Genetic diversity and population structure in the US Upland cotton (Gossypium hirsutum L.)
KEY MESSAGE : Genetic diversity and population structure in the US Upland cotton was established and core sets of allelic richness were identified for developing association mapping populations in cotton. Elite plant breeding programs could likely benefit from the unexploited standing genetic variat...
Saved in:
| Published in: | Theoretical and applied genetics Vol. 127; no. 2; pp. 283 - 295 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer-Verlag
01.02.2014
Springer Berlin Heidelberg Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 0040-5752, 1432-2242, 1432-2242 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | KEY MESSAGE : Genetic diversity and population structure in the US Upland cotton was established and core sets of allelic richness were identified for developing association mapping populations in cotton. Elite plant breeding programs could likely benefit from the unexploited standing genetic variation of obsolete cultivars without the yield drag typically associated with wild accessions. A set of 381 accessions comprising 378 Upland (Gossypium hirsutum L.) and 3 G. barbadense L. accessions of the United States cotton belt were genotyped using 120 genome-wide SSR markers to establish the genetic diversity and population structure in tetraploid cotton. These accessions represent more than 100 years of Upland cotton breeding in the United States. Genetic diversity analysis identified a total of 546 alleles across 141 marker loci. Twenty-two percent of the alleles in Upland accessions were unique, specific to a single accession. Population structure analysis revealed extensive admixture and identified five subgroups corresponding to Southeastern, Midsouth, Southwest, and Western zones of cotton growing areas in the United States, with the three accessions of G. barbadense forming a separate cluster. Phylogenetic analysis supported the subgroups identified by STRUCTURE. Average genetic distance between G. hirsutum accessions was 0.195 indicating low levels of genetic diversity in Upland cotton germplasm pool. The results from both population structure and phylogenetic analysis were in agreement with pedigree information, although there were a few exceptions. Further, core sets of different sizes representing different levels of allelic richness in Upland cotton were identified. Establishment of genetic diversity, population structure, and identification of core sets from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in Upland cotton. |
|---|---|
| AbstractList | Key message Genetic diversity and population structure in the US Upland cotton was established and core sets of allelic richness were identified for developing association mapping populations in cotton. elite plant breeding programs could likely benefit from the unexploited standing genetic variation of obsolete cultivars without the yield drag typically associated with wild accessions. A set of 381 accessions comprising 378 Upland (Gossypium hirsutum L.) and 3 G. barbadense L. accessions of the United States cotton belt were genotyped using 120 genome-wide SSR markers to establish the genetic diversity and population structure in tetraploid cotton. These accessions represent more than 100 years of Upland cotton breeding in the United States. Genetic diversity analysis identified a total of 546 alleles across 141 marker loci. Twenty-two percent of the alleles in Upland accessions were unique, specific to a single accession. Population structure analysis revealed extensive admixture and identified five subgroups corresponding to Southeastern, Midsouth, Southwest, and Western zones of cotton growing areas in the United States, with the three accessions of G. barbadense forming a separate cluster. Phylogenetic analysis supported the subgroups identified by STRUCTURE. Average genetic distance between G. hirsutum accessions was 0.195 indicating low levels of genetic diversity in Upland cotton germplasm pool. The results from both population structure and phylogenetic analysis were in agreement with pedigree information, although there were a few exceptions. Further, core sets of different sizes representing different levels of allelic richness in Upland cotton were identified. Establishment of genetic diversity, population structure, and identification of core sets from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in Upland cotton. Genetic diversity and population structure in the US Upland cotton was established and core sets of allelic richness were identified for developing association mapping populations in cotton. Elite plant breeding programs could likely benefit from the unexploited standing genetic variation of obsolete cultivars without the yield drag typically associated with wild accessions. A set of 381 accessions comprising 378 Upland (Gossypium hirsutum L.) and 3 G. barbadense L. accessions of the United States cotton belt were genotyped using 120 genome-wide SSR markers to establish the genetic diversity and population structure in tetraploid cotton. These accessions represent more than 100 years of Upland cotton breeding in the United States. Genetic diversity analysis identified a total of 546 alleles across 141 marker loci. Twenty-two percent of the alleles in Upland accessions were unique, specific to a single accession. Population structure analysis revealed extensive admixture and identified five subgroups corresponding to Southeastern, Midsouth, Southwest, and Western zones of cotton growing areas in the United States, with the three accessions of G. barbadense forming a separate cluster. Phylogenetic analysis supported the subgroups identified by STRUCTURE. Average genetic distance between G. hirsutum accessions was 0.195 indicating low levels of genetic diversity in Upland cotton germplasm pool. The results from both population structure and phylogenetic analysis were in agreement with pedigree information, although there were a few exceptions. Further, core sets of different sizes representing different levels of allelic richness in Upland cotton were identified. Establishment of genetic diversity, population structure, and identification of core sets from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in Upland cotton.[PUBLICATION ABSTRACT] Genetic diversity and population structure in the US Upland cotton was established and core sets of allelic richness were identified for developing association mapping populations in cotton. Elite plant breeding programs could likely benefit from the unexploited standing genetic variation of obsolete cultivars without the yield drag typically associated with wild accessions. A set of 381 accessions comprising 378 Upland (Gossypium hirsutum L.) and 3 G. barbadense L. accessions of the United States cotton belt were genotyped using 120 genome-wide SSR markers to establish the genetic diversity and population structure in tetraploid cotton. These accessions represent more than 100 years of Upland cotton breeding in the United States. Genetic diversity analysis identified a total of 546 alleles across 141 marker loci. Twenty-two percent of the alleles in Upland accessions were unique, specific to a single accession. Population structure analysis revealed extensive admixture and identified five subgroups corresponding to Southeastern, Midsouth, Southwest, and Western zones of cotton growing areas in the United States, with the three accessions of G. barbadense forming a separate cluster. Phylogenetic analysis supported the subgroups identified by STRUCTURE. Average genetic distance between G. hirsutum accessions was 0.195 indicating low levels of genetic diversity in Upland cotton germplasm pool. The results from both population structure and phylogenetic analysis were in agreement with pedigree information, although there were a few exceptions. Further, core sets of different sizes representing different levels of allelic richness in Upland cotton were identified. Establishment of genetic diversity, population structure, and identification of core sets from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in Upland cotton. Key message : Genetic diversity and population structure in the US Upland cotton was established and core sets of allelic richness were identified for developing association mapping populations in cotton. Abstract: Elite plant breeding programs could likely benefit from the unexploited standing genetic variation of obsolete cultivars without the yield drag typically associated with wild accessions. A set of 381 accessions comprising 378 Upland (Gossypium hirsutum L.) and 3 G. barbadense L. accessions of the United States cotton belt were genotyped using 120 genome-wide SSR markers to establish the genetic diversity and population structure in tetraploid cotton. These accessions represent more than 100 years of Upland cotton breeding in the United States. Genetic diversity analysis identified a total of 546 alleles across 141 marker loci. Twenty-two percent of the alleles in Upland accessions were unique, specific to a single accession. Population structure analysis revealed extensive admixture and identified five subgroups corresponding to Southeastern, Midsouth, Southwest, and Western zones of cotton growing areas in the United States, with the three accessions of G. barbadense forming a separate cluster. Phylogenetic analysis supported the subgroups identified by STRUCTURE. Average genetic distance between G. hirsutum accessions was 0.195 indicating low levels of genetic diversity in Upland cotton germplasm pool. The results from both population structure and phylogenetic analysis were in agreement with pedigree information, although there were a few exceptions. Further, core sets of different sizes representing different levels of allelic richness in Upland cotton were identified. Establishment of genetic diversity, population structure, and identification of core sets from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in Upland cotton. Key message Genetic diversity and population structure in the US Upland cotton was established and core sets of allelic richness were identified for developing association mapping populations in cotton. Elite plant breeding programs could likely benefit from the unexploited standing genetic variation of obsolete cultivars without the yield drag typically associated with wild accessions. A set of 381 accessions comprising 378 Upland ( Gossypium hirsutum L.) and 3 G. barbadense L. accessions of the United States cotton belt were genotyped using 120 genome-wide SSR markers to establish the genetic diversity and population structure in tetraploid cotton. These accessions represent more than 100 years of Upland cotton breeding in the United States. Genetic diversity analysis identified a total of 546 alleles across 141 marker loci. Twenty-two percent of the alleles in Upland accessions were unique, specific to a single accession. Population structure analysis revealed extensive admixture and identified five subgroups corresponding to Southeastern, Midsouth, Southwest, and Western zones of cotton growing areas in the United States, with the three accessions of G. barbadense forming a separate cluster. Phylogenetic analysis supported the subgroups identified by STRUCTURE. Average genetic distance between G. hirsutum accessions was 0.195 indicating low levels of genetic diversity in Upland cotton germplasm pool. The results from both population structure and phylogenetic analysis were in agreement with pedigree information, although there were a few exceptions. Further, core sets of different sizes representing different levels of allelic richness in Upland cotton were identified. Establishment of genetic diversity, population structure, and identification of core sets from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in Upland cotton. Genetic diversity and population structure in the US Upland cotton was established and core sets of allelic richness were identified for developing association mapping populations in cotton. Elite plant breeding programs could likely benefit from the unexploited standing genetic variation of obsolete cultivars without the yield drag typically associated with wild accessions. A set of 381 accessions comprising 378 Upland (Gossypium hirsutum L.) and 3 G. barbadense L. accessions of the United States cotton belt were genotyped using 120 genome-wide SSR markers to establish the genetic diversity and population structure in tetraploid cotton. These accessions represent more than 100 years of Upland cotton breeding in the United States. Genetic diversity analysis identified a total of 546 alleles across 141 marker loci. Twenty-two percent of the alleles in Upland accessions were unique, specific to a single accession. Population structure analysis revealed extensive admixture and identified five subgroups corresponding to Southeastern, Midsouth, Southwest, and Western zones of cotton growing areas in the United States, with the three accessions of G. barbadense forming a separate cluster. Phylogenetic analysis supported the subgroups identified by STRUCTURE. Average genetic distance between G. hirsutum accessions was 0.195 indicating low levels of genetic diversity in Upland cotton germplasm pool. The results from both population structure and phylogenetic analysis were in agreement with pedigree information, although there were a few exceptions. Further, core sets of different sizes representing different levels of allelic richness in Upland cotton were identified. Establishment of genetic diversity, population structure, and identification of core sets from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in Upland cotton.KEY MESSAGEGenetic diversity and population structure in the US Upland cotton was established and core sets of allelic richness were identified for developing association mapping populations in cotton. Elite plant breeding programs could likely benefit from the unexploited standing genetic variation of obsolete cultivars without the yield drag typically associated with wild accessions. A set of 381 accessions comprising 378 Upland (Gossypium hirsutum L.) and 3 G. barbadense L. accessions of the United States cotton belt were genotyped using 120 genome-wide SSR markers to establish the genetic diversity and population structure in tetraploid cotton. These accessions represent more than 100 years of Upland cotton breeding in the United States. Genetic diversity analysis identified a total of 546 alleles across 141 marker loci. Twenty-two percent of the alleles in Upland accessions were unique, specific to a single accession. Population structure analysis revealed extensive admixture and identified five subgroups corresponding to Southeastern, Midsouth, Southwest, and Western zones of cotton growing areas in the United States, with the three accessions of G. barbadense forming a separate cluster. Phylogenetic analysis supported the subgroups identified by STRUCTURE. Average genetic distance between G. hirsutum accessions was 0.195 indicating low levels of genetic diversity in Upland cotton germplasm pool. The results from both population structure and phylogenetic analysis were in agreement with pedigree information, although there were a few exceptions. Further, core sets of different sizes representing different levels of allelic richness in Upland cotton were identified. Establishment of genetic diversity, population structure, and identification of core sets from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in Upland cotton. Key message Genetic diversity and population structure in the US Upland cotton was established and core sets of allelic richness were identified for developing association mapping populations in cotton. |
| Audience | Academic |
| Author | Gore, Michael A Udall, Joshua A Tyagi, Priyanka Bowman, Daryl T Campbell, B. Todd Kuraparthy, Vasu |
| Author_xml | – sequence: 1 fullname: Tyagi, Priyanka – sequence: 2 fullname: Gore, Michael A – sequence: 3 fullname: Bowman, Daryl T – sequence: 4 fullname: Campbell, B. Todd – sequence: 5 fullname: Udall, Joshua A – sequence: 6 fullname: Kuraparthy, Vasu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24170350$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNksFv0zAUxi00xLrBH8AFInHZDinv2UkcH6cJyqRKSJReuFiu43Se0iTYzkT_exyyCTqhgnyw_fT7Pj0_f2fkpO1aQ8hrhDkC8PceAClNAVlKKfKUPSMzzBiNt4yekBlABmnOc3pKzry_AwCaA3tBTmmGHFgOM_JtYVoTrE4qe2-ct2GfqLZK-q4fGhVs1yY-uEGHwZnEtkm4Ncl6laz7ZqR0F0IkLhad9_veDrvk1jo_hHhYzi9fkue1arx59bCfk_XHD1-vP6XLz4ub66tlqouch3SDOYqiEHSjOFZAVVVzMFjGMs9MWQpmdKFVlm9KKihjVGvBeKUQa0qNouycXEy-veu-D8YHubNemya2aLrBy2iUMVGU4n_QONYiK5H9G80E5VhAjhF99wS96wbXxjePFOYFL0X-m9qqxkjb1l1wSo-m8ooVDIFlQkRq_hcqrsrsrI7fX9tYPxBcHggiE8yPsFWD9_Jm9eWQffPQ6LDZmUr2zu6U28vHOESAT4B28UudqaW24VcMYhe2kQhyDJ6cgidj8OQYPDmOC58oH82Paeik8ZFtt8b9MbcjoreTqFadVFtnvVyvKGAW080KRDhKIC85sp9L__XU |
| CitedBy_id | crossref_primary_10_3389_fpls_2021_653270 crossref_primary_10_1007_s10722_023_01594_9 crossref_primary_10_1007_s12041_018_0943_7 crossref_primary_10_1016_j_plgene_2024_100458 crossref_primary_10_3389_fpls_2018_01023 crossref_primary_10_1007_s00122_024_04717_7 crossref_primary_10_1007_s11032_015_0221_9 crossref_primary_10_1016_j_fcr_2025_109805 crossref_primary_10_3389_fpls_2017_00086 crossref_primary_10_1007_s00122_022_04229_2 crossref_primary_10_1016_j_indcrop_2022_115232 crossref_primary_10_3198_jpr2017_06_0040crg crossref_primary_10_1038_s41588_018_0119_7 crossref_primary_10_1016_j_gene_2021_146042 crossref_primary_10_1007_s00438_021_01779_w crossref_primary_10_1007_s10681_018_2264_6 crossref_primary_10_1093_jxb_eraf275 crossref_primary_10_1371_journal_pone_0123209 crossref_primary_10_3389_fgene_2021_758665 crossref_primary_10_1590_1984_70332019v19n3a40 crossref_primary_10_1007_s00425_025_04781_3 crossref_primary_10_1007_s12298_022_01184_6 crossref_primary_10_1371_journal_pone_0177508 crossref_primary_10_3390_agronomy12020330 crossref_primary_10_1371_journal_pone_0128981 crossref_primary_10_1177_1176934319889948 crossref_primary_10_1534_g3_115_023515 crossref_primary_10_1186_s42397_018_0011_0 crossref_primary_10_1002_plr2_20121 crossref_primary_10_1016_j_csbj_2022_04_012 crossref_primary_10_1093_pcp_pcad036 crossref_primary_10_3390_ijms19082401 crossref_primary_10_1016_j_plgene_2018_04_001 crossref_primary_10_1186_s12864_017_4093_8 crossref_primary_10_1002_plr2_20128 crossref_primary_10_1080_15440478_2024_2427716 crossref_primary_10_1186_s12870_017_0981_y crossref_primary_10_1186_s12864_020_06800_x crossref_primary_10_21597_jist_1029010 crossref_primary_10_1007_s00122_023_04317_x crossref_primary_10_1093_jee_toy201 crossref_primary_10_1093_jhered_esw004 crossref_primary_10_1186_s13059_017_1167_5 crossref_primary_10_1590_0103_8478cr20160066 crossref_primary_10_1007_s00438_019_01566_8 crossref_primary_10_1007_s00122_019_03487_x crossref_primary_10_3389_fpls_2020_00929 crossref_primary_10_1002_advs_202003634 crossref_primary_10_1155_2014_607091 crossref_primary_10_1007_s10681_025_03503_w crossref_primary_10_1073_pnas_1613593114 crossref_primary_10_1371_journal_pgen_1007003 crossref_primary_10_3389_fpls_2022_842741 crossref_primary_10_3390_plants9060711 crossref_primary_10_2135_cropsci2015_08_0530 crossref_primary_10_1093_g3journal_jkab145 crossref_primary_10_1186_s13059_021_02351_w crossref_primary_10_1371_journal_pone_0157978 crossref_primary_10_1111_jipb_13388 crossref_primary_10_1186_s42397_019_0041_2 crossref_primary_10_1007_s13562_016_0395_1 crossref_primary_10_1007_s10681_016_1787_y crossref_primary_10_1007_s13237_018_0237_8 crossref_primary_10_1111_pbi_13747 crossref_primary_10_32604_phyton_2023_028755 crossref_primary_10_3390_agronomy13092407 crossref_primary_10_1371_journal_pone_0118073 crossref_primary_10_1007_s10709_017_9976_8 crossref_primary_10_1038_s41467_019_10820_x crossref_primary_10_1007_s00122_025_05009_4 crossref_primary_10_3390_agronomy13071781 crossref_primary_10_1007_s10681_021_02914_9 crossref_primary_10_1007_s42161_018_0066_2 crossref_primary_10_1371_journal_pone_0124592 crossref_primary_10_1007_s10722_023_01657_x crossref_primary_10_1007_s11033_023_08399_0 crossref_primary_10_1038_srep41285 crossref_primary_10_1007_s10709_016_9898_x crossref_primary_10_1111_pbi_13237 crossref_primary_10_3390_ijms241814174 crossref_primary_10_1534_g3_115_018416 crossref_primary_10_1016_S2095_3119_16_61619_2 crossref_primary_10_1080_15440478_2021_1921658 crossref_primary_10_1007_s00122_025_04915_x crossref_primary_10_1007_s10681_017_1855_y crossref_primary_10_1016_j_jgg_2021_04_009 crossref_primary_10_1007_s13562_021_00675_z crossref_primary_10_1016_j_indcrop_2022_114594 crossref_primary_10_1534_g3_119_400909 crossref_primary_10_1016_j_indcrop_2020_113028 crossref_primary_10_1371_journal_pone_0260971 crossref_primary_10_2135_cropsci2016_12_0999 crossref_primary_10_1007_s10681_017_2029_7 crossref_primary_10_1007_s10681_017_1997_y crossref_primary_10_3389_fpls_2019_01572 crossref_primary_10_3390_plants10040752 crossref_primary_10_1590_1983_21252017v30n213rc crossref_primary_10_1007_s00122_023_04477_w crossref_primary_10_3390_ijms241210404 crossref_primary_10_1038_s41597_024_03334_9 crossref_primary_10_1038_ng_3887 crossref_primary_10_1371_journal_pone_0188125 crossref_primary_10_1590_1983_21252020v33n304rc crossref_primary_10_3390_genes14112081 crossref_primary_10_1007_s10722_022_01379_6 crossref_primary_10_1186_s12870_019_1725_y crossref_primary_10_3389_fpls_2022_873788 crossref_primary_10_1080_07388551_2024_2314309 crossref_primary_10_1016_j_pld_2020_03_001 crossref_primary_10_3390_agronomy12061381 crossref_primary_10_1007_s00606_014_1075_z crossref_primary_10_1016_j_stress_2025_100760 crossref_primary_10_3390_agronomy12123158 crossref_primary_10_1111_pbi_13538 crossref_primary_10_1017_S1479262123000217 crossref_primary_10_1007_s00122_017_2952_y crossref_primary_10_1111_pbi_12693 crossref_primary_10_1186_s42397_024_00187_w crossref_primary_10_1007_s00606_017_1411_1 crossref_primary_10_1186_s42397_020_00077_x |
| Cites_doi | 10.1111/j.1365-294X.2005.02553.x 10.1371/journal.pone.0037063 10.1016/j.ygeno.2008.07.013 10.1007/BF02859301 10.1007/s10722-005-1304-y 10.1534/genetics.107.074245 10.1007/s10681-012-0643-y 10.3198/jpr2008.02.0080crg 10.1007/s10722-007-9238-1 10.1007/s10722-004-2032-4 10.4238/vol10-1gmr998 10.2135/cropsci1995.0011183X003500060009x 10.2135/cropsci2004.0581 10.1534/genetics.104.035642 10.1007/s10681-009-9917-4 10.1126/science.1174276 10.1007/s12686-011-9548-7 10.2135/cropsci1996.0011183X003600030008x 10.1007/BF02300753 10.1007/BF02772162 10.2307/2445058 10.1111/j.1365-313X.2005.02591.x 10.2135/cropsci2011.11.0588 10.1007/s00122-005-0074-4 10.1007/BF00985907 10.1046/j.1471-8278.2001.00073.x 10.1007/s10722-009-9425-3 10.1007/s11434-008-0212-x 10.1007/s11032-006-9042-1 10.1016/0305-1978(90)90123-W 10.1590/S1415-47572006000200021 10.1126/science.1174320 10.1007/s001220050392 10.2135/cropsci2011.04.0202 10.1093/bioinformatics/bti282 10.2135/cropsci2004.0715 10.4238/vol10-3gmr1277 10.1007/s001220051639 10.1111/j.1755-0998.2010.02847.x 10.2307/2445059 10.1139/g95-132 10.1016/S1360-1385(96)86898-0 10.5772/2640 10.1093/genetics/164.4.1567 10.1093/genetics/165.4.2117 10.1093/genetics/161.1.373 10.1093/genetics/155.2.945 10.2135/cropsci1999.0011183X003900020003x 10.1093/genetics/160.2.779 10.1093/genetics/157.2.899 10.1093/genetics/163.1.253 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg 2013 COPYRIGHT 2014 Springer Springer-Verlag Berlin Heidelberg 2014 |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2013 – notice: COPYRIGHT 2014 Springer – notice: Springer-Verlag Berlin Heidelberg 2014 |
| DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7SS 7TK 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 7S9 L.6 |
| DOI | 10.1007/s00122-013-2217-3 |
| DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Entomology Abstracts (Full archive) Neurosciences Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database (Proquest) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | ProQuest Central Student AGRICOLA MEDLINE Genetics Abstracts MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture Biology |
| EISSN | 1432-2242 |
| EndPage | 295 |
| ExternalDocumentID | 3190682771 A363103499 24170350 10_1007_s00122_013_2217_3 US201400036110 US201400017871 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | United States North Carolina United States--US |
| GeographicLocations_xml | – name: United States – name: North Carolina – name: United States--US |
| GroupedDBID | --- -4W -56 -5G -BR -DZ -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANXM AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABELW ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOAH ADOXG ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKMHD AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AOSHJ ARMRJ AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG ESTFP F5P FBQ FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IFM IHE IHR IJ- IKXTQ INH INR ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M0L M1P M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P0- P19 PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TSG TSK TSV TUC U2A U9L UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 Y6R YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7Y Z83 Z85 Z87 Z8M Z8N Z8O Z8P Z8Q Z8S Z8W Z8Z Z91 ZMTXR ZOVNA ~EX AACDK AAHBH AAJBT AAPKM AASML AAYZH ABAKF ABDBE ABQSL ACAOD ACDTI ACPIV ACZOJ ADHKG AEFQL AEMSY AFBBN AGQEE AGRTI AHPBZ AIGIU ALIPV AYFIA BSONS H13 PHGZT AAYXX ABBRH ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHWEU AIXLP ATHPR CITATION PHGZM PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7SS 7TK 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO 7S9 L.6 |
| ID | FETCH-LOGICAL-c657t-b15196692ba71d02adf70e1815174e8893ec6ca45b8292332cc937da11f22ea23 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 148 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000330723900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0040-5752 1432-2242 |
| IngestDate | Fri Sep 05 07:07:40 EDT 2025 Mon Sep 08 05:57:01 EDT 2025 Fri Nov 07 06:43:12 EST 2025 Tue Nov 04 22:09:51 EST 2025 Sat Nov 29 13:27:51 EST 2025 Sun Nov 23 08:59:23 EST 2025 Wed Nov 26 10:37:31 EST 2025 Thu Apr 03 07:04:10 EDT 2025 Sat Nov 29 06:26:20 EST 2025 Tue Nov 18 22:02:41 EST 2025 Fri Feb 21 02:35:13 EST 2025 Thu Apr 03 09:42:59 EDT 2025 Wed Dec 27 18:57:58 EST 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Upland Cotton Simple Sequence Repeat Locus Simple Sequence Repeat Marker Allelic Richness Polymorphism Information Content |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c657t-b15196692ba71d02adf70e1815174e8893ec6ca45b8292332cc937da11f22ea23 |
| Notes | http://dx.doi.org/10.1007/s00122-013-2217-3 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PMID | 24170350 |
| PQID | 1491567895 |
| PQPubID | 54040 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1514396892 proquest_miscellaneous_1500764813 proquest_miscellaneous_1492716051 proquest_journals_1491567895 gale_infotracmisc_A363103499 gale_infotracacademiconefile_A363103499 gale_incontextgauss_ISR_A363103499 pubmed_primary_24170350 crossref_citationtrail_10_1007_s00122_013_2217_3 crossref_primary_10_1007_s00122_013_2217_3 springer_journals_10_1007_s00122_013_2217_3 fao_agris_US201400036110 fao_agris_US201400017871 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-02-01 |
| PublicationDateYYYYMMDD | 2014-02-01 |
| PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationSubtitle | International Journal of Plant Breeding Research |
| PublicationTitle | Theoretical and applied genetics |
| PublicationTitleAbbrev | Theor Appl Genet |
| PublicationTitleAlternate | Theor Appl Genet |
| PublicationYear | 2014 |
| Publisher | Springer-Verlag Springer Berlin Heidelberg Springer Springer Nature B.V |
| Publisher_xml | – name: Springer-Verlag – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
| References | Dejoode, Wendel (CR14) 1992; 79 Evanno, Regnaut, Goudet (CR16) 2005; 14 Garris, Tai, Coburn, Kresovich, McCouch (CR23) 2005; 169 Wendel, Rowley, Stewart (CR55) 1994; 192 Kalivas, Xanthopoulos, Kehagia, Tsaftaris (CR28) 2011; 10 Wu, Ma, Casella (CR57) 2002; 160 Jenkins, McCarty, Gutierrez, Hayes, Bowman, Watson, Jones (CR27) 2008; 2 Liu, Wendel (CR34) 2001; 1 Xu, Mei, Hu, Zhu, Gong (CR58) 2006; 53 Campbell, Williams, Park (CR12) 2009; 169 Van Esbroeck, Bowman, May, Calhoun (CR52) 1999; 39 Niles, Feaster, Kohel, Lewis (CR42) 1984 Falush, Stephens, Pritchard (CR18) 2003; 164 Hao, Dong, Wang, You, Zhang, Ge, Jia, Zhang (CR24) 2008; 53 Flint-Garcia (CR21) 2005; 44 Yu, Fang, Kohel, Ulloa, Hinze, Percy, Zhang, Chee, Scheffler, Jones (CR60) 2012; 187 Lacape, Dessauw, Rajab, Noyer, Hau (CR31) 2007; 19 Kuroda, Tomooka, Kaga, Wanigadeva, Vaughan (CR30) 2009; 56 CR3 CR8 Blott (CR5) 2003; 16 Wu, Zeng (CR56) 2001; 157 Courtois, Frouin, Greco, Bruschi (CR13) 2012; 52 Wendel, Brubaker, Percival (CR54) 1992; 79 Pritchard, Stephens, Donnelly (CR45) 2000; 155 Brown (CR9) 1983; 37 Smith, Cantrell, Moser, Oakley, Smith, Cothren (CR48) 1999 Wendel, Percy (CR53) 1990; 18 Liu, Goodman, Muse, Smith, Buckler, Doebley (CR35) 2003; 165 Van Becelaere, Lubbers, Paterson, Chee (CR50) 2005; 45 Liu, Muse (CR33) 2005; 21 Iqbal, Aziz, Saeed, Zafar, Malik (CR26) 1997; 94 Rahman, Yasmin, Tabbasam, Ullah, Asif, Zafar (CR46) 2008; 55 Zhang, Lu, Cantrell, Hughs (CR61) 2005; 45 CR19 Flajoulot, Ronfort, Baudouin, Barre, Huguet, Huyghe, Julier (CR20) 2005; 111 McMullen, Kresovich, Villeda, Bradbury, Li, Sun, Flint-Garcia, Thornsberry, Acharya, Bottoms (CR38) 2009; 325 Van Esbroeck, Bowman (CR51) 1998; 2 Yu, Holland, McMullen, Buckler (CR59) 2008; 178 May, Bowman, Calhoun (CR37) 1995; 35 Abdalla, Reddy, El-Zik, Pepper (CR1) 2001; 102 Powell, Machray, Provan (CR44) 1996; 1 Nei, Tajima, Tateno (CR41) 1983; 19 Brubaker, Bourland, Wendel, Smith, Cothren (CR10) 1999 Oliveira, Campana, Jones, Hunt, Leigh, Redhouse, Lister, Jones (CR43) 2012; 7 Staten (CR49) 1970 Bowman, May, Calhoun (CR7) 1996; 36 Excoffier, Lischer (CR17) 2010; 10 Rohlf (CR47) 2000 Hinze, Dever, Percy (CR25) 2012; 52 Dent, Bridgett (CR15) 2012; 4 Abdurakhmonov, Kohel, Yu, Pepper, Abdullaev, Kushanov, Salakhutdinov, Buriev, Saha, Scheffler, Jenkins, Abdukarimov (CR2) 2008; 92 CR29 Meuwissen, Karlsen, Lien, Olsaker, Goddard (CR39) 2002; 16 Botstein, White, Skolnick, Davis (CR6) 1980; 32 Frankel, Arber, Llimensee, Peacock, Starlinger (CR22) 1984 Zhang, Wang, Li, Zhang, Ma (CR62) 2011; 10 Multani, Lyon (CR40) 1995; 38 Bertini, Schuster, Sediyama, Barros, Moreira (CR4) 2006; 29 Liu, Guo, Lin, Nie, Zhang (CR36) 2006; 53 Buckler (CR11) 2009; 325 Li, Luo, Hemphill, Wang (CR32) 2001; 19 M Nei (2217_CR41) 1983; 19 B Courtois (2217_CR13) 2012; 52 SA Flint-Garcia (2217_CR21) 2005; 44 D Dejoode (2217_CR14) 1992; 79 2217_CR3 B Liu (2217_CR34) 2001; 1 IY Abdurakhmonov (2217_CR2) 2008; 92 2217_CR19 D Falush (2217_CR18) 2003; 164 GA Esbroeck Van (2217_CR51) 1998; 2 2217_CR8 CL Brubaker (2217_CR10) 1999 Y Zhang (2217_CR62) 2011; 10 LL Hinze (2217_CR25) 2012; 52 S Blott (2217_CR5) 2003; 16 H Li (2217_CR32) 2001; 19 JZ Yu (2217_CR60) 2012; 187 Y Kuroda (2217_CR30) 2009; 56 M Rahman (2217_CR46) 2008; 55 KJ Liu (2217_CR35) 2003; 165 AM Abdalla (2217_CR1) 2001; 102 WL Brown (2217_CR9) 1983; 37 2217_CR29 FJ Rohlf (2217_CR47) 2000 HR Oliveira (2217_CR43) 2012; 7 L Excoffier (2217_CR17) 2010; 10 DT Bowman (2217_CR7) 1996; 36 AE Dent (2217_CR15) 2012; 4 R Wu (2217_CR57) 2002; 160 H Xu (2217_CR58) 2006; 53 G Becelaere Van (2217_CR50) 2005; 45 W Powell (2217_CR44) 1996; 1 JK Pritchard (2217_CR45) 2000; 155 CHCD Bertini (2217_CR4) 2006; 29 OL May (2217_CR37) 1995; 35 J Yu (2217_CR59) 2008; 178 J Wendel (2217_CR55) 1994; 192 JM Lacape (2217_CR31) 2007; 19 D Liu (2217_CR36) 2006; 53 AJ Garris (2217_CR23) 2005; 169 GA Niles (2217_CR42) 1984 G Staten (2217_CR49) 1970 KJ Liu (2217_CR33) 2005; 21 G Evanno (2217_CR16) 2005; 14 J Wendel (2217_CR54) 1992; 79 J Wendel (2217_CR53) 1990; 18 J Zhang (2217_CR61) 2005; 45 S Flajoulot (2217_CR20) 2005; 111 C Hao (2217_CR24) 2008; 53 THE Meuwissen (2217_CR39) 2002; 16 ES Buckler (2217_CR11) 2009; 325 GA Esbroeck Van (2217_CR52) 1999; 39 R Wu (2217_CR56) 2001; 157 MJ Iqbal (2217_CR26) 1997; 94 DS Multani (2217_CR40) 1995; 38 MD McMullen (2217_CR38) 2009; 325 D Botstein (2217_CR6) 1980; 32 A Kalivas (2217_CR28) 2011; 10 OH Frankel (2217_CR22) 1984 JN Jenkins (2217_CR27) 2008; 2 CW Smith (2217_CR48) 1999 BT Campbell (2217_CR12) 2009; 169 12019251 - Genetics. 2002 May;161(1):373-9 15654106 - Genetics. 2005 Mar;169(3):1631-8 16359397 - Plant J. 2005 Dec;44(6):1054-64 15705655 - Bioinformatics. 2005 May 1;21(9):2128-9 18801424 - Genomics. 2008 Dec;92(6):478-87 6247908 - Am J Hum Genet. 1980 May;32(3):314-31 12930761 - Genetics. 2003 Aug;164(4):1567-87 15969739 - Mol Ecol. 2005 Jul;14(8):2611-20 21823096 - Genet Mol Res. 2011;10(3):1462-70 19352756 - Theor Appl Genet. 1997 Jan;94(1):139-44 21341213 - Genet Mol Res. 2011 Feb 08;10(1):208-17 19661427 - Science. 2009 Aug 7;325(5941):737-40 14704191 - Genetics. 2003 Dec;165(4):2117-28 21565059 - Mol Ecol Resour. 2010 May;10(3):564-7 19661422 - Science. 2009 Aug 7;325(5941):714-8 18470223 - Genome. 1995 Oct;38(5):1005-8 22615891 - PLoS One. 2012;7(5):e37063 11861578 - Genetics. 2002 Feb;160(2):779-92 11157006 - Genetics. 2001 Feb;157(2):899-909 16151797 - Theor Appl Genet. 2005 Nov;111(7):1420-9 10835412 - Genetics. 2000 Jun;155(2):945-59 6571220 - J Mol Evol. 1983;19(2):153-70 18202393 - Genetics. 2008 Jan;178(1):539-51 12586713 - Genetics. 2003 Jan;163(1):253-66 |
| References_xml | – volume: 14 start-page: 2611 year: 2005 end-page: 2620 ident: CR16 article-title: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2005.02553.x – volume: 7 start-page: e37063 year: 2012 ident: CR43 article-title: Tetraploid wheat landraces in the Mediterranean basin: taxonomy, evolution and genetic diversity publication-title: PLoS One doi: 10.1371/journal.pone.0037063 – start-page: 161 year: 1984 end-page: 170 ident: CR22 article-title: Genetic perspectives of germplasm conservation publication-title: Genetic manipulation: impact on man and society – volume: 92 start-page: 478 year: 2008 end-page: 487 ident: CR2 article-title: Molecular diversity and association mapping of fiber quality traits in exotic L. germplasm publication-title: Genomics doi: 10.1016/j.ygeno.2008.07.013 – volume: 37 start-page: 4 year: 1983 end-page: 12 ident: CR9 article-title: Genetic diversity and genetic vulnerability: an appraisal publication-title: Econ Bot doi: 10.1007/BF02859301 – volume: 53 start-page: 1145 year: 2006 end-page: 1152 ident: CR36 article-title: Genetic diversity of Asian cotton ( L.) in china evaluated by microsatellite analysis publication-title: Genet Res Crop Evol doi: 10.1007/s10722-005-1304-y – volume: 178 start-page: 539 year: 2008 end-page: 551 ident: CR59 article-title: Genetic design and statistical power of nested association mapping in maize publication-title: Genetics doi: 10.1534/genetics.107.074245 – ident: CR29 – volume: 187 start-page: 203 year: 2012 end-page: 213 ident: CR60 article-title: Development of a core set of SSR markers for the characterization of gossypium germplasm publication-title: Euphytica doi: 10.1007/s10681-012-0643-y – ident: CR8 – start-page: 3 year: 1999 end-page: 32 ident: CR10 article-title: The origin and domestication of cotton publication-title: Cotton: origin, history, technology, and production – volume: 2 start-page: 239 year: 2008 end-page: 242 ident: CR27 article-title: Registration of RMUP-C5, a random mated population of upland cotton germplasm publication-title: J Plant Reg doi: 10.3198/jpr2008.02.0080crg – volume: 55 start-page: 331 year: 2008 end-page: 339 ident: CR46 article-title: Studying the extent of genetic diversity among L. genotypes/cultivars using DNA fingerprinting publication-title: Genet Resour Crop Evol doi: 10.1007/s10722-007-9238-1 – volume: 53 start-page: 515 year: 2006 end-page: 521 ident: CR58 article-title: Sampling a core collection of Island cotton ( L.) based on the genotypic values of fiber traits publication-title: Genet Res Crop Evo doi: 10.1007/s10722-004-2032-4 – ident: CR19 – volume: 10 start-page: 208 year: 2011 end-page: 217 ident: CR28 article-title: Agronomic characterization, genetic diversity and association analysis of cotton cultivars using simple sequence repeat molecular markers publication-title: Genet Mol Res doi: 10.4238/vol10-1gmr998 – start-page: 1926 year: 1970 end-page: 1970 ident: CR49 publication-title: Breeding Acala 1517 cottons, memoir series no. 4 – volume: 35 start-page: 1570 year: 1995 end-page: 1574 ident: CR37 article-title: Genetic diversity of U.S. upland cotton cultivars released between 1980 and 1990 publication-title: Crop Sci doi: 10.2135/cropsci1995.0011183X003500060009x – volume: 155 start-page: 945 year: 2000 end-page: 959 ident: CR45 article-title: Inference of population structure using multilocus genotype data publication-title: Genetics – volume: 45 start-page: 1483 year: 2005 end-page: 1490 ident: CR61 article-title: Molecular marker diversity and field performance in commercial cotton cultivars evaluated in the southwestern USA publication-title: Crop Sci doi: 10.2135/cropsci2004.0581 – volume: 169 start-page: 1631 year: 2005 end-page: 1638 ident: CR23 article-title: Genetic structure and diversity in L publication-title: Genetics doi: 10.1534/genetics.104.035642 – volume: 169 start-page: 285 year: 2009 ident: CR12 article-title: Using molecular markers and field performance data to characterize the Pee Dee cotton germplasm resources publication-title: Euphytica doi: 10.1007/s10681-009-9917-4 – volume: 16 start-page: 253 year: 2003 end-page: 266 ident: CR5 article-title: Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition publication-title: Genetics – volume: 325 start-page: 714 year: 2009 end-page: 718 ident: CR11 article-title: The genetic architecture of maize flowering time publication-title: Science doi: 10.1126/science.1174276 – year: 2000 ident: CR47 publication-title: Numerical taxonomy and multivariate analysis system, ver. 2.11 – volume: 4 start-page: 359 year: 2012 end-page: 361 ident: CR15 article-title: STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method publication-title: Conserv Genet Resour doi: 10.1007/s12686-011-9548-7 – volume: 36 start-page: 577 year: 1996 end-page: 581 ident: CR7 article-title: Genetic base of upland cotton cultivars released between 1970 and 1990 publication-title: Crop Sci doi: 10.2135/cropsci1996.0011183X003600030008x – volume: 19 start-page: 153 year: 1983 end-page: 170 ident: CR41 article-title: Accuracy of estimated phylogenetic trees from molecular data publication-title: J Mol Evol doi: 10.1007/BF02300753 – volume: 19 start-page: 183a year: 2001 ident: CR32 article-title: A rapid and high yielding DNA miniprep for cotton ( spp.) publication-title: Plant Mol Biol Rep doi: 10.1007/BF02772162 – volume: 79 start-page: 1291 year: 1992 end-page: 1310 ident: CR54 article-title: Genetic diversity in and the origin of upland cotton publication-title: Am J Bot doi: 10.2307/2445058 – volume: 165 start-page: 2117 year: 2003 end-page: 2128 ident: CR35 article-title: Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites publication-title: Genetics – volume: 44 start-page: 1054 year: 2005 end-page: 1064 ident: CR21 article-title: Maize association population: a high-resolution platform for quantitative trait locus dissection publication-title: Plant J doi: 10.1111/j.1365-313X.2005.02591.x – volume: 16 start-page: 373 year: 2002 end-page: 379 ident: CR39 article-title: Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping publication-title: Genetics – start-page: 201 year: 1984 end-page: 231 ident: CR42 article-title: Breeding publication-title: Cotton, agronomy monograph no. 24 – volume: 52 start-page: 1663 year: 2012 end-page: 1675 ident: CR13 article-title: Genetic diversity and population structure in a European collection of rice publication-title: Crop Sci doi: 10.2135/cropsci2011.11.0588 – volume: 111 start-page: 1420 year: 2005 end-page: 1429 ident: CR20 article-title: Genetic diversity among alfalfa ( ) cultivars coming from a breeding program, using SSR markers publication-title: Theor Appl Genet doi: 10.1007/s00122-005-0074-4 – volume: 192 start-page: 49 year: 1994 end-page: 59 ident: CR55 article-title: Genetic diversity in and phylogenetic-relationships of the brazilian endemic cotton, (malvaceae) publication-title: Plant Syst Evol doi: 10.1007/BF00985907 – volume: 1 start-page: 205 year: 2001 end-page: 208 ident: CR34 article-title: Intersimple sequence repeat (ISSR) polymorphisms as a genetic marker system in cotton publication-title: Mol Ecol Notes doi: 10.1046/j.1471-8278.2001.00073.x – volume: 56 start-page: 1045 year: 2009 end-page: 1055 ident: CR30 article-title: Genetic diversity of wild soybean ( Sieb. et Zucc.) and Japanese cultivated soybeans [ (L.) Merr.] based on microsatellite (SSR) analysis and the selection of a core collection publication-title: Genet Res Crop Evol doi: 10.1007/s10722-009-9425-3 – volume: 1 start-page: 215 year: 1996 end-page: 222 ident: CR44 article-title: Polymorphism revealed by simple sequence repeats publication-title: Trends in Plant Sci – volume: 164 start-page: 1567 year: 2003 end-page: 1587 ident: CR18 article-title: Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies publication-title: Genetics – volume: 53 start-page: 1518 year: 2008 end-page: 1526 ident: CR24 article-title: Genetic diversity and construction of core collection in Chinese wheat genetic resources publication-title: Chin Sci Bull doi: 10.1007/s11434-008-0212-x – volume: 19 start-page: 45 year: 2007 end-page: 58 ident: CR31 article-title: Microsatellite diversity in tetraploid germplasm: assembling a highly informative genotyping set of cotton SSRs publication-title: Mol Breeding doi: 10.1007/s11032-006-9042-1 – volume: 18 start-page: 517 year: 1990 end-page: 528 ident: CR53 article-title: Allozyme diversity and introgression in the galapagos-islands endemic and its relationship to continental publication-title: Biochem Syst Ecol doi: 10.1016/0305-1978(90)90123-W – volume: 29 start-page: 321 year: 2006 end-page: 329 ident: CR4 article-title: Characterization and genetic diversity analysis of cotton cultivars using microsatellites publication-title: Genet Mol Biol doi: 10.1590/S1415-47572006000200021 – volume: 2 start-page: 121 year: 1998 end-page: 129 ident: CR51 article-title: Cotton improvement. Cotton germplasm diversity and its importance to cultivar development publication-title: J Cotton Sci – volume: 160 start-page: 779 year: 2002 end-page: 792 ident: CR57 article-title: Joint linkage and linkage disequilibrium mapping of quantitative trait loci in natural populations publication-title: Genetics – volume: 157 start-page: 899 year: 2001 end-page: 909 ident: CR56 article-title: Joint linkage and linkage disequilibrium mapping in natural populations publication-title: Genetics – volume: 325 start-page: 737 year: 2009 end-page: 740 ident: CR38 article-title: Genetic properties of the maize nested association mapping population publication-title: Science doi: 10.1126/science.1174320 – volume: 94 start-page: 139 year: 1997 end-page: 144 ident: CR26 article-title: Genetic diversity evaluation of some elite cotton varieties by RAPD analysis publication-title: Theor Appl Genet doi: 10.1007/s001220050392 – ident: CR3 – volume: 52 start-page: 222 year: 2012 end-page: 230 ident: CR25 article-title: Molecular variation among and within improved cultivars in the U.S. cotton germplasm collection publication-title: Crop Sci doi: 10.2135/cropsci2011.04.0202 – volume: 21 start-page: 2128 year: 2005 end-page: 2129 ident: CR33 article-title: PowerMarker: an integrated analysis environment for genetic marker analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti282 – volume: 39 start-page: 323 year: 1999 end-page: 328 ident: CR52 article-title: Genetic similarity indices for ancestral cotton cultivars and their impact on genetic diversity estimates of modern cultivars publication-title: Crop Sci – volume: 45 start-page: 2281 year: 2005 end-page: 2287 ident: CR50 article-title: Pedigree- vs. DNA marker-based genetic similarity estimates in cotton publication-title: Crop Sci doi: 10.2135/cropsci2004.0715 – volume: 32 start-page: 314 year: 1980 end-page: 331 ident: CR6 article-title: Construction of a genetic linkage map in man using restriction fragment length polymorphisms publication-title: Am J Hum Genet – volume: 10 start-page: 1462 year: 2011 end-page: 1470 ident: CR62 article-title: Assessing genetic diversity of cotton cultivars using genomic and newly developed expressed sequence tag-derived microsatellite markers publication-title: Genet Mol Res doi: 10.4238/vol10-3gmr1277 – volume: 102 start-page: 222 year: 2001 end-page: 229 ident: CR1 article-title: Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP publication-title: Theor Appl Genet doi: 10.1007/s001220051639 – start-page: 99 year: 1999 end-page: 171 ident: CR48 article-title: History of cultivar development in the United States publication-title: Cotton: origin, history, technology, and production – volume: 10 start-page: 564 year: 2010 end-page: 567 ident: CR17 article-title: Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows publication-title: Mol Eco Res doi: 10.1111/j.1755-0998.2010.02847.x – volume: 79 start-page: 1311 year: 1992 end-page: 1319 ident: CR14 article-title: Genetic diversity and origin of the hawaiian-islands cotton, publication-title: Am J Bot doi: 10.2307/2445059 – volume: 38 start-page: 1005 year: 1995 end-page: 1008 ident: CR40 article-title: Genetic fingerprinting of australian cotton cultivars with RAPD markers publication-title: Genome doi: 10.1139/g95-132 – volume: 29 start-page: 321 year: 2006 ident: 2217_CR4 publication-title: Genet Mol Biol doi: 10.1590/S1415-47572006000200021 – volume: 1 start-page: 215 year: 1996 ident: 2217_CR44 publication-title: Trends in Plant Sci doi: 10.1016/S1360-1385(96)86898-0 – volume: 53 start-page: 1145 year: 2006 ident: 2217_CR36 publication-title: Genet Res Crop Evol doi: 10.1007/s10722-005-1304-y – volume: 192 start-page: 49 year: 1994 ident: 2217_CR55 publication-title: Plant Syst Evol doi: 10.1007/BF00985907 – volume: 45 start-page: 2281 year: 2005 ident: 2217_CR50 publication-title: Crop Sci doi: 10.2135/cropsci2004.0715 – volume: 53 start-page: 515 year: 2006 ident: 2217_CR58 publication-title: Genet Res Crop Evo doi: 10.1007/s10722-004-2032-4 – volume-title: Numerical taxonomy and multivariate analysis system, ver. 2.11 year: 2000 ident: 2217_CR47 – volume: 2 start-page: 121 year: 1998 ident: 2217_CR51 publication-title: J Cotton Sci – volume: 10 start-page: 208 year: 2011 ident: 2217_CR28 publication-title: Genet Mol Res doi: 10.4238/vol10-1gmr998 – volume: 2 start-page: 239 year: 2008 ident: 2217_CR27 publication-title: J Plant Reg doi: 10.3198/jpr2008.02.0080crg – volume: 79 start-page: 1311 year: 1992 ident: 2217_CR14 publication-title: Am J Bot doi: 10.2307/2445059 – volume: 36 start-page: 577 year: 1996 ident: 2217_CR7 publication-title: Crop Sci doi: 10.2135/cropsci1996.0011183X003600030008x – volume: 56 start-page: 1045 year: 2009 ident: 2217_CR30 publication-title: Genet Res Crop Evol doi: 10.1007/s10722-009-9425-3 – start-page: 201 volume-title: Cotton, agronomy monograph no. 24 year: 1984 ident: 2217_CR42 – volume: 44 start-page: 1054 year: 2005 ident: 2217_CR21 publication-title: Plant J doi: 10.1111/j.1365-313X.2005.02591.x – volume: 102 start-page: 222 year: 2001 ident: 2217_CR1 publication-title: Theor Appl Genet doi: 10.1007/s001220051639 – volume: 4 start-page: 359 year: 2012 ident: 2217_CR15 publication-title: Conserv Genet Resour doi: 10.1007/s12686-011-9548-7 – volume: 19 start-page: 45 year: 2007 ident: 2217_CR31 publication-title: Mol Breeding doi: 10.1007/s11032-006-9042-1 – ident: 2217_CR3 doi: 10.5772/2640 – volume: 164 start-page: 1567 year: 2003 ident: 2217_CR18 publication-title: Genetics doi: 10.1093/genetics/164.4.1567 – volume: 14 start-page: 2611 year: 2005 ident: 2217_CR16 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2005.02553.x – volume: 45 start-page: 1483 year: 2005 ident: 2217_CR61 publication-title: Crop Sci doi: 10.2135/cropsci2004.0581 – volume: 19 start-page: 183a year: 2001 ident: 2217_CR32 publication-title: Plant Mol Biol Rep doi: 10.1007/BF02772162 – volume: 165 start-page: 2117 year: 2003 ident: 2217_CR35 publication-title: Genetics doi: 10.1093/genetics/165.4.2117 – volume: 52 start-page: 1663 year: 2012 ident: 2217_CR13 publication-title: Crop Sci doi: 10.2135/cropsci2011.11.0588 – volume: 111 start-page: 1420 year: 2005 ident: 2217_CR20 publication-title: Theor Appl Genet doi: 10.1007/s00122-005-0074-4 – volume: 178 start-page: 539 year: 2008 ident: 2217_CR59 publication-title: Genetics doi: 10.1534/genetics.107.074245 – volume: 21 start-page: 2128 year: 2005 ident: 2217_CR33 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti282 – volume: 16 start-page: 373 year: 2002 ident: 2217_CR39 publication-title: Genetics doi: 10.1093/genetics/161.1.373 – start-page: 161 volume-title: Genetic manipulation: impact on man and society year: 1984 ident: 2217_CR22 – volume: 10 start-page: 564 year: 2010 ident: 2217_CR17 publication-title: Mol Eco Res doi: 10.1111/j.1755-0998.2010.02847.x – start-page: 3 volume-title: Cotton: origin, history, technology, and production year: 1999 ident: 2217_CR10 – volume: 155 start-page: 945 year: 2000 ident: 2217_CR45 publication-title: Genetics doi: 10.1093/genetics/155.2.945 – volume: 169 start-page: 1631 year: 2005 ident: 2217_CR23 publication-title: Genetics doi: 10.1534/genetics.104.035642 – volume: 1 start-page: 205 year: 2001 ident: 2217_CR34 publication-title: Mol Ecol Notes doi: 10.1046/j.1471-8278.2001.00073.x – volume: 32 start-page: 314 year: 1980 ident: 2217_CR6 publication-title: Am J Hum Genet – volume: 37 start-page: 4 year: 1983 ident: 2217_CR9 publication-title: Econ Bot doi: 10.1007/BF02859301 – volume: 18 start-page: 517 year: 1990 ident: 2217_CR53 publication-title: Biochem Syst Ecol doi: 10.1016/0305-1978(90)90123-W – ident: 2217_CR19 – ident: 2217_CR29 – volume: 38 start-page: 1005 year: 1995 ident: 2217_CR40 publication-title: Genome doi: 10.1139/g95-132 – volume: 52 start-page: 222 year: 2012 ident: 2217_CR25 publication-title: Crop Sci doi: 10.2135/cropsci2011.04.0202 – volume: 39 start-page: 323 year: 1999 ident: 2217_CR52 publication-title: Crop Sci doi: 10.2135/cropsci1999.0011183X003900020003x – volume: 79 start-page: 1291 year: 1992 ident: 2217_CR54 publication-title: Am J Bot doi: 10.2307/2445058 – volume: 160 start-page: 779 year: 2002 ident: 2217_CR57 publication-title: Genetics doi: 10.1093/genetics/160.2.779 – volume: 7 start-page: e37063 year: 2012 ident: 2217_CR43 publication-title: PLoS One doi: 10.1371/journal.pone.0037063 – volume: 157 start-page: 899 year: 2001 ident: 2217_CR56 publication-title: Genetics doi: 10.1093/genetics/157.2.899 – volume: 35 start-page: 1570 year: 1995 ident: 2217_CR37 publication-title: Crop Sci doi: 10.2135/cropsci1995.0011183X003500060009x – volume: 10 start-page: 1462 year: 2011 ident: 2217_CR62 publication-title: Genet Mol Res doi: 10.4238/vol10-3gmr1277 – volume: 169 start-page: 285 year: 2009 ident: 2217_CR12 publication-title: Euphytica doi: 10.1007/s10681-009-9917-4 – volume: 94 start-page: 139 year: 1997 ident: 2217_CR26 publication-title: Theor Appl Genet doi: 10.1007/s001220050392 – volume: 325 start-page: 737 year: 2009 ident: 2217_CR38 publication-title: Science doi: 10.1126/science.1174320 – volume: 53 start-page: 1518 year: 2008 ident: 2217_CR24 publication-title: Chin Sci Bull doi: 10.1007/s11434-008-0212-x – volume: 19 start-page: 153 year: 1983 ident: 2217_CR41 publication-title: J Mol Evol doi: 10.1007/BF02300753 – volume: 325 start-page: 714 year: 2009 ident: 2217_CR11 publication-title: Science doi: 10.1126/science.1174276 – ident: 2217_CR8 – volume: 92 start-page: 478 year: 2008 ident: 2217_CR2 publication-title: Genomics doi: 10.1016/j.ygeno.2008.07.013 – start-page: 1926 volume-title: Breeding Acala 1517 cottons, memoir series no. 4 year: 1970 ident: 2217_CR49 – volume: 16 start-page: 253 year: 2003 ident: 2217_CR5 publication-title: Genetics doi: 10.1093/genetics/163.1.253 – start-page: 99 volume-title: Cotton: origin, history, technology, and production year: 1999 ident: 2217_CR48 – volume: 187 start-page: 203 year: 2012 ident: 2217_CR60 publication-title: Euphytica doi: 10.1007/s10681-012-0643-y – volume: 55 start-page: 331 year: 2008 ident: 2217_CR46 publication-title: Genet Resour Crop Evol doi: 10.1007/s10722-007-9238-1 – reference: 12586713 - Genetics. 2003 Jan;163(1):253-66 – reference: 18470223 - Genome. 1995 Oct;38(5):1005-8 – reference: 21565059 - Mol Ecol Resour. 2010 May;10(3):564-7 – reference: 21341213 - Genet Mol Res. 2011 Feb 08;10(1):208-17 – reference: 19352756 - Theor Appl Genet. 1997 Jan;94(1):139-44 – reference: 19661422 - Science. 2009 Aug 7;325(5941):714-8 – reference: 6247908 - Am J Hum Genet. 1980 May;32(3):314-31 – reference: 12019251 - Genetics. 2002 May;161(1):373-9 – reference: 19661427 - Science. 2009 Aug 7;325(5941):737-40 – reference: 14704191 - Genetics. 2003 Dec;165(4):2117-28 – reference: 18801424 - Genomics. 2008 Dec;92(6):478-87 – reference: 11861578 - Genetics. 2002 Feb;160(2):779-92 – reference: 11157006 - Genetics. 2001 Feb;157(2):899-909 – reference: 15705655 - Bioinformatics. 2005 May 1;21(9):2128-9 – reference: 10835412 - Genetics. 2000 Jun;155(2):945-59 – reference: 15969739 - Mol Ecol. 2005 Jul;14(8):2611-20 – reference: 18202393 - Genetics. 2008 Jan;178(1):539-51 – reference: 21823096 - Genet Mol Res. 2011;10(3):1462-70 – reference: 15654106 - Genetics. 2005 Mar;169(3):1631-8 – reference: 12930761 - Genetics. 2003 Aug;164(4):1567-87 – reference: 6571220 - J Mol Evol. 1983;19(2):153-70 – reference: 16359397 - Plant J. 2005 Dec;44(6):1054-64 – reference: 22615891 - PLoS One. 2012;7(5):e37063 – reference: 16151797 - Theor Appl Genet. 2005 Nov;111(7):1420-9 |
| SSID | ssj0002503 |
| Score | 2.489381 |
| Snippet | KEY MESSAGE : Genetic diversity and population structure in the US Upland cotton was established and core sets of allelic richness were identified for... Key message Genetic diversity and population structure in the US Upland cotton was established and core sets of allelic richness were identified for developing... Genetic diversity and population structure in the US Upland cotton was established and core sets of allelic richness were identified for developing association... Key message Genetic diversity and population structure in the US Upland cotton was established and core sets of allelic richness were identified for developing... Key message : Genetic diversity and population structure in the US Upland cotton was established and core sets of allelic richness were identified for... |
| SourceID | proquest gale pubmed crossref springer fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 283 |
| SubjectTerms | Agriculture Alleles Biochemistry Biological diversity Biomedical and Life Sciences Biotechnology classification Cotton Cultivars Domestication Epidemics Fabric analysis genetic distance Genetic diversity Genetic Markers Genetic Variation genetics Genomes genomics Germplasm Gossypium Gossypium - classification Gossypium - genetics Gossypium hirsutum Life Sciences loci microsatellite repeats Original Paper pedigree Phylogenetics Phylogeny Physiological aspects Plant Biochemistry plant breeding Plant Breeding/Biotechnology Plant Genetics and Genomics population structure tetraploidy United States |
| SummonAdditionalLinks | – databaseName: Biological Science Database (Proquest) dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB-8U0Ef_Dg_rnpKFMEvottkm7ZPsoinwnEcriuHLyFN03NB27rdFe6_d6ZN660f-yLsw0Im0CSTmd90pr8BeKQMOh5rQ67Q1_GxcoanuTU8T6UtokIlqv0q7dNBfHiYHB-nR_6FW-PLKnub2BrqvLL0jvwlInkMNeIkjV7V3zl1jaLsqm-hsQXniSVBtqV7R4MlRvc-VM0hLBF9VnPUkoiGgooSJBeIyrlc80tbhan-tNFnnNRvWdPWGe1f_d9lXIMrHoaySac31-GcK3fg8uRk4ak43A5c7NpUnt6Az8RNjYIs74s4mClzVg-9v1jHQovT2LxkCCnZbMpmNRVNMuJ-QIknb3HVp_V89Y19mS-a1RL_HLx4ehNm-28-vn7HfU8GblUUL3mGCAEjpFRkJg7zkTB5EY8cwgRivHYJoh9nlTXjKEsEYkcprEUAlJswLIRwRshbsF1WpdsFRkx91hWhKIQZZxn9opFKo1goG5tEBjDqT0RbT1hOfTO-6oFquT1EjYeo6RA1Tnk2TKk7to5Nwrt4zNrg1jZ6NhUUa5LTxhDy70NSIVYK4CGphSbujJKKc07Mqmn0--kHPZGKurZhDBnAYy9UVPjI1vhvHXDhRLe1Jrm3JomX264P92qkvXFp9C8dCuDBMEwzqWCudNWqlREYCqPJ3SATUR52nIRykwwC6lQlqQjgdqf9w84i-IspMR3A8_46nHnIf237nc1LuguXaLu7wvg92Eb9dffggv2xnDeL--39_glHm0yg priority: 102 providerName: ProQuest |
| Title | Genetic diversity and population structure in the US Upland cotton (Gossypium hirsutum L.) |
| URI | https://link.springer.com/article/10.1007/s00122-013-2217-3 https://www.ncbi.nlm.nih.gov/pubmed/24170350 https://www.proquest.com/docview/1491567895 https://www.proquest.com/docview/1492716051 https://www.proquest.com/docview/1500764813 https://www.proquest.com/docview/1514396892 |
| Volume | 127 |
| WOSCitedRecordID | wos000330723900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 1432-2242 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002503 issn: 0040-5752 databaseCode: M7P dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1432-2242 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002503 issn: 0040-5752 databaseCode: 7X7 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1432-2242 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002503 issn: 0040-5752 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink Contemporary Journals customDbUrl: eissn: 1432-2242 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002503 issn: 0040-5752 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rixMxEB_snYJ-8HE-bvUsUQRfrHSz3ST7scqdCkcprT2KX0I2mz0Lui3dVrj_3pl9cdWzoFBKIZOSnZ1kfsNMfgPwQhh0PNYGvkBf5_eFM36cWuOncWizKBNKlLfSzk7lcKhms3hU3-Mummr3JiVZntTtZbcyC-RTNwKOONoPO7CP3k7RbhxPztrjF316WyqHWIQ3qcyr_mLLGXUys_jzYL7kmX5LlZYe6OTOf639LtyuAScbVBZyD665_ABuDc5XNemGO4AbVUPKi_vwlVioUZClTbkGM3nKlm2XL1bxzeI0Ns8Zgkc2nbDpksojGbE8oMSrj_ioF8v55gf7Nl8VmzX-OH33-gFMT46_fPjk190XfCsiufYTxAIYC8U8MTJIe9ykmew5BATEbe0U4hxnhTX9KFEcUWLIrUWok5ogyDh3hocPYS9f5O4QGHHyWZcFPOOmnyT0iXoijiQXVhoVetBrXoO2NTU5dcj4rltS5VKBGhWoSYEap7xppywrXo5dwof4brVB1RZ6OuEUVZJ7xmDx6qFQICry4DnZgiaWjJzKcM7Npij058lYD0JB_dkwWvTgZS2ULXDJ1tS3GvDBiVhrS_JoSxK3sd0ebkxO18dIgXFZjPG1VHHkwbN2mGZSaVzuFptShmPQi4frDpmIMq59FYS7ZBA6x0LF3INHlcm3mkWYJykF7cHbxr4vLfJvan_8T9JP4CZpv6qIP4I9NGf3FK7bn-t5sepCR85k-a26sP_-eDgad6lOd9Qtd_8v2CNGAw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAgIOPMqjhgILAlFAhngdr-0DQhFQGjVEFWmqiMuyWa9LJLBNnIDyp_iNzPhFwyO3HpB8sLSzkncyO99MdvYbgAdCIfBo7dgCsc5uC6PsMNLKjkJXx14sAlHcSjvs-f1-MBqF-2vwo74LQ2WVtU8sHHWUavqP_DlG8phq-EHovcy-2tQ1ik5X6xYapVnsmcV3TNnyF93X-Ps-5HznzcGrXbvqKmBr4fkze4wYhzF-yMfKd6IWV1HstwwCHXE2mwDx22ihVdsbBxyjH5drjRAeKceJOTeKiA7Q5Z9GP-5TCZk_ahI8CieaKj0Mg3h9itoqSEsdTkUQrs0xC7DdJRw8Fav0T0w4Boq_ndIW4Ldz6X9T22W4WIXZrFPuiyuwZpINuNA5mlZUI2YDzpZtOBdX4QNxb6Mgi-oiFaaSiGVNbzNWsuziNDZJGIbMbDhgw4yKQhlxW6DE9lvU8iKbzL-wT5NpPp_hS-_Z42swPJFlXof1JE3MJjBiItQmdnjMVXs8psdridDzudC-ClwLWrUFSF0RslNfkM-yoZIujEai0UgyGolTnjRTspKNZJXwJpqVVKjaXA4HnHJpCkowRf77kCswFrTgPpmhJG6QhIqPjtQ8z2V38F52XEFd6TBHtuBRJRSn-MlaVXc5cOFEJ7YkubUkic5LLw_XZisr55nLXzZrwb1mmGZSQWBi0nkhwzHVR0hZIePROXM7cNxVMpgwhCIIuQU3yt3WaBaDW58O3i14Wm-_Yx_5L7XfXL2ku3Bu9-BdT_a6_b1bcJ5UX14C2IJ1tGVzG87ob7NJPr1T-BYGH096V_4Eq_anbQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zj9MwEB4tyyF44FiODSxgEIhLYROncZIHhCqWQrVVVW0pWvFiXMdZKkEamhbUv8avYyYXW46-7QNSHiJ5LMXTz3PU428AHgiFjkdr1xbo6-yWMMqOYq3sOPJ04iciFMWttPe9oN8PDw-jwQb8qO_CUFllbRMLQx1PNf1HvouRPKYaQRj5u0lVFjHY67zMvtrUQYpOWut2GiVE9s3yO6Zv-YvuHv7WDznvvH736q1ddRiwtfCDuT1Gf4fxfsTHKnBjh6s4CRyDTo_4m02IvtxooVXLH4ccIyGPa43uPFaum3BuFJEeoPk_HRBpeVE2OGi8AIYWTcUehkS8PlF1CgJTl1NBhGdzzAhsb8UnnkrU9E__cMxB_nZiWzjCzqX_WYWX4WIVfrN2uV-uwIZJt-BC-2hWUZCYLThbtudcXoUPxMmNgiyui1eYSmOWNT3PWMm-i9PYJGUYSrPRkI0yKhZlxHmBEo_foMaX2WTxhX2azPLFHF96z59cg9GJLPM6bKbT1GwDI4ZCbRKXJ1y1xmN6fEdEfsCFDlToWeDUaJC6ImqnfiGfZUMxXQBIIoAkAUjilKfNlKxkKVknvI0QkwpVm8vRkFOOTcEKps5_H_IExogW3CdISuIMSQk6R2qR57I7PJBtT1C3OsydLXhUCSVT_GStqjseuHCiGVuR3FmRRKOmV4drCMvKqObyF34tuNcM00wqFEzNdFHI8MDFHN1dI-PT-XMrdL11MphIRCKMuAU3yp3XaBaD3oAO5C14Vm_FYx_5L7XfXL-ku3AON6Psdfv7t-A8ab68G7ADmwhlcxvO6G_zST67U5gZBh9PelP-BMS6sDs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+diversity+and+population+structure+in+the+US+Upland+cotton+%28Gossypium+hirsutum+L.%29&rft.jtitle=Theoretical+and+applied+genetics&rft.au=Tyagi%2C+Priyanka&rft.au=Gore%2C+Michael+A&rft.au=Bowman%2C+Daryl+T&rft.au=Campbell%2C+B.+Todd&rft.date=2014-02-01&rft.pub=Springer-Verlag&rft.issn=0040-5752&rft.volume=127&rft.issue=2&rft.spage=283&rft.epage=295&rft_id=info:doi/10.1007%2Fs00122-013-2217-3&rft.externalDocID=US201400036110 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-5752&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-5752&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-5752&client=summon |