Two-Dimensional Soft Nanomaterials: A Fascinating World of Materials

The discovery of graphene has triggered great interest in two‐dimensional (2D) nanomaterials for scientists in chemistry, physics, materials science, and related areas. In the family of newly developed 2D nanostructured materials, 2D soft nanomaterials, including graphene, BxCyNz nanosheets, 2D poly...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced materials (Weinheim) Ročník 27; číslo 3; s. 403 - 427
Hlavní autori: Zhuang, Xiaodong, Mai, Yiyong, Wu, Dongqing, Zhang, Fan, Feng, Xinliang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany Blackwell Publishing Ltd 21.01.2015
Predmet:
ISSN:0935-9648, 1521-4095, 1521-4095
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The discovery of graphene has triggered great interest in two‐dimensional (2D) nanomaterials for scientists in chemistry, physics, materials science, and related areas. In the family of newly developed 2D nanostructured materials, 2D soft nanomaterials, including graphene, BxCyNz nanosheets, 2D polymers, covalent organic frameworks (COFs), and 2D supramolecular organic nanostructures, possess great advantages in light‐weight, structural control and flexibility, diversity of fabrication approaches, and so on. These merits offer 2D soft nanomaterials a wide range of potential applications, such as in optoelectronics, membranes, energy storage and conversion, catalysis, sensing, biotechnology, etc. This review article provides an overview of the development of 2D soft nanomaterials, with special highlights on the basic concepts, molecular design principles, and primary synthesis approaches in the context. Two‐dimensional (2D) soft nanomaterials are reviewed, including graphene, BxCyNz nanosheets, 2D polymers, covalent organic frameworks, and 2D supramolecular organic nanostructures, etc. The basic concepts, molecular design principles, and primary synthesis approaches developed for 2D soft nanomaterials in the past five years are introduced.
AbstractList The discovery of graphene has triggered great interest in two‐dimensional (2D) nanomaterials for scientists in chemistry, physics, materials science, and related areas. In the family of newly developed 2D nanostructured materials, 2D soft nanomaterials, including graphene, BxCyNz nanosheets, 2D polymers, covalent organic frameworks (COFs), and 2D supramolecular organic nanostructures, possess great advantages in light‐weight, structural control and flexibility, diversity of fabrication approaches, and so on. These merits offer 2D soft nanomaterials a wide range of potential applications, such as in optoelectronics, membranes, energy storage and conversion, catalysis, sensing, biotechnology, etc. This review article provides an overview of the development of 2D soft nanomaterials, with special highlights on the basic concepts, molecular design principles, and primary synthesis approaches in the context. Two‐dimensional (2D) soft nanomaterials are reviewed, including graphene, BxCyNz nanosheets, 2D polymers, covalent organic frameworks, and 2D supramolecular organic nanostructures, etc. The basic concepts, molecular design principles, and primary synthesis approaches developed for 2D soft nanomaterials in the past five years are introduced.
The discovery of graphene has triggered great interest in two-dimensional (2D) nanomaterials for scientists in chemistry, physics, materials science, and related areas. In the family of newly developed 2D nanostructured materials, 2D soft nanomaterials, including graphene, Bx Cy Nz nanosheets, 2D polymers, covalent organic frameworks (COFs), and 2D supramolecular organic nanostructures, possess great advantages in light-weight, structural control and flexibility, diversity of fabrication approaches, and so on. These merits offer 2D soft nanomaterials a wide range of potential applications, such as in optoelectronics, membranes, energy storage and conversion, catalysis, sensing, biotechnology, etc. This review article provides an overview of the development of 2D soft nanomaterials, with special highlights on the basic concepts, molecular design principles, and primary synthesis approaches in the context.The discovery of graphene has triggered great interest in two-dimensional (2D) nanomaterials for scientists in chemistry, physics, materials science, and related areas. In the family of newly developed 2D nanostructured materials, 2D soft nanomaterials, including graphene, Bx Cy Nz nanosheets, 2D polymers, covalent organic frameworks (COFs), and 2D supramolecular organic nanostructures, possess great advantages in light-weight, structural control and flexibility, diversity of fabrication approaches, and so on. These merits offer 2D soft nanomaterials a wide range of potential applications, such as in optoelectronics, membranes, energy storage and conversion, catalysis, sensing, biotechnology, etc. This review article provides an overview of the development of 2D soft nanomaterials, with special highlights on the basic concepts, molecular design principles, and primary synthesis approaches in the context.
The discovery of graphene has triggered great interest in two-dimensional (2D) nanomaterials for scientists in chemistry, physics, materials science, and related areas. In the family of newly developed 2D nanostructured materials, 2D soft nanomaterials, including graphene, Bx Cy Nz nanosheets, 2D polymers, covalent organic frameworks (COFs), and 2D supramolecular organic nanostructures, possess great advantages in light-weight, structural control and flexibility, diversity of fabrication approaches, and so on. These merits offer 2D soft nanomaterials a wide range of potential applications, such as in optoelectronics, membranes, energy storage and conversion, catalysis, sensing, biotechnology, etc. This review article provides an overview of the development of 2D soft nanomaterials, with special highlights on the basic concepts, molecular design principles, and primary synthesis approaches in the context.
The discovery of graphene has triggered great interest in two-dimensional (2D) nanomaterials for scientists in chemistry, physics, materials science, and related areas. In the family of newly developed 2D nanostructured materials, 2D soft nanomaterials, including graphene, B sub(x)C sub(y)N sub(z) nanosheets, 2D polymers, covalent organic frameworks (COFs), and 2D supramolecular organic nanostructures, possess great advantages in light-weight, structural control and flexibility, diversity of fabrication approaches, and so on. These merits offer 2D soft nanomaterials a wide range of potential applications, such as in optoelectronics, membranes, energy storage and conversion, catalysis, sensing, biotechnology, etc. This review article provides an overview of the development of 2D soft nanomaterials, with special highlights on the basic concepts, molecular design principles, and primary synthesis approaches in the context. Two-dimensional (2D) soft nanomaterials are reviewed, including graphene, B sub(x)C sub(y)N sub(z) nanosheets, 2D polymers, covalent organic frameworks, and 2D supramolecular organic nanostructures, etc. The basic concepts, molecular design principles, and primary synthesis approaches developed for 2D soft nanomaterials in the past five years are introduced.
The discovery of graphene has triggered great interest in two‐dimensional (2D) nanomaterials for scientists in chemistry, physics, materials science, and related areas. In the family of newly developed 2D nanostructured materials, 2D soft nanomaterials, including graphene, B x C y N z nanosheets, 2D polymers, covalent organic frameworks (COFs), and 2D supramolecular organic nanostructures, possess great advantages in light‐weight, structural control and flexibility, diversity of fabrication approaches, and so on. These merits offer 2D soft nanomaterials a wide range of potential applications, such as in optoelectronics, membranes, energy storage and conversion, catalysis, sensing, biotechnology, etc. This review article provides an overview of the development of 2D soft nanomaterials, with special highlights on the basic concepts, molecular design principles, and primary synthesis approaches in the context.
Author Zhuang, Xiaodong
Mai, Yiyong
Wu, Dongqing
Feng, Xinliang
Zhang, Fan
Author_xml – sequence: 1
  givenname: Xiaodong
  surname: Zhuang
  fullname: Zhuang, Xiaodong
  organization: School of Chemical and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, 200240, Shanghai, P. R. China
– sequence: 2
  givenname: Yiyong
  surname: Mai
  fullname: Mai, Yiyong
  email: mai@sjtu.edu.cn
  organization: School of Chemical and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, 200240, Shanghai, P. R. China
– sequence: 3
  givenname: Dongqing
  surname: Wu
  fullname: Wu, Dongqing
  organization: School of Chemical and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, 200240, Shanghai, P. R. China
– sequence: 4
  givenname: Fan
  surname: Zhang
  fullname: Zhang, Fan
  email: mai@sjtu.edu.cn
  organization: School of Chemical and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, 200240, Shanghai, P. R. China
– sequence: 5
  givenname: Xinliang
  surname: Feng
  fullname: Feng, Xinliang
  email: mai@sjtu.edu.cn
  organization: School of Chemical and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, 200240, Shanghai, P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25155302$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtP3DAUha2KqszQbrtEWbLJ9DqOX92NZnhUBbqAiqV1nTjIbWKDnRHw7xs0DKoqVe3qbL7vLM6Zk70QgyPkI4UFBag-YTvgogJaA1VcviEzyita1qD5HpmBZrzUolb7ZJ7zDwDQAsQ7sl9xyjmDakbW1w-xXPvBhexjwL64it1YXGKIA44ueezz52JZnGBufMDRh9viJqa-LWJXXOyI9-RtN4X78JIH5PvJ8fXqrDz_dvpltTwvG8G1LGuGrGNKU05b3VirnATLQaKmHQUHSJ2V4Jij2raqsgpRUmVVa5XCijp2QI62vXcp3m9cHs3gc-P6HoOLm2yoEAA1m4b4D5RXTLNptwk9fEE3dnCtuUt-wPRkdiNNQL0FmhRzTq4zjR-nLWIYE_reUDDPX5jnL8zrF5O2-EPbNf9V0Fvhwffu6R-0Wa4vlr-75db1eXSPry6mn0ZIJrm5uTw1Z1-FuJIrbRT7BdmFqSY
CitedBy_id crossref_primary_10_1002_chem_202404380
crossref_primary_10_1002_smll_201804640
crossref_primary_10_1088_1361_648X_aaa8cb
crossref_primary_10_1002_marc_201500270
crossref_primary_10_1002_app_58018
crossref_primary_10_1021_jacs_5b13533
crossref_primary_10_1021_jacs_3c09370
crossref_primary_10_1002_adma_202307393
crossref_primary_10_1021_acsmaterialslett_4c02537
crossref_primary_10_3390_en15176351
crossref_primary_10_1002_smll_201601804
crossref_primary_10_1021_jacs_9b08316
crossref_primary_10_1038_s41557_023_01177_2
crossref_primary_10_1002_adma_201504484
crossref_primary_10_1002_adfm_201702168
crossref_primary_10_1016_j_cej_2021_130336
crossref_primary_10_1002_marc_201600425
crossref_primary_10_1002_ange_202424269
crossref_primary_10_1007_s11705_018_1727_6
crossref_primary_10_1002_adma_201702415
crossref_primary_10_1246_bcsj_20190035
crossref_primary_10_1134_S1024856016050122
crossref_primary_10_1002_cplu_202000643
crossref_primary_10_1002_smll_202205693
crossref_primary_10_1016_j_matt_2019_12_026
crossref_primary_10_1016_j_cjche_2019_01_001
crossref_primary_10_1246_bcsj_20180367
crossref_primary_10_1002_adma_201800528
crossref_primary_10_1039_D0NR08684C
crossref_primary_10_1016_j_physleta_2017_03_047
crossref_primary_10_1002_smll_201604099
crossref_primary_10_1002_adfm_201501390
crossref_primary_10_1002_ppsc_201800163
crossref_primary_10_1038_nchem_2901
crossref_primary_10_1088_2053_1583_ab4c0f
crossref_primary_10_1016_j_jmgm_2020_107543
crossref_primary_10_1002_smll_202500858
crossref_primary_10_1016_j_ceramint_2018_06_068
crossref_primary_10_1016_j_matt_2020_04_023
crossref_primary_10_1007_s12274_020_2709_9
crossref_primary_10_1002_ange_202000255
crossref_primary_10_1002_anie_201705403
crossref_primary_10_1002_adom_201900286
crossref_primary_10_1002_ange_201712159
crossref_primary_10_1002_ange_201606988
crossref_primary_10_1002_adma_201503730
crossref_primary_10_1002_ange_201804937
crossref_primary_10_1002_chem_201701735
crossref_primary_10_1002_ange_201910741
crossref_primary_10_1016_j_saa_2022_122260
crossref_primary_10_1002_cjoc_202200664
crossref_primary_10_1016_j_physrep_2022_09_005
crossref_primary_10_1021_jacs_6b05456
crossref_primary_10_1016_j_addr_2018_01_004
crossref_primary_10_1002_smtd_202300246
crossref_primary_10_1002_adma_201704850
crossref_primary_10_1002_ange_201612629
crossref_primary_10_1002_advs_201801702
crossref_primary_10_1016_j_memsci_2017_01_034
crossref_primary_10_1002_tcr_202300189
crossref_primary_10_1002_anie_201712159
crossref_primary_10_1002_admi_202202501
crossref_primary_10_1039_D2MH00891B
crossref_primary_10_1038_ncomms13461
crossref_primary_10_1007_s10118_018_2070_6
crossref_primary_10_1016_j_jmmm_2016_10_156
crossref_primary_10_1002_ange_201506048
crossref_primary_10_1002_adfm_202000857
crossref_primary_10_1002_cctc_202401262
crossref_primary_10_1038_s41467_023_43678_1
crossref_primary_10_1002_anie_201605050
crossref_primary_10_1002_adma_202005433
crossref_primary_10_1002_anie_201804937
crossref_primary_10_1002_marc_201700880
crossref_primary_10_1007_s12274_020_2976_5
crossref_primary_10_1016_j_cplett_2016_06_060
crossref_primary_10_1088_1742_6596_1825_1_012042
crossref_primary_10_1007_s10853_023_08739_2
crossref_primary_10_1093_nsr_nwx077
crossref_primary_10_1002_adma_201904870
crossref_primary_10_1002_adma_202312791
crossref_primary_10_1038_s41467_018_03195_y
crossref_primary_10_1002_ange_202302274
crossref_primary_10_1021_jacs_5b09638
crossref_primary_10_1016_j_cclet_2020_06_017
crossref_primary_10_1002_adma_201501506
crossref_primary_10_1002_slct_201902678
crossref_primary_10_1007_s11426_019_9477_y
crossref_primary_10_1002_chin_201509337
crossref_primary_10_1016_j_jallcom_2017_05_156
crossref_primary_10_1021_jacs_8b05136
crossref_primary_10_1016_j_apsusc_2016_06_196
crossref_primary_10_1002_anie_201906214
crossref_primary_10_1146_annurev_matsci_070616_124040
crossref_primary_10_1007_s42452_025_07473_5
crossref_primary_10_1002_chem_201700054
crossref_primary_10_1002_adma_201704759
crossref_primary_10_1177_87560879221084353
crossref_primary_10_1038_s41427_018_0022_9
crossref_primary_10_1073_pnas_1911088116
crossref_primary_10_1007_s10853_022_06913_6
crossref_primary_10_1016_j_polymer_2015_06_014
crossref_primary_10_1038_nmat4939
crossref_primary_10_1007_s11705_016_1564_4
crossref_primary_10_1007_s11426_023_1611_7
crossref_primary_10_1021_jacs_7b03172
crossref_primary_10_1039_D1SC04017K
crossref_primary_10_1016_j_bios_2019_03_039
crossref_primary_10_3390_bios14060312
crossref_primary_10_1002_anie_202424269
crossref_primary_10_1016_j_cclet_2019_01_008
crossref_primary_10_1002_ange_201906214
crossref_primary_10_1002_chem_202000055
crossref_primary_10_1039_C9NR10607C
crossref_primary_10_1039_D5RA04844C
crossref_primary_10_1088_2634_4386_ad7755
crossref_primary_10_1016_j_jcis_2018_01_020
crossref_primary_10_1002_adma_201605408
crossref_primary_10_1002_anie_201506048
crossref_primary_10_1109_LED_2022_3189605
crossref_primary_10_1016_j_ceramint_2024_11_464
crossref_primary_10_1016_j_scitotenv_2023_169533
crossref_primary_10_1007_s12274_016_1352_y
crossref_primary_10_1038_s41467_025_62937_x
crossref_primary_10_1002_jsfa_8749
crossref_primary_10_1038_s42004_019_0201_9
crossref_primary_10_1246_cl_200747
crossref_primary_10_1002_chem_201504569
crossref_primary_10_3390_gels4010001
crossref_primary_10_1002_macp_201700359
crossref_primary_10_1016_j_bios_2016_03_042
crossref_primary_10_1002_anie_202211465
crossref_primary_10_1016_j_eurpolymj_2021_110924
crossref_primary_10_1016_j_jssc_2019_04_026
crossref_primary_10_1021_jacs_4c15602
crossref_primary_10_1021_jacs_9b11336
crossref_primary_10_1007_s11356_023_29389_6
crossref_primary_10_1126_science_aad9521
crossref_primary_10_1002_adfm_201603693
crossref_primary_10_1002_polb_24777
crossref_primary_10_1016_j_carbon_2017_08_021
crossref_primary_10_1016_j_cjche_2022_07_032
crossref_primary_10_1002_smll_201803706
crossref_primary_10_1038_s41598_023_47794_2
crossref_primary_10_1002_ange_201700679
crossref_primary_10_1002_anie_201910741
crossref_primary_10_1002_chem_201500932
crossref_primary_10_1002_pola_28470
crossref_primary_10_1246_bcsj_20160214
crossref_primary_10_1021_jacs_9b10904
crossref_primary_10_1039_C9SC03296G
crossref_primary_10_1016_j_ccr_2022_214459
crossref_primary_10_1039_C9NR04044G
crossref_primary_10_1002_advs_202203662
crossref_primary_10_1002_anie_201612629
crossref_primary_10_1016_j_pnsc_2016_08_010
crossref_primary_10_1039_C8CS00332G
crossref_primary_10_1080_14786435_2025_2513485
crossref_primary_10_1016_j_carbon_2025_120199
crossref_primary_10_1002_ange_202211465
crossref_primary_10_1016_j_seppur_2022_121358
crossref_primary_10_1016_j_mseb_2024_117859
crossref_primary_10_1016_j_nantod_2016_07_005
crossref_primary_10_1002_adma_202001268
crossref_primary_10_1002_ange_201605050
crossref_primary_10_1039_C7CC03195E
crossref_primary_10_1002_admi_202300521
crossref_primary_10_1007_s11051_020_05002_6
crossref_primary_10_1002_adma_202301468
crossref_primary_10_1038_s41427_023_00510_y
crossref_primary_10_1016_j_ccr_2017_06_024
crossref_primary_10_1016_j_bios_2022_114216
crossref_primary_10_1039_D4NR03631J
crossref_primary_10_1021_jacs_0c09399
crossref_primary_10_1002_cphc_201700111
crossref_primary_10_1039_C7CC02648J
crossref_primary_10_1002_chem_201802050
crossref_primary_10_1039_D2RA03066G
crossref_primary_10_1080_15376494_2023_2207176
crossref_primary_10_1002_chem_202101772
crossref_primary_10_1016_j_ijhydene_2018_11_096
crossref_primary_10_1002_anie_202000255
crossref_primary_10_1021_jacs_7b06591
crossref_primary_10_1002_adma_201602887
crossref_primary_10_1016_j_seppur_2023_125324
crossref_primary_10_1002_ange_202302365
crossref_primary_10_1002_slct_201702250
crossref_primary_10_1016_j_jallcom_2022_165878
crossref_primary_10_1021_ja508693y
crossref_primary_10_1038_s41578_020_00257_w
crossref_primary_10_1002_adom_201400445
crossref_primary_10_1002_anie_202302274
crossref_primary_10_1038_nmat4837
crossref_primary_10_1039_D0PY00245C
crossref_primary_10_1186_s12951_024_03024_z
crossref_primary_10_1007_s10904_025_03947_6
crossref_primary_10_1039_D2QI01267G
crossref_primary_10_1002_admi_201500239
crossref_primary_10_1002_adma_201606895
crossref_primary_10_1088_2053_1583_ac016f
crossref_primary_10_1002_admi_201600847
crossref_primary_10_1016_j_apcatb_2016_03_002
crossref_primary_10_1016_j_memsci_2016_08_022
crossref_primary_10_1016_j_jallcom_2020_154307
crossref_primary_10_1002_admt_201800182
crossref_primary_10_1002_inf2_12198
crossref_primary_10_1039_C6CC02331B
crossref_primary_10_1016_j_molliq_2022_119822
crossref_primary_10_1007_s11426_016_0307_x
crossref_primary_10_1002_cjoc_201800566
crossref_primary_10_1021_jacs_6b11857
crossref_primary_10_1039_C5CC04378F
crossref_primary_10_1039_C7RA10983K
crossref_primary_10_1002_adma_201603036
crossref_primary_10_1002_aenm_201600341
crossref_primary_10_1039_D1PY00571E
crossref_primary_10_1016_j_memsci_2020_118456
crossref_primary_10_1088_2053_1583_aad94f
crossref_primary_10_1002_ange_201508715
crossref_primary_10_1002_adma_201700707
crossref_primary_10_1002_marc_201800282
crossref_primary_10_1016_j_memsci_2018_05_036
crossref_primary_10_1002_adfm_201602158
crossref_primary_10_1016_j_jechem_2017_10_026
crossref_primary_10_1016_j_ces_2024_120882
crossref_primary_10_1016_j_colsurfa_2020_125919
crossref_primary_10_1002_cphc_201900283
crossref_primary_10_1007_s13762_024_06299_9
crossref_primary_10_1007_s10853_018_2562_3
crossref_primary_10_1002_smll_202102392
crossref_primary_10_1021_jacs_9b09335
crossref_primary_10_1038_srep19407
crossref_primary_10_1002_cnma_201800627
crossref_primary_10_1002_marc_201800719
crossref_primary_10_1016_j_eml_2015_06_003
crossref_primary_10_1021_jacs_0c12904
crossref_primary_10_1002_anie_201606988
crossref_primary_10_1002_adma_201801446
crossref_primary_10_1039_D0SC02670K
crossref_primary_10_1039_C9NR10858K
crossref_primary_10_1002_cplu_202400456
crossref_primary_10_1002_cssc_201700801
crossref_primary_10_1016_j_ceramint_2020_06_224
crossref_primary_10_1080_15376494_2023_2222130
crossref_primary_10_1002_adma_201500124
crossref_primary_10_1002_anie_201508715
crossref_primary_10_1016_j_jcis_2021_11_073
crossref_primary_10_1002_ange_201705403
crossref_primary_10_1039_C6CP02511K
crossref_primary_10_1039_C7CP04934J
crossref_primary_10_1007_s41127_024_00079_5
crossref_primary_10_1021_jacs_9b11755
crossref_primary_10_1016_j_apcata_2024_119563
crossref_primary_10_1016_j_cej_2019_01_151
crossref_primary_10_1002_adfm_202517495
crossref_primary_10_1016_j_chinastron_2011_01_010
crossref_primary_10_1016_j_cej_2021_133001
crossref_primary_10_1038_s41467_018_07720_x
crossref_primary_10_1021_jacs_0c07969
crossref_primary_10_1002_adma_201502422
crossref_primary_10_1002_macp_202400426
crossref_primary_10_1002_ange_201501788
crossref_primary_10_1002_anie_202302365
crossref_primary_10_1002_anie_201803456
crossref_primary_10_1038_s41598_018_25861_3
crossref_primary_10_1002_ejoc_202101006
crossref_primary_10_1038_s41557_021_00709_y
crossref_primary_10_1002_chem_202000223
crossref_primary_10_1016_j_apsusc_2018_01_133
crossref_primary_10_1002_adma_201700008
crossref_primary_10_1002_tcr_202100067
crossref_primary_10_3390_nano15060431
crossref_primary_10_1002_anie_201700679
crossref_primary_10_1098_rsta_2020_0343
crossref_primary_10_1007_s10853_016_0315_8
crossref_primary_10_3390_nano13050855
crossref_primary_10_1016_j_ccr_2022_214516
crossref_primary_10_1007_s40843_015_0100_z
crossref_primary_10_1016_j_electacta_2017_07_063
crossref_primary_10_1016_j_memsci_2018_11_005
crossref_primary_10_1002_adfm_201908243
crossref_primary_10_1002_agt2_673
crossref_primary_10_1002_ange_201803456
crossref_primary_10_1002_adfm_201706559
crossref_primary_10_1016_j_foodchem_2025_145366
crossref_primary_10_1016_j_reactfunctpolym_2021_104856
crossref_primary_10_3390_s22030972
crossref_primary_10_1021_jacs_2c07962
crossref_primary_10_1021_jacs_7b01275
crossref_primary_10_1002_anie_201501788
crossref_primary_10_3390_polym15224374
crossref_primary_10_1021_jacs_5b03590
crossref_primary_10_1038_s41467_021_21885_y
crossref_primary_10_1016_j_spmi_2017_03_034
crossref_primary_10_1002_chem_201700201
crossref_primary_10_1039_C9NR03167G
crossref_primary_10_1039_C9QI00536F
crossref_primary_10_1039_C8NR09915D
crossref_primary_10_1016_j_cej_2021_133947
crossref_primary_10_1016_j_snb_2015_11_001
crossref_primary_10_3390_coatings12111673
crossref_primary_10_1021_jacs_6b12503
crossref_primary_10_1039_D3RA01431B
crossref_primary_10_1002_adfm_201404624
crossref_primary_10_1186_s42833_020_0009_z
crossref_primary_10_1002_celc_201700323
crossref_primary_10_1016_j_apcatb_2017_07_053
crossref_primary_10_1016_j_pmatsci_2024_101352
crossref_primary_10_1016_j_scib_2019_09_021
crossref_primary_10_1002_adma_201902264
crossref_primary_10_1039_C5CC07381B
crossref_primary_10_1186_s11671_018_2654_7
crossref_primary_10_3390_ijms24032783
crossref_primary_10_1016_j_xcrp_2025_102570
crossref_primary_10_1039_C8CC04570D
crossref_primary_10_1016_j_snb_2021_130385
crossref_primary_10_1038_ncomms11002
crossref_primary_10_1002_smll_201804519
crossref_primary_10_1002_adma_202002092
Cites_doi 10.1016/j.polymer.2012.03.012
10.1021/ar300172h
10.1021/ja404351p
10.1039/c2cs35474h
10.1002/adma.201304964
10.1039/C3NR04791A
10.1002/chem.201203753
10.1038/nnano.2007.346
10.1038/nmat2317
10.1039/C2CS35396B
10.1126/science.1158877
10.1002/anie.201210373
10.1038/nnano.2010.89
10.1038/ncomms3431
10.1021/cm303751n
10.1039/C3PY01503C
10.1038/nchem.1628
10.1039/b718131k
10.1002/anie.200500980
10.1002/anie.201206699
10.1002/cphc.201300444
10.1002/adma.201400056
10.1038/srep02086
10.1021/jp901357t
10.1021/cr400600f
10.1002/anie.200902365
10.1021/ja9083946
10.1021/ja210725p
10.1021/mz300367p
10.1039/c3cc40444g
10.1021/ja300593w
10.1002/anie.199304061
10.1021/ja00124a005
10.1021/ja068250o
10.1021/ja4017842
10.1039/c3cc43670e
10.1021/ja900499b
10.1021/nn9018762
10.1039/c3ta13768f
10.1021/ja308249k
10.1002/adma.201200578
10.1002/anie.199404681
10.1021/ja107947z
10.1002/anie.201001634
10.1039/C3PY01581E
10.1038/nchem.1589
10.1002/adma.200903469
10.1039/c2cc32187d
10.1039/c0cc01810d
10.1038/nmat1849
10.1039/B906115K
10.1126/science.1120411
10.1039/c2cs35157a
10.1021/ja201389u
10.1002/adma.201202736
10.1039/c2jm34517j
10.1021/ja071394y
10.1002/anie.201306871
10.1021/ja901725v
10.1002/anie.201100669
10.1002/anie.201107070
10.1039/c2nr31167d
10.1002/anie.200801863
10.1126/science.1157996
10.1039/c3nr06744k
10.1021/ja902116f
10.1039/c2nr31074k
10.1021/ja312567v
10.1021/ja206242v
10.1016/j.progpolymsci.2009.06.003
10.1002/anie.201304496
10.1021/ar300116q
10.1039/c2cs35043b
10.1038/nature10680
10.1002/anie.201003024
10.1103/PhysRevB.51.4606
10.1021/ja206846p
10.1039/c3cs60044k
10.1039/C3CC49343A
10.1038/ncomms4313
10.1002/anie.200703238
10.1002/anie.201101182
10.1039/C3CC48065H
10.1126/science.1194975
10.1021/nn200393q
10.1002/adma.201304562
10.1038/nmat1659
10.1039/B616752G
10.1002/marc.201300624
10.1016/j.progpolymsci.2011.08.003
10.1039/b915190g
10.1021/am401802r
10.1002/anie.201301548
10.1007/s10853-013-7736-4
10.1039/c2cs35115c
10.1038/ncomms3736
10.1002/anie.201208501
10.1103/PhysRevLett.83.2406
10.1021/ja108628r
10.1002/anie.201306775
10.1002/adma.201204453
10.1039/b800737c
10.1126/science.280.5370.1732
10.1016/j.progpolymsci.2011.09.002
10.1002/anie.201206534
10.1016/j.bios.2011.05.039
10.1002/anie.199207091
10.1021/ja906475w
10.1021/ja00453a066
10.1021/cm403028b
10.1038/nature11458
10.1021/ar300138e
10.1021/ma4021483
10.1002/anie.200900079
10.1016/j.progpolymsci.2012.08.001
10.1039/b906836h
10.1021/ja408243n
10.1002/adfm.201101001
10.1038/nnano.2010.235
10.1038/ncomms3681
10.1039/c3ta01523h
10.1126/science.1165429
10.1021/ja4002019
10.1002/smll.201002264
10.1039/C0JM02319A
10.1039/c3tc00710c
10.1039/c2cs35107b
10.1039/B920623J
10.1002/anie.201004245
10.1039/c1jm11192b
10.1038/ncomms4113
10.1021/ja2056193
10.1021/ja0553912
10.1039/c3sc52342j
10.1021/ja800906f
10.1021/ja3091643
10.1039/b008495f
10.1021/cr3000412
10.1021/ja312380b
10.1002/anie.201300256
10.1021/ja204728y
10.1002/adma.201305040
10.1021/ja311890n
10.1016/S1369-7021(12)70116-5
10.1039/c2nr32201c
10.1039/c3cc00039g
10.1002/anie.201100170
10.1039/B917103G
10.1002/anie.201006664
10.1039/C1CS15078B
10.1038/nphoton.2010.186
10.1002/anie.200803846
10.1039/C3NR04759H
10.1088/0022-3727/44/46/464011
10.1038/nature11408
10.1039/c3py00164d
10.1002/adma.201103241
10.1021/cr300115g
10.1021/ja4086935
10.1021/cr200440z
10.1039/C1CS15193B
10.1002/adma.201103042
10.1039/C2CS35072F
10.1002/anie.201304337
10.1039/c3sc50800e
10.1002/anie.200905678
10.1557/mrs2005.249
10.1021/nn405148t
10.1038/ncomms4813
10.1021/ja200661s
10.1038/nmat2742
10.1002/1521-3765(20020315)8:6<1424::AID-CHEM1424>3.0.CO;2-Z
10.1002/adma.200502651
10.1021/ja308480x
10.1002/adma.200903436
10.1039/c2jm16552j
10.1126/science.259.5091.59
10.1002/anie.201302894
10.1038/nature09405
10.1038/nature10125
10.1002/adma.200701057
10.1021/ja0357689
10.1021/nn405492d
10.1002/smll.201302730
10.1038/nmat3064
10.1126/science.1102896
10.1002/anie.201210090
10.1021/ja5017156
10.1016/j.micromeso.2010.02.010
10.1126/science.1246137
10.1021/nl2011142
10.1021/ar300121q
10.1021/ja400160j
10.1002/anie.200904215
10.1039/C3SC52346B
10.1021/ja901357h
10.1002/macp.201200029
10.1126/science.1202747
10.1103/PhysRevB.80.195411
10.1002/adma.201101599
10.1039/C3CS60303B
10.1021/ja809307s
10.1021/ar300047s
10.1039/C1CC14937G
10.1002/anie.201105104
10.1038/nchem.1265
10.1021/nn400337v
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID BSCLL
AAYXX
CITATION
NPM
7X8
7SR
8BQ
8FD
JG9
DOI 10.1002/adma.201401857
DatabaseName Istex
CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
MEDLINE - Academic
PubMed
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage 427
ExternalDocumentID 25155302
10_1002_adma_201401857
ADMA201401857
ark_67375_WNG_HK66S7C9_8
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of China
  funderid: 21320102006; 21304057
– fundername: Natural Science Foundation of Shanghai City
  funderid: 13ZR1421200
– fundername: Specialized Research Fund for the Doctoral Program of Higher Education
  funderid: 20130073120088
– fundername: ERC
  funderid: 2DMATER
– fundername: 973 Programs of China
  funderid: 2012CB933404; 2013CBA01602
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AETEA
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
FOJGT
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WTY
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZY4
ZZTAW
~02
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
RWI
RWM
WRC
AAYXX
CITATION
O8X
NPM
7X8
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c6597-43a3f389151d9cbb8e70b507a91f10e0a1eb70e3e19bd82b8aa718b8db88a21e3
IEDL.DBID DRFUL
ISICitedReferencesCount 452
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000348031800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Thu Oct 02 10:53:12 EDT 2025
Sun Nov 09 10:24:21 EST 2025
Thu Apr 03 07:08:34 EDT 2025
Sat Nov 29 07:21:41 EST 2025
Tue Nov 18 21:29:36 EST 2025
Wed Jan 22 16:21:11 EST 2025
Tue Nov 11 03:32:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords self-assembly
two-dimensional
supramolecular structures
graphene
soft materials
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6597-43a3f389151d9cbb8e70b507a91f10e0a1eb70e3e19bd82b8aa718b8db88a21e3
Notes Natural Science Foundation of Shanghai City - No. 13ZR1421200
973 Programs of China - No. 2012CB933404; No. 2013CBA01602
Natural Science Foundation of China - No. 21320102006; No. 21304057
ERC - No. 2DMATER
ArticleID:ADMA201401857
ark:/67375/WNG-HK66S7C9-8
Specialized Research Fund for the Doctoral Program of Higher Education - No. 20130073120088
istex:97687DE5DC6C0E34F21303F83AAC229ECB02A62E
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25155302
PQID 1652393140
PQPubID 23479
PageCount 25
ParticipantIDs proquest_miscellaneous_1660043857
proquest_miscellaneous_1652393140
pubmed_primary_25155302
crossref_citationtrail_10_1002_adma_201401857
crossref_primary_10_1002_adma_201401857
wiley_primary_10_1002_adma_201401857_ADMA201401857
istex_primary_ark_67375_WNG_HK66S7C9_8
PublicationCentury 2000
PublicationDate January 21, 2015
PublicationDateYYYYMMDD 2015-01-21
PublicationDate_xml – month: 01
  year: 2015
  text: January 21, 2015
  day: 21
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv. Mater
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Y. Jin, C. Yu, R. J. Denman, W. Zhang, Chem. Soc. Rev. 2013, 42, 6634.
T. Kambe, R. Sakamoto, K. Hoshiko, K. Takada, M. Miyachi, J.-H. Ryu, S. Sasaki, J. Kim, K. Nakazato, M. Takata, H. Nishihara, J. Am. Chem. Soc. 2013, 135, 2462.
X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, M. Antonietti, J. Am. Chem. Soc. 2009, 131, 1680.
J. Eichhorn, W. M. Heckl, M. Lackinger, Chem. Commun. 2013, 49, 2900.
Y. Kim, S. Shin, T. Kim, D. Lee, C. Seok, M. Lee, Angew. Chem. Int. Ed. 2013, 52, 6426.
S. C. Junggeburth, L. Diehl, S. Werner, V. Duppel, W. Sigle, B. V. Lotsch, J. Am. Chem. Soc. 2013, 135, 6157.
A. Hirsch, J. M. Englert, F. Hauke, Acc. Chem. Res. 2012, 46, 87.
M. Han, T. Hirade, Chem. Commun. 2012, 48, 100.
Y. Zheng, H. Zhou, D. Liu, G. Floudas, M. Wagner, K. Koynov, M. Mezger, H.-J. Butt, T. Ikeda, Angew. Chem. Int. Ed. 2013, 52, 4845.
X. Zhuang, F. Zhang, D. Wu, N. Forler, H. Liang, M. Wagner, D. Gehrig, M. R. Hansen, F. Laquai, X. Feng, Angew. Chem. Int. Ed. 2013, 52, 9668.
C. Tan, X. Qi, X. Huang, J. Yang, B. Zheng, Z. An, R. Chen, J. Wei, B. Z. Tang, W. Huang, H. Zhang, Adv. Mater. 2014, 26, 1735.
L. H. Li, Y. Chen, G. Behan, H. Zhang, M. Petravic, A. M. Glushenkov, J. Mater. Chem. 2011, 21, 11862.
A. K. Geim, Science 2009, 324, 1530.
J. Niu, D. Wang, H. Qin, X. Xiong, P. Tan, Y. Li, R. Liu, X. Lu, J. Wu, T. Zhang, W. Ni, J. Jin, Nat. Commun. 2014, 5, 3313.
M. Wen-Shi, W. Li, Y. Fang, W. Shuang-Feng, J. Mater. Sci. 2014, 49, 562.
Q. T. Qu, S. B. Yang, X. L. Feng, Adv. Mater. 2011, 23, 5574.
S. H. Song, K. H. Park, B. H. Kim, Y. W. Choi, G. H. Jun, D. J. Lee, B.-S. Kong, K.-W. Paik, S. Jeon, Adv. Mater. 2013, 25, 732.
Y. Mai, F. Zhang, X. Feng, Nanoscale 2014, 6, 106.
C. J. Hawker, T. P. Russell, MRS Bulletin 2005, 30, 952.
G. Eder, E. F. Smith, I. Cebula, W. M. Heckl, P. H. Beton, M. Lackinger, ACS Nano 2013, 7, 3014.
S. B. Yang, X. L. Feng, K. Müllen, Adv. Mater. 2011, 23, 3575.
X. Feng, X. S. Ding, D. L. Jiang, Chem. Soc. Rev. 2012, 41, 6010.
J. Guo, Y. Xu, S. Jin, L. Chen, T. Kaji, Y. Honsho, M. A. Addicoat, J. Kim, A. Saeki, H. Ihee, S. Seki, S. Irle, M. Hiramoto, J. Gao, D. Jiang, Nat. Commun. 2013, 4, 2736.
Y. Chen, A. Star, S. Vidal, Chem. Soc. Rev. 2013, 42, 4532.
A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
L. Cardenas, R. Gutzler, J. Lipton-Duffin, C. Fu, J. L. Brusso, L. E. Dinca, M. Vondracak, Y. Fagot-Revurat, D. Malterre, F. Rosei, D. F. Perepichka, Chem. Sci. 2013, 4, 3263.
Y. Liu, S. Bhowmick, B. I. Yakobson, Nano Letters 2011, 11, 3113.
L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, X. Duan, Nature 2010, 467, 305.
M. Hu, S. Ishihara, Y. Yamauchi, Angew. Chem. Int. Ed. 2013, 52, 1235.
X. She, H. Xu, Y. Xu, J. Yan, J. Xia, L. Xu, Y. Song, Y. Jiang, Q. Zhang, H. Li, J. Mater. Chem. A 2014, 2, 2563.
J. Anthony, F. Diederich, C. B. Knobler, Angew. Chem. Int. Ed. 1993, 32, 406.
R. Davis, R. Berger, R. Zentel, Adv. Mater. 2007, 19, 3878-3881.
T. Premkumar, K. E. Geckeler, Prog. Polym. Sci. 2012, 37, 515.
J.-K. Kim, E. Lee, Y.-H. Jeong, J.-K. Lee, W.-C. Zin, M. Lee, J. Am. Chem. Soc. 2007, 129, 6082.
P. Sozzani, S. Bracco, A. Comotti, R. Simonutti, P. Valsesia, Y. Sakamoto, O. Terasaki, Nat. Mater. 2006, 5, 545.
M. B. Avinash, T. Govindaraju, Adv. Funct. Mater. 2011, 21, 3875.
Z. A. Piazza, H.-S. Hu, W.-L. Li, Y.-F. Zhao, J. Li, L.-S. Wang, Nat. Commun. 2014, 5, 3113.
T. Kunitake, Y. Okahata, J. Am. Chem. Soc. 1977, 99, 3860.
Q. An, Q. Chen, W. Zhu, Y. Li, C.-A. Tao, H. Yang, Z. Li, L. Wan, H. Tian, G. Li, Chem. Commun. 2010, 46, 725.
C. K. Chua, M. Pumera, Chem. Soc. Rev. 2013, 42, 3222.
J. W. Colson, A. R. Woll, A. Mukherjee, M. P. Levendorf, E. L. Spitler, V. B. Shields, M. G. Spencer, J. Park, W. R. Dichtel, Science 2011, 332, 228.
Y. Chen, B. Zhang, G. Liu, X. Zhuang, E.-T. Kang, Chem. Soc. Rev. 2012, 41, 4688.
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
J. Kim, L. J. Cote, J. Huang, Acc. Chem. Res. 2012, 45, 1356.
L. K. Ritchie, A. Trewin, A. Reguera-Galan, T. Hasell, A. I. Cooper, Micropor. Mesopor. Mat. 2010, 132, 132.
Y. Zhong, Z. Wang, R. Zhang, F. Bai, H. Wu, R. Haddad, H. Fan, ACS Nano 2013, 8, 827.
C. Dou, S. Saito, K. Matsuo, I. Hisaki, S. Yamaguchi, Angew. Chem. Int. Ed. 2012, 51, 12206.
E. Lee, J.-K. Kim, M. Lee, Angew. Chem. Int. Ed. 2009, 48, 3657.
T. Wu, J. Zhang, C. Zhou, L. Wang, X. Bu, P. Feng, J. Am. Chem. Soc. 2009, 131, 6111.
B. Jurgens, E. Irran, J. Senker, P. Kroll, H. Muller, W. Schnick, J. Am. Chem. Soc. 2003, 125, 10288.
N. Yanai, T. Uemura, M. Ohba, Y. Kadowaki, M. Maesato, M. Takenaka, S. Nishitsuji, H. Hasegawa, S. Kitagawa, Angew. Chem. Int. Ed. 2008, 47, 9883.
J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, V. Nicolosi, Science 2011, 331, 568.
X. Sun, S. Hyeon Ko, C. Zhang, A. E. Ribbe, C. Mao, J. Am. Chem. Soc. 2009, 131, 13248.
C. K. Chua, M. Pumera, Chem. Soc. Rev. 2014, 43, 291.
W. Zhang, J. Cui, C.-A. Tao, Y. Wu, Z. Li, L. Ma, Y. Wen, G. Li, Angew. Chem. Int. Ed. 2009, 48, 5864.
D. Chen, H. Feng, J. Li, Chem. Rev. 2012, 112, 6027.
Z. Wang, Z. Li, C. J. Medforth, J. A. Shelnutt, J. Am. Chem. Soc. 2007, 129, 2440.
S. Kandambeth, D. B. Shinde, M. K. Panda, B. Lukose, T. Heine, R. Banerjee, Angew. Chem. Int. Ed. 2013, 52, 13052.
J. Sakamoto, J. van Heijst, O. Lukin, A. D. Schlüter, Angew. Chem. Int. Ed. 2009, 48, 1030.
Y. Lei, Q. Liao, H. Fu, J. Yao, J. Phy. Chem. C 2009, 113, 10038.
G. Wu, P. Verwilst, K. Liu, M. Smet, C. F. J. Faul, X. Zhang, Chem. Sci. 2013, 4, 4486.
H. Liu, X. Cao, Y. Wu, Q. Liao, A. J. Jimenez, F. Wurthner, H. Fu, Chem. Commun. 2014, 50, 4620.
J. Y. Cheng, C. A. Ross, H. I. Smith, E. L. Thomas, Adv. Mater. 2006, 18, 2505.
D. R. Dreyer, R. S. Ruoff, C. W. Bielawski, Angew. Chem. Int. Ed. 2010, 49, 9336.
S.-Y. Ding, J. Gao, Q. Wang, Y. Zhang, W.-G. Song, C.-Y. Su, W. Wang, J. Am. Chem. Soc. 2011, 133, 19816.
J. Du, H.-M. Cheng, Macromol. Chem. Phy. 2012, 213, 1060.
M. Cai, D. Thorpe, D. H. Adamson, H. C. Schniepp, J. Mater. Chem. 2012, 22, 24992.
V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, K. S. Kim, Chem. Rev. 2012, 112, 6156.
M. Gsänger, J. H. Oh, M. Könemann, H. W. Höffken, A.-M. Krause, Z. Bao, F. Würthner, Angew. Chem. Int. Ed. 2010, 49, 740.
S. Das, F. Irin, H. S. T. Ahmed, A. B. Cortinas, A. S. Wajid, D. Parviz, A. F. Jankowski, M. Kato, M. J. Green, Polymer 2012, 53, 2485.
Y. Chen, J. C. Barnard, R. E. Palmer, M. O. Watanabe, T. Sasaki, Phys. Rev. Lett. 1999, 83, 2406.
N. A. A. Zwaneveld, R. M. Pawlak, M. Abel, D. Catalin, D. Gigmes, D. Bertin, L. Porte, J. Am. Chem. Soc. 2008, 130, 6678.
E. Kan, X. Wu, C. Lee, J. H. Shim, R. Lu, C. Xiao, K. Deng, Nanoscale 2012, 4, 5304.
C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 2008, 321, 385.
R. Bhola, P. Payamyar, D. J. Murray, B. Kumar, A. J. Teator, M. U. Schmidt, S. M. Hammer, A. Saha, J. Sakamoto, A. D. Schluter, B. T. King, J. Am. Chem. Soc. 2013, 135, 14134.
X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, N. Zheng, Nat. Nanotechnol. 2011, 6, 28.
X. Zhuang, F. Zhang, D. Wu, X. Feng, Adv. Mater. 2014, 26, 3081.
S. Yang, X. Feng, L. Wang, K. Tang, J. Maier, K. Müllen, Angew. Chem. Int. Ed. 2010, 49, 4795.
P. Katekomol, J. Roeser, M. Bojdys, J. Weber, A. Thomas, Chem. Mater. 2013, 25, 1542.
M. J. Bojdys, J. Jeromenok, A. Thomas, M. Antonietti, Adv. Mater. 2010, 22, 2202.
Y. Li, J. Xiao, T. E. Shubina, M. Chen, Z. Shi, M. Schmid, H.-P. Steinrueck, J. M. Gottfried, N. Lin, J. Am. Chem. Soc. 2012, 134, 6401.
A. I. Cooper, Angew. Chem. Int. Ed. 2011, 50, 996.
Y. Chen, K. Li, W. Lu, S. S.-Y. Chui, C.-W. Ma, C.-M. Che, Angew. Chem. Int. Ed. 2009, 48, 9909.
S. Zhang, J. Li, M. Zeng, J. Xu, X. Wang, W. Hu, Nanoscale 2014, 6, 4157.
H. Walch, J. Dienstmaier, G. Eder, R. Gutzler, S. Schloegl, T. Sirtl, K. Das, M. Schmittel, M. Lackinger, J. Am. Chem. Soc. 2011, 133, 7909.
D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc. Rev. 2010, 39, 228.
Z. Sun, T. Liao, Y. Dou, S. M. Hwang, M.-S. Park, L. Jiang, J. H. Kim, S. X. Dou, Nat. Commun. 2014, 5, 3813.
I. Levesque, J. R. Neabo, S. Rondeau-Gagne, C. Vigier-Carriere, M. Daigle, J.-F. Morin, Chem. Sci. 2014, 5, 831.
S. Shin, S. Lim, Y. Kim, T. Kim, T.-L. Choi, M. Lee, J. Am. Chem. Soc. 2013, 135, 2156.
Y. Yang, W. Rigdon, X. Huang, X. Li, Sci. Rep. 2013, 3, 2086.
D. Wu, F. Xu, B. Sun, R. Fu, H. He, K. Matyjaszewski, Chem. Rev. 2012, 112, 3959.
Y. Li, X. Wang, J. Sun, Chem. Soc. Rev. 2012, 41, 5998.
D. N. Bunck, W. R. Dichtel, J. Am. Chem. Soc. 2013, 135, 14952.
F. Schwierz, Nat. Nanotech. 2010, 5, 487.
X. D. Zhuang, Y. Chen, G. Liu, P. P. Li, C. X. Zhu, E. T. Kang, K. G. Neoh, B. Zhang, J. H. Zhu, Y. X. Li, Adv. Mater. 2010, 22, 1731.
C. A. Hunter, K. R. Lawson, J. Perkins, C. J. Urch, J. Chem. Soc., Perkin Trans. 2 2001, 651.
S. Li, D. Q. Wu, C. Cheng, J. Wang, F. Zhang, Y. Z. Su, X. L. Feng, Angew. Chem. Int. Ed. 2013, 52, 12105.
S. B. Yang, X. L. Feng, X. C. Wang, K. Müllen, Angew. Chem. Int. Ed. 2011, 50, 5339.
F. W. Averill, J. R. Morris, V. R. Cooper, Phys. Rev. B 2009, 80, 195411.
S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P. M. Ajayan, Adv. Mater. 2013, 25, 2452.
M. Lackinger, W. M. Heckl, J. Phy. D-Appl. Phy. 2011, 44, 464011.
S. I. Stupp, S. Son, L. S. Li, H. C. Lin, M. Keser, J. Am. Chem. Soc. 1995, 117, 5212.
S. I. Stupp, S. Son, H. C. Lin, L. S. Li, Science 1993, 259, 59.
K. F. Kelly, W. E. Billups, Accounts of Chemical Research 2012, 46, 4.
A. Walther, A. H. E. Muller, Soft Matter 2008, 4, 663.
A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, C. Oshima, Phys. Rev. B (Condensed Matter) 1995, 51, 4606.
T. Bauer, Z. Zheng, A. Renn, R. Enning, A. Stemmer, J. Sa
2011; 479
1998; 280
2013; 3
2013; 4
2013; 1
2009; 80
2010; 467
2014; 26
2009; 113
2012; 15
2012; 488
2013; 7
2013; 8
2013; 5
2014; 136
2011; 474
2010; 22
2012; 134
1993; 32
2013; 52
2012; 490
2007; 6
2007; 2
2012; 24
2010; 5
1993; 259
2010; 4
2012; 22
2010; 9
2014; 10
1995; 51
2007; 19
2010; 39
2002; 8
2014; 49
2012; 37
1992; 31
2004; 306
2011; 6
2011; 5
2011; 133
2011; 7
2014; 43
2010; 49
2012; 112
2010; 46
2005; 127
2008; 47
1977; 99
2012; 48
2012; 46
2012; 45
2008; 130
2012; 41
2013; 26
2013; 25
2011; 11
2011; 10
1999; 83
2008; 4
2009; 48
2007; 36
2012; 53
2012; 51
2013; 19
2014; 5
2013; 14
2014; 2
2001
1994; 33
2005; 30
2011; 21
2011; 23
2011; 26
2012; 213
2003; 125
2014; 8
2014; 50
2014; 6
2009; 323
2009; 324
2007; 129
2013; 47
2013; 49
2005; 310
2013; 42
2009
1995; 117
2006; 5
2006; 18
2009; 131
2008; 321
2014; 114
2011; 332
2005; 44
2011; 331
2009; 29
2009; 34
2012; 1
2013; 34
2011; 50
2010; 132
2011; 44
2013; 135
2009; 8
2012; 4
2014; 343
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_71_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_204_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_195_1
e_1_2_9_172_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_205_1
e_1_2_9_5_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_194_1
e_1_2_9_31_1
e_1_2_9_210_1
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_16_1
e_1_2_9_185_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_206_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_197_1
e_1_2_9_28_1
e_1_2_9_174_1
e_1_2_9_211_1
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_112_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_207_1
e_1_2_9_173_1
e_1_2_9_196_1
e_1_2_9_29_1
e_1_2_9_150_1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_52_1
e_1_2_9_90_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_200_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_115_1
e_1_2_9_199_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_208_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_201_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_198_1
e_1_2_9_27_1
e_1_2_9_209_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_189_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_181_1
e_1_2_9_62_1
e_1_2_9_202_1
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_4_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_178_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_193_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_13_1
e_1_2_9_97_1
e_1_2_9_127_1
e_1_2_9_188_1
e_1_2_9_104_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_203_1
e_1_2_9_86_1
e_1_2_9_3_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_177_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_192_1
References_xml – reference: W. J. Roth, P. Nachtigall, R. E. Morris, J. Cejka, Chem. Rev. 2014, 114, 4807.
– reference: B. Song, Z. Wang, S. Chen, X. Zhang, Y. Fu, M. Smet, W. Dehaen, Angew. Chem. Int. Ed. 2005, 44, 4731.
– reference: V. Leon, A. M. Rodriguez, P. Prieto, M. Prato, E. Vazquez, ACS Nano 2014, 8, 563.
– reference: M. Han, T. Hirade, Chem. Commun. 2012, 48, 100.
– reference: M. Gsänger, J. H. Oh, M. Könemann, H. W. Höffken, A.-M. Krause, Z. Bao, F. Würthner, Angew. Chem. Int. Ed. 2010, 49, 740.
– reference: Y. Kim, S. Shin, T. Kim, D. Lee, C. Seok, M. Lee, Angew. Chem. Int. Ed. 2013, 52, 6426.
– reference: F. Schwierz, Nat. Nanotech. 2010, 5, 487.
– reference: K. T. Nam, S. A. Shelby, P. H. Choi, A. B. Marciel, R. Chen, L. Tan, T. K. Chu, R. A. Mesch, B.-C. Lee, M. D. Connolly, C. Kisielowski, R. N. Zuckermann, Nat. Mater. 2010, 9, 454.
– reference: M. Sadhukhan, S. Barman, J. Mater. Chem. A 2013, 1, 2752.
– reference: J. Zhang, H. Geng, T. S. Virk, Y. Zhao, J. Tan, C.-A. Di, W. Xu, K. Singh, W. Hu, Z. Shuai, Y. Liu, D. Zhu, Adv. Mater. 2012, 24, 2603.
– reference: L. Gao, K. Zhang, Y. Chen, ACS Macro Letters 2012, 1, 1143.
– reference: X. She, H. Xu, Y. Xu, J. Yan, J. Xia, L. Xu, Y. Song, Y. Jiang, Q. Zhang, H. Li, J. Mater. Chem. A 2014, 2, 2563.
– reference: A. J. Baca, J.-H. Ahn, Y. Sun, M. A. Meitl, E. Menard, H.-S. Kim, W. M. Choi, D.-H. Kim, Y. Huang, J. A. Rogers, Angew. Chem. Int. Ed. 2008, 47, 5524.
– reference: Y. Li, X. Wang, J. Sun, Chem. Soc. Rev. 2012, 41, 5998.
– reference: J.-K. Kim, E. Lee, Y.-H. Jeong, J.-K. Lee, W.-C. Zin, M. Lee, J. Am. Chem. Soc. 2007, 129, 6082.
– reference: S. Yang, X. Feng, L. Wang, K. Tang, J. Maier, K. Müllen, Angew. Chem. Int. Ed. 2010, 49, 4795.
– reference: D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc. Rev. 2010, 39, 228.
– reference: H. Walch, J. Dienstmaier, G. Eder, R. Gutzler, S. Schloegl, T. Sirtl, K. Das, M. Schmittel, M. Lackinger, J. Am. Chem. Soc. 2011, 133, 7909.
– reference: S. I. Stupp, S. Son, L. S. Li, H. C. Lin, M. Keser, J. Am. Chem. Soc. 1995, 117, 5212.
– reference: R. Davis, R. Berger, R. Zentel, Adv. Mater. 2007, 19, 3878-3881.
– reference: A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166.
– reference: P. Sozzani, S. Bracco, A. Comotti, R. Simonutti, P. Valsesia, Y. Sakamoto, O. Terasaki, Nat. Mater. 2006, 5, 545.
– reference: H. Xu, J. Yan, X. She, L. Xu, J. Xia, Y. Xu, Y. Song, L. Huang, H. Li, Nanoscale 2014, 6, 1406.
– reference: S. B. Yang, X. L. Feng, X. C. Wang, K. Müllen, Angew. Chem. Int. Ed. 2011, 50, 5339.
– reference: W. Yao, Y. Yan, L. Xue, C. Zhang, G. Li, Q. Zheng, Y. S. Zhao, H. Jiang, J. Yao, Angew. Chem. Int. Ed. 2013, 52, 8713.
– reference: J. Kim, L. J. Cote, J. Huang, Acc. Chem. Res. 2012, 45, 1356.
– reference: Y. X. Xu, G. Q. Shi, J. Mater. Chem. 2011, 21, 3311.
– reference: K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
– reference: Z. Zheng, C. S. Ruiz-Vargas, T. Bauer, A. Rossi, P. Payamyar, A. Schuetz, A. Stemmer, J. Sakamoto, A. D. Schlueter, Macromol. Rap. Commun. 2013, 34, 1670.
– reference: X. Huang, C. Tan, Z. Yin, H. Zhang, Adv. Mater. 2014, 26, 2185.
– reference: X. Feng, X. S. Ding, D. L. Jiang, Chem. Soc. Rev. 2012, 41, 6010.
– reference: A. C. Kamps, M. H. M. Cativo, M. Fryd, S.-J. Park, Macromolecules 2013, 47, 161.
– reference: C. J. Hawker, T. P. Russell, MRS Bulletin 2005, 30, 952.
– reference: K. Kim, J.-Y. Choi, T. Kim, S.-H. Cho, H.-J. Chung, Nature 2011, 479, 338.
– reference: A. Walther, A. H. E. Muller, Soft Matter 2008, 4, 663.
– reference: J. W. Colson, A. R. Woll, A. Mukherjee, M. P. Levendorf, E. L. Spitler, V. B. Shields, M. G. Spencer, J. Park, W. R. Dichtel, Science 2011, 332, 228.
– reference: Y. Lin, J. W. Connell, Nanoscale 2012, 4, 6908.
– reference: S. H. Song, K. H. Park, B. H. Kim, Y. W. Choi, G. H. Jun, D. J. Lee, B.-S. Kong, K.-W. Paik, S. Jeon, Adv. Mater. 2013, 25, 732.
– reference: G. Eder, E. F. Smith, I. Cebula, W. M. Heckl, P. H. Beton, M. Lackinger, ACS Nano 2013, 7, 3014.
– reference: W. Zhang, J. Cui, C.-A. Tao, Y. Wu, Z. Li, L. Ma, Y. Wen, G. Li, Angew. Chem. Int. Ed. 2009, 48, 5864.
– reference: K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, Nature 2012, 490, 192.
– reference: V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, K. S. Kim, Chem. Rev. 2012, 112, 6156.
– reference: R. Meziane, M. Brehmer, U. Maschke, R. Zentel, Soft Matter 2008, 4, 1237.
– reference: Y. Mai, A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969.
– reference: D. R. Dreyer, R. S. Ruoff, C. W. Bielawski, Angew. Chem. Int. Ed. 2010, 49, 9336.
– reference: L. H. Li, Y. Chen, G. Behan, H. Zhang, M. Petravic, A. M. Glushenkov, J. Mater. Chem. 2011, 21, 11862.
– reference: P. Katekomol, J. Roeser, M. Bojdys, J. Weber, A. Thomas, Chem. Mater. 2013, 25, 1542.
– reference: I. W. Hamley, Prog. Polym. Sci. 2009, 34, 1161.
– reference: A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, C. Oshima, Phys. Rev. B (Condensed Matter) 1995, 51, 4606.
– reference: Q. An, Q. Chen, W. Zhu, Y. Li, C.-A. Tao, H. Yang, Z. Li, L. Wan, H. Tian, G. Li, Chem. Commun. 2010, 46, 725.
– reference: E. L. Spitler, B. T. Koo, J. L. Novotney, J. W. Colson, F. J. Uribe-Romo, G. D. Gutierrez, P. Clancy, W. R. Dichtel, J. Am. Chem. Soc. 2011, 133, 19416.
– reference: X. Zhuang, Y. Chen, L. Wang, K.-G. Neoh, E.-T. Kang, C. Wang, Polym. Chem. 2014, 5, 2010.
– reference: R. Dawson, A. I. Cooper, D. J. Adams, Prog. Polym. Sci. 2012, 37, 530.
– reference: C. D. Simpson, J. D. Brand, A. J. Berresheim, L. Przybilla, H. J. Räder, K. Müllen, Chem. -Eur. J. 2002, 8, 1424.
– reference: X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, J. Am. Chem. Soc. 2013, 135, 18.
– reference: M. Bieri, M.-T. Nguyen, O. Groening, J. Cai, M. Treier, K. Ait-Mansour, P. Ruffieux, C. A. Pignedoli, D. Passerone, M. Kastler, K. Muellen, R. Fasel, J. Am. Chem. Soc. 2010, 132, 16669.
– reference: L. Wu, W. Li, P. Li, S. Liao, S. Qiu, M. Chen, Y. Guo, Q. Li, C. Zhu, L. Liu, Small 2014, 10, 1421.
– reference: C. Tan, X. Qi, X. Huang, J. Yang, B. Zheng, Z. An, R. Chen, J. Wei, B. Z. Tang, W. Huang, H. Zhang, Adv. Mater. 2014, 26, 1735.
– reference: C. K. Chua, M. Pumera, Chem. Soc. Rev. 2014, 43, 291.
– reference: Y. Wang, X. C. Wang, M. Antonietti, Angew. Chem. Int. Ed. 2012, 51, 68.
– reference: M. Lackinger, W. M. Heckl, J. Phy. D-Appl. Phy. 2011, 44, 464011.
– reference: A. Hirsch, J. M. Englert, F. Hauke, Acc. Chem. Res. 2012, 46, 87.
– reference: J. W. Colson, W. R. Dichtel, Nat. Chem. 2013, 5, 453.
– reference: M. G. Rabbani, A. K. Sekizkardes, Z. Kahveci, T. E. Reich, R. Ding, H. M. El-Kaderi, Chem. -Eur. J. 2013, 19, 3324.
– reference: K. E. Jelfs, X. F. Wu, M. Schmidtmann, J. T. A. Jones, J. E. Warren, D. J. Adams, A. I. Cooper, Angew. Chem. Int. Ed. 2011, 50, 10653.
– reference: J. T. A. Jones, T. Hasell, X. F. Wu, J. Bacsa, K. E. Jelfs, M. Schmidtmann, S. Y. Chong, D. J. Adams, A. Trewin, F. Schiffman, F. Cora, B. Slater, A. Steiner, G. M. Day, A. I. Cooper, Nature 2011, 474, 367.
– reference: L. K. Ritchie, A. Trewin, A. Reguera-Galan, T. Hasell, A. I. Cooper, Micropor. Mesopor. Mat. 2010, 132, 132.
– reference: M. Quintana, E. Vazquez, M. Prato, Acc. Chem. Res. 2012, 46, 138.
– reference: Y. Zheng, H. Zhou, D. Liu, G. Floudas, M. Wagner, K. Koynov, M. Mezger, H.-J. Butt, T. Ikeda, Angew. Chem. Int. Ed. 2013, 52, 4845.
– reference: J. Park, M. Yan, Acc. Chem. Res. 2012, 46, 181.
– reference: C. A. Cao, X. Zhuang, Y. Su, Y. Zhang, F. Zhang, D. Wu, X. Feng, Polym. Chem. 2014, 6, 2057.
– reference: X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, N. Zheng, Nat. Nanotechnol. 2011, 6, 28.
– reference: Z. Shi, N. Lin, J. Am. Chem. Soc. 2009, 131, 5376.
– reference: S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P. M. Ajayan, Adv. Mater. 2013, 25, 2452.
– reference: S. Kandambeth, D. B. Shinde, M. K. Panda, B. Lukose, T. Heine, R. Banerjee, Angew. Chem. Int. Ed. 2013, 52, 13052.
– reference: J. Niu, D. Wang, H. Qin, X. Xiong, P. Tan, Y. Li, R. Liu, X. Lu, J. Wu, T. Zhang, W. Ni, J. Jin, Nat. Commun. 2014, 5, 3313.
– reference: A. P. Cote, Science 2005, 310, 1166.
– reference: J. Sakamoto, J. van Heijst, O. Lukin, A. D. Schlüter, Angew. Chem. Int. Ed. 2009, 48, 1030.
– reference: C. He, D. Wu, F. Zhang, M. Xue, X. Zhuang, F. Qiu, X. Feng, ChemPhysChem 2013, 14, 2954.
– reference: T. Govindaraju, M. B. Avinash, Nanoscale 2012, 4, 6102.
– reference: L. Zhang, C. Li, A. R. Liu, G. Q. Shi, J. Mater. Chem. 2012, 22, 8438.
– reference: I. Berlanga, R. Mas-Balleste, F. Zamora, Chem. Commun. 2012, 48, 7976.
– reference: A. I. Cooper, Angew. Chem. Int. Ed. 2011, 50, 996.
– reference: M. Osada, T. Sasaki, Adv. Mater. 2012, 24, 210.
– reference: Z. A. Piazza, H.-S. Hu, W.-L. Li, Y.-F. Zhao, J. Li, L.-S. Wang, Nat. Commun. 2014, 5, 3113.
– reference: Y. Lei, Q. Liao, H. Fu, J. Yao, J. Phy. Chem. C 2009, 113, 10038.
– reference: J. Y. Cheng, C. A. Ross, H. I. Smith, E. L. Thomas, Adv. Mater. 2006, 18, 2505.
– reference: M. Wen-Shi, W. Li, Y. Fang, W. Shuang-Feng, J. Mater. Sci. 2014, 49, 562.
– reference: G. Wu, P. Verwilst, K. Liu, M. Smet, C. F. J. Faul, X. Zhang, Chem. Sci. 2013, 4, 4486.
– reference: L. Yan, Y. B. Zheng, F. Zhao, S. Li, X. Gao, B. Xu, P. S. Weiss, Y. Zhao, Chem. Soc. Rev. 2012, 41, 97.
– reference: J. Anthony, F. Diederich, C. B. Knobler, Angew. Chem. Int. Ed. 1993, 32, 406.
– reference: F. J. Uribe-Romo, C. J. Doonan, H. Furukawa, K. Oisaki, O. M. Yaghi, J. Am. Chem. Soc. 2011, 133, 11478.
– reference: J. Lu, K. Zhang, X. F. Liu, H. Zhang, T. C. Sum, A. H. Castro Neto, K. P. Loh, Nat. Commun. 2013, 4, 2681.
– reference: M. J. Bojdys, J. Jeromenok, A. Thomas, M. Antonietti, Adv. Mater. 2010, 22, 2202.
– reference: X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76.
– reference: L. Cardenas, R. Gutzler, J. Lipton-Duffin, C. Fu, J. L. Brusso, L. E. Dinca, M. Vondracak, Y. Fagot-Revurat, D. Malterre, F. Rosei, D. F. Perepichka, Chem. Sci. 2013, 4, 3263.
– reference: S. B. Yang, X. L. Feng, K. Müllen, Adv. Mater. 2011, 23, 3575.
– reference: Z. Wang, Z. Li, C. J. Medforth, J. A. Shelnutt, J. Am. Chem. Soc. 2007, 129, 2440.
– reference: C. K. Chua, M. Pumera, Chem. Soc. Rev. 2013, 42, 3222.
– reference: T. Premkumar, K. E. Geckeler, Prog. Polym. Sci. 2012, 37, 515.
– reference: X. Zhuang, F. Zhang, D. Wu, N. Forler, H. Liang, M. Wagner, D. Gehrig, M. R. Hansen, F. Laquai, X. Feng, Angew. Chem. Int. Ed. 2013, 52, 9668.
– reference: Y. Chen, B. Zhang, G. Liu, X. Zhuang, E.-T. Kang, Chem. Soc. Rev. 2012, 41, 4688.
– reference: X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, M. Antonietti, J. Am. Chem. Soc. 2009, 131, 1680.
– reference: D. Chen, H. Feng, J. Li, Chem. Rev. 2012, 112, 6027.
– reference: Y. Zhong, Z. Wang, R. Zhang, F. Bai, H. Wu, R. Haddad, H. Fan, ACS Nano 2013, 8, 827.
– reference: S. Das, F. Irin, H. S. T. Ahmed, A. B. Cortinas, A. S. Wajid, D. Parviz, A. F. Jankowski, M. Kato, M. J. Green, Polymer 2012, 53, 2485.
– reference: T. Wu, J. Zhang, C. Zhou, L. Wang, X. Bu, P. Feng, J. Am. Chem. Soc. 2009, 131, 6111.
– reference: K. Parvez, Z.-S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Müllen, J. Am. Chem. Soc. 2014, 136, 6083.
– reference: X. Zhuang, F. Zhang, D. Wu, X. Feng, Adv. Mater. 2014, 26, 3081.
– reference: S. C. Junggeburth, L. Diehl, S. Werner, V. Duppel, W. Sigle, B. V. Lotsch, J. Am. Chem. Soc. 2013, 135, 6157.
– reference: M. Hu, S. Ishihara, Y. Yamauchi, Angew. Chem. Int. Ed. 2013, 52, 1235.
– reference: P. Kissel, R. Erni, W. B. Schweizer, M. D. Rossell, B. T. King, T. Bauer, S. Goetzinger, A. D. Schlueter, J. Sakamoto, Nat. Chem. 2012, 4, 287.
– reference: T. Kunitake, Angew. Chem. Int. Ed. 1992, 31, 709.
– reference: K. F. Kelly, W. E. Billups, Accounts of Chemical Research 2012, 46, 4.
– reference: Y. Chen, J. C. Barnard, R. E. Palmer, M. O. Watanabe, T. Sasaki, Phys. Rev. Lett. 1999, 83, 2406.
– reference: S.-Y. Ding, W. Wang, Chem. Soc. Rev. 2013, 42, 548.
– reference: E. L. Spitler, J. W. Colson, F. J. Uribe-Romo, A. R. Woll, M. R. Giovino, A. Saldivar, W. R. Dichtel, Angew. Chem. Int. Ed. 2012, 51, 2623.
– reference: M. O. Blunt, J. C. Russell, N. R. Champness, P. H. Beton, Chem. Commun. 2010, 46, 7157.
– reference: F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, Nature Photonics 2010, 4, 611.
– reference: S. Shin, S. Lim, Y. Kim, T. Kim, T.-L. Choi, M. Lee, J. Am. Chem. Soc. 2013, 135, 2156.
– reference: C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 2008, 321, 385.
– reference: Y. Cui, Z. Ding, X. Fu, X. Wang, Angew. Chem. Int. Ed. 2012, 51, 11814.
– reference: I. Levesque, J. R. Neabo, S. Rondeau-Gagne, C. Vigier-Carriere, M. Daigle, J.-F. Morin, Chem. Sci. 2014, 5, 831.
– reference: P. L. Chiu, D. D. T. Mastrogiovanni, D. Wei, C. Louis, M. Jeong, G. Yu, P. Saad, C. R. Flach, R. Mendelsohn, E. Garfunkel, H. He, J. Am. Chem. Soc. 2012, 134, 5850.
– reference: A. M. Boldi, F. Diederich, Angew. Chem. Int. Ed. 1994, 33, 468.
– reference: A. Pakdel, C. Zhi, Y. Bando, D. Golberg, Materials Today 2012, 15, 256.
– reference: Y. Mai, F. Zhang, X. Feng, Nanoscale 2014, 6, 106.
– reference: K. Baek, G. Yun, Y. Kim, D. Kim, R. Hota, I. Hwang, D. Xu, Y. H. Ko, G. H. Gu, J. H. Suh, C. G. Park, B. J. Sung, K. Kim, J. Am. Chem. Soc. 2013, 135, 6523.
– reference: B. C. Stipe, M. A. Rezaei, W. Ho, Science 1998, 280, 1732.
– reference: X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 2012, 41, 666.
– reference: M. P. Levendorf, C.-J. Kim, L. Brown, P. Y. Huang, R. W. Havener, D. A. Muller, J. Park, Nature 2012, 488, 627.
– reference: D. Wu, R. Liu, W. Pisula, X. Feng, K. Müllen, Angew. Chem. Int. Ed. 2011, 50, 2791.
– reference: S.-Y. Ding, J. Gao, Q. Wang, Y. Zhang, W.-G. Song, C.-Y. Su, W. Wang, J. Am. Chem. Soc. 2011, 133, 19816.
– reference: A. Nag, K. Raidongia, K. P. S. S. Hembram, R. Datta, U. V. Waghmare, C. N. R. Rao, ACS Nano 2010, 4, 1539.
– reference: Y. Chen, K. Li, W. Lu, S. S.-Y. Chui, C.-W. Ma, C.-M. Che, Angew. Chem. Int. Ed. 2009, 48, 9909.
– reference: B. Jurgens, E. Irran, J. Senker, P. Kroll, H. Muller, W. Schnick, J. Am. Chem. Soc. 2003, 125, 10288.
– reference: J. Guo, Y. Xu, S. Jin, L. Chen, T. Kaji, Y. Honsho, M. A. Addicoat, J. Kim, A. Saeki, H. Ihee, S. Seki, S. Irle, M. Hiramoto, J. Gao, D. Jiang, Nat. Commun. 2013, 4, 2736.
– reference: B. P. Biswal, S. Chandra, S. Kandambeth, B. Lukose, T. Heine, R. Banerjee, J. Am. Chem. Soc. 2013, 135, 5328.
– reference: A. A. Balandin, Nat. Mater. 2011, 10, 569.
– reference: Y. Tan, L. Fang, J. Xiao, Y. Song, Q. Zheng, Polym. Chem. 2013, 4, 2939.
– reference: R. Bhosale, J. Misek, N. Sakai, S. Matile, Chem. Soc. Rev. 2010, 39, 138.
– reference: M. Cai, D. Thorpe, D. H. Adamson, H. C. Schniepp, J. Mater. Chem. 2012, 22, 24992.
– reference: X. D. Zhuang, Y. Chen, G. Liu, P. P. Li, C. X. Zhu, E. T. Kang, K. G. Neoh, B. Zhang, J. H. Zhu, Y. X. Li, Adv. Mater. 2010, 22, 1731.
– reference: L. Liu, J. Park, D. A. Siegel, K. F. McCarty, K. W. Clark, W. Deng, L. Basile, J. C. Idrobo, A.-P. Li, G. Gu, Science 2014, 343, 163.
– reference: L. Grill, M. Dyer, L. Lafferentz, M. Persson, M. V. Peters, S. Hecht, Nat. Nanotechn. 2007, 2, 687.
– reference: E. Lee, J.-K. Kim, M. Lee, Angew. Chem. Int. Ed. 2009, 48, 3657.
– reference: M. Bieri, M. Treier, J. Cai, K. Ait-Mansour, P. Ruffieux, O. Groning, P. Groning, M. Kastler, R. Rieger, X. Feng, K. Müllen, R. Fasel, Chem. Commun. 2009, 6919.
– reference: X. Song, J. Hu, H. Zeng, J. Mater. Chem. C 2013, 1, 2952.
– reference: S. I. Stupp, S. Son, H. C. Lin, L. S. Li, Science 1993, 259, 59.
– reference: R. Tanoue, R. Higuchi, N. Enoki, Y. Miyasato, S. Uemura, N. Kimizuka, A. Z. Stieg, J. K. Gimzewski, M. Kunitake, ACS Nano 2011, 5, 3923.
– reference: X. Sun, S. Hyeon Ko, C. Zhang, A. E. Ribbe, C. Mao, J. Am. Chem. Soc. 2009, 131, 13248.
– reference: C. A. Hunter, K. R. Lawson, J. Perkins, C. J. Urch, J. Chem. Soc., Perkin Trans. 2 2001, 651.
– reference: M. G. Schwab, B. Fassbender, H. W. Spiess, A. Thomas, X. Feng, K. Müllen, J. Am. Chem. Soc. 2009, 131, 7216.
– reference: Y. Qin, J. Zhang, X. Zheng, H. Geng, G. Zhao, W. Xu, W. Hu, Z. Shuai, D. Zhu, Adv. Mater. 2014, 26, 4093.
– reference: S. I. Stupp, L. C. Palmer, Chem. Mater. 2013, 26, 507.
– reference: D. N. Bunck, W. R. Dichtel, J. Am. Chem. Soc. 2013, 135, 14952.
– reference: J. M. Lehn, Chem. Soc. Rev. 2007, 36, 151.
– reference: Y. Liu, S. Bhowmick, B. I. Yakobson, Nano Letters 2011, 11, 3113.
– reference: D. Hao, J. Zhang, H. Lu, W. Leng, R. Ge, X. Dai, Y. Gao, Chem. Commun. 2014, 50, 1462.
– reference: S. Zhang, J. Li, M. Zeng, J. Xu, X. Wang, W. Hu, Nanoscale 2014, 6, 4157.
– reference: Y. Yang, W. Rigdon, X. Huang, X. Li, Sci. Rep. 2013, 3, 2086.
– reference: N. A. A. Zwaneveld, R. M. Pawlak, M. Abel, D. Catalin, D. Gigmes, D. Bertin, L. Porte, J. Am. Chem. Soc. 2008, 130, 6678.
– reference: L. Liu, Z. Xiong, D. Hu, G. Wu, P. Chen, Chem. Commun. 2013, 49, 7890.
– reference: Y. Wang, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 2012, 51, 68.
– reference: T. Kambe, R. Sakamoto, K. Hoshiko, K. Takada, M. Miyachi, J.-H. Ryu, S. Sasaki, J. Kim, K. Nakazato, M. Takata, H. Nishihara, J. Am. Chem. Soc. 2013, 135, 2462.
– reference: D. F. Perepichka, F. Rosei, Science 2009, 323, 216.
– reference: F. W. Averill, J. R. Morris, V. R. Cooper, Phys. Rev. B 2009, 80, 195411.
– reference: I.-Y. Jeon, H.-J. Choi, S.-M. Jung, J.-M. Seo, M.-J. Kim, L. Dai, J.-B. Baek, J. Am. Chem. Soc. 2013, 135, 1386.
– reference: R. Gutzler, H. Walch, G. Eder, S. Kloft, W. M. Heckl, M. Lackinger, Chem. Commun. 2009, 29, 4456.
– reference: S. Haq, F. Hanke, M. S. Dyer, M. Persson, P. Iavicoli, D. B. Amabilino, R. Raval, J. Am. Chem. Soc. 2011, 133, 12031.
– reference: M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, H. Zhang, Nat. Chem. 2013, 5, 263.
– reference: J. Eichhorn, W. M. Heckl, M. Lackinger, Chem. Commun. 2013, 49, 2900.
– reference: J.-S. Hu, Guo, H.-P. Liang, L.-J. Wan, L. Jiang, J. Am. Chem. Soc. 2005, 127, 17090.
– reference: C. Dou, S. Saito, K. Matsuo, I. Hisaki, S. Yamaguchi, Angew. Chem. Int. Ed. 2012, 51, 12206.
– reference: D. Wu, F. Xu, B. Sun, R. Fu, H. He, K. Matyjaszewski, Chem. Rev. 2012, 112, 3959.
– reference: I. Berlanga, M. L. Ruiz-González, J. M. González-Calbet, J. L. G. Fierro, R. Mas-Ballesté, F. Zamora, Small 2011, 7, 1207.
– reference: M. Abel, S. Clair, O. Ourdjini, M. Mossoyan, L. Porte, J. Am. Chem. Soc. 2011, 133, 1203.
– reference: L. Chen, J. Kim, T. Ishizuka, Y. Honsho, A. Saeki, S. Seki, H. Ihee, D. Jiang, J. Am. Chem. Soc. 2009, 131, 7287.
– reference: J. Du, H.-M. Cheng, Macromol. Chem. Phy. 2012, 213, 1060.
– reference: Q. T. Qu, S. B. Yang, X. L. Feng, Adv. Mater. 2011, 23, 5574.
– reference: E. Kan, X. Wu, C. Lee, J. H. Shim, R. Lu, C. Xiao, K. Deng, Nanoscale 2012, 4, 5304.
– reference: T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, J. H. Lee, Biosensors & Bioelectronics 2011, 26, 4637.
– reference: J. Adisoejoso, Y. Li, J. Liu, P. N. Liu, N. Lin, J. Am. Chem. Soc. 2012, 134, 18526.
– reference: Z. Sun, T. Liao, Y. Dou, S. M. Hwang, M.-S. Park, L. Jiang, J. H. Kim, S. X. Dou, Nat. Commun. 2014, 5, 3813.
– reference: Y. Li, J. Xiao, T. E. Shubina, M. Chen, Z. Shi, M. Schmid, H.-P. Steinrueck, J. M. Gottfried, N. Lin, J. Am. Chem. Soc. 2012, 134, 6401.
– reference: A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
– reference: Y. Chen, A. Star, S. Vidal, Chem. Soc. Rev. 2013, 42, 4532.
– reference: K.-D. Zhang, J. Tian, D. Hanifi, Y. Zhang, A. C.-H. Sue, T.-Y. Zhou, L. Zhang, X. Zhao, Y. Liu, Z.-T. Li, J. Am. Chem. Soc. 2013, 135, 17913.
– reference: N. Yanai, T. Uemura, M. Ohba, Y. Kadowaki, M. Maesato, M. Takenaka, S. Nishitsuji, H. Hasegawa, S. Kitagawa, Angew. Chem. Int. Ed. 2008, 47, 9883.
– reference: H. Liu, X. Cao, Y. Wu, Q. Liao, A. J. Jimenez, F. Wurthner, H. Fu, Chem. Commun. 2014, 50, 4620.
– reference: R. Bhola, P. Payamyar, D. J. Murray, B. Kumar, A. J. Teator, M. U. Schmidt, S. M. Hammer, A. Saha, J. Sakamoto, A. D. Schluter, B. T. King, J. Am. Chem. Soc. 2013, 135, 14134.
– reference: A. Iwan, A. Chuchmala, Prog. Polym. Sci. 2012, 37, 1805.
– reference: X. Zou, H. Ren, G. Zhu, Chem. Commun. 2013, 49, 3925.
– reference: Y. Jin, C. Yu, R. J. Denman, W. Zhang, Chem. Soc. Rev. 2013, 42, 6634.
– reference: A. Nagai, X. Chen, X. Feng, X. Ding, Z. Guo, D. Jiang, Angew. Chem. Int. Ed. 2013, 52, 3770.
– reference: N. Cheng, J. Tian, Q. Liu, C. Ge, A. H. Qusti, A. M. Asiri, A. O. Al-Youbi, X. Sun, ACS App. Mater. & Inter. 2013, 5, 6815.
– reference: A. K. Geim, Science 2009, 324, 1530.
– reference: K. Xu, P. Chen, X. Li, C. Wu, Y. Guo, J. Zhao, X. Wu, Y. Xie, Angew. Chem. Int. Ed. 2013, 52, 10477.
– reference: J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, V. Nicolosi, Science 2011, 331, 568.
– reference: L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, X. Duan, Nature 2010, 467, 305.
– reference: T. Lin, X. S. Shang, J. Adisoejoso, P. N. Liu, N. Lin, J. Am. Chem. Soc. 2013, 135, 3576.
– reference: S. Li, D. Q. Wu, C. Cheng, J. Wang, F. Zhang, Y. Z. Su, X. L. Feng, Angew. Chem. Int. Ed. 2013, 52, 12105.
– reference: C. Wu, X. Lu, L. Peng, K. Xu, X. Peng, J. Huang, G. Yu, Y. Xie, Nat. Commun. 2013, 4, 2431.
– reference: T. Bauer, Z. Zheng, A. Renn, R. Enning, A. Stemmer, J. Sakamoto, A. D. Schlüter, Angew. Chem. Int. Ed. 2011, 50, 7879.
– reference: J. del Barrio, L. Oriol, C. Sánchez, J. L. Serrano, A. Di Cicco, P. Keller, M.-H. Li, J. Am. Chem. Soc. 2010, 132, 3762.
– reference: J. Liu, T. Lin, Z. Shi, F. Xia, L. Dong, P. N. Liu, N. Lin, J. Am. Chem. Soc. 2011, 133, 18760.
– reference: T. Kunitake, Y. Okahata, J. Am. Chem. Soc. 1977, 99, 3860.
– reference: C. N. Rao, H. S. Matte, U. Maitra, Angew. Chem. Int. Ed. 2013, 52, 13162.
– reference: M. B. Avinash, T. Govindaraju, Adv. Funct. Mater. 2011, 21, 3875.
– volume: 26
  start-page: 507
  year: 2013
  publication-title: Chem. Mater.
– volume: 45
  start-page: 1356
  year: 2012
  publication-title: Acc. Chem. Res.
– volume: 117
  start-page: 5212
  year: 1995
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 6083
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 259
  start-page: 59
  year: 1993
  publication-title: Science
– volume: 4
  start-page: 611
  year: 2010
  publication-title: Nature Photonics
– volume: 131
  start-page: 7287
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 740
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 83
  start-page: 2406
  year: 1999
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 569
  year: 2011
  publication-title: Nat. Mater.
– volume: 133
  start-page: 19416
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 2505
  year: 2006
  publication-title: Adv. Mater.
– volume: 4
  start-page: 4486
  year: 2013
  publication-title: Chem. Sci.
– volume: 80
  start-page: 195411
  year: 2009
  publication-title: Phys. Rev. B
– volume: 52
  start-page: 12105
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 213
  start-page: 1060
  year: 2012
  publication-title: Macromol. Chem. Phy.
– volume: 4
  start-page: 2736
  year: 2013
  publication-title: Nat. Commun.
– volume: 7
  start-page: 1207
  year: 2011
  publication-title: Small
– volume: 135
  start-page: 17913
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 453
  year: 2013
  publication-title: Nat. Chem.
– volume: 490
  start-page: 192
  year: 2012
  publication-title: Nature
– volume: 332
  start-page: 228
  year: 2011
  publication-title: Science
– volume: 48
  start-page: 3657
  year: 2009
  publication-title: Angew. Chem. Int. Ed.
– volume: 47
  start-page: 9883
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 50
  start-page: 2791
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 52
  start-page: 6426
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 454
  year: 2010
  publication-title: Nat. Mater.
– volume: 48
  start-page: 100
  year: 2012
  publication-title: Chem. Commun.
– volume: 323
  start-page: 216
  year: 2009
  publication-title: Science
– volume: 50
  start-page: 4620
  year: 2014
  publication-title: Chem. Commun.
– volume: 42
  start-page: 3222
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 39
  start-page: 138
  year: 2010
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 3263
  year: 2013
  publication-title: Chem. Sci.
– volume: 41
  start-page: 5998
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 25
  start-page: 1542
  year: 2013
  publication-title: Chem. Mater.
– volume: 99
  start-page: 3860
  year: 1977
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 2603
  year: 2012
  publication-title: Adv. Mater.
– volume: 24
  start-page: 210
  year: 2012
  publication-title: Adv. Mater.
– volume: 41
  start-page: 5969
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 663
  year: 2008
  publication-title: Soft Matter
– volume: 3
  start-page: 2086
  year: 2013
  publication-title: Sci. Rep.
– volume: 25
  start-page: 2452
  year: 2013
  publication-title: Adv. Mater.
– volume: 2
  start-page: 2563
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 132
  start-page: 16669
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 343
  start-page: 163
  year: 2014
  publication-title: Science
– volume: 331
  start-page: 568
  year: 2011
  publication-title: Science
– volume: 135
  start-page: 5328
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 9336
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 112
  start-page: 6027
  year: 2012
  publication-title: Chem. Rev.
– volume: 46
  start-page: 7157
  year: 2010
  publication-title: Chem. Commun.
– volume: 112
  start-page: 3959
  year: 2012
  publication-title: Chem. Rev.
– volume: 41
  start-page: 97
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 135
  start-page: 18
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 2431
  year: 2013
  publication-title: Nat. Commun.
– volume: 52
  start-page: 13162
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 135
  start-page: 2462
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 725
  year: 2010
  publication-title: Chem. Commun.
– volume: 133
  start-page: 1203
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 2954
  year: 2013
  publication-title: ChemPhysChem
– volume: 32
  start-page: 406
  year: 1993
  publication-title: Angew. Chem. Int. Ed.
– volume: 48
  start-page: 9909
  year: 2009
  publication-title: Angew. Chem. Int. Ed.
– volume: 26
  start-page: 4637
  year: 2011
  publication-title: Biosensors & Bioelectronics
– volume: 5
  start-page: 263
  year: 2013
  publication-title: Nat. Chem.
– volume: 135
  start-page: 6523
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 133
  start-page: 11478
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 28
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 49
  start-page: 2900
  year: 2013
  publication-title: Chem. Commun.
– volume: 129
  start-page: 2440
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 133
  start-page: 19816
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 10653
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 52
  start-page: 9668
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 21
  start-page: 3311
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 545
  year: 2006
  publication-title: Nat. Mater.
– volume: 8
  start-page: 1424
  year: 2002
  publication-title: Chem. –Eur. J.
– volume: 34
  start-page: 1670
  year: 2013
  publication-title: Macromol. Rap. Commun.
– volume: 324
  start-page: 1530
  year: 2009
  publication-title: Science
– volume: 52
  start-page: 3770
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 49
  start-page: 562
  year: 2014
  publication-title: J. Mater. Sci.
– volume: 4
  start-page: 6102
  year: 2012
  publication-title: Nanoscale
– volume: 1
  start-page: 1143
  year: 2012
  publication-title: ACS Macro Letters
– volume: 51
  start-page: 12206
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 135
  start-page: 14952
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 2485
  year: 2012
  publication-title: Polymer
– volume: 5
  start-page: 2010
  year: 2014
  publication-title: Polym. Chem.
– volume: 46
  start-page: 138
  year: 2012
  publication-title: Acc. Chem. Res.
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 42
  start-page: 4532
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 39
  start-page: 228
  year: 2010
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 6815
  year: 2013
  publication-title: ACS App. Mater. & Inter.
– volume: 113
  start-page: 10038
  year: 2009
  publication-title: J. Phy. Chem. C
– volume: 114
  start-page: 4807
  year: 2014
  publication-title: Chem. Rev.
– volume: 132
  start-page: 132
  year: 2010
  publication-title: Micropor. Mesopor. Mat.
– volume: 49
  start-page: 7890
  year: 2013
  publication-title: Chem. Commun.
– start-page: 651
  year: 2001
  publication-title: J. Chem. Soc., Perkin Trans. 2
– volume: 129
  start-page: 6082
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 133
  start-page: 12031
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 4
  year: 2012
  publication-title: Accounts of Chemical Research
– volume: 52
  start-page: 1235
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 52
  start-page: 4845
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 134
  start-page: 6401
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 709
  year: 1992
  publication-title: Angew. Chem. Int. Ed.
– volume: 41
  start-page: 666
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 135
  start-page: 3576
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 37
  start-page: 515
  year: 2012
  publication-title: Prog. Polym. Sci.
– volume: 47
  start-page: 161
  year: 2013
  publication-title: Macromolecules
– volume: 48
  start-page: 5864
  year: 2009
  publication-title: Angew. Chem. Int. Ed.
– volume: 48
  start-page: 7976
  year: 2012
  publication-title: Chem. Commun.
– volume: 112
  start-page: 6156
  year: 2012
  publication-title: Chem. Rev.
– volume: 5
  start-page: 487
  year: 2010
  publication-title: Nat. Nanotech.
– volume: 2
  start-page: 687
  year: 2007
  publication-title: Nat. Nanotechn.
– volume: 26
  start-page: 3081
  year: 2014
  publication-title: Adv. Mater.
– volume: 25
  start-page: 732
  year: 2013
  publication-title: Adv. Mater.
– volume: 8
  start-page: 563
  year: 2014
  publication-title: ACS Nano
– volume: 11
  start-page: 3113
  year: 2011
  publication-title: Nano Letters
– volume: 52
  start-page: 8713
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 3113
  year: 2014
  publication-title: Nat. Commun.
– volume: 43
  start-page: 291
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 130
  start-page: 6678
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 68
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 37
  start-page: 530
  year: 2012
  publication-title: Prog. Polym. Sci.
– volume: 26
  start-page: 1735
  year: 2014
  publication-title: Adv. Mater.
– volume: 135
  start-page: 14134
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 2185
  year: 2014
  publication-title: Adv. Mater.
– volume: 7
  start-page: 3014
  year: 2013
  publication-title: ACS Nano
– volume: 135
  start-page: 1386
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 3813
  year: 2014
  publication-title: Nat. Commun.
– volume: 280
  start-page: 1732
  year: 1998
  publication-title: Science
– volume: 310
  start-page: 1166
  year: 2005
  publication-title: Science
– volume: 22
  start-page: 8438
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 133
  start-page: 7909
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 6157
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 827
  year: 2013
  publication-title: ACS Nano
– volume: 132
  start-page: 3762
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 18526
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1539
  year: 2010
  publication-title: ACS Nano
– volume: 51
  start-page: 11814
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 6908
  year: 2012
  publication-title: Nanoscale
– volume: 4
  start-page: 2939
  year: 2013
  publication-title: Polym. Chem.
– volume: 34
  start-page: 1161
  year: 2009
  publication-title: Prog. Polym. Sci.
– volume: 1
  start-page: 2752
  year: 2013
  publication-title: J. Mater. Chem. A
– start-page: 6919
  year: 2009
  publication-title: Chem. Commun.
– volume: 467
  start-page: 305
  year: 2010
  publication-title: Nature
– volume: 133
  start-page: 18760
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 1462
  year: 2014
  publication-title: Chem. Commun.
– volume: 134
  start-page: 5850
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 6010
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 3923
  year: 2011
  publication-title: ACS Nano
– volume: 42
  start-page: 6634
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 1
  start-page: 2952
  year: 2013
  publication-title: J. Mater. Chem. C
– volume: 135
  start-page: 2156
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 36
  start-page: 151
  year: 2007
  publication-title: Chem. Soc. Rev.
– volume: 131
  start-page: 1680
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 10477
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 1406
  year: 2014
  publication-title: Nanoscale
– volume: 125
  start-page: 10288
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 33
  start-page: 468
  year: 1994
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 2057
  year: 2014
  publication-title: Polym. Chem.
– volume: 15
  start-page: 256
  year: 2012
  publication-title: Materials Today
– volume: 5
  start-page: 831
  year: 2014
  publication-title: Chem. Sci.
– volume: 6
  start-page: 106
  year: 2014
  publication-title: Nanoscale
– volume: 127
  start-page: 17090
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1421
  year: 2014
  publication-title: Small
– volume: 131
  start-page: 7216
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 3324
  year: 2013
  publication-title: Chem. –Eur. J.
– volume: 21
  start-page: 11862
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 26
  start-page: 4093
  year: 2014
  publication-title: Adv. Mater.
– volume: 51
  start-page: 2623
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 48
  start-page: 1030
  year: 2009
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 4157
  year: 2014
  publication-title: Nanoscale
– volume: 51
  start-page: 4606
  year: 1995
  publication-title: Phys. Rev. B (Condensed Matter)
– volume: 8
  start-page: 76
  year: 2009
  publication-title: Nat. Mater.
– volume: 22
  start-page: 1731
  year: 2010
  publication-title: Adv. Mater.
– volume: 52
  start-page: 13052
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 287
  year: 2012
  publication-title: Nat. Chem.
– volume: 22
  start-page: 2202
  year: 2010
  publication-title: Adv. Mater.
– volume: 42
  start-page: 548
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 29
  start-page: 4456
  year: 2009
  publication-title: Chem. Commun.
– volume: 321
  start-page: 385
  year: 2008
  publication-title: Science
– volume: 4
  start-page: 1237
  year: 2008
  publication-title: Soft Matter
– volume: 44
  start-page: 464011
  year: 2011
  publication-title: J. Phy. D‐Appl. Phy.
– volume: 49
  start-page: 3925
  year: 2013
  publication-title: Chem. Commun.
– volume: 21
  start-page: 3875
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 46
  start-page: 181
  year: 2012
  publication-title: Acc. Chem. Res.
– volume: 46
  start-page: 87
  year: 2012
  publication-title: Acc. Chem. Res.
– volume: 479
  start-page: 338
  year: 2011
  publication-title: Nature
– volume: 50
  start-page: 7879
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 183
  year: 2007
  publication-title: Nat. Mater.
– volume: 5
  start-page: 3313
  year: 2014
  publication-title: Nat. Commun.
– volume: 47
  start-page: 5524
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 37
  start-page: 1805
  year: 2012
  publication-title: Prog. Polym. Sci.
– volume: 131
  start-page: 6111
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 474
  start-page: 367
  year: 2011
  publication-title: Nature
– volume: 131
  start-page: 5376
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 996
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 488
  start-page: 627
  year: 2012
  publication-title: Nature
– volume: 4
  start-page: 2681
  year: 2013
  publication-title: Nat. Commun.
– volume: 30
  start-page: 952
  year: 2005
  publication-title: MRS Bulletin
– volume: 131
  start-page: 13248
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 24992
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 49
  start-page: 4795
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 44
  start-page: 4731
  year: 2005
  publication-title: Angew. Chem. Int. Ed.
– volume: 23
  start-page: 3575
  year: 2011
  publication-title: Adv. Mater.
– volume: 41
  start-page: 4688
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 23
  start-page: 5574
  year: 2011
  publication-title: Adv. Mater.
– volume: 4
  start-page: 5304
  year: 2012
  publication-title: Nanoscale
– volume: 50
  start-page: 5339
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 19
  start-page: 3878
  year: 2007
  end-page: 3881
  publication-title: Adv. Mater.
– ident: e_1_2_9_156_1
  doi: 10.1016/j.polymer.2012.03.012
– ident: e_1_2_9_140_1
  doi: 10.1021/ar300172h
– ident: e_1_2_9_105_1
  doi: 10.1021/ja404351p
– ident: e_1_2_9_25_1
  doi: 10.1039/c2cs35474h
– ident: e_1_2_9_12_1
  doi: 10.1002/adma.201304964
– ident: e_1_2_9_38_1
  doi: 10.1039/C3NR04791A
– ident: e_1_2_9_115_1
  doi: 10.1002/chem.201203753
– ident: e_1_2_9_78_1
  doi: 10.1038/nnano.2007.346
– ident: e_1_2_9_60_1
  doi: 10.1038/nmat2317
– ident: e_1_2_9_19_1
  doi: 10.1039/C2CS35396B
– ident: e_1_2_9_35_1
  doi: 10.1126/science.1158877
– ident: e_1_2_9_194_1
  doi: 10.1002/anie.201210373
– ident: e_1_2_9_33_1
  doi: 10.1038/nnano.2010.89
– ident: e_1_2_9_10_1
  doi: 10.1038/ncomms3431
– ident: e_1_2_9_64_1
  doi: 10.1021/cm303751n
– ident: e_1_2_9_154_1
  doi: 10.1039/C3PY01503C
– ident: e_1_2_9_108_1
  doi: 10.1038/nchem.1628
– ident: e_1_2_9_200_1
  doi: 10.1039/b718131k
– ident: e_1_2_9_174_1
  doi: 10.1002/anie.200500980
– ident: e_1_2_9_66_1
  doi: 10.1002/anie.201206699
– ident: e_1_2_9_169_1
  doi: 10.1002/cphc.201300444
– ident: e_1_2_9_177_1
  doi: 10.1002/adma.201400056
– ident: e_1_2_9_15_1
  doi: 10.1038/srep02086
– ident: e_1_2_9_168_1
  doi: 10.1021/jp901357t
– ident: e_1_2_9_11_1
  doi: 10.1021/cr400600f
– ident: e_1_2_9_95_1
  doi: 10.1002/anie.200902365
– ident: e_1_2_9_196_1
  doi: 10.1021/ja9083946
– ident: e_1_2_9_206_1
  doi: 10.1021/ja210725p
– ident: e_1_2_9_199_1
  doi: 10.1021/mz300367p
– ident: e_1_2_9_84_1
  doi: 10.1039/c3cc40444g
– ident: e_1_2_9_90_1
  doi: 10.1021/ja300593w
– ident: e_1_2_9_70_1
  doi: 10.1002/anie.199304061
– ident: e_1_2_9_100_1
  doi: 10.1021/ja00124a005
– ident: e_1_2_9_183_1
  doi: 10.1021/ja068250o
– ident: e_1_2_9_119_1
  doi: 10.1021/ja4017842
– ident: e_1_2_9_209_1
  doi: 10.1039/c3cc43670e
– ident: e_1_2_9_91_1
  doi: 10.1021/ja900499b
– ident: e_1_2_9_44_1
  doi: 10.1021/nn9018762
– ident: e_1_2_9_57_1
  doi: 10.1039/c3ta13768f
– ident: e_1_2_9_53_1
  doi: 10.1021/ja308249k
– ident: e_1_2_9_182_1
  doi: 10.1002/adma.201200578
– ident: e_1_2_9_71_1
  doi: 10.1002/anie.199404681
– ident: e_1_2_9_81_1
  doi: 10.1021/ja107947z
– ident: e_1_2_9_134_1
  doi: 10.1002/anie.201001634
– ident: e_1_2_9_159_1
  doi: 10.1039/C3PY01581E
– ident: e_1_2_9_8_1
  doi: 10.1038/nchem.1589
– ident: e_1_2_9_153_1
  doi: 10.1002/adma.200903469
– ident: e_1_2_9_130_1
  doi: 10.1039/c2cc32187d
– ident: e_1_2_9_76_1
  doi: 10.1039/c0cc01810d
– ident: e_1_2_9_36_1
  doi: 10.1038/nmat1849
– ident: e_1_2_9_180_1
  doi: 10.1039/B906115K
– ident: e_1_2_9_114_1
  doi: 10.1126/science.1120411
– ident: e_1_2_9_109_1
  doi: 10.1039/c2cs35157a
– ident: e_1_2_9_92_1
  doi: 10.1021/ja201389u
– ident: e_1_2_9_157_1
  doi: 10.1002/adma.201202736
– ident: e_1_2_9_205_1
  doi: 10.1039/c2jm34517j
– ident: e_1_2_9_191_1
  doi: 10.1021/ja071394y
– ident: e_1_2_9_138_1
  doi: 10.1002/anie.201306871
– ident: e_1_2_9_127_1
  doi: 10.1021/ja901725v
– ident: e_1_2_9_162_1
  doi: 10.1002/anie.201100669
– ident: e_1_2_9_106_1
  doi: 10.1002/anie.201107070
– ident: e_1_2_9_22_1
  doi: 10.1039/c2nr31167d
– ident: e_1_2_9_1_1
  doi: 10.1002/anie.200801863
– ident: e_1_2_9_30_1
  doi: 10.1126/science.1157996
– ident: e_1_2_9_52_1
  doi: 10.1039/c3nr06744k
– ident: e_1_2_9_149_1
  doi: 10.1021/ja902116f
– ident: e_1_2_9_161_1
  doi: 10.1039/c2nr31074k
– ident: e_1_2_9_165_1
  doi: 10.1021/ja312567v
– ident: e_1_2_9_124_1
  doi: 10.1021/ja206242v
– ident: e_1_2_9_203_1
  doi: 10.1016/j.progpolymsci.2009.06.003
– ident: e_1_2_9_132_1
  doi: 10.1002/anie.201304496
– ident: e_1_2_9_141_1
  doi: 10.1021/ar300116q
– ident: e_1_2_9_18_1
  doi: 10.1039/c2cs35043b
– ident: e_1_2_9_31_1
  doi: 10.1038/nature10680
– ident: e_1_2_9_37_1
  doi: 10.1002/anie.201003024
– ident: e_1_2_9_46_1
  doi: 10.1103/PhysRevB.51.4606
– ident: e_1_2_9_120_1
  doi: 10.1021/ja206846p
– ident: e_1_2_9_144_1
  doi: 10.1039/c3cs60044k
– ident: e_1_2_9_179_1
  doi: 10.1039/C3CC49343A
– ident: e_1_2_9_6_1
  doi: 10.1038/ncomms4313
– ident: e_1_2_9_189_1
  doi: 10.1002/anie.200703238
– ident: e_1_2_9_51_1
  doi: 10.1002/anie.201101182
– ident: e_1_2_9_126_1
  doi: 10.1039/C3CC48065H
– ident: e_1_2_9_23_1
  doi: 10.1126/science.1194975
– ident: e_1_2_9_82_1
  doi: 10.1021/nn200393q
– ident: e_1_2_9_171_1
  doi: 10.1002/adma.201304562
– ident: e_1_2_9_93_1
  doi: 10.1038/nmat1659
– ident: e_1_2_9_117_1
  doi: 10.1039/B616752G
– ident: e_1_2_9_68_1
  doi: 10.1038/nchem.1628
– ident: e_1_2_9_163_1
  doi: 10.1002/marc.201300624
– ident: e_1_2_9_21_1
  doi: 10.1016/j.progpolymsci.2011.08.003
– ident: e_1_2_9_80_1
  doi: 10.1039/b915190g
– ident: e_1_2_9_55_1
  doi: 10.1021/am401802r
– ident: e_1_2_9_3_1
  doi: 10.1002/anie.201301548
– ident: e_1_2_9_158_1
  doi: 10.1007/s10853-013-7736-4
– ident: e_1_2_9_190_1
  doi: 10.1039/c2cs35115c
– ident: e_1_2_9_121_1
  doi: 10.1038/ncomms3736
– ident: e_1_2_9_166_1
  doi: 10.1002/anie.201208501
– ident: e_1_2_9_49_1
  doi: 10.1103/PhysRevLett.83.2406
– ident: e_1_2_9_85_1
  doi: 10.1021/ja108628r
– ident: e_1_2_9_148_1
  doi: 10.1002/anie.201306775
– ident: e_1_2_9_54_1
  doi: 10.1002/adma.201204453
– ident: e_1_2_9_173_1
  doi: 10.1039/b800737c
– ident: e_1_2_9_73_1
  doi: 10.1126/science.280.5370.1732
– ident: e_1_2_9_112_1
  doi: 10.1016/j.progpolymsci.2011.09.002
– ident: e_1_2_9_63_1
  doi: 10.1002/anie.201206534
– ident: e_1_2_9_34_1
  doi: 10.1016/j.bios.2011.05.039
– ident: e_1_2_9_58_1
  doi: 10.1002/anie.201101182
– ident: e_1_2_9_97_1
  doi: 10.1002/anie.199207091
– ident: e_1_2_9_98_1
  doi: 10.1021/ja906475w
– ident: e_1_2_9_96_1
  doi: 10.1021/ja00453a066
– ident: e_1_2_9_101_1
  doi: 10.1021/cm403028b
– ident: e_1_2_9_39_1
  doi: 10.1038/nature11458
– ident: e_1_2_9_139_1
  doi: 10.1021/ar300138e
– ident: e_1_2_9_197_1
  doi: 10.1021/ma4021483
– ident: e_1_2_9_192_1
  doi: 10.1002/anie.200900079
– ident: e_1_2_9_20_1
  doi: 10.1016/j.progpolymsci.2012.08.001
– ident: e_1_2_9_75_1
  doi: 10.1039/b906836h
– ident: e_1_2_9_131_1
  doi: 10.1021/ja408243n
– ident: e_1_2_9_170_1
  doi: 10.1002/adfm.201101001
– ident: e_1_2_9_5_1
  doi: 10.1038/nnano.2010.235
– ident: e_1_2_9_48_1
  doi: 10.1038/ncomms3681
– ident: e_1_2_9_59_1
  doi: 10.1039/c3ta01523h
– ident: e_1_2_9_72_1
  doi: 10.1126/science.1165429
– ident: e_1_2_9_103_1
  doi: 10.1021/ja4002019
– ident: e_1_2_9_129_1
  doi: 10.1002/smll.201002264
– ident: e_1_2_9_151_1
  doi: 10.1039/C0JM02319A
– ident: e_1_2_9_4_1
  doi: 10.1039/c3tc00710c
– ident: e_1_2_9_204_1
  doi: 10.1039/c2cs35107b
– ident: e_1_2_9_118_1
  doi: 10.1002/anie.201306775
– ident: e_1_2_9_176_1
  doi: 10.1039/B920623J
– ident: e_1_2_9_175_1
  doi: 10.1002/anie.201004245
– ident: e_1_2_9_43_1
  doi: 10.1039/c1jm11192b
– ident: e_1_2_9_67_1
  doi: 10.1038/ncomms4113
– ident: e_1_2_9_88_1
  doi: 10.1021/ja2056193
– ident: e_1_2_9_187_1
  doi: 10.1021/ja0553912
– ident: e_1_2_9_181_1
  doi: 10.1039/c3sc52342j
– ident: e_1_2_9_83_1
  doi: 10.1021/ja800906f
– ident: e_1_2_9_208_1
  doi: 10.1021/ja3091643
– ident: e_1_2_9_107_1
  doi: 10.1039/b008495f
– ident: e_1_2_9_17_1
  doi: 10.1021/cr3000412
– ident: e_1_2_9_164_1
  doi: 10.1021/ja312380b
– ident: e_1_2_9_123_1
  doi: 10.1002/anie.201300256
– ident: e_1_2_9_116_1
  doi: 10.1021/ja204728y
– ident: e_1_2_9_133_1
  doi: 10.1002/adma.201305040
– ident: e_1_2_9_86_1
  doi: 10.1021/ja311890n
– ident: e_1_2_9_40_1
  doi: 10.1016/S1369-7021(12)70116-5
– ident: e_1_2_9_41_1
  doi: 10.1039/c2nr32201c
– ident: e_1_2_9_110_1
  doi: 10.1039/c3cc00039g
– ident: e_1_2_9_137_1
  doi: 10.1002/anie.201100170
– ident: e_1_2_9_27_1
  doi: 10.1039/B917103G
– ident: e_1_2_9_147_1
  doi: 10.1002/anie.201006664
– ident: e_1_2_9_143_1
  doi: 10.1039/C1CS15078B
– ident: e_1_2_9_29_1
  doi: 10.1038/nphoton.2010.186
– ident: e_1_2_9_94_1
  doi: 10.1002/anie.200803846
– ident: e_1_2_9_122_1
  doi: 10.1126/science.1120411
– ident: e_1_2_9_56_1
  doi: 10.1039/C3NR04759H
– ident: e_1_2_9_74_1
  doi: 10.1088/0022-3727/44/46/464011
– ident: e_1_2_9_50_1
  doi: 10.1038/nature11408
– ident: e_1_2_9_150_1
  doi: 10.1039/c3py00164d
– ident: e_1_2_9_2_1
  doi: 10.1002/adma.201103241
– ident: e_1_2_9_16_1
  doi: 10.1021/cr300115g
– ident: e_1_2_9_160_1
  doi: 10.1021/ja4086935
– ident: e_1_2_9_111_1
  doi: 10.1021/cr200440z
– ident: e_1_2_9_26_1
  doi: 10.1039/C1CS15193B
– ident: e_1_2_9_135_1
  doi: 10.1002/adma.201103042
– ident: e_1_2_9_113_1
  doi: 10.1039/C2CS35072F
– ident: e_1_2_9_9_1
  doi: 10.1002/anie.201304337
– ident: e_1_2_9_79_1
  doi: 10.1039/c3sc50800e
– ident: e_1_2_9_184_1
  doi: 10.1002/anie.200905678
– ident: e_1_2_9_201_1
  doi: 10.1557/mrs2005.249
– ident: e_1_2_9_207_1
  doi: 10.1021/nn405148t
– ident: e_1_2_9_7_1
  doi: 10.1038/ncomms4813
– ident: e_1_2_9_87_1
  doi: 10.1021/ja200661s
– ident: e_1_2_9_195_1
  doi: 10.1038/nmat2742
– ident: e_1_2_9_69_1
  doi: 10.1002/1521-3765(20020315)8:6<1424::AID-CHEM1424>3.0.CO;2-Z
– ident: e_1_2_9_202_1
  doi: 10.1002/adma.200502651
– ident: e_1_2_9_89_1
  doi: 10.1021/ja308480x
– ident: e_1_2_9_65_1
  doi: 10.1002/adma.200903436
– ident: e_1_2_9_152_1
  doi: 10.1039/c2jm16552j
– ident: e_1_2_9_99_1
  doi: 10.1126/science.259.5091.59
– ident: e_1_2_9_167_1
  doi: 10.1002/anie.201302894
– ident: e_1_2_9_32_1
  doi: 10.1038/nature09405
– ident: e_1_2_9_145_1
  doi: 10.1038/nature10125
– ident: e_1_2_9_172_1
  doi: 10.1002/adma.200701057
– ident: e_1_2_9_61_1
  doi: 10.1021/ja0357689
– ident: e_1_2_9_188_1
  doi: 10.1021/nn405492d
– ident: e_1_2_9_210_1
  doi: 10.1002/smll.201302730
– ident: e_1_2_9_28_1
  doi: 10.1038/nmat3064
– ident: e_1_2_9_14_1
  doi: 10.1126/science.1102896
– ident: e_1_2_9_198_1
  doi: 10.1002/anie.201210090
– ident: e_1_2_9_211_1
  doi: 10.1021/ja5017156
– ident: e_1_2_9_125_1
  doi: 10.1016/j.micromeso.2010.02.010
– ident: e_1_2_9_45_1
  doi: 10.1126/science.1246137
– ident: e_1_2_9_47_1
  doi: 10.1021/nl2011142
– ident: e_1_2_9_142_1
  doi: 10.1021/ar300121q
– ident: e_1_2_9_193_1
  doi: 10.1021/ja400160j
– ident: e_1_2_9_178_1
  doi: 10.1002/anie.200904215
– ident: e_1_2_9_102_1
  doi: 10.1039/C3SC52346B
– ident: e_1_2_9_186_1
  doi: 10.1021/ja901357h
– ident: e_1_2_9_155_1
  doi: 10.1002/macp.201200029
– ident: e_1_2_9_128_1
  doi: 10.1126/science.1202747
– ident: e_1_2_9_42_1
  doi: 10.1103/PhysRevB.80.195411
– ident: e_1_2_9_136_1
  doi: 10.1002/adma.201101599
– ident: e_1_2_9_24_1
  doi: 10.1039/C3CS60303B
– ident: e_1_2_9_62_1
  doi: 10.1021/ja809307s
– ident: e_1_2_9_13_1
  doi: 10.1021/ar300047s
– ident: e_1_2_9_185_1
  doi: 10.1039/C1CC14937G
– ident: e_1_2_9_146_1
  doi: 10.1002/anie.201105104
– ident: e_1_2_9_104_1
  doi: 10.1038/nchem.1265
– ident: e_1_2_9_77_1
  doi: 10.1021/nn400337v
SSID ssj0009606
Score 2.6234732
SecondaryResourceType review_article
Snippet The discovery of graphene has triggered great interest in two‐dimensional (2D) nanomaterials for scientists in chemistry, physics, materials science, and...
The discovery of graphene has triggered great interest in two-dimensional (2D) nanomaterials for scientists in chemistry, physics, materials science, and...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 403
SubjectTerms Covalence
Energy storage
Graphene
Materials science
Nanomaterials
Nanostructure
Polymers
self-assembly
soft materials
supramolecular structures
Synthesis
Two dimensional
Title Two-Dimensional Soft Nanomaterials: A Fascinating World of Materials
URI https://api.istex.fr/ark:/67375/WNG-HK66S7C9-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201401857
https://www.ncbi.nlm.nih.gov/pubmed/25155302
https://www.proquest.com/docview/1652393140
https://www.proquest.com/docview/1660043857
Volume 27
WOSCitedRecordID wos000348031800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB7Bbg_l0EIpdPuDjITak0XiJI7NbcU2IBVWiJ92b5addRACJWgXWo48Qp-RJ-nY2Q2sVIpUbok0saPxjOezx_4GYMPkCKMLnlCLYJvGstDUBNZSLaRJMaQlxt_w_r6X9vtiMJAHD27x1_wQzYab8ww_XzsH12a8eU8aqoeeN8gtEESSzkObofHGLWj3DrOTvXviXe7ra7p8H5U8FlPixoBtzrYwE5jaTsc3f0OdsyDWR6Hs9fP_fxFeTRAo6dYmswRztnwDCw94CZchO_5V3d3-7jnm_5q1gxzhdE1wKq4Q4dZGu0W6JNMYQd1-YnlK_LEcUhVkfyrxFk6yr8fbu3RScIHmHBcWNI50VLjEZRIOZW6MsGlgEDBqGRZhYAMdWhxAG9lQmqFgRmiNoc2IoRFCs9BGK9Aqq9K-A2IijvEx1mkQ6Bghi7v_yiIT4Xosz6VlHaBTbat8wkbuimJcqJpHmSmnH9XopwNfGvnLmofjUcnPfvAaMT06d6fX0kT96O-o3W-cH6XbUokOrE9HV6FPuUSJLm11PVYhTxwzHDb4Lxnus6iuw9XaNJoeWVJXY-oA8xbwxB-rbm-_27y9_5-PPsBLfHbHMCkLP0LranRtP8GL_OfV2Xi0BvPpQKxNPOMPkH0KXQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB5BiwQceC5LeRoJwcnaxEkcm1u1JRRtWyG2C3uz7NRZrUDJqvviyE_gN_JLmEnSLJV4SIhjoomTjGc8n-3xNwDPXY4wupAJ9wi2eawLy13gPbdKuxRDWuLqE94fJulspvb39bs2m5DOwjT8EN2CG3lGPV6Tg9OC9NYFa6hd1MRBNENQSXoZ-jHaUtKD_uh9tje5YN6VdYFN2vDjWsZqxdwYiK31FtYiU5-U_OVXsHMdxdZhKLv5H37gFtxoMSgbNkZzGy758g5c_4mZ8C5k8_Pq-9dvI-L-b3g72C4O2AwH4woxbmO2r9iQZRZjKK0olgesTsxhVcGmK4kN2Mtez7fHvC25wHOJUwseRzYqaOsyCRc6d075NHAIGa0OizDwgQ09dqGPfKjdQgmnrMXg5tTCKWVF6KN70Cur0t8H5iKJETK2aRDYGEELnYAVkYtwRpbn2osB8JW6Td7ykVNZjM-mYVIWhvRjOv0M4GUnf9QwcfxW8kXde52YXX6i_LU0MR9nb8x4R8rddFsbNYBnq-416FW0VWJLX50em1AmxA2HDf5JRtb7qPTCzcY2ujeKpKnHNABRm8BfvtgMR9Nhd_XgXx56ClfH8-nETN7Odh7CNbxPSZlchI-gd7I89Y_hSn52cni8fNI6yA9IcQ1l
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BFyE48CywPI2E4GQ1cRLH5rbqEoq6XVW0hd4sO3EQAiXVtgWO_AR-I7-EGSebshIPCXFMNHGS8Yzns2f8GeCJKxFG1zLjHsE2T3VtuYu851Zpl2NIy1zY4f1mls_n6vBQ7_bVhLQXpuOHGBbcyDPCeE0O7o-qeuOMNdRWgTiIZggqy8_DKM20RN8cTV8XB7Mz5l0ZDtikhB_XMlVL5sZIbKy2sBKZRqTkL7-CnasoNoSh4up_-IFrcKXHoGzSGc11OOebG3D5J2bCm1Dsf26_f_02Je7_jreD7eGAzXAwbhHjdmb7nE1YYTGG0opi846FwhzW1mxnKbEOB8WL_c0t3h-5wEuJUwueJjapKXWZxZUunVM-jxxCRqvjOo58ZGOPXegTH2tXKeGUtRjcnKqcUlbEPrkFa03b-DvAXCIxQqY2jyKbImihHbAicQnOyMpSezEGvlS3KXs-cjoW46PpmJSFIf2YQT9jeDbIH3VMHL-VfBp6bxCziw9Uv5Zn5u38pdnalnIv39RGjeHxsnsNehWlSmzj29NjE8uMuOGwwT_JyJBHpRfe7mxjeKPIuvOYxiCCCfzli81kujMZru7-y0OP4OLutDCzV_Pte3AJb1NNJhfxfVg7WZz6B3Ch_HTy_njxsPePH73gDOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-dimensional+soft+nanomaterials%3A+a+fascinating+world+of+materials&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhuang%2C+Xiaodong&rft.au=Mai%2C+Yiyong&rft.au=Wu%2C+Dongqing&rft.au=Zhang%2C+Fan&rft.date=2015-01-21&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=27&rft.issue=3&rft.spage=403&rft_id=info:doi/10.1002%2Fadma.201401857&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon