Two-Dimensional Soft Nanomaterials: A Fascinating World of Materials
The discovery of graphene has triggered great interest in two‐dimensional (2D) nanomaterials for scientists in chemistry, physics, materials science, and related areas. In the family of newly developed 2D nanostructured materials, 2D soft nanomaterials, including graphene, BxCyNz nanosheets, 2D poly...
Uložené v:
| Vydané v: | Advanced materials (Weinheim) Ročník 27; číslo 3; s. 403 - 427 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
Blackwell Publishing Ltd
21.01.2015
|
| Predmet: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The discovery of graphene has triggered great interest in two‐dimensional (2D) nanomaterials for scientists in chemistry, physics, materials science, and related areas. In the family of newly developed 2D nanostructured materials, 2D soft nanomaterials, including graphene, BxCyNz nanosheets, 2D polymers, covalent organic frameworks (COFs), and 2D supramolecular organic nanostructures, possess great advantages in light‐weight, structural control and flexibility, diversity of fabrication approaches, and so on. These merits offer 2D soft nanomaterials a wide range of potential applications, such as in optoelectronics, membranes, energy storage and conversion, catalysis, sensing, biotechnology, etc. This review article provides an overview of the development of 2D soft nanomaterials, with special highlights on the basic concepts, molecular design principles, and primary synthesis approaches in the context.
Two‐dimensional (2D) soft nanomaterials are reviewed, including graphene, BxCyNz nanosheets, 2D polymers, covalent organic frameworks, and 2D supramolecular organic nanostructures, etc. The basic concepts, molecular design principles, and primary synthesis approaches developed for 2D soft nanomaterials in the past five years are introduced. |
|---|---|
| AbstractList | The discovery of graphene has triggered great interest in two‐dimensional (2D) nanomaterials for scientists in chemistry, physics, materials science, and related areas. In the family of newly developed 2D nanostructured materials, 2D soft nanomaterials, including graphene, BxCyNz nanosheets, 2D polymers, covalent organic frameworks (COFs), and 2D supramolecular organic nanostructures, possess great advantages in light‐weight, structural control and flexibility, diversity of fabrication approaches, and so on. These merits offer 2D soft nanomaterials a wide range of potential applications, such as in optoelectronics, membranes, energy storage and conversion, catalysis, sensing, biotechnology, etc. This review article provides an overview of the development of 2D soft nanomaterials, with special highlights on the basic concepts, molecular design principles, and primary synthesis approaches in the context.
Two‐dimensional (2D) soft nanomaterials are reviewed, including graphene, BxCyNz nanosheets, 2D polymers, covalent organic frameworks, and 2D supramolecular organic nanostructures, etc. The basic concepts, molecular design principles, and primary synthesis approaches developed for 2D soft nanomaterials in the past five years are introduced. The discovery of graphene has triggered great interest in two-dimensional (2D) nanomaterials for scientists in chemistry, physics, materials science, and related areas. In the family of newly developed 2D nanostructured materials, 2D soft nanomaterials, including graphene, Bx Cy Nz nanosheets, 2D polymers, covalent organic frameworks (COFs), and 2D supramolecular organic nanostructures, possess great advantages in light-weight, structural control and flexibility, diversity of fabrication approaches, and so on. These merits offer 2D soft nanomaterials a wide range of potential applications, such as in optoelectronics, membranes, energy storage and conversion, catalysis, sensing, biotechnology, etc. This review article provides an overview of the development of 2D soft nanomaterials, with special highlights on the basic concepts, molecular design principles, and primary synthesis approaches in the context.The discovery of graphene has triggered great interest in two-dimensional (2D) nanomaterials for scientists in chemistry, physics, materials science, and related areas. In the family of newly developed 2D nanostructured materials, 2D soft nanomaterials, including graphene, Bx Cy Nz nanosheets, 2D polymers, covalent organic frameworks (COFs), and 2D supramolecular organic nanostructures, possess great advantages in light-weight, structural control and flexibility, diversity of fabrication approaches, and so on. These merits offer 2D soft nanomaterials a wide range of potential applications, such as in optoelectronics, membranes, energy storage and conversion, catalysis, sensing, biotechnology, etc. This review article provides an overview of the development of 2D soft nanomaterials, with special highlights on the basic concepts, molecular design principles, and primary synthesis approaches in the context. The discovery of graphene has triggered great interest in two-dimensional (2D) nanomaterials for scientists in chemistry, physics, materials science, and related areas. In the family of newly developed 2D nanostructured materials, 2D soft nanomaterials, including graphene, Bx Cy Nz nanosheets, 2D polymers, covalent organic frameworks (COFs), and 2D supramolecular organic nanostructures, possess great advantages in light-weight, structural control and flexibility, diversity of fabrication approaches, and so on. These merits offer 2D soft nanomaterials a wide range of potential applications, such as in optoelectronics, membranes, energy storage and conversion, catalysis, sensing, biotechnology, etc. This review article provides an overview of the development of 2D soft nanomaterials, with special highlights on the basic concepts, molecular design principles, and primary synthesis approaches in the context. The discovery of graphene has triggered great interest in two-dimensional (2D) nanomaterials for scientists in chemistry, physics, materials science, and related areas. In the family of newly developed 2D nanostructured materials, 2D soft nanomaterials, including graphene, B sub(x)C sub(y)N sub(z) nanosheets, 2D polymers, covalent organic frameworks (COFs), and 2D supramolecular organic nanostructures, possess great advantages in light-weight, structural control and flexibility, diversity of fabrication approaches, and so on. These merits offer 2D soft nanomaterials a wide range of potential applications, such as in optoelectronics, membranes, energy storage and conversion, catalysis, sensing, biotechnology, etc. This review article provides an overview of the development of 2D soft nanomaterials, with special highlights on the basic concepts, molecular design principles, and primary synthesis approaches in the context. Two-dimensional (2D) soft nanomaterials are reviewed, including graphene, B sub(x)C sub(y)N sub(z) nanosheets, 2D polymers, covalent organic frameworks, and 2D supramolecular organic nanostructures, etc. The basic concepts, molecular design principles, and primary synthesis approaches developed for 2D soft nanomaterials in the past five years are introduced. The discovery of graphene has triggered great interest in two‐dimensional (2D) nanomaterials for scientists in chemistry, physics, materials science, and related areas. In the family of newly developed 2D nanostructured materials, 2D soft nanomaterials, including graphene, B x C y N z nanosheets, 2D polymers, covalent organic frameworks (COFs), and 2D supramolecular organic nanostructures, possess great advantages in light‐weight, structural control and flexibility, diversity of fabrication approaches, and so on. These merits offer 2D soft nanomaterials a wide range of potential applications, such as in optoelectronics, membranes, energy storage and conversion, catalysis, sensing, biotechnology, etc. This review article provides an overview of the development of 2D soft nanomaterials, with special highlights on the basic concepts, molecular design principles, and primary synthesis approaches in the context. |
| Author | Zhuang, Xiaodong Mai, Yiyong Wu, Dongqing Feng, Xinliang Zhang, Fan |
| Author_xml | – sequence: 1 givenname: Xiaodong surname: Zhuang fullname: Zhuang, Xiaodong organization: School of Chemical and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, 200240, Shanghai, P. R. China – sequence: 2 givenname: Yiyong surname: Mai fullname: Mai, Yiyong email: mai@sjtu.edu.cn organization: School of Chemical and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, 200240, Shanghai, P. R. China – sequence: 3 givenname: Dongqing surname: Wu fullname: Wu, Dongqing organization: School of Chemical and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, 200240, Shanghai, P. R. China – sequence: 4 givenname: Fan surname: Zhang fullname: Zhang, Fan email: mai@sjtu.edu.cn organization: School of Chemical and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, 200240, Shanghai, P. R. China – sequence: 5 givenname: Xinliang surname: Feng fullname: Feng, Xinliang email: mai@sjtu.edu.cn organization: School of Chemical and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, 200240, Shanghai, P. R. China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25155302$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtP3DAUha2KqszQbrtEWbLJ9DqOX92NZnhUBbqAiqV1nTjIbWKDnRHw7xs0DKoqVe3qbL7vLM6Zk70QgyPkI4UFBag-YTvgogJaA1VcviEzyita1qD5HpmBZrzUolb7ZJ7zDwDQAsQ7sl9xyjmDakbW1w-xXPvBhexjwL64it1YXGKIA44ueezz52JZnGBufMDRh9viJqa-LWJXXOyI9-RtN4X78JIH5PvJ8fXqrDz_dvpltTwvG8G1LGuGrGNKU05b3VirnATLQaKmHQUHSJ2V4Jij2raqsgpRUmVVa5XCijp2QI62vXcp3m9cHs3gc-P6HoOLm2yoEAA1m4b4D5RXTLNptwk9fEE3dnCtuUt-wPRkdiNNQL0FmhRzTq4zjR-nLWIYE_reUDDPX5jnL8zrF5O2-EPbNf9V0Fvhwffu6R-0Wa4vlr-75db1eXSPry6mn0ZIJrm5uTw1Z1-FuJIrbRT7BdmFqSY |
| CitedBy_id | crossref_primary_10_1002_chem_202404380 crossref_primary_10_1002_smll_201804640 crossref_primary_10_1088_1361_648X_aaa8cb crossref_primary_10_1002_marc_201500270 crossref_primary_10_1002_app_58018 crossref_primary_10_1021_jacs_5b13533 crossref_primary_10_1021_jacs_3c09370 crossref_primary_10_1002_adma_202307393 crossref_primary_10_1021_acsmaterialslett_4c02537 crossref_primary_10_3390_en15176351 crossref_primary_10_1002_smll_201601804 crossref_primary_10_1021_jacs_9b08316 crossref_primary_10_1038_s41557_023_01177_2 crossref_primary_10_1002_adma_201504484 crossref_primary_10_1002_adfm_201702168 crossref_primary_10_1016_j_cej_2021_130336 crossref_primary_10_1002_marc_201600425 crossref_primary_10_1002_ange_202424269 crossref_primary_10_1007_s11705_018_1727_6 crossref_primary_10_1002_adma_201702415 crossref_primary_10_1246_bcsj_20190035 crossref_primary_10_1134_S1024856016050122 crossref_primary_10_1002_cplu_202000643 crossref_primary_10_1002_smll_202205693 crossref_primary_10_1016_j_matt_2019_12_026 crossref_primary_10_1016_j_cjche_2019_01_001 crossref_primary_10_1246_bcsj_20180367 crossref_primary_10_1002_adma_201800528 crossref_primary_10_1039_D0NR08684C crossref_primary_10_1016_j_physleta_2017_03_047 crossref_primary_10_1002_smll_201604099 crossref_primary_10_1002_adfm_201501390 crossref_primary_10_1002_ppsc_201800163 crossref_primary_10_1038_nchem_2901 crossref_primary_10_1088_2053_1583_ab4c0f crossref_primary_10_1016_j_jmgm_2020_107543 crossref_primary_10_1002_smll_202500858 crossref_primary_10_1016_j_ceramint_2018_06_068 crossref_primary_10_1016_j_matt_2020_04_023 crossref_primary_10_1007_s12274_020_2709_9 crossref_primary_10_1002_ange_202000255 crossref_primary_10_1002_anie_201705403 crossref_primary_10_1002_adom_201900286 crossref_primary_10_1002_ange_201712159 crossref_primary_10_1002_ange_201606988 crossref_primary_10_1002_adma_201503730 crossref_primary_10_1002_ange_201804937 crossref_primary_10_1002_chem_201701735 crossref_primary_10_1002_ange_201910741 crossref_primary_10_1016_j_saa_2022_122260 crossref_primary_10_1002_cjoc_202200664 crossref_primary_10_1016_j_physrep_2022_09_005 crossref_primary_10_1021_jacs_6b05456 crossref_primary_10_1016_j_addr_2018_01_004 crossref_primary_10_1002_smtd_202300246 crossref_primary_10_1002_adma_201704850 crossref_primary_10_1002_ange_201612629 crossref_primary_10_1002_advs_201801702 crossref_primary_10_1016_j_memsci_2017_01_034 crossref_primary_10_1002_tcr_202300189 crossref_primary_10_1002_anie_201712159 crossref_primary_10_1002_admi_202202501 crossref_primary_10_1039_D2MH00891B crossref_primary_10_1038_ncomms13461 crossref_primary_10_1007_s10118_018_2070_6 crossref_primary_10_1016_j_jmmm_2016_10_156 crossref_primary_10_1002_ange_201506048 crossref_primary_10_1002_adfm_202000857 crossref_primary_10_1002_cctc_202401262 crossref_primary_10_1038_s41467_023_43678_1 crossref_primary_10_1002_anie_201605050 crossref_primary_10_1002_adma_202005433 crossref_primary_10_1002_anie_201804937 crossref_primary_10_1002_marc_201700880 crossref_primary_10_1007_s12274_020_2976_5 crossref_primary_10_1016_j_cplett_2016_06_060 crossref_primary_10_1088_1742_6596_1825_1_012042 crossref_primary_10_1007_s10853_023_08739_2 crossref_primary_10_1093_nsr_nwx077 crossref_primary_10_1002_adma_201904870 crossref_primary_10_1002_adma_202312791 crossref_primary_10_1038_s41467_018_03195_y crossref_primary_10_1002_ange_202302274 crossref_primary_10_1021_jacs_5b09638 crossref_primary_10_1016_j_cclet_2020_06_017 crossref_primary_10_1002_adma_201501506 crossref_primary_10_1002_slct_201902678 crossref_primary_10_1007_s11426_019_9477_y crossref_primary_10_1002_chin_201509337 crossref_primary_10_1016_j_jallcom_2017_05_156 crossref_primary_10_1021_jacs_8b05136 crossref_primary_10_1016_j_apsusc_2016_06_196 crossref_primary_10_1002_anie_201906214 crossref_primary_10_1146_annurev_matsci_070616_124040 crossref_primary_10_1007_s42452_025_07473_5 crossref_primary_10_1002_chem_201700054 crossref_primary_10_1002_adma_201704759 crossref_primary_10_1177_87560879221084353 crossref_primary_10_1038_s41427_018_0022_9 crossref_primary_10_1073_pnas_1911088116 crossref_primary_10_1007_s10853_022_06913_6 crossref_primary_10_1016_j_polymer_2015_06_014 crossref_primary_10_1038_nmat4939 crossref_primary_10_1007_s11705_016_1564_4 crossref_primary_10_1007_s11426_023_1611_7 crossref_primary_10_1021_jacs_7b03172 crossref_primary_10_1039_D1SC04017K crossref_primary_10_1016_j_bios_2019_03_039 crossref_primary_10_3390_bios14060312 crossref_primary_10_1002_anie_202424269 crossref_primary_10_1016_j_cclet_2019_01_008 crossref_primary_10_1002_ange_201906214 crossref_primary_10_1002_chem_202000055 crossref_primary_10_1039_C9NR10607C crossref_primary_10_1039_D5RA04844C crossref_primary_10_1088_2634_4386_ad7755 crossref_primary_10_1016_j_jcis_2018_01_020 crossref_primary_10_1002_adma_201605408 crossref_primary_10_1002_anie_201506048 crossref_primary_10_1109_LED_2022_3189605 crossref_primary_10_1016_j_ceramint_2024_11_464 crossref_primary_10_1016_j_scitotenv_2023_169533 crossref_primary_10_1007_s12274_016_1352_y crossref_primary_10_1038_s41467_025_62937_x crossref_primary_10_1002_jsfa_8749 crossref_primary_10_1038_s42004_019_0201_9 crossref_primary_10_1246_cl_200747 crossref_primary_10_1002_chem_201504569 crossref_primary_10_3390_gels4010001 crossref_primary_10_1002_macp_201700359 crossref_primary_10_1016_j_bios_2016_03_042 crossref_primary_10_1002_anie_202211465 crossref_primary_10_1016_j_eurpolymj_2021_110924 crossref_primary_10_1016_j_jssc_2019_04_026 crossref_primary_10_1021_jacs_4c15602 crossref_primary_10_1021_jacs_9b11336 crossref_primary_10_1007_s11356_023_29389_6 crossref_primary_10_1126_science_aad9521 crossref_primary_10_1002_adfm_201603693 crossref_primary_10_1002_polb_24777 crossref_primary_10_1016_j_carbon_2017_08_021 crossref_primary_10_1016_j_cjche_2022_07_032 crossref_primary_10_1002_smll_201803706 crossref_primary_10_1038_s41598_023_47794_2 crossref_primary_10_1002_ange_201700679 crossref_primary_10_1002_anie_201910741 crossref_primary_10_1002_chem_201500932 crossref_primary_10_1002_pola_28470 crossref_primary_10_1246_bcsj_20160214 crossref_primary_10_1021_jacs_9b10904 crossref_primary_10_1039_C9SC03296G crossref_primary_10_1016_j_ccr_2022_214459 crossref_primary_10_1039_C9NR04044G crossref_primary_10_1002_advs_202203662 crossref_primary_10_1002_anie_201612629 crossref_primary_10_1016_j_pnsc_2016_08_010 crossref_primary_10_1039_C8CS00332G crossref_primary_10_1080_14786435_2025_2513485 crossref_primary_10_1016_j_carbon_2025_120199 crossref_primary_10_1002_ange_202211465 crossref_primary_10_1016_j_seppur_2022_121358 crossref_primary_10_1016_j_mseb_2024_117859 crossref_primary_10_1016_j_nantod_2016_07_005 crossref_primary_10_1002_adma_202001268 crossref_primary_10_1002_ange_201605050 crossref_primary_10_1039_C7CC03195E crossref_primary_10_1002_admi_202300521 crossref_primary_10_1007_s11051_020_05002_6 crossref_primary_10_1002_adma_202301468 crossref_primary_10_1038_s41427_023_00510_y crossref_primary_10_1016_j_ccr_2017_06_024 crossref_primary_10_1016_j_bios_2022_114216 crossref_primary_10_1039_D4NR03631J crossref_primary_10_1021_jacs_0c09399 crossref_primary_10_1002_cphc_201700111 crossref_primary_10_1039_C7CC02648J crossref_primary_10_1002_chem_201802050 crossref_primary_10_1039_D2RA03066G crossref_primary_10_1080_15376494_2023_2207176 crossref_primary_10_1002_chem_202101772 crossref_primary_10_1016_j_ijhydene_2018_11_096 crossref_primary_10_1002_anie_202000255 crossref_primary_10_1021_jacs_7b06591 crossref_primary_10_1002_adma_201602887 crossref_primary_10_1016_j_seppur_2023_125324 crossref_primary_10_1002_ange_202302365 crossref_primary_10_1002_slct_201702250 crossref_primary_10_1016_j_jallcom_2022_165878 crossref_primary_10_1021_ja508693y crossref_primary_10_1038_s41578_020_00257_w crossref_primary_10_1002_adom_201400445 crossref_primary_10_1002_anie_202302274 crossref_primary_10_1038_nmat4837 crossref_primary_10_1039_D0PY00245C crossref_primary_10_1186_s12951_024_03024_z crossref_primary_10_1007_s10904_025_03947_6 crossref_primary_10_1039_D2QI01267G crossref_primary_10_1002_admi_201500239 crossref_primary_10_1002_adma_201606895 crossref_primary_10_1088_2053_1583_ac016f crossref_primary_10_1002_admi_201600847 crossref_primary_10_1016_j_apcatb_2016_03_002 crossref_primary_10_1016_j_memsci_2016_08_022 crossref_primary_10_1016_j_jallcom_2020_154307 crossref_primary_10_1002_admt_201800182 crossref_primary_10_1002_inf2_12198 crossref_primary_10_1039_C6CC02331B crossref_primary_10_1016_j_molliq_2022_119822 crossref_primary_10_1007_s11426_016_0307_x crossref_primary_10_1002_cjoc_201800566 crossref_primary_10_1021_jacs_6b11857 crossref_primary_10_1039_C5CC04378F crossref_primary_10_1039_C7RA10983K crossref_primary_10_1002_adma_201603036 crossref_primary_10_1002_aenm_201600341 crossref_primary_10_1039_D1PY00571E crossref_primary_10_1016_j_memsci_2020_118456 crossref_primary_10_1088_2053_1583_aad94f crossref_primary_10_1002_ange_201508715 crossref_primary_10_1002_adma_201700707 crossref_primary_10_1002_marc_201800282 crossref_primary_10_1016_j_memsci_2018_05_036 crossref_primary_10_1002_adfm_201602158 crossref_primary_10_1016_j_jechem_2017_10_026 crossref_primary_10_1016_j_ces_2024_120882 crossref_primary_10_1016_j_colsurfa_2020_125919 crossref_primary_10_1002_cphc_201900283 crossref_primary_10_1007_s13762_024_06299_9 crossref_primary_10_1007_s10853_018_2562_3 crossref_primary_10_1002_smll_202102392 crossref_primary_10_1021_jacs_9b09335 crossref_primary_10_1038_srep19407 crossref_primary_10_1002_cnma_201800627 crossref_primary_10_1002_marc_201800719 crossref_primary_10_1016_j_eml_2015_06_003 crossref_primary_10_1021_jacs_0c12904 crossref_primary_10_1002_anie_201606988 crossref_primary_10_1002_adma_201801446 crossref_primary_10_1039_D0SC02670K crossref_primary_10_1039_C9NR10858K crossref_primary_10_1002_cplu_202400456 crossref_primary_10_1002_cssc_201700801 crossref_primary_10_1016_j_ceramint_2020_06_224 crossref_primary_10_1080_15376494_2023_2222130 crossref_primary_10_1002_adma_201500124 crossref_primary_10_1002_anie_201508715 crossref_primary_10_1016_j_jcis_2021_11_073 crossref_primary_10_1002_ange_201705403 crossref_primary_10_1039_C6CP02511K crossref_primary_10_1039_C7CP04934J crossref_primary_10_1007_s41127_024_00079_5 crossref_primary_10_1021_jacs_9b11755 crossref_primary_10_1016_j_apcata_2024_119563 crossref_primary_10_1016_j_cej_2019_01_151 crossref_primary_10_1002_adfm_202517495 crossref_primary_10_1016_j_chinastron_2011_01_010 crossref_primary_10_1016_j_cej_2021_133001 crossref_primary_10_1038_s41467_018_07720_x crossref_primary_10_1021_jacs_0c07969 crossref_primary_10_1002_adma_201502422 crossref_primary_10_1002_macp_202400426 crossref_primary_10_1002_ange_201501788 crossref_primary_10_1002_anie_202302365 crossref_primary_10_1002_anie_201803456 crossref_primary_10_1038_s41598_018_25861_3 crossref_primary_10_1002_ejoc_202101006 crossref_primary_10_1038_s41557_021_00709_y crossref_primary_10_1002_chem_202000223 crossref_primary_10_1016_j_apsusc_2018_01_133 crossref_primary_10_1002_adma_201700008 crossref_primary_10_1002_tcr_202100067 crossref_primary_10_3390_nano15060431 crossref_primary_10_1002_anie_201700679 crossref_primary_10_1098_rsta_2020_0343 crossref_primary_10_1007_s10853_016_0315_8 crossref_primary_10_3390_nano13050855 crossref_primary_10_1016_j_ccr_2022_214516 crossref_primary_10_1007_s40843_015_0100_z crossref_primary_10_1016_j_electacta_2017_07_063 crossref_primary_10_1016_j_memsci_2018_11_005 crossref_primary_10_1002_adfm_201908243 crossref_primary_10_1002_agt2_673 crossref_primary_10_1002_ange_201803456 crossref_primary_10_1002_adfm_201706559 crossref_primary_10_1016_j_foodchem_2025_145366 crossref_primary_10_1016_j_reactfunctpolym_2021_104856 crossref_primary_10_3390_s22030972 crossref_primary_10_1021_jacs_2c07962 crossref_primary_10_1021_jacs_7b01275 crossref_primary_10_1002_anie_201501788 crossref_primary_10_3390_polym15224374 crossref_primary_10_1021_jacs_5b03590 crossref_primary_10_1038_s41467_021_21885_y crossref_primary_10_1016_j_spmi_2017_03_034 crossref_primary_10_1002_chem_201700201 crossref_primary_10_1039_C9NR03167G crossref_primary_10_1039_C9QI00536F crossref_primary_10_1039_C8NR09915D crossref_primary_10_1016_j_cej_2021_133947 crossref_primary_10_1016_j_snb_2015_11_001 crossref_primary_10_3390_coatings12111673 crossref_primary_10_1021_jacs_6b12503 crossref_primary_10_1039_D3RA01431B crossref_primary_10_1002_adfm_201404624 crossref_primary_10_1186_s42833_020_0009_z crossref_primary_10_1002_celc_201700323 crossref_primary_10_1016_j_apcatb_2017_07_053 crossref_primary_10_1016_j_pmatsci_2024_101352 crossref_primary_10_1016_j_scib_2019_09_021 crossref_primary_10_1002_adma_201902264 crossref_primary_10_1039_C5CC07381B crossref_primary_10_1186_s11671_018_2654_7 crossref_primary_10_3390_ijms24032783 crossref_primary_10_1016_j_xcrp_2025_102570 crossref_primary_10_1039_C8CC04570D crossref_primary_10_1016_j_snb_2021_130385 crossref_primary_10_1038_ncomms11002 crossref_primary_10_1002_smll_201804519 crossref_primary_10_1002_adma_202002092 |
| Cites_doi | 10.1016/j.polymer.2012.03.012 10.1021/ar300172h 10.1021/ja404351p 10.1039/c2cs35474h 10.1002/adma.201304964 10.1039/C3NR04791A 10.1002/chem.201203753 10.1038/nnano.2007.346 10.1038/nmat2317 10.1039/C2CS35396B 10.1126/science.1158877 10.1002/anie.201210373 10.1038/nnano.2010.89 10.1038/ncomms3431 10.1021/cm303751n 10.1039/C3PY01503C 10.1038/nchem.1628 10.1039/b718131k 10.1002/anie.200500980 10.1002/anie.201206699 10.1002/cphc.201300444 10.1002/adma.201400056 10.1038/srep02086 10.1021/jp901357t 10.1021/cr400600f 10.1002/anie.200902365 10.1021/ja9083946 10.1021/ja210725p 10.1021/mz300367p 10.1039/c3cc40444g 10.1021/ja300593w 10.1002/anie.199304061 10.1021/ja00124a005 10.1021/ja068250o 10.1021/ja4017842 10.1039/c3cc43670e 10.1021/ja900499b 10.1021/nn9018762 10.1039/c3ta13768f 10.1021/ja308249k 10.1002/adma.201200578 10.1002/anie.199404681 10.1021/ja107947z 10.1002/anie.201001634 10.1039/C3PY01581E 10.1038/nchem.1589 10.1002/adma.200903469 10.1039/c2cc32187d 10.1039/c0cc01810d 10.1038/nmat1849 10.1039/B906115K 10.1126/science.1120411 10.1039/c2cs35157a 10.1021/ja201389u 10.1002/adma.201202736 10.1039/c2jm34517j 10.1021/ja071394y 10.1002/anie.201306871 10.1021/ja901725v 10.1002/anie.201100669 10.1002/anie.201107070 10.1039/c2nr31167d 10.1002/anie.200801863 10.1126/science.1157996 10.1039/c3nr06744k 10.1021/ja902116f 10.1039/c2nr31074k 10.1021/ja312567v 10.1021/ja206242v 10.1016/j.progpolymsci.2009.06.003 10.1002/anie.201304496 10.1021/ar300116q 10.1039/c2cs35043b 10.1038/nature10680 10.1002/anie.201003024 10.1103/PhysRevB.51.4606 10.1021/ja206846p 10.1039/c3cs60044k 10.1039/C3CC49343A 10.1038/ncomms4313 10.1002/anie.200703238 10.1002/anie.201101182 10.1039/C3CC48065H 10.1126/science.1194975 10.1021/nn200393q 10.1002/adma.201304562 10.1038/nmat1659 10.1039/B616752G 10.1002/marc.201300624 10.1016/j.progpolymsci.2011.08.003 10.1039/b915190g 10.1021/am401802r 10.1002/anie.201301548 10.1007/s10853-013-7736-4 10.1039/c2cs35115c 10.1038/ncomms3736 10.1002/anie.201208501 10.1103/PhysRevLett.83.2406 10.1021/ja108628r 10.1002/anie.201306775 10.1002/adma.201204453 10.1039/b800737c 10.1126/science.280.5370.1732 10.1016/j.progpolymsci.2011.09.002 10.1002/anie.201206534 10.1016/j.bios.2011.05.039 10.1002/anie.199207091 10.1021/ja906475w 10.1021/ja00453a066 10.1021/cm403028b 10.1038/nature11458 10.1021/ar300138e 10.1021/ma4021483 10.1002/anie.200900079 10.1016/j.progpolymsci.2012.08.001 10.1039/b906836h 10.1021/ja408243n 10.1002/adfm.201101001 10.1038/nnano.2010.235 10.1038/ncomms3681 10.1039/c3ta01523h 10.1126/science.1165429 10.1021/ja4002019 10.1002/smll.201002264 10.1039/C0JM02319A 10.1039/c3tc00710c 10.1039/c2cs35107b 10.1039/B920623J 10.1002/anie.201004245 10.1039/c1jm11192b 10.1038/ncomms4113 10.1021/ja2056193 10.1021/ja0553912 10.1039/c3sc52342j 10.1021/ja800906f 10.1021/ja3091643 10.1039/b008495f 10.1021/cr3000412 10.1021/ja312380b 10.1002/anie.201300256 10.1021/ja204728y 10.1002/adma.201305040 10.1021/ja311890n 10.1016/S1369-7021(12)70116-5 10.1039/c2nr32201c 10.1039/c3cc00039g 10.1002/anie.201100170 10.1039/B917103G 10.1002/anie.201006664 10.1039/C1CS15078B 10.1038/nphoton.2010.186 10.1002/anie.200803846 10.1039/C3NR04759H 10.1088/0022-3727/44/46/464011 10.1038/nature11408 10.1039/c3py00164d 10.1002/adma.201103241 10.1021/cr300115g 10.1021/ja4086935 10.1021/cr200440z 10.1039/C1CS15193B 10.1002/adma.201103042 10.1039/C2CS35072F 10.1002/anie.201304337 10.1039/c3sc50800e 10.1002/anie.200905678 10.1557/mrs2005.249 10.1021/nn405148t 10.1038/ncomms4813 10.1021/ja200661s 10.1038/nmat2742 10.1002/1521-3765(20020315)8:6<1424::AID-CHEM1424>3.0.CO;2-Z 10.1002/adma.200502651 10.1021/ja308480x 10.1002/adma.200903436 10.1039/c2jm16552j 10.1126/science.259.5091.59 10.1002/anie.201302894 10.1038/nature09405 10.1038/nature10125 10.1002/adma.200701057 10.1021/ja0357689 10.1021/nn405492d 10.1002/smll.201302730 10.1038/nmat3064 10.1126/science.1102896 10.1002/anie.201210090 10.1021/ja5017156 10.1016/j.micromeso.2010.02.010 10.1126/science.1246137 10.1021/nl2011142 10.1021/ar300121q 10.1021/ja400160j 10.1002/anie.200904215 10.1039/C3SC52346B 10.1021/ja901357h 10.1002/macp.201200029 10.1126/science.1202747 10.1103/PhysRevB.80.195411 10.1002/adma.201101599 10.1039/C3CS60303B 10.1021/ja809307s 10.1021/ar300047s 10.1039/C1CC14937G 10.1002/anie.201105104 10.1038/nchem.1265 10.1021/nn400337v |
| ContentType | Journal Article |
| Copyright | 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| Copyright_xml | – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| DBID | BSCLL AAYXX CITATION NPM 7X8 7SR 8BQ 8FD JG9 |
| DOI | 10.1002/adma.201401857 |
| DatabaseName | Istex CrossRef PubMed MEDLINE - Academic Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
| DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | 427 |
| ExternalDocumentID | 25155302 10_1002_adma_201401857 ADMA201401857 ark_67375_WNG_HK66S7C9_8 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Natural Science Foundation of China funderid: 21320102006; 21304057 – fundername: Natural Science Foundation of Shanghai City funderid: 13ZR1421200 – fundername: Specialized Research Fund for the Doctoral Program of Higher Education funderid: 20130073120088 – fundername: ERC funderid: 2DMATER – fundername: 973 Programs of China funderid: 2012CB933404; 2013CBA01602 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AETEA AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE FOJGT G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WTY WXSBR WYISQ XG1 XPP XV2 YR2 ZY4 ZZTAW ~02 ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN RWI RWM WRC AAYXX CITATION O8X NPM 7X8 7SR 8BQ 8FD JG9 |
| ID | FETCH-LOGICAL-c6597-43a3f389151d9cbb8e70b507a91f10e0a1eb70e3e19bd82b8aa718b8db88a21e3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 452 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000348031800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Thu Oct 02 10:53:12 EDT 2025 Sun Nov 09 10:24:21 EST 2025 Thu Apr 03 07:08:34 EDT 2025 Sat Nov 29 07:21:41 EST 2025 Tue Nov 18 21:29:36 EST 2025 Wed Jan 22 16:21:11 EST 2025 Tue Nov 11 03:32:47 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | self-assembly two-dimensional supramolecular structures graphene soft materials |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6597-43a3f389151d9cbb8e70b507a91f10e0a1eb70e3e19bd82b8aa718b8db88a21e3 |
| Notes | Natural Science Foundation of Shanghai City - No. 13ZR1421200 973 Programs of China - No. 2012CB933404; No. 2013CBA01602 Natural Science Foundation of China - No. 21320102006; No. 21304057 ERC - No. 2DMATER ArticleID:ADMA201401857 ark:/67375/WNG-HK66S7C9-8 Specialized Research Fund for the Doctoral Program of Higher Education - No. 20130073120088 istex:97687DE5DC6C0E34F21303F83AAC229ECB02A62E ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 25155302 |
| PQID | 1652393140 |
| PQPubID | 23479 |
| PageCount | 25 |
| ParticipantIDs | proquest_miscellaneous_1660043857 proquest_miscellaneous_1652393140 pubmed_primary_25155302 crossref_citationtrail_10_1002_adma_201401857 crossref_primary_10_1002_adma_201401857 wiley_primary_10_1002_adma_201401857_ADMA201401857 istex_primary_ark_67375_WNG_HK66S7C9_8 |
| PublicationCentury | 2000 |
| PublicationDate | January 21, 2015 |
| PublicationDateYYYYMMDD | 2015-01-21 |
| PublicationDate_xml | – month: 01 year: 2015 text: January 21, 2015 day: 21 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv. Mater |
| PublicationYear | 2015 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Y. Jin, C. Yu, R. J. Denman, W. Zhang, Chem. Soc. Rev. 2013, 42, 6634. T. Kambe, R. Sakamoto, K. Hoshiko, K. Takada, M. Miyachi, J.-H. Ryu, S. Sasaki, J. Kim, K. Nakazato, M. Takata, H. Nishihara, J. Am. Chem. Soc. 2013, 135, 2462. X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, M. Antonietti, J. Am. Chem. Soc. 2009, 131, 1680. J. Eichhorn, W. M. Heckl, M. Lackinger, Chem. Commun. 2013, 49, 2900. Y. Kim, S. Shin, T. Kim, D. Lee, C. Seok, M. Lee, Angew. Chem. Int. Ed. 2013, 52, 6426. S. C. Junggeburth, L. Diehl, S. Werner, V. Duppel, W. Sigle, B. V. Lotsch, J. Am. Chem. Soc. 2013, 135, 6157. A. Hirsch, J. M. Englert, F. Hauke, Acc. Chem. Res. 2012, 46, 87. M. Han, T. Hirade, Chem. Commun. 2012, 48, 100. Y. Zheng, H. Zhou, D. Liu, G. Floudas, M. Wagner, K. Koynov, M. Mezger, H.-J. Butt, T. Ikeda, Angew. Chem. Int. Ed. 2013, 52, 4845. X. Zhuang, F. Zhang, D. Wu, N. Forler, H. Liang, M. Wagner, D. Gehrig, M. R. Hansen, F. Laquai, X. Feng, Angew. Chem. Int. Ed. 2013, 52, 9668. C. Tan, X. Qi, X. Huang, J. Yang, B. Zheng, Z. An, R. Chen, J. Wei, B. Z. Tang, W. Huang, H. Zhang, Adv. Mater. 2014, 26, 1735. L. H. Li, Y. Chen, G. Behan, H. Zhang, M. Petravic, A. M. Glushenkov, J. Mater. Chem. 2011, 21, 11862. A. K. Geim, Science 2009, 324, 1530. J. Niu, D. Wang, H. Qin, X. Xiong, P. Tan, Y. Li, R. Liu, X. Lu, J. Wu, T. Zhang, W. Ni, J. Jin, Nat. Commun. 2014, 5, 3313. M. Wen-Shi, W. Li, Y. Fang, W. Shuang-Feng, J. Mater. Sci. 2014, 49, 562. Q. T. Qu, S. B. Yang, X. L. Feng, Adv. Mater. 2011, 23, 5574. S. H. Song, K. H. Park, B. H. Kim, Y. W. Choi, G. H. Jun, D. J. Lee, B.-S. Kong, K.-W. Paik, S. Jeon, Adv. Mater. 2013, 25, 732. Y. Mai, F. Zhang, X. Feng, Nanoscale 2014, 6, 106. C. J. Hawker, T. P. Russell, MRS Bulletin 2005, 30, 952. G. Eder, E. F. Smith, I. Cebula, W. M. Heckl, P. H. Beton, M. Lackinger, ACS Nano 2013, 7, 3014. S. B. Yang, X. L. Feng, K. Müllen, Adv. Mater. 2011, 23, 3575. X. Feng, X. S. Ding, D. L. Jiang, Chem. Soc. Rev. 2012, 41, 6010. J. Guo, Y. Xu, S. Jin, L. Chen, T. Kaji, Y. Honsho, M. A. Addicoat, J. Kim, A. Saeki, H. Ihee, S. Seki, S. Irle, M. Hiramoto, J. Gao, D. Jiang, Nat. Commun. 2013, 4, 2736. Y. Chen, A. Star, S. Vidal, Chem. Soc. Rev. 2013, 42, 4532. A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183. L. Cardenas, R. Gutzler, J. Lipton-Duffin, C. Fu, J. L. Brusso, L. E. Dinca, M. Vondracak, Y. Fagot-Revurat, D. Malterre, F. Rosei, D. F. Perepichka, Chem. Sci. 2013, 4, 3263. Y. Liu, S. Bhowmick, B. I. Yakobson, Nano Letters 2011, 11, 3113. L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, X. Duan, Nature 2010, 467, 305. M. Hu, S. Ishihara, Y. Yamauchi, Angew. Chem. Int. Ed. 2013, 52, 1235. X. She, H. Xu, Y. Xu, J. Yan, J. Xia, L. Xu, Y. Song, Y. Jiang, Q. Zhang, H. Li, J. Mater. Chem. A 2014, 2, 2563. J. Anthony, F. Diederich, C. B. Knobler, Angew. Chem. Int. Ed. 1993, 32, 406. R. Davis, R. Berger, R. Zentel, Adv. Mater. 2007, 19, 3878-3881. T. Premkumar, K. E. Geckeler, Prog. Polym. Sci. 2012, 37, 515. J.-K. Kim, E. Lee, Y.-H. Jeong, J.-K. Lee, W.-C. Zin, M. Lee, J. Am. Chem. Soc. 2007, 129, 6082. P. Sozzani, S. Bracco, A. Comotti, R. Simonutti, P. Valsesia, Y. Sakamoto, O. Terasaki, Nat. Mater. 2006, 5, 545. M. B. Avinash, T. Govindaraju, Adv. Funct. Mater. 2011, 21, 3875. Z. A. Piazza, H.-S. Hu, W.-L. Li, Y.-F. Zhao, J. Li, L.-S. Wang, Nat. Commun. 2014, 5, 3113. T. Kunitake, Y. Okahata, J. Am. Chem. Soc. 1977, 99, 3860. Q. An, Q. Chen, W. Zhu, Y. Li, C.-A. Tao, H. Yang, Z. Li, L. Wan, H. Tian, G. Li, Chem. Commun. 2010, 46, 725. C. K. Chua, M. Pumera, Chem. Soc. Rev. 2013, 42, 3222. J. W. Colson, A. R. Woll, A. Mukherjee, M. P. Levendorf, E. L. Spitler, V. B. Shields, M. G. Spencer, J. Park, W. R. Dichtel, Science 2011, 332, 228. Y. Chen, B. Zhang, G. Liu, X. Zhuang, E.-T. Kang, Chem. Soc. Rev. 2012, 41, 4688. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666. J. Kim, L. J. Cote, J. Huang, Acc. Chem. Res. 2012, 45, 1356. L. K. Ritchie, A. Trewin, A. Reguera-Galan, T. Hasell, A. I. Cooper, Micropor. Mesopor. Mat. 2010, 132, 132. Y. Zhong, Z. Wang, R. Zhang, F. Bai, H. Wu, R. Haddad, H. Fan, ACS Nano 2013, 8, 827. C. Dou, S. Saito, K. Matsuo, I. Hisaki, S. Yamaguchi, Angew. Chem. Int. Ed. 2012, 51, 12206. E. Lee, J.-K. Kim, M. Lee, Angew. Chem. Int. Ed. 2009, 48, 3657. T. Wu, J. Zhang, C. Zhou, L. Wang, X. Bu, P. Feng, J. Am. Chem. Soc. 2009, 131, 6111. B. Jurgens, E. Irran, J. Senker, P. Kroll, H. Muller, W. Schnick, J. Am. Chem. Soc. 2003, 125, 10288. N. Yanai, T. Uemura, M. Ohba, Y. Kadowaki, M. Maesato, M. Takenaka, S. Nishitsuji, H. Hasegawa, S. Kitagawa, Angew. Chem. Int. Ed. 2008, 47, 9883. J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, V. Nicolosi, Science 2011, 331, 568. X. Sun, S. Hyeon Ko, C. Zhang, A. E. Ribbe, C. Mao, J. Am. Chem. Soc. 2009, 131, 13248. C. K. Chua, M. Pumera, Chem. Soc. Rev. 2014, 43, 291. W. Zhang, J. Cui, C.-A. Tao, Y. Wu, Z. Li, L. Ma, Y. Wen, G. Li, Angew. Chem. Int. Ed. 2009, 48, 5864. D. Chen, H. Feng, J. Li, Chem. Rev. 2012, 112, 6027. Z. Wang, Z. Li, C. J. Medforth, J. A. Shelnutt, J. Am. Chem. Soc. 2007, 129, 2440. S. Kandambeth, D. B. Shinde, M. K. Panda, B. Lukose, T. Heine, R. Banerjee, Angew. Chem. Int. Ed. 2013, 52, 13052. J. Sakamoto, J. van Heijst, O. Lukin, A. D. Schlüter, Angew. Chem. Int. Ed. 2009, 48, 1030. Y. Lei, Q. Liao, H. Fu, J. Yao, J. Phy. Chem. C 2009, 113, 10038. G. Wu, P. Verwilst, K. Liu, M. Smet, C. F. J. Faul, X. Zhang, Chem. Sci. 2013, 4, 4486. H. Liu, X. Cao, Y. Wu, Q. Liao, A. J. Jimenez, F. Wurthner, H. Fu, Chem. Commun. 2014, 50, 4620. J. Y. Cheng, C. A. Ross, H. I. Smith, E. L. Thomas, Adv. Mater. 2006, 18, 2505. D. R. Dreyer, R. S. Ruoff, C. W. Bielawski, Angew. Chem. Int. Ed. 2010, 49, 9336. S.-Y. Ding, J. Gao, Q. Wang, Y. Zhang, W.-G. Song, C.-Y. Su, W. Wang, J. Am. Chem. Soc. 2011, 133, 19816. J. Du, H.-M. Cheng, Macromol. Chem. Phy. 2012, 213, 1060. M. Cai, D. Thorpe, D. H. Adamson, H. C. Schniepp, J. Mater. Chem. 2012, 22, 24992. V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, K. S. Kim, Chem. Rev. 2012, 112, 6156. M. Gsänger, J. H. Oh, M. Könemann, H. W. Höffken, A.-M. Krause, Z. Bao, F. Würthner, Angew. Chem. Int. Ed. 2010, 49, 740. S. Das, F. Irin, H. S. T. Ahmed, A. B. Cortinas, A. S. Wajid, D. Parviz, A. F. Jankowski, M. Kato, M. J. Green, Polymer 2012, 53, 2485. Y. Chen, J. C. Barnard, R. E. Palmer, M. O. Watanabe, T. Sasaki, Phys. Rev. Lett. 1999, 83, 2406. N. A. A. Zwaneveld, R. M. Pawlak, M. Abel, D. Catalin, D. Gigmes, D. Bertin, L. Porte, J. Am. Chem. Soc. 2008, 130, 6678. E. Kan, X. Wu, C. Lee, J. H. Shim, R. Lu, C. Xiao, K. Deng, Nanoscale 2012, 4, 5304. C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 2008, 321, 385. R. Bhola, P. Payamyar, D. J. Murray, B. Kumar, A. J. Teator, M. U. Schmidt, S. M. Hammer, A. Saha, J. Sakamoto, A. D. Schluter, B. T. King, J. Am. Chem. Soc. 2013, 135, 14134. X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, N. Zheng, Nat. Nanotechnol. 2011, 6, 28. X. Zhuang, F. Zhang, D. Wu, X. Feng, Adv. Mater. 2014, 26, 3081. S. Yang, X. Feng, L. Wang, K. Tang, J. Maier, K. Müllen, Angew. Chem. Int. Ed. 2010, 49, 4795. P. Katekomol, J. Roeser, M. Bojdys, J. Weber, A. Thomas, Chem. Mater. 2013, 25, 1542. M. J. Bojdys, J. Jeromenok, A. Thomas, M. Antonietti, Adv. Mater. 2010, 22, 2202. Y. Li, J. Xiao, T. E. Shubina, M. Chen, Z. Shi, M. Schmid, H.-P. Steinrueck, J. M. Gottfried, N. Lin, J. Am. Chem. Soc. 2012, 134, 6401. A. I. Cooper, Angew. Chem. Int. Ed. 2011, 50, 996. Y. Chen, K. Li, W. Lu, S. S.-Y. Chui, C.-W. Ma, C.-M. Che, Angew. Chem. Int. Ed. 2009, 48, 9909. S. Zhang, J. Li, M. Zeng, J. Xu, X. Wang, W. Hu, Nanoscale 2014, 6, 4157. H. Walch, J. Dienstmaier, G. Eder, R. Gutzler, S. Schloegl, T. Sirtl, K. Das, M. Schmittel, M. Lackinger, J. Am. Chem. Soc. 2011, 133, 7909. D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc. Rev. 2010, 39, 228. Z. Sun, T. Liao, Y. Dou, S. M. Hwang, M.-S. Park, L. Jiang, J. H. Kim, S. X. Dou, Nat. Commun. 2014, 5, 3813. I. Levesque, J. R. Neabo, S. Rondeau-Gagne, C. Vigier-Carriere, M. Daigle, J.-F. Morin, Chem. Sci. 2014, 5, 831. S. Shin, S. Lim, Y. Kim, T. Kim, T.-L. Choi, M. Lee, J. Am. Chem. Soc. 2013, 135, 2156. Y. Yang, W. Rigdon, X. Huang, X. Li, Sci. Rep. 2013, 3, 2086. D. Wu, F. Xu, B. Sun, R. Fu, H. He, K. Matyjaszewski, Chem. Rev. 2012, 112, 3959. Y. Li, X. Wang, J. Sun, Chem. Soc. Rev. 2012, 41, 5998. D. N. Bunck, W. R. Dichtel, J. Am. Chem. Soc. 2013, 135, 14952. F. Schwierz, Nat. Nanotech. 2010, 5, 487. X. D. Zhuang, Y. Chen, G. Liu, P. P. Li, C. X. Zhu, E. T. Kang, K. G. Neoh, B. Zhang, J. H. Zhu, Y. X. Li, Adv. Mater. 2010, 22, 1731. C. A. Hunter, K. R. Lawson, J. Perkins, C. J. Urch, J. Chem. Soc., Perkin Trans. 2 2001, 651. S. Li, D. Q. Wu, C. Cheng, J. Wang, F. Zhang, Y. Z. Su, X. L. Feng, Angew. Chem. Int. Ed. 2013, 52, 12105. S. B. Yang, X. L. Feng, X. C. Wang, K. Müllen, Angew. Chem. Int. Ed. 2011, 50, 5339. F. W. Averill, J. R. Morris, V. R. Cooper, Phys. Rev. B 2009, 80, 195411. S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P. M. Ajayan, Adv. Mater. 2013, 25, 2452. M. Lackinger, W. M. Heckl, J. Phy. D-Appl. Phy. 2011, 44, 464011. S. I. Stupp, S. Son, L. S. Li, H. C. Lin, M. Keser, J. Am. Chem. Soc. 1995, 117, 5212. S. I. Stupp, S. Son, H. C. Lin, L. S. Li, Science 1993, 259, 59. K. F. Kelly, W. E. Billups, Accounts of Chemical Research 2012, 46, 4. A. Walther, A. H. E. Muller, Soft Matter 2008, 4, 663. A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, C. Oshima, Phys. Rev. B (Condensed Matter) 1995, 51, 4606. T. Bauer, Z. Zheng, A. Renn, R. Enning, A. Stemmer, J. Sa 2011; 479 1998; 280 2013; 3 2013; 4 2013; 1 2009; 80 2010; 467 2014; 26 2009; 113 2012; 15 2012; 488 2013; 7 2013; 8 2013; 5 2014; 136 2011; 474 2010; 22 2012; 134 1993; 32 2013; 52 2012; 490 2007; 6 2007; 2 2012; 24 2010; 5 1993; 259 2010; 4 2012; 22 2010; 9 2014; 10 1995; 51 2007; 19 2010; 39 2002; 8 2014; 49 2012; 37 1992; 31 2004; 306 2011; 6 2011; 5 2011; 133 2011; 7 2014; 43 2010; 49 2012; 112 2010; 46 2005; 127 2008; 47 1977; 99 2012; 48 2012; 46 2012; 45 2008; 130 2012; 41 2013; 26 2013; 25 2011; 11 2011; 10 1999; 83 2008; 4 2009; 48 2007; 36 2012; 53 2012; 51 2013; 19 2014; 5 2013; 14 2014; 2 2001 1994; 33 2005; 30 2011; 21 2011; 23 2011; 26 2012; 213 2003; 125 2014; 8 2014; 50 2014; 6 2009; 323 2009; 324 2007; 129 2013; 47 2013; 49 2005; 310 2013; 42 2009 1995; 117 2006; 5 2006; 18 2009; 131 2008; 321 2014; 114 2011; 332 2005; 44 2011; 331 2009; 29 2009; 34 2012; 1 2013; 34 2011; 50 2010; 132 2011; 44 2013; 135 2009; 8 2012; 4 2014; 343 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_71_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_204_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_195_1 e_1_2_9_172_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_205_1 e_1_2_9_5_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_194_1 e_1_2_9_31_1 e_1_2_9_210_1 e_1_2_9_77_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_16_1 e_1_2_9_185_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_206_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_197_1 e_1_2_9_28_1 e_1_2_9_174_1 e_1_2_9_211_1 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_112_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_207_1 e_1_2_9_173_1 e_1_2_9_196_1 e_1_2_9_29_1 e_1_2_9_150_1 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_52_1 e_1_2_9_90_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_200_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_115_1 e_1_2_9_199_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_208_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_191_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_201_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_198_1 e_1_2_9_27_1 e_1_2_9_209_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_189_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_181_1 e_1_2_9_62_1 e_1_2_9_202_1 e_1_2_9_24_1 e_1_2_9_85_1 e_1_2_9_4_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_178_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_193_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_13_1 e_1_2_9_97_1 e_1_2_9_127_1 e_1_2_9_188_1 e_1_2_9_104_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_203_1 e_1_2_9_86_1 e_1_2_9_3_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_177_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_192_1 |
| References_xml | – reference: W. J. Roth, P. Nachtigall, R. E. Morris, J. Cejka, Chem. Rev. 2014, 114, 4807. – reference: B. Song, Z. Wang, S. Chen, X. Zhang, Y. Fu, M. Smet, W. Dehaen, Angew. Chem. Int. Ed. 2005, 44, 4731. – reference: V. Leon, A. M. Rodriguez, P. Prieto, M. Prato, E. Vazquez, ACS Nano 2014, 8, 563. – reference: M. Han, T. Hirade, Chem. Commun. 2012, 48, 100. – reference: M. Gsänger, J. H. Oh, M. Könemann, H. W. Höffken, A.-M. Krause, Z. Bao, F. Würthner, Angew. Chem. Int. Ed. 2010, 49, 740. – reference: Y. Kim, S. Shin, T. Kim, D. Lee, C. Seok, M. Lee, Angew. Chem. Int. Ed. 2013, 52, 6426. – reference: F. Schwierz, Nat. Nanotech. 2010, 5, 487. – reference: K. T. Nam, S. A. Shelby, P. H. Choi, A. B. Marciel, R. Chen, L. Tan, T. K. Chu, R. A. Mesch, B.-C. Lee, M. D. Connolly, C. Kisielowski, R. N. Zuckermann, Nat. Mater. 2010, 9, 454. – reference: M. Sadhukhan, S. Barman, J. Mater. Chem. A 2013, 1, 2752. – reference: J. Zhang, H. Geng, T. S. Virk, Y. Zhao, J. Tan, C.-A. Di, W. Xu, K. Singh, W. Hu, Z. Shuai, Y. Liu, D. Zhu, Adv. Mater. 2012, 24, 2603. – reference: L. Gao, K. Zhang, Y. Chen, ACS Macro Letters 2012, 1, 1143. – reference: X. She, H. Xu, Y. Xu, J. Yan, J. Xia, L. Xu, Y. Song, Y. Jiang, Q. Zhang, H. Li, J. Mater. Chem. A 2014, 2, 2563. – reference: A. J. Baca, J.-H. Ahn, Y. Sun, M. A. Meitl, E. Menard, H.-S. Kim, W. M. Choi, D.-H. Kim, Y. Huang, J. A. Rogers, Angew. Chem. Int. Ed. 2008, 47, 5524. – reference: Y. Li, X. Wang, J. Sun, Chem. Soc. Rev. 2012, 41, 5998. – reference: J.-K. Kim, E. Lee, Y.-H. Jeong, J.-K. Lee, W.-C. Zin, M. Lee, J. Am. Chem. Soc. 2007, 129, 6082. – reference: S. Yang, X. Feng, L. Wang, K. Tang, J. Maier, K. Müllen, Angew. Chem. Int. Ed. 2010, 49, 4795. – reference: D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc. Rev. 2010, 39, 228. – reference: H. Walch, J. Dienstmaier, G. Eder, R. Gutzler, S. Schloegl, T. Sirtl, K. Das, M. Schmittel, M. Lackinger, J. Am. Chem. Soc. 2011, 133, 7909. – reference: S. I. Stupp, S. Son, L. S. Li, H. C. Lin, M. Keser, J. Am. Chem. Soc. 1995, 117, 5212. – reference: R. Davis, R. Berger, R. Zentel, Adv. Mater. 2007, 19, 3878-3881. – reference: A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166. – reference: P. Sozzani, S. Bracco, A. Comotti, R. Simonutti, P. Valsesia, Y. Sakamoto, O. Terasaki, Nat. Mater. 2006, 5, 545. – reference: H. Xu, J. Yan, X. She, L. Xu, J. Xia, Y. Xu, Y. Song, L. Huang, H. Li, Nanoscale 2014, 6, 1406. – reference: S. B. Yang, X. L. Feng, X. C. Wang, K. Müllen, Angew. Chem. Int. Ed. 2011, 50, 5339. – reference: W. Yao, Y. Yan, L. Xue, C. Zhang, G. Li, Q. Zheng, Y. S. Zhao, H. Jiang, J. Yao, Angew. Chem. Int. Ed. 2013, 52, 8713. – reference: J. Kim, L. J. Cote, J. Huang, Acc. Chem. Res. 2012, 45, 1356. – reference: Y. X. Xu, G. Q. Shi, J. Mater. Chem. 2011, 21, 3311. – reference: K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666. – reference: Z. Zheng, C. S. Ruiz-Vargas, T. Bauer, A. Rossi, P. Payamyar, A. Schuetz, A. Stemmer, J. Sakamoto, A. D. Schlueter, Macromol. Rap. Commun. 2013, 34, 1670. – reference: X. Huang, C. Tan, Z. Yin, H. Zhang, Adv. Mater. 2014, 26, 2185. – reference: X. Feng, X. S. Ding, D. L. Jiang, Chem. Soc. Rev. 2012, 41, 6010. – reference: A. C. Kamps, M. H. M. Cativo, M. Fryd, S.-J. Park, Macromolecules 2013, 47, 161. – reference: C. J. Hawker, T. P. Russell, MRS Bulletin 2005, 30, 952. – reference: K. Kim, J.-Y. Choi, T. Kim, S.-H. Cho, H.-J. Chung, Nature 2011, 479, 338. – reference: A. Walther, A. H. E. Muller, Soft Matter 2008, 4, 663. – reference: J. W. Colson, A. R. Woll, A. Mukherjee, M. P. Levendorf, E. L. Spitler, V. B. Shields, M. G. Spencer, J. Park, W. R. Dichtel, Science 2011, 332, 228. – reference: Y. Lin, J. W. Connell, Nanoscale 2012, 4, 6908. – reference: S. H. Song, K. H. Park, B. H. Kim, Y. W. Choi, G. H. Jun, D. J. Lee, B.-S. Kong, K.-W. Paik, S. Jeon, Adv. Mater. 2013, 25, 732. – reference: G. Eder, E. F. Smith, I. Cebula, W. M. Heckl, P. H. Beton, M. Lackinger, ACS Nano 2013, 7, 3014. – reference: W. Zhang, J. Cui, C.-A. Tao, Y. Wu, Z. Li, L. Ma, Y. Wen, G. Li, Angew. Chem. Int. Ed. 2009, 48, 5864. – reference: K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, Nature 2012, 490, 192. – reference: V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, K. S. Kim, Chem. Rev. 2012, 112, 6156. – reference: R. Meziane, M. Brehmer, U. Maschke, R. Zentel, Soft Matter 2008, 4, 1237. – reference: Y. Mai, A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969. – reference: D. R. Dreyer, R. S. Ruoff, C. W. Bielawski, Angew. Chem. Int. Ed. 2010, 49, 9336. – reference: L. H. Li, Y. Chen, G. Behan, H. Zhang, M. Petravic, A. M. Glushenkov, J. Mater. Chem. 2011, 21, 11862. – reference: P. Katekomol, J. Roeser, M. Bojdys, J. Weber, A. Thomas, Chem. Mater. 2013, 25, 1542. – reference: I. W. Hamley, Prog. Polym. Sci. 2009, 34, 1161. – reference: A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, C. Oshima, Phys. Rev. B (Condensed Matter) 1995, 51, 4606. – reference: Q. An, Q. Chen, W. Zhu, Y. Li, C.-A. Tao, H. Yang, Z. Li, L. Wan, H. Tian, G. Li, Chem. Commun. 2010, 46, 725. – reference: E. L. Spitler, B. T. Koo, J. L. Novotney, J. W. Colson, F. J. Uribe-Romo, G. D. Gutierrez, P. Clancy, W. R. Dichtel, J. Am. Chem. Soc. 2011, 133, 19416. – reference: X. Zhuang, Y. Chen, L. Wang, K.-G. Neoh, E.-T. Kang, C. Wang, Polym. Chem. 2014, 5, 2010. – reference: R. Dawson, A. I. Cooper, D. J. Adams, Prog. Polym. Sci. 2012, 37, 530. – reference: C. D. Simpson, J. D. Brand, A. J. Berresheim, L. Przybilla, H. J. Räder, K. Müllen, Chem. -Eur. J. 2002, 8, 1424. – reference: X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, J. Am. Chem. Soc. 2013, 135, 18. – reference: M. Bieri, M.-T. Nguyen, O. Groening, J. Cai, M. Treier, K. Ait-Mansour, P. Ruffieux, C. A. Pignedoli, D. Passerone, M. Kastler, K. Muellen, R. Fasel, J. Am. Chem. Soc. 2010, 132, 16669. – reference: L. Wu, W. Li, P. Li, S. Liao, S. Qiu, M. Chen, Y. Guo, Q. Li, C. Zhu, L. Liu, Small 2014, 10, 1421. – reference: C. Tan, X. Qi, X. Huang, J. Yang, B. Zheng, Z. An, R. Chen, J. Wei, B. Z. Tang, W. Huang, H. Zhang, Adv. Mater. 2014, 26, 1735. – reference: C. K. Chua, M. Pumera, Chem. Soc. Rev. 2014, 43, 291. – reference: Y. Wang, X. C. Wang, M. Antonietti, Angew. Chem. Int. Ed. 2012, 51, 68. – reference: M. Lackinger, W. M. Heckl, J. Phy. D-Appl. Phy. 2011, 44, 464011. – reference: A. Hirsch, J. M. Englert, F. Hauke, Acc. Chem. Res. 2012, 46, 87. – reference: J. W. Colson, W. R. Dichtel, Nat. Chem. 2013, 5, 453. – reference: M. G. Rabbani, A. K. Sekizkardes, Z. Kahveci, T. E. Reich, R. Ding, H. M. El-Kaderi, Chem. -Eur. J. 2013, 19, 3324. – reference: K. E. Jelfs, X. F. Wu, M. Schmidtmann, J. T. A. Jones, J. E. Warren, D. J. Adams, A. I. Cooper, Angew. Chem. Int. Ed. 2011, 50, 10653. – reference: J. T. A. Jones, T. Hasell, X. F. Wu, J. Bacsa, K. E. Jelfs, M. Schmidtmann, S. Y. Chong, D. J. Adams, A. Trewin, F. Schiffman, F. Cora, B. Slater, A. Steiner, G. M. Day, A. I. Cooper, Nature 2011, 474, 367. – reference: L. K. Ritchie, A. Trewin, A. Reguera-Galan, T. Hasell, A. I. Cooper, Micropor. Mesopor. Mat. 2010, 132, 132. – reference: M. Quintana, E. Vazquez, M. Prato, Acc. Chem. Res. 2012, 46, 138. – reference: Y. Zheng, H. Zhou, D. Liu, G. Floudas, M. Wagner, K. Koynov, M. Mezger, H.-J. Butt, T. Ikeda, Angew. Chem. Int. Ed. 2013, 52, 4845. – reference: J. Park, M. Yan, Acc. Chem. Res. 2012, 46, 181. – reference: C. A. Cao, X. Zhuang, Y. Su, Y. Zhang, F. Zhang, D. Wu, X. Feng, Polym. Chem. 2014, 6, 2057. – reference: X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, N. Zheng, Nat. Nanotechnol. 2011, 6, 28. – reference: Z. Shi, N. Lin, J. Am. Chem. Soc. 2009, 131, 5376. – reference: S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P. M. Ajayan, Adv. Mater. 2013, 25, 2452. – reference: S. Kandambeth, D. B. Shinde, M. K. Panda, B. Lukose, T. Heine, R. Banerjee, Angew. Chem. Int. Ed. 2013, 52, 13052. – reference: J. Niu, D. Wang, H. Qin, X. Xiong, P. Tan, Y. Li, R. Liu, X. Lu, J. Wu, T. Zhang, W. Ni, J. Jin, Nat. Commun. 2014, 5, 3313. – reference: A. P. Cote, Science 2005, 310, 1166. – reference: J. Sakamoto, J. van Heijst, O. Lukin, A. D. Schlüter, Angew. Chem. Int. Ed. 2009, 48, 1030. – reference: C. He, D. Wu, F. Zhang, M. Xue, X. Zhuang, F. Qiu, X. Feng, ChemPhysChem 2013, 14, 2954. – reference: T. Govindaraju, M. B. Avinash, Nanoscale 2012, 4, 6102. – reference: L. Zhang, C. Li, A. R. Liu, G. Q. Shi, J. Mater. Chem. 2012, 22, 8438. – reference: I. Berlanga, R. Mas-Balleste, F. Zamora, Chem. Commun. 2012, 48, 7976. – reference: A. I. Cooper, Angew. Chem. Int. Ed. 2011, 50, 996. – reference: M. Osada, T. Sasaki, Adv. Mater. 2012, 24, 210. – reference: Z. A. Piazza, H.-S. Hu, W.-L. Li, Y.-F. Zhao, J. Li, L.-S. Wang, Nat. Commun. 2014, 5, 3113. – reference: Y. Lei, Q. Liao, H. Fu, J. Yao, J. Phy. Chem. C 2009, 113, 10038. – reference: J. Y. Cheng, C. A. Ross, H. I. Smith, E. L. Thomas, Adv. Mater. 2006, 18, 2505. – reference: M. Wen-Shi, W. Li, Y. Fang, W. Shuang-Feng, J. Mater. Sci. 2014, 49, 562. – reference: G. Wu, P. Verwilst, K. Liu, M. Smet, C. F. J. Faul, X. Zhang, Chem. Sci. 2013, 4, 4486. – reference: L. Yan, Y. B. Zheng, F. Zhao, S. Li, X. Gao, B. Xu, P. S. Weiss, Y. Zhao, Chem. Soc. Rev. 2012, 41, 97. – reference: J. Anthony, F. Diederich, C. B. Knobler, Angew. Chem. Int. Ed. 1993, 32, 406. – reference: F. J. Uribe-Romo, C. J. Doonan, H. Furukawa, K. Oisaki, O. M. Yaghi, J. Am. Chem. Soc. 2011, 133, 11478. – reference: J. Lu, K. Zhang, X. F. Liu, H. Zhang, T. C. Sum, A. H. Castro Neto, K. P. Loh, Nat. Commun. 2013, 4, 2681. – reference: M. J. Bojdys, J. Jeromenok, A. Thomas, M. Antonietti, Adv. Mater. 2010, 22, 2202. – reference: X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76. – reference: L. Cardenas, R. Gutzler, J. Lipton-Duffin, C. Fu, J. L. Brusso, L. E. Dinca, M. Vondracak, Y. Fagot-Revurat, D. Malterre, F. Rosei, D. F. Perepichka, Chem. Sci. 2013, 4, 3263. – reference: S. B. Yang, X. L. Feng, K. Müllen, Adv. Mater. 2011, 23, 3575. – reference: Z. Wang, Z. Li, C. J. Medforth, J. A. Shelnutt, J. Am. Chem. Soc. 2007, 129, 2440. – reference: C. K. Chua, M. Pumera, Chem. Soc. Rev. 2013, 42, 3222. – reference: T. Premkumar, K. E. Geckeler, Prog. Polym. Sci. 2012, 37, 515. – reference: X. Zhuang, F. Zhang, D. Wu, N. Forler, H. Liang, M. Wagner, D. Gehrig, M. R. Hansen, F. Laquai, X. Feng, Angew. Chem. Int. Ed. 2013, 52, 9668. – reference: Y. Chen, B. Zhang, G. Liu, X. Zhuang, E.-T. Kang, Chem. Soc. Rev. 2012, 41, 4688. – reference: X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, M. Antonietti, J. Am. Chem. Soc. 2009, 131, 1680. – reference: D. Chen, H. Feng, J. Li, Chem. Rev. 2012, 112, 6027. – reference: Y. Zhong, Z. Wang, R. Zhang, F. Bai, H. Wu, R. Haddad, H. Fan, ACS Nano 2013, 8, 827. – reference: S. Das, F. Irin, H. S. T. Ahmed, A. B. Cortinas, A. S. Wajid, D. Parviz, A. F. Jankowski, M. Kato, M. J. Green, Polymer 2012, 53, 2485. – reference: T. Wu, J. Zhang, C. Zhou, L. Wang, X. Bu, P. Feng, J. Am. Chem. Soc. 2009, 131, 6111. – reference: K. Parvez, Z.-S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Müllen, J. Am. Chem. Soc. 2014, 136, 6083. – reference: X. Zhuang, F. Zhang, D. Wu, X. Feng, Adv. Mater. 2014, 26, 3081. – reference: S. C. Junggeburth, L. Diehl, S. Werner, V. Duppel, W. Sigle, B. V. Lotsch, J. Am. Chem. Soc. 2013, 135, 6157. – reference: M. Hu, S. Ishihara, Y. Yamauchi, Angew. Chem. Int. Ed. 2013, 52, 1235. – reference: P. Kissel, R. Erni, W. B. Schweizer, M. D. Rossell, B. T. King, T. Bauer, S. Goetzinger, A. D. Schlueter, J. Sakamoto, Nat. Chem. 2012, 4, 287. – reference: T. Kunitake, Angew. Chem. Int. Ed. 1992, 31, 709. – reference: K. F. Kelly, W. E. Billups, Accounts of Chemical Research 2012, 46, 4. – reference: Y. Chen, J. C. Barnard, R. E. Palmer, M. O. Watanabe, T. Sasaki, Phys. Rev. Lett. 1999, 83, 2406. – reference: S.-Y. Ding, W. Wang, Chem. Soc. Rev. 2013, 42, 548. – reference: E. L. Spitler, J. W. Colson, F. J. Uribe-Romo, A. R. Woll, M. R. Giovino, A. Saldivar, W. R. Dichtel, Angew. Chem. Int. Ed. 2012, 51, 2623. – reference: M. O. Blunt, J. C. Russell, N. R. Champness, P. H. Beton, Chem. Commun. 2010, 46, 7157. – reference: F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, Nature Photonics 2010, 4, 611. – reference: S. Shin, S. Lim, Y. Kim, T. Kim, T.-L. Choi, M. Lee, J. Am. Chem. Soc. 2013, 135, 2156. – reference: C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 2008, 321, 385. – reference: Y. Cui, Z. Ding, X. Fu, X. Wang, Angew. Chem. Int. Ed. 2012, 51, 11814. – reference: I. Levesque, J. R. Neabo, S. Rondeau-Gagne, C. Vigier-Carriere, M. Daigle, J.-F. Morin, Chem. Sci. 2014, 5, 831. – reference: P. L. Chiu, D. D. T. Mastrogiovanni, D. Wei, C. Louis, M. Jeong, G. Yu, P. Saad, C. R. Flach, R. Mendelsohn, E. Garfunkel, H. He, J. Am. Chem. Soc. 2012, 134, 5850. – reference: A. M. Boldi, F. Diederich, Angew. Chem. Int. Ed. 1994, 33, 468. – reference: A. Pakdel, C. Zhi, Y. Bando, D. Golberg, Materials Today 2012, 15, 256. – reference: Y. Mai, F. Zhang, X. Feng, Nanoscale 2014, 6, 106. – reference: K. Baek, G. Yun, Y. Kim, D. Kim, R. Hota, I. Hwang, D. Xu, Y. H. Ko, G. H. Gu, J. H. Suh, C. G. Park, B. J. Sung, K. Kim, J. Am. Chem. Soc. 2013, 135, 6523. – reference: B. C. Stipe, M. A. Rezaei, W. Ho, Science 1998, 280, 1732. – reference: X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 2012, 41, 666. – reference: M. P. Levendorf, C.-J. Kim, L. Brown, P. Y. Huang, R. W. Havener, D. A. Muller, J. Park, Nature 2012, 488, 627. – reference: D. Wu, R. Liu, W. Pisula, X. Feng, K. Müllen, Angew. Chem. Int. Ed. 2011, 50, 2791. – reference: S.-Y. Ding, J. Gao, Q. Wang, Y. Zhang, W.-G. Song, C.-Y. Su, W. Wang, J. Am. Chem. Soc. 2011, 133, 19816. – reference: A. Nag, K. Raidongia, K. P. S. S. Hembram, R. Datta, U. V. Waghmare, C. N. R. Rao, ACS Nano 2010, 4, 1539. – reference: Y. Chen, K. Li, W. Lu, S. S.-Y. Chui, C.-W. Ma, C.-M. Che, Angew. Chem. Int. Ed. 2009, 48, 9909. – reference: B. Jurgens, E. Irran, J. Senker, P. Kroll, H. Muller, W. Schnick, J. Am. Chem. Soc. 2003, 125, 10288. – reference: J. Guo, Y. Xu, S. Jin, L. Chen, T. Kaji, Y. Honsho, M. A. Addicoat, J. Kim, A. Saeki, H. Ihee, S. Seki, S. Irle, M. Hiramoto, J. Gao, D. Jiang, Nat. Commun. 2013, 4, 2736. – reference: B. P. Biswal, S. Chandra, S. Kandambeth, B. Lukose, T. Heine, R. Banerjee, J. Am. Chem. Soc. 2013, 135, 5328. – reference: A. A. Balandin, Nat. Mater. 2011, 10, 569. – reference: Y. Tan, L. Fang, J. Xiao, Y. Song, Q. Zheng, Polym. Chem. 2013, 4, 2939. – reference: R. Bhosale, J. Misek, N. Sakai, S. Matile, Chem. Soc. Rev. 2010, 39, 138. – reference: M. Cai, D. Thorpe, D. H. Adamson, H. C. Schniepp, J. Mater. Chem. 2012, 22, 24992. – reference: X. D. Zhuang, Y. Chen, G. Liu, P. P. Li, C. X. Zhu, E. T. Kang, K. G. Neoh, B. Zhang, J. H. Zhu, Y. X. Li, Adv. Mater. 2010, 22, 1731. – reference: L. Liu, J. Park, D. A. Siegel, K. F. McCarty, K. W. Clark, W. Deng, L. Basile, J. C. Idrobo, A.-P. Li, G. Gu, Science 2014, 343, 163. – reference: L. Grill, M. Dyer, L. Lafferentz, M. Persson, M. V. Peters, S. Hecht, Nat. Nanotechn. 2007, 2, 687. – reference: E. Lee, J.-K. Kim, M. Lee, Angew. Chem. Int. Ed. 2009, 48, 3657. – reference: M. Bieri, M. Treier, J. Cai, K. Ait-Mansour, P. Ruffieux, O. Groning, P. Groning, M. Kastler, R. Rieger, X. Feng, K. Müllen, R. Fasel, Chem. Commun. 2009, 6919. – reference: X. Song, J. Hu, H. Zeng, J. Mater. Chem. C 2013, 1, 2952. – reference: S. I. Stupp, S. Son, H. C. Lin, L. S. Li, Science 1993, 259, 59. – reference: R. Tanoue, R. Higuchi, N. Enoki, Y. Miyasato, S. Uemura, N. Kimizuka, A. Z. Stieg, J. K. Gimzewski, M. Kunitake, ACS Nano 2011, 5, 3923. – reference: X. Sun, S. Hyeon Ko, C. Zhang, A. E. Ribbe, C. Mao, J. Am. Chem. Soc. 2009, 131, 13248. – reference: C. A. Hunter, K. R. Lawson, J. Perkins, C. J. Urch, J. Chem. Soc., Perkin Trans. 2 2001, 651. – reference: M. G. Schwab, B. Fassbender, H. W. Spiess, A. Thomas, X. Feng, K. Müllen, J. Am. Chem. Soc. 2009, 131, 7216. – reference: Y. Qin, J. Zhang, X. Zheng, H. Geng, G. Zhao, W. Xu, W. Hu, Z. Shuai, D. Zhu, Adv. Mater. 2014, 26, 4093. – reference: S. I. Stupp, L. C. Palmer, Chem. Mater. 2013, 26, 507. – reference: D. N. Bunck, W. R. Dichtel, J. Am. Chem. Soc. 2013, 135, 14952. – reference: J. M. Lehn, Chem. Soc. Rev. 2007, 36, 151. – reference: Y. Liu, S. Bhowmick, B. I. Yakobson, Nano Letters 2011, 11, 3113. – reference: D. Hao, J. Zhang, H. Lu, W. Leng, R. Ge, X. Dai, Y. Gao, Chem. Commun. 2014, 50, 1462. – reference: S. Zhang, J. Li, M. Zeng, J. Xu, X. Wang, W. Hu, Nanoscale 2014, 6, 4157. – reference: Y. Yang, W. Rigdon, X. Huang, X. Li, Sci. Rep. 2013, 3, 2086. – reference: N. A. A. Zwaneveld, R. M. Pawlak, M. Abel, D. Catalin, D. Gigmes, D. Bertin, L. Porte, J. Am. Chem. Soc. 2008, 130, 6678. – reference: L. Liu, Z. Xiong, D. Hu, G. Wu, P. Chen, Chem. Commun. 2013, 49, 7890. – reference: Y. Wang, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 2012, 51, 68. – reference: T. Kambe, R. Sakamoto, K. Hoshiko, K. Takada, M. Miyachi, J.-H. Ryu, S. Sasaki, J. Kim, K. Nakazato, M. Takata, H. Nishihara, J. Am. Chem. Soc. 2013, 135, 2462. – reference: D. F. Perepichka, F. Rosei, Science 2009, 323, 216. – reference: F. W. Averill, J. R. Morris, V. R. Cooper, Phys. Rev. B 2009, 80, 195411. – reference: I.-Y. Jeon, H.-J. Choi, S.-M. Jung, J.-M. Seo, M.-J. Kim, L. Dai, J.-B. Baek, J. Am. Chem. Soc. 2013, 135, 1386. – reference: R. Gutzler, H. Walch, G. Eder, S. Kloft, W. M. Heckl, M. Lackinger, Chem. Commun. 2009, 29, 4456. – reference: S. Haq, F. Hanke, M. S. Dyer, M. Persson, P. Iavicoli, D. B. Amabilino, R. Raval, J. Am. Chem. Soc. 2011, 133, 12031. – reference: M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, H. Zhang, Nat. Chem. 2013, 5, 263. – reference: J. Eichhorn, W. M. Heckl, M. Lackinger, Chem. Commun. 2013, 49, 2900. – reference: J.-S. Hu, Guo, H.-P. Liang, L.-J. Wan, L. Jiang, J. Am. Chem. Soc. 2005, 127, 17090. – reference: C. Dou, S. Saito, K. Matsuo, I. Hisaki, S. Yamaguchi, Angew. Chem. Int. Ed. 2012, 51, 12206. – reference: D. Wu, F. Xu, B. Sun, R. Fu, H. He, K. Matyjaszewski, Chem. Rev. 2012, 112, 3959. – reference: I. Berlanga, M. L. Ruiz-González, J. M. González-Calbet, J. L. G. Fierro, R. Mas-Ballesté, F. Zamora, Small 2011, 7, 1207. – reference: M. Abel, S. Clair, O. Ourdjini, M. Mossoyan, L. Porte, J. Am. Chem. Soc. 2011, 133, 1203. – reference: L. Chen, J. Kim, T. Ishizuka, Y. Honsho, A. Saeki, S. Seki, H. Ihee, D. Jiang, J. Am. Chem. Soc. 2009, 131, 7287. – reference: J. Du, H.-M. Cheng, Macromol. Chem. Phy. 2012, 213, 1060. – reference: Q. T. Qu, S. B. Yang, X. L. Feng, Adv. Mater. 2011, 23, 5574. – reference: E. Kan, X. Wu, C. Lee, J. H. Shim, R. Lu, C. Xiao, K. Deng, Nanoscale 2012, 4, 5304. – reference: T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, J. H. Lee, Biosensors & Bioelectronics 2011, 26, 4637. – reference: J. Adisoejoso, Y. Li, J. Liu, P. N. Liu, N. Lin, J. Am. Chem. Soc. 2012, 134, 18526. – reference: Z. Sun, T. Liao, Y. Dou, S. M. Hwang, M.-S. Park, L. Jiang, J. H. Kim, S. X. Dou, Nat. Commun. 2014, 5, 3813. – reference: Y. Li, J. Xiao, T. E. Shubina, M. Chen, Z. Shi, M. Schmid, H.-P. Steinrueck, J. M. Gottfried, N. Lin, J. Am. Chem. Soc. 2012, 134, 6401. – reference: A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183. – reference: Y. Chen, A. Star, S. Vidal, Chem. Soc. Rev. 2013, 42, 4532. – reference: K.-D. Zhang, J. Tian, D. Hanifi, Y. Zhang, A. C.-H. Sue, T.-Y. Zhou, L. Zhang, X. Zhao, Y. Liu, Z.-T. Li, J. Am. Chem. Soc. 2013, 135, 17913. – reference: N. Yanai, T. Uemura, M. Ohba, Y. Kadowaki, M. Maesato, M. Takenaka, S. Nishitsuji, H. Hasegawa, S. Kitagawa, Angew. Chem. Int. Ed. 2008, 47, 9883. – reference: H. Liu, X. Cao, Y. Wu, Q. Liao, A. J. Jimenez, F. Wurthner, H. Fu, Chem. Commun. 2014, 50, 4620. – reference: R. Bhola, P. Payamyar, D. J. Murray, B. Kumar, A. J. Teator, M. U. Schmidt, S. M. Hammer, A. Saha, J. Sakamoto, A. D. Schluter, B. T. King, J. Am. Chem. Soc. 2013, 135, 14134. – reference: A. Iwan, A. Chuchmala, Prog. Polym. Sci. 2012, 37, 1805. – reference: X. Zou, H. Ren, G. Zhu, Chem. Commun. 2013, 49, 3925. – reference: Y. Jin, C. Yu, R. J. Denman, W. Zhang, Chem. Soc. Rev. 2013, 42, 6634. – reference: A. Nagai, X. Chen, X. Feng, X. Ding, Z. Guo, D. Jiang, Angew. Chem. Int. Ed. 2013, 52, 3770. – reference: N. Cheng, J. Tian, Q. Liu, C. Ge, A. H. Qusti, A. M. Asiri, A. O. Al-Youbi, X. Sun, ACS App. Mater. & Inter. 2013, 5, 6815. – reference: A. K. Geim, Science 2009, 324, 1530. – reference: K. Xu, P. Chen, X. Li, C. Wu, Y. Guo, J. Zhao, X. Wu, Y. Xie, Angew. Chem. Int. Ed. 2013, 52, 10477. – reference: J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, V. Nicolosi, Science 2011, 331, 568. – reference: L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, X. Duan, Nature 2010, 467, 305. – reference: T. Lin, X. S. Shang, J. Adisoejoso, P. N. Liu, N. Lin, J. Am. Chem. Soc. 2013, 135, 3576. – reference: S. Li, D. Q. Wu, C. Cheng, J. Wang, F. Zhang, Y. Z. Su, X. L. Feng, Angew. Chem. Int. Ed. 2013, 52, 12105. – reference: C. Wu, X. Lu, L. Peng, K. Xu, X. Peng, J. Huang, G. Yu, Y. Xie, Nat. Commun. 2013, 4, 2431. – reference: T. Bauer, Z. Zheng, A. Renn, R. Enning, A. Stemmer, J. Sakamoto, A. D. Schlüter, Angew. Chem. Int. Ed. 2011, 50, 7879. – reference: J. del Barrio, L. Oriol, C. Sánchez, J. L. Serrano, A. Di Cicco, P. Keller, M.-H. Li, J. Am. Chem. Soc. 2010, 132, 3762. – reference: J. Liu, T. Lin, Z. Shi, F. Xia, L. Dong, P. N. Liu, N. Lin, J. Am. Chem. Soc. 2011, 133, 18760. – reference: T. Kunitake, Y. Okahata, J. Am. Chem. Soc. 1977, 99, 3860. – reference: C. N. Rao, H. S. Matte, U. Maitra, Angew. Chem. Int. Ed. 2013, 52, 13162. – reference: M. B. Avinash, T. Govindaraju, Adv. Funct. Mater. 2011, 21, 3875. – volume: 26 start-page: 507 year: 2013 publication-title: Chem. Mater. – volume: 45 start-page: 1356 year: 2012 publication-title: Acc. Chem. Res. – volume: 117 start-page: 5212 year: 1995 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 6083 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 259 start-page: 59 year: 1993 publication-title: Science – volume: 4 start-page: 611 year: 2010 publication-title: Nature Photonics – volume: 131 start-page: 7287 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 740 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 83 start-page: 2406 year: 1999 publication-title: Phys. Rev. Lett. – volume: 10 start-page: 569 year: 2011 publication-title: Nat. Mater. – volume: 133 start-page: 19416 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 2505 year: 2006 publication-title: Adv. Mater. – volume: 4 start-page: 4486 year: 2013 publication-title: Chem. Sci. – volume: 80 start-page: 195411 year: 2009 publication-title: Phys. Rev. B – volume: 52 start-page: 12105 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 213 start-page: 1060 year: 2012 publication-title: Macromol. Chem. Phy. – volume: 4 start-page: 2736 year: 2013 publication-title: Nat. Commun. – volume: 7 start-page: 1207 year: 2011 publication-title: Small – volume: 135 start-page: 17913 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 453 year: 2013 publication-title: Nat. Chem. – volume: 490 start-page: 192 year: 2012 publication-title: Nature – volume: 332 start-page: 228 year: 2011 publication-title: Science – volume: 48 start-page: 3657 year: 2009 publication-title: Angew. Chem. Int. Ed. – volume: 47 start-page: 9883 year: 2008 publication-title: Angew. Chem. Int. Ed. – volume: 50 start-page: 2791 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 52 start-page: 6426 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 454 year: 2010 publication-title: Nat. Mater. – volume: 48 start-page: 100 year: 2012 publication-title: Chem. Commun. – volume: 323 start-page: 216 year: 2009 publication-title: Science – volume: 50 start-page: 4620 year: 2014 publication-title: Chem. Commun. – volume: 42 start-page: 3222 year: 2013 publication-title: Chem. Soc. Rev. – volume: 39 start-page: 138 year: 2010 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 3263 year: 2013 publication-title: Chem. Sci. – volume: 41 start-page: 5998 year: 2012 publication-title: Chem. Soc. Rev. – volume: 25 start-page: 1542 year: 2013 publication-title: Chem. Mater. – volume: 99 start-page: 3860 year: 1977 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 2603 year: 2012 publication-title: Adv. Mater. – volume: 24 start-page: 210 year: 2012 publication-title: Adv. Mater. – volume: 41 start-page: 5969 year: 2012 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 663 year: 2008 publication-title: Soft Matter – volume: 3 start-page: 2086 year: 2013 publication-title: Sci. Rep. – volume: 25 start-page: 2452 year: 2013 publication-title: Adv. Mater. – volume: 2 start-page: 2563 year: 2014 publication-title: J. Mater. Chem. A – volume: 132 start-page: 16669 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 343 start-page: 163 year: 2014 publication-title: Science – volume: 331 start-page: 568 year: 2011 publication-title: Science – volume: 135 start-page: 5328 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 9336 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 112 start-page: 6027 year: 2012 publication-title: Chem. Rev. – volume: 46 start-page: 7157 year: 2010 publication-title: Chem. Commun. – volume: 112 start-page: 3959 year: 2012 publication-title: Chem. Rev. – volume: 41 start-page: 97 year: 2012 publication-title: Chem. Soc. Rev. – volume: 135 start-page: 18 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 2431 year: 2013 publication-title: Nat. Commun. – volume: 52 start-page: 13162 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 135 start-page: 2462 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 725 year: 2010 publication-title: Chem. Commun. – volume: 133 start-page: 1203 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 2954 year: 2013 publication-title: ChemPhysChem – volume: 32 start-page: 406 year: 1993 publication-title: Angew. Chem. Int. Ed. – volume: 48 start-page: 9909 year: 2009 publication-title: Angew. Chem. Int. Ed. – volume: 26 start-page: 4637 year: 2011 publication-title: Biosensors & Bioelectronics – volume: 5 start-page: 263 year: 2013 publication-title: Nat. Chem. – volume: 135 start-page: 6523 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 133 start-page: 11478 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 28 year: 2011 publication-title: Nat. Nanotechnol. – volume: 49 start-page: 2900 year: 2013 publication-title: Chem. Commun. – volume: 129 start-page: 2440 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 133 start-page: 19816 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 10653 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 52 start-page: 9668 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 21 start-page: 3311 year: 2011 publication-title: J. Mater. Chem. – volume: 5 start-page: 545 year: 2006 publication-title: Nat. Mater. – volume: 8 start-page: 1424 year: 2002 publication-title: Chem. –Eur. J. – volume: 34 start-page: 1670 year: 2013 publication-title: Macromol. Rap. Commun. – volume: 324 start-page: 1530 year: 2009 publication-title: Science – volume: 52 start-page: 3770 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 49 start-page: 562 year: 2014 publication-title: J. Mater. Sci. – volume: 4 start-page: 6102 year: 2012 publication-title: Nanoscale – volume: 1 start-page: 1143 year: 2012 publication-title: ACS Macro Letters – volume: 51 start-page: 12206 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 135 start-page: 14952 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 2485 year: 2012 publication-title: Polymer – volume: 5 start-page: 2010 year: 2014 publication-title: Polym. Chem. – volume: 46 start-page: 138 year: 2012 publication-title: Acc. Chem. Res. – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 42 start-page: 4532 year: 2013 publication-title: Chem. Soc. Rev. – volume: 39 start-page: 228 year: 2010 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 6815 year: 2013 publication-title: ACS App. Mater. & Inter. – volume: 113 start-page: 10038 year: 2009 publication-title: J. Phy. Chem. C – volume: 114 start-page: 4807 year: 2014 publication-title: Chem. Rev. – volume: 132 start-page: 132 year: 2010 publication-title: Micropor. Mesopor. Mat. – volume: 49 start-page: 7890 year: 2013 publication-title: Chem. Commun. – start-page: 651 year: 2001 publication-title: J. Chem. Soc., Perkin Trans. 2 – volume: 129 start-page: 6082 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 133 start-page: 12031 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 4 year: 2012 publication-title: Accounts of Chemical Research – volume: 52 start-page: 1235 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 52 start-page: 4845 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 134 start-page: 6401 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 709 year: 1992 publication-title: Angew. Chem. Int. Ed. – volume: 41 start-page: 666 year: 2012 publication-title: Chem. Soc. Rev. – volume: 135 start-page: 3576 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 37 start-page: 515 year: 2012 publication-title: Prog. Polym. Sci. – volume: 47 start-page: 161 year: 2013 publication-title: Macromolecules – volume: 48 start-page: 5864 year: 2009 publication-title: Angew. Chem. Int. Ed. – volume: 48 start-page: 7976 year: 2012 publication-title: Chem. Commun. – volume: 112 start-page: 6156 year: 2012 publication-title: Chem. Rev. – volume: 5 start-page: 487 year: 2010 publication-title: Nat. Nanotech. – volume: 2 start-page: 687 year: 2007 publication-title: Nat. Nanotechn. – volume: 26 start-page: 3081 year: 2014 publication-title: Adv. Mater. – volume: 25 start-page: 732 year: 2013 publication-title: Adv. Mater. – volume: 8 start-page: 563 year: 2014 publication-title: ACS Nano – volume: 11 start-page: 3113 year: 2011 publication-title: Nano Letters – volume: 52 start-page: 8713 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 3113 year: 2014 publication-title: Nat. Commun. – volume: 43 start-page: 291 year: 2014 publication-title: Chem. Soc. Rev. – volume: 130 start-page: 6678 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 68 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 37 start-page: 530 year: 2012 publication-title: Prog. Polym. Sci. – volume: 26 start-page: 1735 year: 2014 publication-title: Adv. Mater. – volume: 135 start-page: 14134 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 2185 year: 2014 publication-title: Adv. Mater. – volume: 7 start-page: 3014 year: 2013 publication-title: ACS Nano – volume: 135 start-page: 1386 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 3813 year: 2014 publication-title: Nat. Commun. – volume: 280 start-page: 1732 year: 1998 publication-title: Science – volume: 310 start-page: 1166 year: 2005 publication-title: Science – volume: 22 start-page: 8438 year: 2012 publication-title: J. Mater. Chem. – volume: 133 start-page: 7909 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 6157 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 827 year: 2013 publication-title: ACS Nano – volume: 132 start-page: 3762 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 18526 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 1539 year: 2010 publication-title: ACS Nano – volume: 51 start-page: 11814 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 6908 year: 2012 publication-title: Nanoscale – volume: 4 start-page: 2939 year: 2013 publication-title: Polym. Chem. – volume: 34 start-page: 1161 year: 2009 publication-title: Prog. Polym. Sci. – volume: 1 start-page: 2752 year: 2013 publication-title: J. Mater. Chem. A – start-page: 6919 year: 2009 publication-title: Chem. Commun. – volume: 467 start-page: 305 year: 2010 publication-title: Nature – volume: 133 start-page: 18760 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 1462 year: 2014 publication-title: Chem. Commun. – volume: 134 start-page: 5850 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 6010 year: 2012 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 3923 year: 2011 publication-title: ACS Nano – volume: 42 start-page: 6634 year: 2013 publication-title: Chem. Soc. Rev. – volume: 1 start-page: 2952 year: 2013 publication-title: J. Mater. Chem. C – volume: 135 start-page: 2156 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 36 start-page: 151 year: 2007 publication-title: Chem. Soc. Rev. – volume: 131 start-page: 1680 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 10477 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 1406 year: 2014 publication-title: Nanoscale – volume: 125 start-page: 10288 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 468 year: 1994 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 2057 year: 2014 publication-title: Polym. Chem. – volume: 15 start-page: 256 year: 2012 publication-title: Materials Today – volume: 5 start-page: 831 year: 2014 publication-title: Chem. Sci. – volume: 6 start-page: 106 year: 2014 publication-title: Nanoscale – volume: 127 start-page: 17090 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1421 year: 2014 publication-title: Small – volume: 131 start-page: 7216 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 3324 year: 2013 publication-title: Chem. –Eur. J. – volume: 21 start-page: 11862 year: 2011 publication-title: J. Mater. Chem. – volume: 26 start-page: 4093 year: 2014 publication-title: Adv. Mater. – volume: 51 start-page: 2623 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 48 start-page: 1030 year: 2009 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 4157 year: 2014 publication-title: Nanoscale – volume: 51 start-page: 4606 year: 1995 publication-title: Phys. Rev. B (Condensed Matter) – volume: 8 start-page: 76 year: 2009 publication-title: Nat. Mater. – volume: 22 start-page: 1731 year: 2010 publication-title: Adv. Mater. – volume: 52 start-page: 13052 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 287 year: 2012 publication-title: Nat. Chem. – volume: 22 start-page: 2202 year: 2010 publication-title: Adv. Mater. – volume: 42 start-page: 548 year: 2013 publication-title: Chem. Soc. Rev. – volume: 29 start-page: 4456 year: 2009 publication-title: Chem. Commun. – volume: 321 start-page: 385 year: 2008 publication-title: Science – volume: 4 start-page: 1237 year: 2008 publication-title: Soft Matter – volume: 44 start-page: 464011 year: 2011 publication-title: J. Phy. D‐Appl. Phy. – volume: 49 start-page: 3925 year: 2013 publication-title: Chem. Commun. – volume: 21 start-page: 3875 year: 2011 publication-title: Adv. Funct. Mater. – volume: 46 start-page: 181 year: 2012 publication-title: Acc. Chem. Res. – volume: 46 start-page: 87 year: 2012 publication-title: Acc. Chem. Res. – volume: 479 start-page: 338 year: 2011 publication-title: Nature – volume: 50 start-page: 7879 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 183 year: 2007 publication-title: Nat. Mater. – volume: 5 start-page: 3313 year: 2014 publication-title: Nat. Commun. – volume: 47 start-page: 5524 year: 2008 publication-title: Angew. Chem. Int. Ed. – volume: 37 start-page: 1805 year: 2012 publication-title: Prog. Polym. Sci. – volume: 131 start-page: 6111 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 474 start-page: 367 year: 2011 publication-title: Nature – volume: 131 start-page: 5376 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 996 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 488 start-page: 627 year: 2012 publication-title: Nature – volume: 4 start-page: 2681 year: 2013 publication-title: Nat. Commun. – volume: 30 start-page: 952 year: 2005 publication-title: MRS Bulletin – volume: 131 start-page: 13248 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 24992 year: 2012 publication-title: J. Mater. Chem. – volume: 49 start-page: 4795 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 44 start-page: 4731 year: 2005 publication-title: Angew. Chem. Int. Ed. – volume: 23 start-page: 3575 year: 2011 publication-title: Adv. Mater. – volume: 41 start-page: 4688 year: 2012 publication-title: Chem. Soc. Rev. – volume: 23 start-page: 5574 year: 2011 publication-title: Adv. Mater. – volume: 4 start-page: 5304 year: 2012 publication-title: Nanoscale – volume: 50 start-page: 5339 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 19 start-page: 3878 year: 2007 end-page: 3881 publication-title: Adv. Mater. – ident: e_1_2_9_156_1 doi: 10.1016/j.polymer.2012.03.012 – ident: e_1_2_9_140_1 doi: 10.1021/ar300172h – ident: e_1_2_9_105_1 doi: 10.1021/ja404351p – ident: e_1_2_9_25_1 doi: 10.1039/c2cs35474h – ident: e_1_2_9_12_1 doi: 10.1002/adma.201304964 – ident: e_1_2_9_38_1 doi: 10.1039/C3NR04791A – ident: e_1_2_9_115_1 doi: 10.1002/chem.201203753 – ident: e_1_2_9_78_1 doi: 10.1038/nnano.2007.346 – ident: e_1_2_9_60_1 doi: 10.1038/nmat2317 – ident: e_1_2_9_19_1 doi: 10.1039/C2CS35396B – ident: e_1_2_9_35_1 doi: 10.1126/science.1158877 – ident: e_1_2_9_194_1 doi: 10.1002/anie.201210373 – ident: e_1_2_9_33_1 doi: 10.1038/nnano.2010.89 – ident: e_1_2_9_10_1 doi: 10.1038/ncomms3431 – ident: e_1_2_9_64_1 doi: 10.1021/cm303751n – ident: e_1_2_9_154_1 doi: 10.1039/C3PY01503C – ident: e_1_2_9_108_1 doi: 10.1038/nchem.1628 – ident: e_1_2_9_200_1 doi: 10.1039/b718131k – ident: e_1_2_9_174_1 doi: 10.1002/anie.200500980 – ident: e_1_2_9_66_1 doi: 10.1002/anie.201206699 – ident: e_1_2_9_169_1 doi: 10.1002/cphc.201300444 – ident: e_1_2_9_177_1 doi: 10.1002/adma.201400056 – ident: e_1_2_9_15_1 doi: 10.1038/srep02086 – ident: e_1_2_9_168_1 doi: 10.1021/jp901357t – ident: e_1_2_9_11_1 doi: 10.1021/cr400600f – ident: e_1_2_9_95_1 doi: 10.1002/anie.200902365 – ident: e_1_2_9_196_1 doi: 10.1021/ja9083946 – ident: e_1_2_9_206_1 doi: 10.1021/ja210725p – ident: e_1_2_9_199_1 doi: 10.1021/mz300367p – ident: e_1_2_9_84_1 doi: 10.1039/c3cc40444g – ident: e_1_2_9_90_1 doi: 10.1021/ja300593w – ident: e_1_2_9_70_1 doi: 10.1002/anie.199304061 – ident: e_1_2_9_100_1 doi: 10.1021/ja00124a005 – ident: e_1_2_9_183_1 doi: 10.1021/ja068250o – ident: e_1_2_9_119_1 doi: 10.1021/ja4017842 – ident: e_1_2_9_209_1 doi: 10.1039/c3cc43670e – ident: e_1_2_9_91_1 doi: 10.1021/ja900499b – ident: e_1_2_9_44_1 doi: 10.1021/nn9018762 – ident: e_1_2_9_57_1 doi: 10.1039/c3ta13768f – ident: e_1_2_9_53_1 doi: 10.1021/ja308249k – ident: e_1_2_9_182_1 doi: 10.1002/adma.201200578 – ident: e_1_2_9_71_1 doi: 10.1002/anie.199404681 – ident: e_1_2_9_81_1 doi: 10.1021/ja107947z – ident: e_1_2_9_134_1 doi: 10.1002/anie.201001634 – ident: e_1_2_9_159_1 doi: 10.1039/C3PY01581E – ident: e_1_2_9_8_1 doi: 10.1038/nchem.1589 – ident: e_1_2_9_153_1 doi: 10.1002/adma.200903469 – ident: e_1_2_9_130_1 doi: 10.1039/c2cc32187d – ident: e_1_2_9_76_1 doi: 10.1039/c0cc01810d – ident: e_1_2_9_36_1 doi: 10.1038/nmat1849 – ident: e_1_2_9_180_1 doi: 10.1039/B906115K – ident: e_1_2_9_114_1 doi: 10.1126/science.1120411 – ident: e_1_2_9_109_1 doi: 10.1039/c2cs35157a – ident: e_1_2_9_92_1 doi: 10.1021/ja201389u – ident: e_1_2_9_157_1 doi: 10.1002/adma.201202736 – ident: e_1_2_9_205_1 doi: 10.1039/c2jm34517j – ident: e_1_2_9_191_1 doi: 10.1021/ja071394y – ident: e_1_2_9_138_1 doi: 10.1002/anie.201306871 – ident: e_1_2_9_127_1 doi: 10.1021/ja901725v – ident: e_1_2_9_162_1 doi: 10.1002/anie.201100669 – ident: e_1_2_9_106_1 doi: 10.1002/anie.201107070 – ident: e_1_2_9_22_1 doi: 10.1039/c2nr31167d – ident: e_1_2_9_1_1 doi: 10.1002/anie.200801863 – ident: e_1_2_9_30_1 doi: 10.1126/science.1157996 – ident: e_1_2_9_52_1 doi: 10.1039/c3nr06744k – ident: e_1_2_9_149_1 doi: 10.1021/ja902116f – ident: e_1_2_9_161_1 doi: 10.1039/c2nr31074k – ident: e_1_2_9_165_1 doi: 10.1021/ja312567v – ident: e_1_2_9_124_1 doi: 10.1021/ja206242v – ident: e_1_2_9_203_1 doi: 10.1016/j.progpolymsci.2009.06.003 – ident: e_1_2_9_132_1 doi: 10.1002/anie.201304496 – ident: e_1_2_9_141_1 doi: 10.1021/ar300116q – ident: e_1_2_9_18_1 doi: 10.1039/c2cs35043b – ident: e_1_2_9_31_1 doi: 10.1038/nature10680 – ident: e_1_2_9_37_1 doi: 10.1002/anie.201003024 – ident: e_1_2_9_46_1 doi: 10.1103/PhysRevB.51.4606 – ident: e_1_2_9_120_1 doi: 10.1021/ja206846p – ident: e_1_2_9_144_1 doi: 10.1039/c3cs60044k – ident: e_1_2_9_179_1 doi: 10.1039/C3CC49343A – ident: e_1_2_9_6_1 doi: 10.1038/ncomms4313 – ident: e_1_2_9_189_1 doi: 10.1002/anie.200703238 – ident: e_1_2_9_51_1 doi: 10.1002/anie.201101182 – ident: e_1_2_9_126_1 doi: 10.1039/C3CC48065H – ident: e_1_2_9_23_1 doi: 10.1126/science.1194975 – ident: e_1_2_9_82_1 doi: 10.1021/nn200393q – ident: e_1_2_9_171_1 doi: 10.1002/adma.201304562 – ident: e_1_2_9_93_1 doi: 10.1038/nmat1659 – ident: e_1_2_9_117_1 doi: 10.1039/B616752G – ident: e_1_2_9_68_1 doi: 10.1038/nchem.1628 – ident: e_1_2_9_163_1 doi: 10.1002/marc.201300624 – ident: e_1_2_9_21_1 doi: 10.1016/j.progpolymsci.2011.08.003 – ident: e_1_2_9_80_1 doi: 10.1039/b915190g – ident: e_1_2_9_55_1 doi: 10.1021/am401802r – ident: e_1_2_9_3_1 doi: 10.1002/anie.201301548 – ident: e_1_2_9_158_1 doi: 10.1007/s10853-013-7736-4 – ident: e_1_2_9_190_1 doi: 10.1039/c2cs35115c – ident: e_1_2_9_121_1 doi: 10.1038/ncomms3736 – ident: e_1_2_9_166_1 doi: 10.1002/anie.201208501 – ident: e_1_2_9_49_1 doi: 10.1103/PhysRevLett.83.2406 – ident: e_1_2_9_85_1 doi: 10.1021/ja108628r – ident: e_1_2_9_148_1 doi: 10.1002/anie.201306775 – ident: e_1_2_9_54_1 doi: 10.1002/adma.201204453 – ident: e_1_2_9_173_1 doi: 10.1039/b800737c – ident: e_1_2_9_73_1 doi: 10.1126/science.280.5370.1732 – ident: e_1_2_9_112_1 doi: 10.1016/j.progpolymsci.2011.09.002 – ident: e_1_2_9_63_1 doi: 10.1002/anie.201206534 – ident: e_1_2_9_34_1 doi: 10.1016/j.bios.2011.05.039 – ident: e_1_2_9_58_1 doi: 10.1002/anie.201101182 – ident: e_1_2_9_97_1 doi: 10.1002/anie.199207091 – ident: e_1_2_9_98_1 doi: 10.1021/ja906475w – ident: e_1_2_9_96_1 doi: 10.1021/ja00453a066 – ident: e_1_2_9_101_1 doi: 10.1021/cm403028b – ident: e_1_2_9_39_1 doi: 10.1038/nature11458 – ident: e_1_2_9_139_1 doi: 10.1021/ar300138e – ident: e_1_2_9_197_1 doi: 10.1021/ma4021483 – ident: e_1_2_9_192_1 doi: 10.1002/anie.200900079 – ident: e_1_2_9_20_1 doi: 10.1016/j.progpolymsci.2012.08.001 – ident: e_1_2_9_75_1 doi: 10.1039/b906836h – ident: e_1_2_9_131_1 doi: 10.1021/ja408243n – ident: e_1_2_9_170_1 doi: 10.1002/adfm.201101001 – ident: e_1_2_9_5_1 doi: 10.1038/nnano.2010.235 – ident: e_1_2_9_48_1 doi: 10.1038/ncomms3681 – ident: e_1_2_9_59_1 doi: 10.1039/c3ta01523h – ident: e_1_2_9_72_1 doi: 10.1126/science.1165429 – ident: e_1_2_9_103_1 doi: 10.1021/ja4002019 – ident: e_1_2_9_129_1 doi: 10.1002/smll.201002264 – ident: e_1_2_9_151_1 doi: 10.1039/C0JM02319A – ident: e_1_2_9_4_1 doi: 10.1039/c3tc00710c – ident: e_1_2_9_204_1 doi: 10.1039/c2cs35107b – ident: e_1_2_9_118_1 doi: 10.1002/anie.201306775 – ident: e_1_2_9_176_1 doi: 10.1039/B920623J – ident: e_1_2_9_175_1 doi: 10.1002/anie.201004245 – ident: e_1_2_9_43_1 doi: 10.1039/c1jm11192b – ident: e_1_2_9_67_1 doi: 10.1038/ncomms4113 – ident: e_1_2_9_88_1 doi: 10.1021/ja2056193 – ident: e_1_2_9_187_1 doi: 10.1021/ja0553912 – ident: e_1_2_9_181_1 doi: 10.1039/c3sc52342j – ident: e_1_2_9_83_1 doi: 10.1021/ja800906f – ident: e_1_2_9_208_1 doi: 10.1021/ja3091643 – ident: e_1_2_9_107_1 doi: 10.1039/b008495f – ident: e_1_2_9_17_1 doi: 10.1021/cr3000412 – ident: e_1_2_9_164_1 doi: 10.1021/ja312380b – ident: e_1_2_9_123_1 doi: 10.1002/anie.201300256 – ident: e_1_2_9_116_1 doi: 10.1021/ja204728y – ident: e_1_2_9_133_1 doi: 10.1002/adma.201305040 – ident: e_1_2_9_86_1 doi: 10.1021/ja311890n – ident: e_1_2_9_40_1 doi: 10.1016/S1369-7021(12)70116-5 – ident: e_1_2_9_41_1 doi: 10.1039/c2nr32201c – ident: e_1_2_9_110_1 doi: 10.1039/c3cc00039g – ident: e_1_2_9_137_1 doi: 10.1002/anie.201100170 – ident: e_1_2_9_27_1 doi: 10.1039/B917103G – ident: e_1_2_9_147_1 doi: 10.1002/anie.201006664 – ident: e_1_2_9_143_1 doi: 10.1039/C1CS15078B – ident: e_1_2_9_29_1 doi: 10.1038/nphoton.2010.186 – ident: e_1_2_9_94_1 doi: 10.1002/anie.200803846 – ident: e_1_2_9_122_1 doi: 10.1126/science.1120411 – ident: e_1_2_9_56_1 doi: 10.1039/C3NR04759H – ident: e_1_2_9_74_1 doi: 10.1088/0022-3727/44/46/464011 – ident: e_1_2_9_50_1 doi: 10.1038/nature11408 – ident: e_1_2_9_150_1 doi: 10.1039/c3py00164d – ident: e_1_2_9_2_1 doi: 10.1002/adma.201103241 – ident: e_1_2_9_16_1 doi: 10.1021/cr300115g – ident: e_1_2_9_160_1 doi: 10.1021/ja4086935 – ident: e_1_2_9_111_1 doi: 10.1021/cr200440z – ident: e_1_2_9_26_1 doi: 10.1039/C1CS15193B – ident: e_1_2_9_135_1 doi: 10.1002/adma.201103042 – ident: e_1_2_9_113_1 doi: 10.1039/C2CS35072F – ident: e_1_2_9_9_1 doi: 10.1002/anie.201304337 – ident: e_1_2_9_79_1 doi: 10.1039/c3sc50800e – ident: e_1_2_9_184_1 doi: 10.1002/anie.200905678 – ident: e_1_2_9_201_1 doi: 10.1557/mrs2005.249 – ident: e_1_2_9_207_1 doi: 10.1021/nn405148t – ident: e_1_2_9_7_1 doi: 10.1038/ncomms4813 – ident: e_1_2_9_87_1 doi: 10.1021/ja200661s – ident: e_1_2_9_195_1 doi: 10.1038/nmat2742 – ident: e_1_2_9_69_1 doi: 10.1002/1521-3765(20020315)8:6<1424::AID-CHEM1424>3.0.CO;2-Z – ident: e_1_2_9_202_1 doi: 10.1002/adma.200502651 – ident: e_1_2_9_89_1 doi: 10.1021/ja308480x – ident: e_1_2_9_65_1 doi: 10.1002/adma.200903436 – ident: e_1_2_9_152_1 doi: 10.1039/c2jm16552j – ident: e_1_2_9_99_1 doi: 10.1126/science.259.5091.59 – ident: e_1_2_9_167_1 doi: 10.1002/anie.201302894 – ident: e_1_2_9_32_1 doi: 10.1038/nature09405 – ident: e_1_2_9_145_1 doi: 10.1038/nature10125 – ident: e_1_2_9_172_1 doi: 10.1002/adma.200701057 – ident: e_1_2_9_61_1 doi: 10.1021/ja0357689 – ident: e_1_2_9_188_1 doi: 10.1021/nn405492d – ident: e_1_2_9_210_1 doi: 10.1002/smll.201302730 – ident: e_1_2_9_28_1 doi: 10.1038/nmat3064 – ident: e_1_2_9_14_1 doi: 10.1126/science.1102896 – ident: e_1_2_9_198_1 doi: 10.1002/anie.201210090 – ident: e_1_2_9_211_1 doi: 10.1021/ja5017156 – ident: e_1_2_9_125_1 doi: 10.1016/j.micromeso.2010.02.010 – ident: e_1_2_9_45_1 doi: 10.1126/science.1246137 – ident: e_1_2_9_47_1 doi: 10.1021/nl2011142 – ident: e_1_2_9_142_1 doi: 10.1021/ar300121q – ident: e_1_2_9_193_1 doi: 10.1021/ja400160j – ident: e_1_2_9_178_1 doi: 10.1002/anie.200904215 – ident: e_1_2_9_102_1 doi: 10.1039/C3SC52346B – ident: e_1_2_9_186_1 doi: 10.1021/ja901357h – ident: e_1_2_9_155_1 doi: 10.1002/macp.201200029 – ident: e_1_2_9_128_1 doi: 10.1126/science.1202747 – ident: e_1_2_9_42_1 doi: 10.1103/PhysRevB.80.195411 – ident: e_1_2_9_136_1 doi: 10.1002/adma.201101599 – ident: e_1_2_9_24_1 doi: 10.1039/C3CS60303B – ident: e_1_2_9_62_1 doi: 10.1021/ja809307s – ident: e_1_2_9_13_1 doi: 10.1021/ar300047s – ident: e_1_2_9_185_1 doi: 10.1039/C1CC14937G – ident: e_1_2_9_146_1 doi: 10.1002/anie.201105104 – ident: e_1_2_9_104_1 doi: 10.1038/nchem.1265 – ident: e_1_2_9_77_1 doi: 10.1021/nn400337v |
| SSID | ssj0009606 |
| Score | 2.6234732 |
| SecondaryResourceType | review_article |
| Snippet | The discovery of graphene has triggered great interest in two‐dimensional (2D) nanomaterials for scientists in chemistry, physics, materials science, and... The discovery of graphene has triggered great interest in two-dimensional (2D) nanomaterials for scientists in chemistry, physics, materials science, and... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 403 |
| SubjectTerms | Covalence Energy storage Graphene Materials science Nanomaterials Nanostructure Polymers self-assembly soft materials supramolecular structures Synthesis Two dimensional |
| Title | Two-Dimensional Soft Nanomaterials: A Fascinating World of Materials |
| URI | https://api.istex.fr/ark:/67375/WNG-HK66S7C9-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201401857 https://www.ncbi.nlm.nih.gov/pubmed/25155302 https://www.proquest.com/docview/1652393140 https://www.proquest.com/docview/1660043857 |
| Volume | 27 |
| WOSCitedRecordID | wos000348031800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB7Bbg_l0EIpdPuDjITak0XiJI7NbcU2IBVWiJ92b5addRACJWgXWo48Qp-RJ-nY2Q2sVIpUbok0saPxjOezx_4GYMPkCKMLnlCLYJvGstDUBNZSLaRJMaQlxt_w_r6X9vtiMJAHD27x1_wQzYab8ww_XzsH12a8eU8aqoeeN8gtEESSzkObofHGLWj3DrOTvXviXe7ra7p8H5U8FlPixoBtzrYwE5jaTsc3f0OdsyDWR6Hs9fP_fxFeTRAo6dYmswRztnwDCw94CZchO_5V3d3-7jnm_5q1gxzhdE1wKq4Q4dZGu0W6JNMYQd1-YnlK_LEcUhVkfyrxFk6yr8fbu3RScIHmHBcWNI50VLjEZRIOZW6MsGlgEDBqGRZhYAMdWhxAG9lQmqFgRmiNoc2IoRFCs9BGK9Aqq9K-A2IijvEx1mkQ6Bghi7v_yiIT4Xosz6VlHaBTbat8wkbuimJcqJpHmSmnH9XopwNfGvnLmofjUcnPfvAaMT06d6fX0kT96O-o3W-cH6XbUokOrE9HV6FPuUSJLm11PVYhTxwzHDb4Lxnus6iuw9XaNJoeWVJXY-oA8xbwxB-rbm-_27y9_5-PPsBLfHbHMCkLP0LranRtP8GL_OfV2Xi0BvPpQKxNPOMPkH0KXQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB5BiwQceC5LeRoJwcnaxEkcm1u1JRRtWyG2C3uz7NRZrUDJqvviyE_gN_JLmEnSLJV4SIhjoomTjGc8n-3xNwDPXY4wupAJ9wi2eawLy13gPbdKuxRDWuLqE94fJulspvb39bs2m5DOwjT8EN2CG3lGPV6Tg9OC9NYFa6hd1MRBNENQSXoZ-jHaUtKD_uh9tje5YN6VdYFN2vDjWsZqxdwYiK31FtYiU5-U_OVXsHMdxdZhKLv5H37gFtxoMSgbNkZzGy758g5c_4mZ8C5k8_Pq-9dvI-L-b3g72C4O2AwH4woxbmO2r9iQZRZjKK0olgesTsxhVcGmK4kN2Mtez7fHvC25wHOJUwseRzYqaOsyCRc6d075NHAIGa0OizDwgQ09dqGPfKjdQgmnrMXg5tTCKWVF6KN70Cur0t8H5iKJETK2aRDYGEELnYAVkYtwRpbn2osB8JW6Td7ykVNZjM-mYVIWhvRjOv0M4GUnf9QwcfxW8kXde52YXX6i_LU0MR9nb8x4R8rddFsbNYBnq-416FW0VWJLX50em1AmxA2HDf5JRtb7qPTCzcY2ujeKpKnHNABRm8BfvtgMR9Nhd_XgXx56ClfH8-nETN7Odh7CNbxPSZlchI-gd7I89Y_hSn52cni8fNI6yA9IcQ1l |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BFyE48CywPI2E4GQ1cRLH5rbqEoq6XVW0hd4sO3EQAiXVtgWO_AR-I7-EGSebshIPCXFMNHGS8Yzns2f8GeCJKxFG1zLjHsE2T3VtuYu851Zpl2NIy1zY4f1mls_n6vBQ7_bVhLQXpuOHGBbcyDPCeE0O7o-qeuOMNdRWgTiIZggqy8_DKM20RN8cTV8XB7Mz5l0ZDtikhB_XMlVL5sZIbKy2sBKZRqTkL7-CnasoNoSh4up_-IFrcKXHoGzSGc11OOebG3D5J2bCm1Dsf26_f_02Je7_jreD7eGAzXAwbhHjdmb7nE1YYTGG0opi846FwhzW1mxnKbEOB8WL_c0t3h-5wEuJUwueJjapKXWZxZUunVM-jxxCRqvjOo58ZGOPXegTH2tXKeGUtRjcnKqcUlbEPrkFa03b-DvAXCIxQqY2jyKbImihHbAicQnOyMpSezEGvlS3KXs-cjoW46PpmJSFIf2YQT9jeDbIH3VMHL-VfBp6bxCziw9Uv5Zn5u38pdnalnIv39RGjeHxsnsNehWlSmzj29NjE8uMuOGwwT_JyJBHpRfe7mxjeKPIuvOYxiCCCfzli81kujMZru7-y0OP4OLutDCzV_Pte3AJb1NNJhfxfVg7WZz6B3Ch_HTy_njxsPePH73gDOA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-dimensional+soft+nanomaterials%3A+a+fascinating+world+of+materials&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhuang%2C+Xiaodong&rft.au=Mai%2C+Yiyong&rft.au=Wu%2C+Dongqing&rft.au=Zhang%2C+Fan&rft.date=2015-01-21&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=27&rft.issue=3&rft.spage=403&rft_id=info:doi/10.1002%2Fadma.201401857&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |