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2016
– notice: Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
7S9
L.6
DOI 10.1016/j.biomaterials.2016.04.039
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Materials Research Database
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

MEDLINE
MEDLINE - Academic

Materials Research Database
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 202
ExternalDocumentID 27192421
10_1016_j_biomaterials_2016_04_039
S0142961216301582
1_s2_0_S0142961216301582
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
~HD
AACTN
AAYOK
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
AAIAV
ABYKQ
AJBFU
DOVZS
9DU
AAYXX
CITATION
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c659t-4089151179eadab91e1ffc1265303996c55c7565adf4146831d8f9d2a3b4da1f3
ISICitedReferencesCount 145
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000379278400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-9612
1878-5905
IngestDate Sun Nov 09 12:01:12 EST 2025
Sat Sep 27 18:56:57 EDT 2025
Tue Oct 07 09:38:48 EDT 2025
Tue Oct 21 14:10:22 EDT 2025
Thu Apr 03 07:09:18 EDT 2025
Sat Nov 29 07:23:26 EST 2025
Tue Nov 18 22:25:14 EST 2025
Fri Feb 23 02:31:39 EST 2024
Tue Feb 25 19:57:26 EST 2025
Tue Oct 14 19:32:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords MMP
Self-assembly
Peptides
Morphology transition
Cancer therapy
Language English
License Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c659t-4089151179eadab91e1ffc1265303996c55c7565adf4146831d8f9d2a3b4da1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27192421
PQID 1794470555
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2000225405
proquest_miscellaneous_1825484933
proquest_miscellaneous_1808719537
proquest_miscellaneous_1794470555
pubmed_primary_27192421
crossref_citationtrail_10_1016_j_biomaterials_2016_04_039
crossref_primary_10_1016_j_biomaterials_2016_04_039
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2016_04_039
elsevier_clinicalkeyesjournals_1_s2_0_S0142961216301582
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2016_04_039
PublicationCentury 2000
PublicationDate 2016-08-01
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Miele, Spinelli, Miele, Tomao, Tomao (bib7) 2009; 4
Peng, Kopecek (bib16) 2015; 137
Da Silva, Rueda, Löwik, Ossendorp, Cruz (bib3) 2016; 83
Kalafatovic (bib43) 2015; 3
Gao (bib57) 2013; 7
Hahn, Gianneschi (bib19) 2011; 47
Tanaka (bib21) 2015; 137
Zelzer, Todd, Hirst, McDonald, Ulijn (bib24) 2013; 1
Ventola (bib1) 2012; 37
Hahn, Randolph, Adamiak, Thompson, Gianneschi (bib46) 2013; 49
Vemula (bib29) 2011; 97A
Backstrom, Lim, Cullen, Tökés (bib49) 1996; 16
Balduyck (bib62) 2000; 18
Barnard, Smith (bib17) 2012; 51
Yang, Ma, Xu (bib27) 2009; 9
Kuang, Du, Zhou, Xu (bib52) 2014; 3
Bharali, Mousa (bib2) 2010; 128
Barth, Zscherp (bib51) 2002; 35
Li (bib18) 2014; 35
Bacinello, Garanger, Taton, Tam, Lecommandoux (bib34) 2014; 15
Jones, Glynn, Walker (bib58) 1999; 168
Chien (bib37) 2013; 25
Webber, Newcomb, Bitton, Stupp (bib23) 2011; 7
Safra (bib5) 2000
Lutolf, Raeber, Zisch, Tirelli, Hubbell (bib28) 2003; 15
Lin, Ou, Cheetham, Cui (bib31) 2014; 15
Morini (bib61) 2000; 87
Zhang, Cheetham, Lin, Cui (bib66) 2013; 7
Naskar, Palui, Banerjee (bib65) 2009; 113
Fleming (bib50) 2013; 29
Li (bib38) 2015
Bremmer, McNeil, Soellner (bib33) 2014; 50
Frankowski, Gu, Heo, Milner, del Zoppo (bib54) 2012; 814
Hong, Zu (bib64) 2013; 3
Dilly (bib45) 2013; 133
Timpson (bib40) 2011; 56
Somiari (bib53) 2006; 119
Björklund, Koivunen (bib55) 2005; 1755
Zhou, Xu (bib22) 2015; 26
Richter (bib59) 2015
Pires (bib36) 2015; 137
Gajanayake (bib30) 2014; 6
Yoo (bib60) 2015; 75
Hennigan, Hawker, Ozanne (bib42) 1994; 9
Sanjana, Shalem, Zhang (bib39) 2014; 11
Patel (bib6) 2014; 32
Smith (bib10) 2015
Schroeder (bib4) 2011; 12
Huang, Shi, Yuan, Zhou, Xu (bib47) 2013; 100
Callmann (bib20) 2015; 27
Koda, Maruyama, Minakuchi, Nakashima, Goto (bib32) 2010; 46
Hernandez-Guillamon (bib48) 2015; 290
Kuang (bib35) 2014; 53
Rawlings, Barrett (bib44) 1999; 27
Zhang, Zhao, Spirio (bib15) 2005
Appel (bib9) 2015; 6
Zhang (bib14) 2003; 21
Newcomb (bib12) 2014; 5
Noël, Jost, Maquoi (bib25) 2008; 19
Lee (bib63) 2001; 37
Zhao (bib13) 2014; 35
Wang, Yang, Chen, Shin (bib8) 2008; 58
Gao, Shi, Yuan, Xu (bib56) 2012; 3
Kessenbrock, Plaks, Werb (bib26) 2010; 141
Tomayko, Reynolds (bib41) 1989; 24
Bhattacharyya (bib11) 2015; 6
Patel (10.1016/j.biomaterials.2016.04.039_bib6) 2014; 32
Wang (10.1016/j.biomaterials.2016.04.039_bib8) 2008; 58
Ventola (10.1016/j.biomaterials.2016.04.039_bib1) 2012; 37
Zhang (10.1016/j.biomaterials.2016.04.039_bib14) 2003; 21
Vemula (10.1016/j.biomaterials.2016.04.039_bib29) 2011; 97A
Balduyck (10.1016/j.biomaterials.2016.04.039_bib62) 2000; 18
Hahn (10.1016/j.biomaterials.2016.04.039_bib19) 2011; 47
Li (10.1016/j.biomaterials.2016.04.039_bib18) 2014; 35
Yoo (10.1016/j.biomaterials.2016.04.039_bib60) 2015; 75
Da Silva (10.1016/j.biomaterials.2016.04.039_bib3) 2016; 83
Hong (10.1016/j.biomaterials.2016.04.039_bib64) 2013; 3
Jones (10.1016/j.biomaterials.2016.04.039_bib58) 1999; 168
Zelzer (10.1016/j.biomaterials.2016.04.039_bib24) 2013; 1
Dilly (10.1016/j.biomaterials.2016.04.039_bib45) 2013; 133
Peng (10.1016/j.biomaterials.2016.04.039_bib16) 2015; 137
Timpson (10.1016/j.biomaterials.2016.04.039_bib40) 2011; 56
Zhou (10.1016/j.biomaterials.2016.04.039_bib22) 2015; 26
Richter (10.1016/j.biomaterials.2016.04.039_bib59) 2015
Barth (10.1016/j.biomaterials.2016.04.039_bib51) 2002; 35
Zhao (10.1016/j.biomaterials.2016.04.039_bib13) 2014; 35
Noël (10.1016/j.biomaterials.2016.04.039_bib25) 2008; 19
Tomayko (10.1016/j.biomaterials.2016.04.039_bib41) 1989; 24
Lee (10.1016/j.biomaterials.2016.04.039_bib63) 2001; 37
Rawlings (10.1016/j.biomaterials.2016.04.039_bib44) 1999; 27
Kuang (10.1016/j.biomaterials.2016.04.039_bib35) 2014; 53
Chien (10.1016/j.biomaterials.2016.04.039_bib37) 2013; 25
Kuang (10.1016/j.biomaterials.2016.04.039_bib52) 2014; 3
Kessenbrock (10.1016/j.biomaterials.2016.04.039_bib26) 2010; 141
Hahn (10.1016/j.biomaterials.2016.04.039_bib46) 2013; 49
Somiari (10.1016/j.biomaterials.2016.04.039_bib53) 2006; 119
Schroeder (10.1016/j.biomaterials.2016.04.039_bib4) 2011; 12
Newcomb (10.1016/j.biomaterials.2016.04.039_bib12) 2014; 5
Lutolf (10.1016/j.biomaterials.2016.04.039_bib28) 2003; 15
Frankowski (10.1016/j.biomaterials.2016.04.039_bib54) 2012; 814
Gao (10.1016/j.biomaterials.2016.04.039_bib57) 2013; 7
Kalafatovic (10.1016/j.biomaterials.2016.04.039_bib43) 2015; 3
Fleming (10.1016/j.biomaterials.2016.04.039_bib50) 2013; 29
Morini (10.1016/j.biomaterials.2016.04.039_bib61) 2000; 87
Naskar (10.1016/j.biomaterials.2016.04.039_bib65) 2009; 113
Koda (10.1016/j.biomaterials.2016.04.039_bib32) 2010; 46
Pires (10.1016/j.biomaterials.2016.04.039_bib36) 2015; 137
Hernandez-Guillamon (10.1016/j.biomaterials.2016.04.039_bib48) 2015; 290
Huang (10.1016/j.biomaterials.2016.04.039_bib47) 2013; 100
Webber (10.1016/j.biomaterials.2016.04.039_bib23) 2011; 7
Lin (10.1016/j.biomaterials.2016.04.039_bib31) 2014; 15
Yang (10.1016/j.biomaterials.2016.04.039_bib27) 2009; 9
Li (10.1016/j.biomaterials.2016.04.039_bib38) 2015
Gajanayake (10.1016/j.biomaterials.2016.04.039_bib30) 2014; 6
Zhang (10.1016/j.biomaterials.2016.04.039_bib66) 2013; 7
Barnard (10.1016/j.biomaterials.2016.04.039_bib17) 2012; 51
Callmann (10.1016/j.biomaterials.2016.04.039_bib20) 2015; 27
Backstrom (10.1016/j.biomaterials.2016.04.039_bib49) 1996; 16
Bhattacharyya (10.1016/j.biomaterials.2016.04.039_bib11) 2015; 6
Björklund (10.1016/j.biomaterials.2016.04.039_bib55) 2005; 1755
Smith (10.1016/j.biomaterials.2016.04.039_bib10) 2015
Zhang (10.1016/j.biomaterials.2016.04.039_bib15) 2005
Tanaka (10.1016/j.biomaterials.2016.04.039_bib21) 2015; 137
Appel (10.1016/j.biomaterials.2016.04.039_bib9) 2015; 6
Miele (10.1016/j.biomaterials.2016.04.039_bib7) 2009; 4
Hennigan (10.1016/j.biomaterials.2016.04.039_bib42) 1994; 9
Bharali (10.1016/j.biomaterials.2016.04.039_bib2) 2010; 128
Sanjana (10.1016/j.biomaterials.2016.04.039_bib39) 2014; 11
Safra (10.1016/j.biomaterials.2016.04.039_bib5) 2000
Gao (10.1016/j.biomaterials.2016.04.039_bib56) 2012; 3
Bacinello (10.1016/j.biomaterials.2016.04.039_bib34) 2014; 15
Bremmer (10.1016/j.biomaterials.2016.04.039_bib33) 2014; 50
References_xml – volume: 97A
  start-page: 103
  year: 2011
  end-page: 110
  ident: bib29
  article-title: On-demand drug delivery from self-assembled nanofibrous gels: a new approach for treatment of proteolytic disease
  publication-title: J. Biomed. Mater. Res. Part A
– volume: 9
  start-page: 3591
  year: 1994
  end-page: 3600
  ident: bib42
  article-title: Fos-transformation activates genes associated with invasion
  publication-title: Oncogene
– volume: 25
  start-page: 3599
  year: 2013
  end-page: 3604
  ident: bib37
  article-title: Enzyme-directed assembly of a nanoparticle probe in tumor tissue
  publication-title: Adv. Mater.
– volume: 87
  start-page: 336
  year: 2000
  end-page: 342
  ident: bib61
  article-title: The α3β1 integrin is associated with mammary carcinoma cell metastasis, invasion, and gelatinase B (mmp-9) activity
  publication-title: Int. J. Cancer
– volume: 24
  start-page: 148
  year: 1989
  end-page: 154
  ident: bib41
  article-title: Determination of subcutaneous tumor size in athymic (nude) mice
  publication-title: Cancer Chemother. Pharmacol.
– volume: 56
  start-page: e3089
  year: 2011
  ident: bib40
  article-title: Organotypic collagen I assay: a malleable platform to assess cell behaviour in a 3-dimensional context
  publication-title: J. Vis. Exp.
– start-page: 1029
  year: 2000
  end-page: 1033
  ident: bib5
  article-title: Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2
  publication-title: Ann. Oncol.
– start-page: 217
  year: 2005
  end-page: 238
  ident: bib15
  article-title: PuraMatrix: self-assembling peptide nanofiber scaffolds
  publication-title: Scaffolding Tissue Eng.
– volume: 168
  start-page: 161
  year: 1999
  end-page: 168
  ident: bib58
  article-title: Expression of MMP-2 and MMP-9, their inhibitors, and the activator MT1-MMP in primary breast carcinomas
  publication-title: J. Pathol.
– volume: 1755
  start-page: 37
  year: 2005
  end-page: 69
  ident: bib55
  article-title: Gelatinase-mediated migration and invasion of cancer cells
  publication-title: Biochim. Biophys. Acta
– volume: 15
  start-page: 888
  year: 2003
  end-page: 892
  ident: bib28
  article-title: Cell-responsive synthetic hydrogels
  publication-title: Adv. Mater.
– volume: 75
  start-page: 4407
  year: 2015
  end-page: 4415
  ident: bib60
  article-title: Combining miR-10b-targeted nanotherapy with low-dose doxorubicin elicits durable regressions of metastatic breast Cancer
  publication-title: Cancer Res.
– volume: 3
  start-page: 246
  year: 2015
  end-page: 249
  ident: bib43
  article-title: MMP-9 triggered micelle-to-fibre transitions for slow release of doxorubicin
  publication-title: Biomater. Sci.
– volume: 50
  start-page: 1691
  year: 2014
  end-page: 1693
  ident: bib33
  article-title: Enzyme-triggered gelation: targeting proteases with internal cleavage sites
  publication-title: Chem. Commun.
– volume: 27
  start-page: 4611
  year: 2015
  end-page: 4615
  ident: bib20
  article-title: Therapeutic enzyme-responsive nanoparticles for targeted delivery and accumulation in tumors
  publication-title: Adv. Mater.
– volume: 35
  start-page: 9529
  year: 2014
  end-page: 9545
  ident: bib18
  article-title: Amphiphilic peptide dendritic copolymer-doxorubicin nanoscale conjugate self-assembled to enzyme-responsive anti-cancer agent
  publication-title: Biomaterials
– volume: 46
  start-page: 979
  year: 2010
  end-page: 981
  ident: bib32
  article-title: Proteinase-mediated drastic morphological change of peptide-amphiphile to induce supramolecular hydrogelation
  publication-title: Chem. Commun. (Camb).
– volume: 6
  start-page: 7939
  year: 2015
  ident: bib11
  article-title: A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models
  publication-title: Nat. Commun.
– volume: 137
  start-page: 6726
  year: 2015
  end-page: 6729
  ident: bib16
  article-title: Enhancing accumulation and penetration of HPMA copolymer doxorubicin conjugates in 2D and 3D prostate Cancer cells via iRGD conjugation with an MMP-2 cleavable spacer
  publication-title: J. Am. Chem. Soc.
– volume: 128
  start-page: 324
  year: 2010
  end-page: 335
  ident: bib2
  article-title: Emerging nanomedicines for early cancer detection and improved treatment: current perspective and future promise
  publication-title: Pharmacol. Ther.
– volume: 53
  start-page: 8104
  year: 2014
  end-page: 8107
  ident: bib35
  article-title: Pericellular hydrogel/nanonets inhibit Cancer cells
  publication-title: Angew. Chem. Int. Ed.
– volume: 133
  start-page: 1784
  year: 2013
  end-page: 1791
  ident: bib45
  article-title: Platelet-type 12-lipoxygenase induces MMP9 expression and cellular invasion via activation of PI3K/Akt/NF-κB
  publication-title: Int. J. Cancer
– volume: 51
  start-page: 6572
  year: 2012
  end-page: 6581
  ident: bib17
  article-title: Self-assembled multivalency: dynamic ligand arrays for high-affinity binding
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 1217
  year: 2014
  end-page: 1221
  ident: bib52
  article-title: Supramolecular nanofibrils inhibit Cancer progression in vitro and in vivo
  publication-title: Adv. Healthc. Mater.
– volume: 83
  start-page: 308
  year: 2016
  end-page: 320
  ident: bib3
  article-title: Combinatorial prospects of nano-targeted chemoimmunotherapy
  publication-title: Biomaterials
– year: 2015
  ident: bib10
  article-title: A multiphase transitioning peptide hydrogel for suturing ultrasmall vessels
  publication-title: Nat. Nanotechnol.
– volume: 141
  start-page: 52
  year: 2010
  end-page: 67
  ident: bib26
  article-title: Matrix metalloproteinases: regulators of the tumor microenvironment
  publication-title: Cell
– volume: 100
  start-page: 790
  year: 2013
  end-page: 795
  ident: bib47
  article-title: Length-dependent proteolytic cleavage of short oligopeptides catalyzed by matrix metalloprotease-9
  publication-title: Biopolymers
– volume: 47
  start-page: 11814
  year: 2011
  ident: bib19
  article-title: Enzyme-directed assembly and manipulation of organic nanomaterials
  publication-title: Chem. Commun.
– volume: 7
  start-page: 9665
  year: 2011
  ident: bib23
  article-title: Switching of self-assembly in a peptide nanostructure with a specific enzyme
  publication-title: Soft Matter
– volume: 3
  start-page: 377
  year: 2013
  end-page: 394
  ident: bib64
  article-title: Detecting circulating tumor cells: current challenges and new trends
  publication-title: Theranostics
– volume: 6
  start-page: 1
  year: 2015
  end-page: 9
  ident: bib9
  article-title: Self-assembled hydrogels utilizing polymer–nanoparticle interactions
  publication-title: Nat. Commun.
– volume: 49
  start-page: 2873
  year: 2013
  end-page: 2875
  ident: bib46
  article-title: Polymerization of a peptide-based enzyme substrate
  publication-title: Chem. Commun. (Camb).
– volume: 3
  start-page: 1033
  year: 2012
  ident: bib56
  article-title: Imaging enzyme-triggered self-assembly of small molecules inside live cells
  publication-title: Nat. Commun.
– volume: 35
  start-page: 1284
  year: 2014
  end-page: 1301
  ident: bib13
  article-title: A review of polypeptide-based polymersomes
  publication-title: Biomaterials
– volume: 15
  start-page: 1419
  year: 2014
  end-page: 1427
  ident: bib31
  article-title: Rational design of MMP degradable peptide-based supramolecular filaments
  publication-title: Biomacromolecules
– volume: 26
  start-page: 987
  year: 2015
  end-page: 999
  ident: bib22
  article-title: Enzyme-instructed self-assembly: a multi-step process for potential Cancer therapy
  publication-title: Bioconjug. Chem.
– volume: 27
  start-page: 325
  year: 1999
  end-page: 331
  ident: bib44
  article-title: MEROPS: the peptidase database
  publication-title: Nucleic Acids Res.
– volume: 6
  year: 2014
  ident: bib30
  article-title: A single localized dose of enzyme-responsive hydrogel improves long-term survival of a vascularized composite allograft
  publication-title: Sci. Transl. Med.
– volume: 35
  start-page: 369
  year: 2002
  end-page: 430
  ident: bib51
  article-title: What vibrations tell us about proteins
  publication-title: Q. Rev. Biophys.
– year: 2015
  ident: bib59
  article-title: Preclinical safety and efficacy studies with an affinity-enhanced epithelial junction opener and PEGylated liposomal doxorubicin
  publication-title: Mol. Ther. Methods Clin. Dev.
– volume: 7
  start-page: 9055
  year: 2013
  end-page: 9063
  ident: bib57
  article-title: Probing nanoscale self-assembly of nonfluorescent small molecules inside live mammalian cells
  publication-title: ACS Nano
– volume: 9
  start-page: 2546
  year: 2009
  end-page: 2548
  ident: bib27
  article-title: Using matrix metalloprotease-9 (MMP-9) to trigger supramolecular hydrogelation
  publication-title: Soft Matter
– volume: 37
  start-page: 106
  year: 2001
  end-page: 113
  ident: bib63
  article-title: A matrix metalloproteinase inhibitor, batimastat, retards the development of osteolytic bone metastases by MDA-MB-231 human breast cancer cells in Balb C nu/nu mice
  publication-title: Eur. J. Cancer
– volume: 32
  start-page: 129
  year: 2014
  end-page: 160
  ident: bib6
  article-title: Clinical cancer advances 2013: annual report on progress against cancer from the American society of clinical oncology
  publication-title: J. Clin. Oncol.
– volume: 29
  start-page: 9510
  year: 2013
  end-page: 9515
  ident: bib50
  article-title: Assessing the utility of infrared spectroscopy as a structural diagnostic tool for β-sheets in self-assembling aromatic peptide amphiphiles
  publication-title: Langmuir
– volume: 58
  start-page: 97
  year: 2008
  end-page: 110
  ident: bib8
  article-title: Application of nanotechnology in cancer therapy and imaging
  publication-title: CA. Cancer J. Clin.
– volume: 19
  start-page: 52
  year: 2008
  end-page: 60
  ident: bib25
  article-title: Matrix metalloproteinases at cancer tumor-host interface
  publication-title: Semin. Cell Dev. Biol.
– volume: 18
  start-page: 171
  year: 2000
  end-page: 178
  ident: bib62
  article-title: Specific expression of matrix metalloproteinases 1, 3, 9 and 13 associated with invasiveness of breast cancer cells in vitro
  publication-title: Clin. Exp. Metastasis
– volume: 16
  start-page: 7910
  year: 1996
  end-page: 7919
  ident: bib49
  article-title: Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-beta peptide (1-40)
  publication-title: J. Neurosci.
– volume: 113
  start-page: 11787
  year: 2009
  end-page: 11792
  ident: bib65
  article-title: Tetrapeptide-based hydrogels: for encapsulation and slow release of an anticancer drug at physiological ph
  publication-title: J. Phys. Chem. B
– year: 2015
  ident: bib38
  article-title: Enzyme-Instructed intracellular molecular self-assembly to boost activity of cisplatin against drug-resistant Ovarian Cancer cells
  publication-title: Angew. Chem.
– volume: 12
  start-page: 39
  year: 2011
  end-page: 50
  ident: bib4
  article-title: Treating metastatic cancer with nanotechnology
  publication-title: Nat. Rev. Cancer
– volume: 5
  start-page: 3321
  year: 2014
  ident: bib12
  article-title: Cell death versus cell survival instructed by supramolecular cohesion of nanostructures
  publication-title: Nat. Commun.
– volume: 290
  start-page: 15078
  year: 2015
  end-page: 15091
  ident: bib48
  article-title: Sequential Abeta degradation by the matrix metalloproteases MMP-2 and MMP-9
  publication-title: J. Biol. Chem.
– volume: 137
  start-page: 770
  year: 2015
  end-page: 775
  ident: bib21
  article-title: Cancer cell death induced by the intracellular self-assembly of an enzyme-responsive supramolecular gelator
  publication-title: J. Am. Chem. Soc.
– volume: 119
  start-page: 1403
  year: 2006
  end-page: 1411
  ident: bib53
  article-title: Circulating MMP2 and MMP9 in breast cancer – potential role in classification of patients into low risk, high risk, benign disease and breast cancer categories
  publication-title: Int. J. Cancer
– volume: 814
  start-page: 221
  year: 2012
  end-page: 233
  ident: bib54
  article-title: Use of gel zymography to examine matrix metalloproteinase (gelatinase) expression in brain tissue or in primary glial cultures
  publication-title: Astrocytes Methods Protoc.
– volume: 21
  start-page: 1171
  year: 2003
  end-page: 1178
  ident: bib14
  article-title: Fabrication of novel biomaterials through molecular self-assembly
  publication-title: Nat. Biotechnol.
– volume: 7
  start-page: 5965
  year: 2013
  end-page: 5977
  ident: bib66
  article-title: Self-assembled tat nano fibers as E ffective drug carrier and transporter
  publication-title: ACS Nano
– volume: 137
  start-page: 576
  year: 2015
  end-page: 579
  ident: bib36
  article-title: Controlling Cancer cell fate using localized biocatalytic self-assembly of an aromatic carbohydrate amphiphile
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 99
  year: 2009
  end-page: 105
  ident: bib7
  article-title: Albumin-bound formulation of paclitaxel (Abraxane
  publication-title: Int. J. Nanomed.
– volume: 37
  start-page: 512
  year: 2012
  end-page: 525
  ident: bib1
  article-title: The nanomedicine revolution: part 1: emerging concepts
  publication-title: Pharm. Ther.
– volume: 1
  start-page: 11
  year: 2013
  end-page: 39
  ident: bib24
  article-title: Enzyme responsive materials: design strategies and future developments
  publication-title: Biomater. Sci.
– volume: 11
  start-page: 006726
  year: 2014
  ident: bib39
  article-title: Improved vectors and genome-wide libraries for CRISPR screening
  publication-title: Nat. Methods
– volume: 15
  start-page: 1882
  year: 2014
  end-page: 1888
  ident: bib34
  article-title: Enzyme-degradable self-assembled nanostructures from polymer-peptide hybrids
  publication-title: Biomacromolecules
– volume: 53
  start-page: 8104
  year: 2014
  ident: 10.1016/j.biomaterials.2016.04.039_bib35
  article-title: Pericellular hydrogel/nanonets inhibit Cancer cells
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201402216
– volume: 58
  start-page: 97
  year: 2008
  ident: 10.1016/j.biomaterials.2016.04.039_bib8
  article-title: Application of nanotechnology in cancer therapy and imaging
  publication-title: CA. Cancer J. Clin.
– volume: 137
  start-page: 6726
  year: 2015
  ident: 10.1016/j.biomaterials.2016.04.039_bib16
  article-title: Enhancing accumulation and penetration of HPMA copolymer doxorubicin conjugates in 2D and 3D prostate Cancer cells via iRGD conjugation with an MMP-2 cleavable spacer
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b00922
– volume: 27
  start-page: 4611
  year: 2015
  ident: 10.1016/j.biomaterials.2016.04.039_bib20
  article-title: Therapeutic enzyme-responsive nanoparticles for targeted delivery and accumulation in tumors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501803
– volume: 29
  start-page: 9510
  year: 2013
  ident: 10.1016/j.biomaterials.2016.04.039_bib50
  article-title: Assessing the utility of infrared spectroscopy as a structural diagnostic tool for β-sheets in self-assembling aromatic peptide amphiphiles
  publication-title: Langmuir
  doi: 10.1021/la400994v
– volume: 26
  start-page: 987
  year: 2015
  ident: 10.1016/j.biomaterials.2016.04.039_bib22
  article-title: Enzyme-instructed self-assembly: a multi-step process for potential Cancer therapy
  publication-title: Bioconjug. Chem.
  doi: 10.1021/acs.bioconjchem.5b00196
– volume: 97A
  start-page: 103
  year: 2011
  ident: 10.1016/j.biomaterials.2016.04.039_bib29
  article-title: On-demand drug delivery from self-assembled nanofibrous gels: a new approach for treatment of proteolytic disease
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.33020
– volume: 35
  start-page: 369
  year: 2002
  ident: 10.1016/j.biomaterials.2016.04.039_bib51
  article-title: What vibrations tell us about proteins
  publication-title: Q. Rev. Biophys.
  doi: 10.1017/S0033583502003815
– start-page: 217
  year: 2005
  ident: 10.1016/j.biomaterials.2016.04.039_bib15
  article-title: PuraMatrix: self-assembling peptide nanofiber scaffolds
  publication-title: Scaffolding Tissue Eng.
– volume: 87
  start-page: 336
  year: 2000
  ident: 10.1016/j.biomaterials.2016.04.039_bib61
  article-title: The α3β1 integrin is associated with mammary carcinoma cell metastasis, invasion, and gelatinase B (mmp-9) activity
  publication-title: Int. J. Cancer
  doi: 10.1002/1097-0215(20000801)87:3<336::AID-IJC5>3.0.CO;2-3
– volume: 3
  start-page: 246
  year: 2015
  ident: 10.1016/j.biomaterials.2016.04.039_bib43
  article-title: MMP-9 triggered micelle-to-fibre transitions for slow release of doxorubicin
  publication-title: Biomater. Sci.
  doi: 10.1039/C4BM00297K
– volume: 5
  start-page: 3321
  year: 2014
  ident: 10.1016/j.biomaterials.2016.04.039_bib12
  article-title: Cell death versus cell survival instructed by supramolecular cohesion of nanostructures
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4321
– volume: 168
  start-page: 161
  year: 1999
  ident: 10.1016/j.biomaterials.2016.04.039_bib58
  article-title: Expression of MMP-2 and MMP-9, their inhibitors, and the activator MT1-MMP in primary breast carcinomas
  publication-title: J. Pathol.
  doi: 10.1002/(SICI)1096-9896(199910)189:2<161::AID-PATH406>3.0.CO;2-2
– volume: 113
  start-page: 11787
  year: 2009
  ident: 10.1016/j.biomaterials.2016.04.039_bib65
  article-title: Tetrapeptide-based hydrogels: for encapsulation and slow release of an anticancer drug at physiological ph
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp904251j
– volume: 7
  start-page: 9665
  year: 2011
  ident: 10.1016/j.biomaterials.2016.04.039_bib23
  article-title: Switching of self-assembly in a peptide nanostructure with a specific enzyme
  publication-title: Soft Matter
  doi: 10.1039/c1sm05610g
– year: 2015
  ident: 10.1016/j.biomaterials.2016.04.039_bib59
  article-title: Preclinical safety and efficacy studies with an affinity-enhanced epithelial junction opener and PEGylated liposomal doxorubicin
  publication-title: Mol. Ther. Methods Clin. Dev.
  doi: 10.1038/mtm.2015.5
– volume: 15
  start-page: 888
  year: 2003
  ident: 10.1016/j.biomaterials.2016.04.039_bib28
  article-title: Cell-responsive synthetic hydrogels
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200304621
– volume: 7
  start-page: 9055
  year: 2013
  ident: 10.1016/j.biomaterials.2016.04.039_bib57
  article-title: Probing nanoscale self-assembly of nonfluorescent small molecules inside live mammalian cells
  publication-title: ACS Nano
  doi: 10.1021/nn403664n
– volume: 49
  start-page: 2873
  year: 2013
  ident: 10.1016/j.biomaterials.2016.04.039_bib46
  article-title: Polymerization of a peptide-based enzyme substrate
  publication-title: Chem. Commun. (Camb).
  doi: 10.1039/c3cc40472b
– volume: 3
  start-page: 1217
  year: 2014
  ident: 10.1016/j.biomaterials.2016.04.039_bib52
  article-title: Supramolecular nanofibrils inhibit Cancer progression in vitro and in vivo
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201300645
– volume: 35
  start-page: 9529
  year: 2014
  ident: 10.1016/j.biomaterials.2016.04.039_bib18
  article-title: Amphiphilic peptide dendritic copolymer-doxorubicin nanoscale conjugate self-assembled to enzyme-responsive anti-cancer agent
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.07.059
– volume: 37
  start-page: 512
  year: 2012
  ident: 10.1016/j.biomaterials.2016.04.039_bib1
  article-title: The nanomedicine revolution: part 1: emerging concepts
  publication-title: Pharm. Ther.
– volume: 83
  start-page: 308
  year: 2016
  ident: 10.1016/j.biomaterials.2016.04.039_bib3
  article-title: Combinatorial prospects of nano-targeted chemoimmunotherapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.01.006
– volume: 141
  start-page: 52
  year: 2010
  ident: 10.1016/j.biomaterials.2016.04.039_bib26
  article-title: Matrix metalloproteinases: regulators of the tumor microenvironment
  publication-title: Cell
  doi: 10.1016/j.cell.2010.03.015
– volume: 56
  start-page: e3089
  year: 2011
  ident: 10.1016/j.biomaterials.2016.04.039_bib40
  article-title: Organotypic collagen I assay: a malleable platform to assess cell behaviour in a 3-dimensional context
  publication-title: J. Vis. Exp.
– volume: 18
  start-page: 171
  year: 2000
  ident: 10.1016/j.biomaterials.2016.04.039_bib62
  article-title: Specific expression of matrix metalloproteinases 1, 3, 9 and 13 associated with invasiveness of breast cancer cells in vitro
  publication-title: Clin. Exp. Metastasis
  doi: 10.1023/A:1006762425323
– year: 2015
  ident: 10.1016/j.biomaterials.2016.04.039_bib38
  article-title: Enzyme-Instructed intracellular molecular self-assembly to boost activity of cisplatin against drug-resistant Ovarian Cancer cells
  publication-title: Angew. Chem.
– volume: 75
  start-page: 4407
  year: 2015
  ident: 10.1016/j.biomaterials.2016.04.039_bib60
  article-title: Combining miR-10b-targeted nanotherapy with low-dose doxorubicin elicits durable regressions of metastatic breast Cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-0888
– volume: 12
  start-page: 39
  year: 2011
  ident: 10.1016/j.biomaterials.2016.04.039_bib4
  article-title: Treating metastatic cancer with nanotechnology
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3180
– volume: 6
  start-page: 7939
  year: 2015
  ident: 10.1016/j.biomaterials.2016.04.039_bib11
  article-title: A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8939
– volume: 9
  start-page: 3591
  year: 1994
  ident: 10.1016/j.biomaterials.2016.04.039_bib42
  article-title: Fos-transformation activates genes associated with invasion
  publication-title: Oncogene
– year: 2015
  ident: 10.1016/j.biomaterials.2016.04.039_bib10
  article-title: A multiphase transitioning peptide hydrogel for suturing ultrasmall vessels
  publication-title: Nat. Nanotechnol.
– volume: 35
  start-page: 1284
  year: 2014
  ident: 10.1016/j.biomaterials.2016.04.039_bib13
  article-title: A review of polypeptide-based polymersomes
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.10.063
– volume: 3
  start-page: 1033
  year: 2012
  ident: 10.1016/j.biomaterials.2016.04.039_bib56
  article-title: Imaging enzyme-triggered self-assembly of small molecules inside live cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2040
– volume: 7
  start-page: 5965
  year: 2013
  ident: 10.1016/j.biomaterials.2016.04.039_bib66
  article-title: Self-assembled tat nano fibers as E ffective drug carrier and transporter
  publication-title: ACS Nano
  doi: 10.1021/nn401667z
– volume: 137
  start-page: 576
  year: 2015
  ident: 10.1016/j.biomaterials.2016.04.039_bib36
  article-title: Controlling Cancer cell fate using localized biocatalytic self-assembly of an aromatic carbohydrate amphiphile
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5111893
– volume: 6
  year: 2014
  ident: 10.1016/j.biomaterials.2016.04.039_bib30
  article-title: A single localized dose of enzyme-responsive hydrogel improves long-term survival of a vascularized composite allograft
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3008778
– volume: 15
  start-page: 1882
  year: 2014
  ident: 10.1016/j.biomaterials.2016.04.039_bib34
  article-title: Enzyme-degradable self-assembled nanostructures from polymer-peptide hybrids
  publication-title: Biomacromolecules
  doi: 10.1021/bm500296n
– volume: 290
  start-page: 15078
  year: 2015
  ident: 10.1016/j.biomaterials.2016.04.039_bib48
  article-title: Sequential Abeta degradation by the matrix metalloproteases MMP-2 and MMP-9
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.610931
– volume: 47
  start-page: 11814
  year: 2011
  ident: 10.1016/j.biomaterials.2016.04.039_bib19
  article-title: Enzyme-directed assembly and manipulation of organic nanomaterials
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc15220c
– volume: 6
  start-page: 1
  year: 2015
  ident: 10.1016/j.biomaterials.2016.04.039_bib9
  article-title: Self-assembled hydrogels utilizing polymer–nanoparticle interactions
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7295
– volume: 50
  start-page: 1691
  year: 2014
  ident: 10.1016/j.biomaterials.2016.04.039_bib33
  article-title: Enzyme-triggered gelation: targeting proteases with internal cleavage sites
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc48132h
– volume: 119
  start-page: 1403
  year: 2006
  ident: 10.1016/j.biomaterials.2016.04.039_bib53
  article-title: Circulating MMP2 and MMP9 in breast cancer – potential role in classification of patients into low risk, high risk, benign disease and breast cancer categories
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.21989
– volume: 128
  start-page: 324
  year: 2010
  ident: 10.1016/j.biomaterials.2016.04.039_bib2
  article-title: Emerging nanomedicines for early cancer detection and improved treatment: current perspective and future promise
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2010.07.007
– volume: 1
  start-page: 11
  year: 2013
  ident: 10.1016/j.biomaterials.2016.04.039_bib24
  article-title: Enzyme responsive materials: design strategies and future developments
  publication-title: Biomater. Sci.
  doi: 10.1039/C2BM00041E
– volume: 27
  start-page: 325
  year: 1999
  ident: 10.1016/j.biomaterials.2016.04.039_bib44
  article-title: MEROPS: the peptidase database
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/27.1.325
– volume: 15
  start-page: 1419
  year: 2014
  ident: 10.1016/j.biomaterials.2016.04.039_bib31
  article-title: Rational design of MMP degradable peptide-based supramolecular filaments
  publication-title: Biomacromolecules
  doi: 10.1021/bm500020j
– volume: 11
  start-page: 006726
  year: 2014
  ident: 10.1016/j.biomaterials.2016.04.039_bib39
  article-title: Improved vectors and genome-wide libraries for CRISPR screening
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3047
– volume: 32
  start-page: 129
  year: 2014
  ident: 10.1016/j.biomaterials.2016.04.039_bib6
  article-title: Clinical cancer advances 2013: annual report on progress against cancer from the American society of clinical oncology
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2013.53.7076
– volume: 100
  start-page: 790
  year: 2013
  ident: 10.1016/j.biomaterials.2016.04.039_bib47
  article-title: Length-dependent proteolytic cleavage of short oligopeptides catalyzed by matrix metalloprotease-9
  publication-title: Biopolymers
  doi: 10.1002/bip.22240
– volume: 1755
  start-page: 37
  year: 2005
  ident: 10.1016/j.biomaterials.2016.04.039_bib55
  article-title: Gelatinase-mediated migration and invasion of cancer cells
  publication-title: Biochim. Biophys. Acta
– volume: 3
  start-page: 377
  year: 2013
  ident: 10.1016/j.biomaterials.2016.04.039_bib64
  article-title: Detecting circulating tumor cells: current challenges and new trends
  publication-title: Theranostics
  doi: 10.7150/thno.5195
– volume: 9
  start-page: 2546
  year: 2009
  ident: 10.1016/j.biomaterials.2016.04.039_bib27
  article-title: Using matrix metalloprotease-9 (MMP-9) to trigger supramolecular hydrogelation
  publication-title: Soft Matter
– start-page: 1029
  year: 2000
  ident: 10.1016/j.biomaterials.2016.04.039_bib5
  article-title: Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2
  publication-title: Ann. Oncol.
  doi: 10.1023/A:1008365716693
– volume: 133
  start-page: 1784
  year: 2013
  ident: 10.1016/j.biomaterials.2016.04.039_bib45
  article-title: Platelet-type 12-lipoxygenase induces MMP9 expression and cellular invasion via activation of PI3K/Akt/NF-κB
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.28165
– volume: 21
  start-page: 1171
  year: 2003
  ident: 10.1016/j.biomaterials.2016.04.039_bib14
  article-title: Fabrication of novel biomaterials through molecular self-assembly
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt874
– volume: 37
  start-page: 106
  year: 2001
  ident: 10.1016/j.biomaterials.2016.04.039_bib63
  article-title: A matrix metalloproteinase inhibitor, batimastat, retards the development of osteolytic bone metastases by MDA-MB-231 human breast cancer cells in Balb C nu/nu mice
  publication-title: Eur. J. Cancer
  doi: 10.1016/S0959-8049(00)00363-4
– volume: 46
  start-page: 979
  year: 2010
  ident: 10.1016/j.biomaterials.2016.04.039_bib32
  article-title: Proteinase-mediated drastic morphological change of peptide-amphiphile to induce supramolecular hydrogelation
  publication-title: Chem. Commun. (Camb).
  doi: 10.1039/B920359A
– volume: 51
  start-page: 6572
  year: 2012
  ident: 10.1016/j.biomaterials.2016.04.039_bib17
  article-title: Self-assembled multivalency: dynamic ligand arrays for high-affinity binding
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201200076
– volume: 137
  start-page: 770
  year: 2015
  ident: 10.1016/j.biomaterials.2016.04.039_bib21
  article-title: Cancer cell death induced by the intracellular self-assembly of an enzyme-responsive supramolecular gelator
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja510156v
– volume: 4
  start-page: 99
  year: 2009
  ident: 10.1016/j.biomaterials.2016.04.039_bib7
  article-title: Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer
  publication-title: Int. J. Nanomed.
– volume: 25
  start-page: 3599
  year: 2013
  ident: 10.1016/j.biomaterials.2016.04.039_bib37
  article-title: Enzyme-directed assembly of a nanoparticle probe in tumor tissue
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300823
– volume: 814
  start-page: 221
  year: 2012
  ident: 10.1016/j.biomaterials.2016.04.039_bib54
  article-title: Use of gel zymography to examine matrix metalloproteinase (gelatinase) expression in brain tissue or in primary glial cultures
  publication-title: Astrocytes Methods Protoc.
  doi: 10.1007/978-1-61779-452-0_15
– volume: 19
  start-page: 52
  year: 2008
  ident: 10.1016/j.biomaterials.2016.04.039_bib25
  article-title: Matrix metalloproteinases at cancer tumor-host interface
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2007.05.011
– volume: 16
  start-page: 7910
  year: 1996
  ident: 10.1016/j.biomaterials.2016.04.039_bib49
  article-title: Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-beta peptide (1-40)
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-24-07910.1996
– volume: 24
  start-page: 148
  year: 1989
  ident: 10.1016/j.biomaterials.2016.04.039_bib41
  article-title: Determination of subcutaneous tumor size in athymic (nude) mice
  publication-title: Cancer Chemother. Pharmacol.
  doi: 10.1007/BF00300234
SSID ssj0014042
Score 2.564805
Snippet A central challenge in cancer care is to ensure that therapeutic compounds reach their targets. One approach is to use enzyme-responsive biomaterials, which...
Abstract A central challenge in cancer care is to ensure that therapeutic compounds reach their targets. One approach is to use enzyme-responsive biomaterials,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 192
SubjectTerms Advanced Basic Science
animal models
Animals
biocompatible materials
Biomaterials
Biomedical materials
Cancer therapy
Cell Line, Tumor
Cell Proliferation - drug effects
Dentistry
Doxorubicin
Doxorubicin - pharmacology
Doxorubicin - therapeutic use
Drug Carriers - chemistry
Enzymes
Humans
hydrolysis
Matrix Metalloproteinase 9 - metabolism
Mice, Nude
Micelles
MMP
Morphology transition
nanofibers
Nanofibers - chemistry
Nanofibers - ultrastructure
Nanostructure
Neoplasm Invasiveness
neoplasms
Neoplasms - drug therapy
Neoplasms - pathology
Peptides
Peptides - pharmacology
Self assembly
Surgical implants
tissues
Tumors
Title MMP-9 triggered self-assembly of doxorubicin nanofiber depots halts tumor growth
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961216301582
https://www.clinicalkey.es/playcontent/1-s2.0-S0142961216301582
https://dx.doi.org/10.1016/j.biomaterials.2016.04.039
https://www.ncbi.nlm.nih.gov/pubmed/27192421
https://www.proquest.com/docview/1794470555
https://www.proquest.com/docview/1808719537
https://www.proquest.com/docview/1825484933
https://www.proquest.com/docview/2000225405
Volume 98
WOSCitedRecordID wos000379278400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014042
  issn: 0142-9612
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbYXYTggGB5lccqSNyqoMRxYluIwwotgkWt9rBIvVnOw0tXbVI1KSr_nvEjblfQVTlwsaokjpvMl88znvEMQu-01lpGKgljFRUhkYUMOU6TUNKKKUUIp1KZYhN0PGaTCb9wobytKSdA65qt13zxX0UNx0DYeuvsP4jb3xQOwG8QOrQgdmj3EvxodBHyYQdW95Wuwzlsq5kKQUWu5vnMuNPLZt0sV7l2qQ9rWcNguSkTvmg6U1sF2m41b5bDKzDRux833L7TBjRc-xSequVMKjDdgXI2e9Y92Y-b3GYxGMm1X82xnv7z6a8N3sweG3v822rZucVctxwRZz4YDmYTS6EM7NKUR-k2x9pK044kY1v97g_ytusI1-_zrWfRwXeZSUZrcx5tCXAxNxLEVNuQON5MaD7MsD91gI4wTTmQ3tHp17PJuXczEaCsPhOtCfrbNbTOGe1utkuB2WWgGEXl8hF66CyM4NQi4zG6U9XH6MFW3sljdG_kIiqeoAsDl8DDJbgBl6BRwRZcAg-XwMIlMHAJDFwCC5en6Pvns8tPX0JXZSMsspR3IYkYB7UPiBlIReY8rmKlihhnKWg3YA0XaVpQUPtlqYjep5fEJVO8xDLJSSljlTxDh3VTVy9QUHEakSIiqsgLUqo4JzTCZcIwh1vILBsg3r86UbgU9LoSykz0sYbXYlsCQktARETAHxmgxPdd2EQse_X60EtI9FuNYXIUALm9etO_9a5a97m3IhYtFpEJkcRcJ-PLYMJMGR6gj76nU2Wtirr3yG97OAnge-3Ek3XVrGBEmECJToGV3nINixjV_nF62zU4JYzwJNl9DTbpsbRNN0DPLab9u-8_h5c7z7xC9zcE8RoddstV9QbdLX5203Z5gg7ohJ24D_I3uQL3aw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MMP-9+triggered+self-assembly+of+doxorubicin+nanofiber+depots+halts+tumor+growth&rft.jtitle=Biomaterials&rft.au=Kalafatovic%2C+Daniela&rft.au=Nobis%2C+Max&rft.au=Son%2C+Jiye&rft.au=Anderson%2C+Kurt+I&rft.date=2016-08-01&rft.eissn=1878-5905&rft.volume=98&rft.spage=192&rft_id=info:doi/10.1016%2Fj.biomaterials.2016.04.039&rft_id=info%3Apmid%2F27192421&rft.externalDocID=27192421
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961216X00178%2Fcov150h.gif