Plants’ Response Mechanisms to Salinity Stress

Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately threatening global food security. The condition arises from excessive salt accumulation in the soil, primarily due to anthropogenic activities such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plants (Basel) Jg. 12; H. 12; S. 2253
Hauptverfasser: Balasubramaniam, Thuvaraki, Shen, Guoxin, Esmaeili, Nardana, Zhang, Hong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 08.06.2023
MDPI
Schlagworte:
ISSN:2223-7747, 2223-7747
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately threatening global food security. The condition arises from excessive salt accumulation in the soil, primarily due to anthropogenic activities such as irrigation, improper land uses, and overfertilization. The presence of Na⁺, Cl−, and other related ions in the soil above normal levels can disrupt plant cellular functions and lead to alterations in essential metabolic processes such as seed germination and photosynthesis, causing severe damage to plant tissues and even plant death in the worst circumstances. To counteract the effects of salt stress, plants have developed various mechanisms, including modulating ion homeostasis, ion compartmentalization and export, and the biosynthesis of osmoprotectants. Recent advances in genomic and proteomic technologies have enabled the identification of genes and proteins involved in plant salt-tolerance mechanisms. This review provides a short overview of the impact of salinity stress on plants and the underlying mechanisms of salt-stress tolerance, particularly the functions of salt-stress-responsive genes associated with these mechanisms. This review aims at summarizing recent advances in our understanding of salt-stress tolerance mechanisms, providing the key background knowledge for improving crops’ salt tolerance, which could contribute to the yield and quality enhancement in major crops grown under saline conditions or in arid and semiarid regions of the world.
AbstractList Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately threatening global food security. The condition arises from excessive salt accumulation in the soil, primarily due to anthropogenic activities such as irrigation, improper land uses, and overfertilization. The presence of Na⁺, Cl , and other related ions in the soil above normal levels can disrupt plant cellular functions and lead to alterations in essential metabolic processes such as seed germination and photosynthesis, causing severe damage to plant tissues and even plant death in the worst circumstances. To counteract the effects of salt stress, plants have developed various mechanisms, including modulating ion homeostasis, ion compartmentalization and export, and the biosynthesis of osmoprotectants. Recent advances in genomic and proteomic technologies have enabled the identification of genes and proteins involved in plant salt-tolerance mechanisms. This review provides a short overview of the impact of salinity stress on plants and the underlying mechanisms of salt-stress tolerance, particularly the functions of salt-stress-responsive genes associated with these mechanisms. This review aims at summarizing recent advances in our understanding of salt-stress tolerance mechanisms, providing the key background knowledge for improving crops' salt tolerance, which could contribute to the yield and quality enhancement in major crops grown under saline conditions or in arid and semiarid regions of the world.
Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately threatening global food security. The condition arises from excessive salt accumulation in the soil, primarily due to anthropogenic activities such as irrigation, improper land uses, and overfertilization. The presence of Na⁺, Cl−, and other related ions in the soil above normal levels can disrupt plant cellular functions and lead to alterations in essential metabolic processes such as seed germination and photosynthesis, causing severe damage to plant tissues and even plant death in the worst circumstances. To counteract the effects of salt stress, plants have developed various mechanisms, including modulating ion homeostasis, ion compartmentalization and export, and the biosynthesis of osmoprotectants. Recent advances in genomic and proteomic technologies have enabled the identification of genes and proteins involved in plant salt-tolerance mechanisms. This review provides a short overview of the impact of salinity stress on plants and the underlying mechanisms of salt-stress tolerance, particularly the functions of salt-stress-responsive genes associated with these mechanisms. This review aims at summarizing recent advances in our understanding of salt-stress tolerance mechanisms, providing the key background knowledge for improving crops’ salt tolerance, which could contribute to the yield and quality enhancement in major crops grown under saline conditions or in arid and semiarid regions of the world.
Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately threatening global food security. The condition arises from excessive salt accumulation in the soil, primarily due to anthropogenic activities such as irrigation, improper land uses, and overfertilization. The presence of Na⁺, Cl[sup.−] , and other related ions in the soil above normal levels can disrupt plant cellular functions and lead to alterations in essential metabolic processes such as seed germination and photosynthesis, causing severe damage to plant tissues and even plant death in the worst circumstances. To counteract the effects of salt stress, plants have developed various mechanisms, including modulating ion homeostasis, ion compartmentalization and export, and the biosynthesis of osmoprotectants. Recent advances in genomic and proteomic technologies have enabled the identification of genes and proteins involved in plant salt-tolerance mechanisms. This review provides a short overview of the impact of salinity stress on plants and the underlying mechanisms of salt-stress tolerance, particularly the functions of salt-stress-responsive genes associated with these mechanisms. This review aims at summarizing recent advances in our understanding of salt-stress tolerance mechanisms, providing the key background knowledge for improving crops’ salt tolerance, which could contribute to the yield and quality enhancement in major crops grown under saline conditions or in arid and semiarid regions of the world.
Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately threatening global food security. The condition arises from excessive salt accumulation in the soil, primarily due to anthropogenic activities such as irrigation, improper land uses, and overfertilization. The presence of Na⁺, Cl⁻, and other related ions in the soil above normal levels can disrupt plant cellular functions and lead to alterations in essential metabolic processes such as seed germination and photosynthesis, causing severe damage to plant tissues and even plant death in the worst circumstances. To counteract the effects of salt stress, plants have developed various mechanisms, including modulating ion homeostasis, ion compartmentalization and export, and the biosynthesis of osmoprotectants. Recent advances in genomic and proteomic technologies have enabled the identification of genes and proteins involved in plant salt-tolerance mechanisms. This review provides a short overview of the impact of salinity stress on plants and the underlying mechanisms of salt-stress tolerance, particularly the functions of salt-stress-responsive genes associated with these mechanisms. This review aims at summarizing recent advances in our understanding of salt-stress tolerance mechanisms, providing the key background knowledge for improving crops’ salt tolerance, which could contribute to the yield and quality enhancement in major crops grown under saline conditions or in arid and semiarid regions of the world.
Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately threatening global food security. The condition arises from excessive salt accumulation in the soil, primarily due to anthropogenic activities such as irrigation, improper land uses, and overfertilization. The presence of Na⁺, Cl-, and other related ions in the soil above normal levels can disrupt plant cellular functions and lead to alterations in essential metabolic processes such as seed germination and photosynthesis, causing severe damage to plant tissues and even plant death in the worst circumstances. To counteract the effects of salt stress, plants have developed various mechanisms, including modulating ion homeostasis, ion compartmentalization and export, and the biosynthesis of osmoprotectants. Recent advances in genomic and proteomic technologies have enabled the identification of genes and proteins involved in plant salt-tolerance mechanisms. This review provides a short overview of the impact of salinity stress on plants and the underlying mechanisms of salt-stress tolerance, particularly the functions of salt-stress-responsive genes associated with these mechanisms. This review aims at summarizing recent advances in our understanding of salt-stress tolerance mechanisms, providing the key background knowledge for improving crops' salt tolerance, which could contribute to the yield and quality enhancement in major crops grown under saline conditions or in arid and semiarid regions of the world.Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately threatening global food security. The condition arises from excessive salt accumulation in the soil, primarily due to anthropogenic activities such as irrigation, improper land uses, and overfertilization. The presence of Na⁺, Cl-, and other related ions in the soil above normal levels can disrupt plant cellular functions and lead to alterations in essential metabolic processes such as seed germination and photosynthesis, causing severe damage to plant tissues and even plant death in the worst circumstances. To counteract the effects of salt stress, plants have developed various mechanisms, including modulating ion homeostasis, ion compartmentalization and export, and the biosynthesis of osmoprotectants. Recent advances in genomic and proteomic technologies have enabled the identification of genes and proteins involved in plant salt-tolerance mechanisms. This review provides a short overview of the impact of salinity stress on plants and the underlying mechanisms of salt-stress tolerance, particularly the functions of salt-stress-responsive genes associated with these mechanisms. This review aims at summarizing recent advances in our understanding of salt-stress tolerance mechanisms, providing the key background knowledge for improving crops' salt tolerance, which could contribute to the yield and quality enhancement in major crops grown under saline conditions or in arid and semiarid regions of the world.
Audience Academic
Author Esmaeili, Nardana
Zhang, Hong
Shen, Guoxin
Balasubramaniam, Thuvaraki
AuthorAffiliation 2 Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
1 Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; thuvaraki.balasubramaniam@ttu.edu (T.B.); hong.zhang@ttu.edu (H.Z.)
AuthorAffiliation_xml – name: 1 Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; thuvaraki.balasubramaniam@ttu.edu (T.B.); hong.zhang@ttu.edu (H.Z.)
– name: 2 Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
Author_xml – sequence: 1
  givenname: Thuvaraki
  orcidid: 0009-0005-4242-1190
  surname: Balasubramaniam
  fullname: Balasubramaniam, Thuvaraki
– sequence: 2
  givenname: Guoxin
  surname: Shen
  fullname: Shen, Guoxin
– sequence: 3
  givenname: Nardana
  orcidid: 0000-0002-4912-9695
  surname: Esmaeili
  fullname: Esmaeili, Nardana
– sequence: 4
  givenname: Hong
  surname: Zhang
  fullname: Zhang, Hong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37375879$$D View this record in MEDLINE/PubMed
BookMark eNqFUk9vFCEcJabG1tqrRzOJFz1s5d8MzMk0jdVNajRdPRMGmC2bWViBMfbWr-HX85P4226tnSZGIIHAe-8Hj_cU7YUYHELPCT5mrMVvNoMOJRNKKKU1e4QOYGYzIbjYu7feR0c5rzA0CYM0T9A-E0zUUrQHCH--0fh1_bO6cHkTQ3bVR2cudfB5nasSq4UefPDlqlqU5HJ-hh73esju6HY-RF_P3n05_TA7__R-fnpyPjNNLcqMEl4LzkztMCbWYNM7q4XmglODO0HaTnPqGLVaEs14x6VpjaSa9TXvhOXsEM13ujbqldokv9bpSkXt1c1GTEulU_FmcMpKENgWkDXlxlJpSN01thHaMQtlQOvtTmszdmtnjQsl6WEiOj0J_lIt43dFMMNYtA0ovLpVSPHb6HJRa5-NG8A8F8esGOaYU8kI-S8UULhpRNtu7_XyAXQVxxTAVkDRVta4qSWgjneopYbH-tBHuKOBbt3aG0hE72H_BD6USwI5AMLrCQEwxf0oSz3mrOaLiyn2xX1r7jz5k5C_1U2KOSfX30EIVtsUqmkKgcAfEIwvuvi4tdYP_6L9BpTJ39E
CitedBy_id crossref_primary_10_1016_j_scienta_2023_112720
crossref_primary_10_3390_ijms25189818
crossref_primary_10_1007_s12042_024_09378_w
crossref_primary_10_3390_plants13030369
crossref_primary_10_3390_plants14010054
crossref_primary_10_1080_07352689_2024_2354981
crossref_primary_10_3390_plants14162582
crossref_primary_10_3390_plants13081162
crossref_primary_10_3390_agriculture14101750
crossref_primary_10_1016_j_stress_2025_100837
crossref_primary_10_3390_plants12213708
crossref_primary_10_1016_j_indcrop_2024_119319
crossref_primary_10_1007_s42729_024_02132_x
crossref_primary_10_3390_plants13101404
crossref_primary_10_3390_horticulturae10040388
crossref_primary_10_1007_s42729_024_02154_5
crossref_primary_10_1039_D5EN00292C
crossref_primary_10_1007_s12298_025_01626_x
crossref_primary_10_1021_acs_jafc_5c00194
crossref_primary_10_1016_j_plaphy_2025_109830
crossref_primary_10_1007_s11101_024_10057_7
crossref_primary_10_3390_antiox14050518
crossref_primary_10_1016_j_plaphy_2024_108482
crossref_primary_10_1016_j_jaridenv_2025_105444
crossref_primary_10_1186_s12870_025_06965_1
crossref_primary_10_3390_plants14182851
crossref_primary_10_3390_f15030479
crossref_primary_10_1038_s41598_025_15008_6
crossref_primary_10_1007_s42535_025_01243_9
crossref_primary_10_1038_s41598_025_15589_2
crossref_primary_10_3390_chemosensors13070256
crossref_primary_10_3389_fpls_2024_1479925
crossref_primary_10_1080_01140671_2024_2435456
crossref_primary_10_3390_agriculture14010080
crossref_primary_10_3390_plants13243599
crossref_primary_10_3390_ijms252312537
crossref_primary_10_1111_jipb_13641
crossref_primary_10_3390_ijms26199276
crossref_primary_10_3390_microorganisms12071357
crossref_primary_10_1016_j_agwat_2025_109585
crossref_primary_10_1016_j_jafr_2025_102145
crossref_primary_10_3390_phycology5030031
crossref_primary_10_1007_s10709_025_00242_7
crossref_primary_10_1016_j_scienta_2025_114323
crossref_primary_10_1016_j_plaphy_2025_110132
crossref_primary_10_1016_j_algal_2024_103686
crossref_primary_10_1016_j_plaphy_2025_110133
crossref_primary_10_3390_plants13162225
crossref_primary_10_3390_su162411113
crossref_primary_10_1186_s12870_025_06300_8
crossref_primary_10_3390_plants14132031
crossref_primary_10_1007_s42729_025_02603_9
crossref_primary_10_3390_plants13030390
crossref_primary_10_1007_s11105_024_01450_9
crossref_primary_10_3390_antiox13101209
crossref_primary_10_1080_01140671_2025_2513685
crossref_primary_10_3390_f16010185
crossref_primary_10_3390_plants13213111
crossref_primary_10_1016_j_plaphy_2025_110249
crossref_primary_10_1038_s41598_024_82173_5
crossref_primary_10_3390_agronomy15071620
crossref_primary_10_3390_horticulturae11060670
crossref_primary_10_3390_plants13111468
crossref_primary_10_3390_mi15030311
crossref_primary_10_1016_j_plaphy_2025_110484
crossref_primary_10_1016_j_cej_2024_157740
crossref_primary_10_1007_s10681_025_03574_9
crossref_primary_10_1007_s42729_025_02354_7
crossref_primary_10_1007_s00203_024_03913_9
crossref_primary_10_3389_fpls_2024_1406542
crossref_primary_10_3390_environments12070239
crossref_primary_10_1186_s12870_024_05676_3
crossref_primary_10_1134_S1021443724609248
crossref_primary_10_3390_agronomy15071746
crossref_primary_10_1071_FP25031
crossref_primary_10_1016_j_indcrop_2025_121951
crossref_primary_10_1111_jac_12739
crossref_primary_10_3390_plants14172743
crossref_primary_10_3390_horticulturae11091066
crossref_primary_10_1016_j_cj_2025_02_003
crossref_primary_10_3390_ijms252212339
crossref_primary_10_1134_S1021443725602599
crossref_primary_10_1007_s40003_024_00710_0
crossref_primary_10_1016_j_csbj_2025_04_035
crossref_primary_10_3390_agronomy15020427
crossref_primary_10_1016_j_plantsci_2025_112567
crossref_primary_10_1007_s00709_023_01908_9
crossref_primary_10_1016_j_plaphy_2025_110193
crossref_primary_10_1002_ajb2_70076
crossref_primary_10_1016_j_sajb_2023_07_037
crossref_primary_10_1111_ppl_14563
crossref_primary_10_1038_s41598_023_46487_0
crossref_primary_10_3390_plants13060778
crossref_primary_10_3390_f15122081
crossref_primary_10_1080_1343943X_2025_2451345
crossref_primary_10_1016_j_scienta_2025_114016
crossref_primary_10_3390_horticulturae10070702
crossref_primary_10_3389_fpls_2023_1296286
crossref_primary_10_1186_s13568_024_01799_w
crossref_primary_10_3390_plants13101337
crossref_primary_10_3389_fpls_2023_1268750
crossref_primary_10_3390_soilsystems8010011
crossref_primary_10_1002_fsn3_4435
crossref_primary_10_1016_j_envexpbot_2024_105876
crossref_primary_10_3390_soilsystems9030073
crossref_primary_10_32615_bp_2025_004
crossref_primary_10_1016_j_micres_2024_127708
crossref_primary_10_1080_01140671_2025_2454619
crossref_primary_10_1590_1807_1929_agriambi_v29n12e293088
crossref_primary_10_1186_s12870_025_07211_4
crossref_primary_10_3390_metabo15060384
crossref_primary_10_1111_jac_70047
crossref_primary_10_1186_s12870_025_06477_y
crossref_primary_10_3390_horticulturae11050457
crossref_primary_10_1016_j_stress_2025_100892
crossref_primary_10_3390_plants13182630
crossref_primary_10_1007_s10265_025_01640_w
crossref_primary_10_3390_ijms26073099
crossref_primary_10_3389_fpls_2024_1394223
crossref_primary_10_3390_agronomy13112807
crossref_primary_10_3390_plants13121634
crossref_primary_10_3390_agronomy14091952
crossref_primary_10_3390_f15040605
crossref_primary_10_1016_j_pestbp_2024_105778
crossref_primary_10_1038_s41598_025_11637_z
crossref_primary_10_1111_jipb_13755
crossref_primary_10_1016_j_plaphy_2025_109988
crossref_primary_10_1080_23311932_2024_2348695
crossref_primary_10_1002_ird_4003
crossref_primary_10_3390_horticulturae11030280
crossref_primary_10_3390_ijms25105437
crossref_primary_10_3390_ijms252212424
crossref_primary_10_1016_j_scienta_2025_114354
crossref_primary_10_1111_ppl_14239
crossref_primary_10_1016_j_plantsci_2025_112538
crossref_primary_10_3390_plants13060782
crossref_primary_10_1016_j_plantsci_2025_112533
crossref_primary_10_3390_horticulturae10080878
crossref_primary_10_3390_ijms25158276
crossref_primary_10_1016_j_jgeb_2024_100432
crossref_primary_10_1016_j_heliyon_2024_e38159
crossref_primary_10_1080_15226514_2025_2519276
crossref_primary_10_1007_s11738_024_03717_w
crossref_primary_10_3390_d15111119
crossref_primary_10_1016_j_jhazmat_2025_139674
crossref_primary_10_3389_fpls_2025_1547723
crossref_primary_10_3390_ijms25021229
crossref_primary_10_3390_microorganisms13061345
crossref_primary_10_3390_plants13233373
crossref_primary_10_3390_su16167186
crossref_primary_10_3390_ijms26167834
crossref_primary_10_1007_s42729_024_01980_x
crossref_primary_10_1038_s41598_024_51302_5
crossref_primary_10_3390_nitrogen6020027
crossref_primary_10_1080_02757540_2024_2439830
crossref_primary_10_1007_s00344_024_11447_z
crossref_primary_10_1007_s11756_024_01836_w
crossref_primary_10_1007_s42729_024_01854_2
crossref_primary_10_3390_ijms25052654
crossref_primary_10_1007_s10725_025_01298_3
crossref_primary_10_3390_microorganisms12122604
crossref_primary_10_1007_s11240_024_02750_4
crossref_primary_10_1080_23311932_2024_2327666
crossref_primary_10_1002_csc2_70082
crossref_primary_10_3390_w16081164
crossref_primary_10_1016_j_plantsci_2024_112371
crossref_primary_10_3390_app15073606
crossref_primary_10_1016_j_plaphy_2025_109799
crossref_primary_10_1016_j_plaphy_2025_110413
crossref_primary_10_1016_j_bcab_2025_103536
crossref_primary_10_1111_tpj_70469
crossref_primary_10_1590_1807_1929_agriambi_v29n10e293009
crossref_primary_10_3390_genes15050555
crossref_primary_10_1080_01904167_2024_2445086
crossref_primary_10_1007_s44372_025_00355_5
crossref_primary_10_1016_j_envexpbot_2024_106033
crossref_primary_10_1186_s12870_024_05734_w
crossref_primary_10_3390_crops5050061
crossref_primary_10_3390_plants14142223
crossref_primary_10_1007_s42729_025_02536_3
crossref_primary_10_1111_jac_70116
crossref_primary_10_1080_23311932_2024_2389445
crossref_primary_10_1016_j_plaphy_2025_109666
crossref_primary_10_1093_bbb_zbaf061
crossref_primary_10_32604_phyton_2024_057536
crossref_primary_10_1016_j_sajb_2025_04_006
crossref_primary_10_1080_15324982_2025_2504985
crossref_primary_10_1080_23311932_2024_2392042
crossref_primary_10_1016_j_jclepro_2025_145330
crossref_primary_10_3390_agriculture15131421
crossref_primary_10_3390_agronomy13092213
crossref_primary_10_1007_s11104_025_07772_1
crossref_primary_10_3390_plants14060855
crossref_primary_10_1007_s11103_024_01489_y
crossref_primary_10_1016_j_snb_2025_137253
crossref_primary_10_61186_gppj_2_1_121
crossref_primary_10_1016_j_agwat_2025_109765
crossref_primary_10_17221_127_2024_PPS
crossref_primary_10_1007_s11105_024_01488_9
crossref_primary_10_32604_phyton_2025_059930
crossref_primary_10_1007_s42976_024_00491_w
crossref_primary_10_1016_j_biteb_2024_101789
crossref_primary_10_3390_su162310516
crossref_primary_10_1007_s11738_025_03822_4
crossref_primary_10_3389_fpls_2024_1397552
crossref_primary_10_1002_ird_70005
crossref_primary_10_1016_j_cpb_2024_100408
crossref_primary_10_3390_biology14030287
crossref_primary_10_3390_plants14060902
crossref_primary_10_1134_S1062359024612631
crossref_primary_10_1016_j_cpb_2024_100410
crossref_primary_10_1002_tpg2_20468
crossref_primary_10_1016_j_jfca_2024_106296
crossref_primary_10_1038_s41598_024_84048_1
crossref_primary_10_3390_plants13040525
crossref_primary_10_1007_s11104_025_07340_7
crossref_primary_10_1016_j_scitotenv_2025_180082
crossref_primary_10_1007_s12298_024_01515_9
crossref_primary_10_1007_s44371_024_00046_2
crossref_primary_10_3389_fsufs_2025_1659331
crossref_primary_10_3390_j7010006
crossref_primary_10_1007_s11258_025_01543_9
crossref_primary_10_3390_plants13152094
crossref_primary_10_3390_plants13020195
crossref_primary_10_3390_agriculture14050705
crossref_primary_10_1007_s00344_025_11823_3
crossref_primary_10_1007_s40502_024_00831_2
crossref_primary_10_3390_agronomy13092197
crossref_primary_10_1007_s42729_024_01950_3
crossref_primary_10_3390_biology13090673
crossref_primary_10_1007_s41204_025_00428_6
crossref_primary_10_1186_s12284_025_00781_9
crossref_primary_10_1007_s42994_025_00209_4
crossref_primary_10_3390_agriculture14081337
crossref_primary_10_1093_aob_mcae166
crossref_primary_10_1080_00103624_2025_2523537
crossref_primary_10_1007_s11120_024_01128_z
crossref_primary_10_3389_fpls_2025_1592555
crossref_primary_10_1016_j_kjs_2025_100464
crossref_primary_10_1039_D5EN00327J
crossref_primary_10_3390_environments11010017
crossref_primary_10_32604_phyton_2024_056360
crossref_primary_10_1007_s00344_024_11608_0
crossref_primary_10_3390_horticulturae11091004
crossref_primary_10_3390_plants14131930
crossref_primary_10_3390_plants13162309
crossref_primary_10_3390_stresses4020026
crossref_primary_10_1111_pce_15544
crossref_primary_10_1186_s12870_025_07401_0
crossref_primary_10_1007_s10343_025_01199_5
crossref_primary_10_1007_s11270_024_07658_5
crossref_primary_10_1016_j_plaphy_2025_109902
crossref_primary_10_1039_D4EN00685B
crossref_primary_10_3390_stresses5030050
crossref_primary_10_1016_j_sajb_2024_02_039
crossref_primary_10_36253_ahsc_16803
crossref_primary_10_3390_agronomy15020270
crossref_primary_10_1016_j_indcrop_2025_121648
crossref_primary_10_1186_s12870_025_06753_x
crossref_primary_10_3390_plants13121593
crossref_primary_10_1038_s41598_025_94973_4
crossref_primary_10_1016_j_ecofro_2024_10_015
crossref_primary_10_3390_plants14091402
crossref_primary_10_1186_s12870_024_05462_1
crossref_primary_10_3389_fpls_2024_1489380
crossref_primary_10_3390_ijms26052109
crossref_primary_10_1016_j_plaphy_2023_108328
crossref_primary_10_3389_fpls_2024_1458540
crossref_primary_10_1016_j_stress_2025_100927
crossref_primary_10_1111_ppl_70402
Cites_doi 10.3389/fsufs.2021.618092
10.3390/plants11182381
10.1111/plb.12884
10.1007/s10681-013-0957-4
10.3390/ijms21041480
10.1038/s41587-020-0581-5
10.1146/annurev.pp.45.060194.001235
10.3389/fenvs.2021.712831
10.1186/s12575-014-0013-3
10.3389/fpls.2016.00081
10.1093/pcp/pcu059
10.1111/j.1469-8137.2007.02128.x
10.1007/s11104-017-3309-7
10.1111/gcbb.12351
10.3390/ijms20153745
10.1590/S0103-90162011000100010
10.1073/pnas.2034853100
10.1111/j.1365-3040.2009.02080.x
10.1016/j.plaphy.2019.06.012
10.1080/17429145.2012.718376
10.1660/062.122.0105
10.1371/journal.pone.0107678
10.1007/s10725-014-9890-3
10.3390/agronomy12102279
10.1371/journal.pone.0181450
10.1073/pnas.0907095106
10.3389/fpls.2017.00155
10.3389/fpls.2020.559876
10.1016/bs.agron.2021.03.001
10.1093/jxb/erz476
10.3389/fpls.2013.00410
10.1016/j.sajb.2016.03.011
10.1071/PP9860143
10.3390/biom9070285
10.3390/ijms21010148
10.4141/P97-020
10.1016/j.plantsci.2018.05.026
10.1007/s11105-014-0739-8
10.1093/jxb/err135
10.1111/pce.12883
10.1186/s12870-020-02345-z
10.1016/j.ecoenv.2020.110164
10.1146/annurev.arplant.59.032607.092911
10.1073/pnas.132092099
10.1016/j.molp.2020.11.002
10.1016/j.plaphy.2022.03.003
10.3389/fpls.2022.854116
10.1111/ppl.12653
10.1016/j.envexpbot.2022.104934
10.4141/P00-079
10.1016/j.sajb.2010.07.010
10.1111/sum.12772
10.1007/s00425-022-03847-w
10.1073/pnas.191389398
10.3390/genes9100475
10.3389/fpls.2017.01896
10.1016/j.jplph.2012.10.004
10.1016/j.plaphy.2020.08.042
10.14720/aas.2017.109.2.12
10.2135/cropsci2005.0437
10.1073/pnas.122224699
10.1007/s10535-018-0823-2
10.1016/j.tplants.2020.06.008
10.1111/jipb.12144
10.1126/science.285.5431.1256
10.1186/s12870-016-0817-1
10.1111/j.1467-7652.2010.00535.x
10.1186/s12870-016-0771-y
10.1371/journal.pgen.1004664
10.3389/fpls.2022.860056
10.1111/j.1467-7652.2012.00678.x
10.1093/mp/ssn058
10.1016/j.plaphy.2011.10.001
10.1007/BF03321921
10.1007/s11816-012-0269-5
10.13080/z-a.2016.103.030
10.1111/plb.12106
10.1016/j.ecoenv.2020.110732
10.1093/jxb/ers250
10.1080/01904168109362814
10.1007/s12038-007-0061-9
10.3389/fpls.2022.1011985
10.3390/horticulturae3020030
10.1046/j.1365-313X.2003.01871.x
10.3390/ijms23179900
10.1073/pnas.120170197
10.1016/j.envexpbot.2021.104687
10.1007/s11032-006-9048-8
10.1093/plphys/kiab538
10.1093/pcp/pch071
10.1111/pce.12832
10.1093/pcp/pcq096
10.5958/0975-928X.2017.00151.X
10.3389/fpls.2017.01000
10.1186/s12870-019-1963-z
10.1007/s11248-007-9085-z
10.1111/j.1365-3040.2009.02056.x
10.1038/s41598-022-16922-9
10.1016/j.bbrc.2017.11.043
10.1073/pnas.231476498
10.1016/S0304-4238(98)00192-7
10.3390/plants10030428
10.1007/s11103-013-0099-z
10.1111/j.1365-3040.2008.01838.x
10.1038/s41598-023-29954-6
10.3390/plants10050845
10.1111/nph.13519
10.3389/fpls.2022.1006617
10.3389/fpls.2019.00230
10.1016/j.plantsci.2020.110499
10.1093/pcp/pci201
10.1104/pp.16.01848
10.1007/s00344-022-10797-w
10.1007/s11120-013-9813-6
10.1101/2022.08.22.504861
10.1016/j.plaphy.2019.05.012
10.3389/fgene.2022.811732
10.1093/pcp/pcw055
10.1016/j.xplc.2022.100417
10.3389/fpls.2022.978304
10.1186/s42397-021-00086-4
10.1016/j.plaphy.2021.05.042
10.3390/plants11050590
10.1038/s41598-019-44062-0
10.4161/psb.6.6.15223
10.1111/j.1365-313X.2007.03318.x
10.1007/s00299-017-2210-4
10.1111/pbi.12145
10.1038/26879
10.1016/j.jksus.2022.102506
10.1126/science.1118642
10.1016/j.molp.2016.05.010
10.1111/pbi.13476
10.1111/jipb.12899
10.1023/A:1001013913773
10.3390/agronomy11081631
10.1002/jpln.200420516
10.1146/annurev-arplant-042916-040936
10.3389/fpls.2019.00080
10.1017/S0021859697004309
10.1104/pp.110.168047
10.1007/s00425-020-03366-6
10.1038/nbt766
10.3390/ijms19103206
10.1080/14620316.2013.11512989
10.1007/s00709-018-1275-4
10.1023/A:1025003628446
10.1046/j.0016-8025.2001.00808.x
10.1111/plb.13079
10.3389/fpls.2021.588847
10.1111/ppl.13467
10.3390/ijms22094663
10.1105/tpc.010371
10.1111/j.1365-313X.2009.04073.x
10.1105/tpc.111.087395
10.1111/j.1365-313X.2008.03627.x
10.3390/ijms22147687
10.1016/j.fcr.2013.06.011
10.3389/fpls.2021.680131
10.1016/j.jplph.2011.10.007
10.1590/0103-8478cr20180351
10.1007/s10725-014-0013-y
10.1061/JRCEA4.0001137
10.3389/fpls.2014.00147
10.1590/1678-4685-gmb-2016-0106
10.18502/kls.v3i4.708
10.1093/aob/mcu239
10.1007/s13580-014-0003-z
10.3390/ijms22094609
10.1007/s11816-011-0200-5
10.1111/j.1469-8137.2005.01487.x
10.1016/j.jphotobiol.2018.04.047
10.1007/s12374-010-9135-6
10.1093/pcp/pcaa037
10.1093/jxb/erg277
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
ISR
3V.
7SN
7SS
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/plants12122253
DatabaseName CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Agricultural Science
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Biological Science Collection
Agricultural Science Database
Biological Science Database (ProQuest)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed


Agricultural Science Database
AGRICOLA

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Agriculture
EISSN 2223-7747
ExternalDocumentID oai_doaj_org_article_d834bcfed8524cd28c15b6d67ae3da42
PMC10300796
A758481253
37375879
10_3390_plants12122253
Genre Journal Article
Review
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 31402140
– fundername: Key Technologies R & D Program for Crop Breeding of Zhejiang Province
  grantid: 2021C02072-5
– fundername: Natural Science Foundation of China
  grantid: 31402140
GroupedDBID 53G
5VS
7X2
7XC
8FE
8FH
AADQD
AAHBH
AAYXX
ADBBV
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
HYE
IAG
IAO
IGH
ISR
ITC
KQ8
LK8
M0K
M48
M7P
MODMG
M~E
OK1
OZF
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PYCSY
RPM
NPM
3V.
7SN
7SS
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
7S9
L.6
5PM
ID FETCH-LOGICAL-c657t-2145743c5e001dc0cfeda7a4742c0b719ba42e32da81a34b48c9c82a3f54b7d43
IEDL.DBID DOA
ISICitedReferencesCount 344
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001017834600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2223-7747
IngestDate Fri Oct 03 12:43:08 EDT 2025
Tue Nov 04 02:06:56 EST 2025
Fri Sep 05 14:08:05 EDT 2025
Fri Sep 05 10:29:02 EDT 2025
Fri Jul 25 12:02:06 EDT 2025
Tue Nov 04 18:36:04 EST 2025
Wed Nov 26 11:27:47 EST 2025
Thu Apr 03 07:03:01 EDT 2025
Sat Nov 29 07:13:31 EST 2025
Tue Nov 18 22:29:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords salt tolerance
ion homeostasis
seed germination
anthropogenic activities
salinization
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c657t-2145743c5e001dc0cfeda7a4742c0b719ba42e32da81a34b48c9c82a3f54b7d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0009-0005-4242-1190
0000-0002-4912-9695
OpenAccessLink https://doaj.org/article/d834bcfed8524cd28c15b6d67ae3da42
PMID 37375879
PQID 2829850658
PQPubID 2032347
ParticipantIDs doaj_primary_oai_doaj_org_article_d834bcfed8524cd28c15b6d67ae3da42
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10300796
proquest_miscellaneous_3040428311
proquest_miscellaneous_2830667992
proquest_journals_2829850658
gale_infotracacademiconefile_A758481253
gale_incontextgauss_ISR_A758481253
pubmed_primary_37375879
crossref_primary_10_3390_plants12122253
crossref_citationtrail_10_3390_plants12122253
PublicationCentury 2000
PublicationDate 20230608
PublicationDateYYYYMMDD 2023-06-08
PublicationDate_xml – month: 6
  year: 2023
  text: 20230608
  day: 8
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Plants (Basel)
PublicationTitleAlternate Plants (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_139
Chen (ref_184) 2014; 73
Segami (ref_96) 2010; 51
Wang (ref_33) 2018; 163
Kim (ref_70) 2013; 170
Magome (ref_137) 2008; 56
Wang (ref_141) 2014; 55
ref_131
Ismail (ref_155) 2017; 68
Umezawa (ref_129) 2009; 106
Petretto (ref_21) 2019; 141
Abderrahim (ref_27) 2016; 105
ref_132
ref_135
Nguyen (ref_146) 2019; 141
Fu (ref_166) 2022; 188
Silva (ref_34) 2011; 68
Yue (ref_87) 2012; 169
Rahman (ref_162) 2017; 8
Knauth (ref_10) 1998; 395
ref_17
Qiu (ref_82) 2002; 99
ref_16
Zhang (ref_58) 2013; 115
Sussman (ref_95) 1994; 45
ref_15
Kumar (ref_170) 2018; 37
Esmaeili (ref_108) 2021; 19
Balasubramaniam (ref_99) 2022; 200
Khedr (ref_74) 2003; 54
ref_126
Amombo (ref_54) 2022; 255
Chen (ref_113) 2007; 19
Zsigmond (ref_72) 2008; 53
ref_127
Singh (ref_2) 2022; 38
Zhu (ref_62) 2022; 13
Wijewardene (ref_100) 2020; 296
ref_25
ref_22
Byrt (ref_80) 2017; 40
ref_20
Su (ref_93) 2015; 17
ref_124
Sofy (ref_67) 2020; 200
Turki (ref_156) 2023; 35
Liu (ref_114) 2010; 53
Afzal (ref_147) 2023; 42
Betzen (ref_43) 2019; 122
Apse (ref_97) 2003; 36
Shi (ref_81) 2000; 97
Almeida (ref_94) 2017; 40
ref_158
Sarker (ref_122) 2020; 11
Foronda (ref_9) 2022; 16
Chakraborty (ref_160) 2012; 51
Verma (ref_178) 2007; 32
Krishnamurthy (ref_118) 2011; 62
Annunziata (ref_66) 2019; 10
Singh (ref_75) 2022; 13
Wang (ref_90) 2014; 56
Nguyen (ref_71) 2013; 193
Schilling (ref_110) 2014; 12
ref_153
Geetha (ref_154) 2021; 8
Azeem (ref_120) 2023; 13
Qin (ref_23) 2020; 22
Leidi (ref_117) 2010; 61
Guo (ref_149) 2022; 13
Pramanik (ref_163) 2021; 14
Alasvandyari (ref_64) 2018; 23
Fan (ref_187) 2018; 255
Gupta (ref_119) 2014; 2014
Baisakh (ref_186) 2012; 10
Shaheen (ref_49) 2013; 8
Tian (ref_172) 2011; 77
Huihui (ref_30) 2020; 190
Cai (ref_130) 2017; 174
ref_148
Chen (ref_128) 2020; 62
Li (ref_65) 2003; 25
Li (ref_104) 2010; 33
Zahra (ref_29) 2021; 166
Munns (ref_6) 2008; 59
ref_88
ref_144
Geilfus (ref_55) 2019; 21
Niste (ref_40) 2014; 7
He (ref_115) 2005; 46
Stavridou (ref_56) 2017; 9
Singroha (ref_140) 2022; 13
Pan (ref_171) 2016; 9
Hu (ref_41) 2005; 168
Sheldon (ref_45) 2017; 418
Yamaguchi (ref_98) 2013; 4
Lang (ref_159) 2017; 8
Shi (ref_180) 2003; 21
Bassil (ref_111) 2012; 63
Chinnusamy (ref_150) 2005; 45
Zhang (ref_107) 2011; 6
Cruz (ref_38) 2018; 48
Liu (ref_176) 2008; 31
(ref_46) 2014; 16
Kumar (ref_185) 2017; 8
ref_182
ref_181
Han (ref_143) 2020; 61
Quintero (ref_83) 2002; 99
Jiang (ref_134) 2016; 7
Chaudhuri (ref_44) 1997; 40
Hauser (ref_89) 2010; 33
Rodriguez (ref_50) 1997; 128
ref_61
Chen (ref_173) 2008; 17
Ullah (ref_11) 2021; 5
Qin (ref_109) 2013; 7
Chen (ref_179) 2014; 55
Shen (ref_105) 2015; 33
Qamer (ref_121) 2021; 4
Hopmans (ref_4) 2021; 169
Wang (ref_28) 2013; 7
Pineda (ref_91) 2017; 40
ref_168
Farooq (ref_161) 2021; 12
Yang (ref_86) 2009; 2
Zahra (ref_26) 2022; 178
Berry (ref_35) 1981; 3
Rajasekaran (ref_47) 2001; 81
Munns (ref_51) 2015; 208
Achard (ref_136) 2006; 311
Ullah (ref_24) 2022; 193
Banjara (ref_175) 2012; 6
ref_116
Wani (ref_169) 2020; 251
Yu (ref_59) 2020; 25
ref_36
Arif (ref_57) 2020; 156
Stavi (ref_8) 2021; 330
ref_32
Hasana (ref_39) 2017; 3
Shi (ref_84) 2002; 14
Esmaeili (ref_151) 2022; 13
Delorge (ref_76) 2014; 5
Zhang (ref_174) 2001; 98
Wu (ref_177) 2004; 45
Pasapula (ref_106) 2011; 9
Sharkhuu (ref_125) 2013; 83
Yousefirad (ref_152) 2018; 62
Pehlivan (ref_85) 2016; 57
Esmaeili (ref_101) 2019; 9
Yadav (ref_18) 2019; 7
Horie (ref_92) 2011; 156
Munns (ref_37) 1986; 13
Gaxiola (ref_103) 2001; 98
Hussain (ref_123) 2022; 12
Jamil (ref_73) 2018; 37
Lu (ref_165) 2020; 38
Zafar (ref_167) 2020; 71
Demidchik (ref_79) 2007; 175
Sun (ref_102) 2018; 274
Goussi (ref_31) 2018; 183
Fahad (ref_60) 2015; 75
Grattan (ref_42) 1998; 78
Slama (ref_63) 2015; 115
Pujni (ref_78) 2007; 16
Liang (ref_77) 2018; 495
Abbasi (ref_13) 2016; 103
Maas (ref_53) 1977; 103
ref_183
Munns (ref_12) 2005; 167
Mirfattahi (ref_48) 2017; 109
Munns (ref_19) 2002; 25
Nishiyama (ref_138) 2011; 23
ref_1
Apse (ref_112) 1999; 285
ref_3
Volkmar (ref_52) 1998; 78
Cisse (ref_68) 2021; 12
Feng (ref_142) 2022; 13
Ali (ref_157) 2013; 154
Isayenkov (ref_14) 2019; 10
Ohta (ref_133) 2003; 100
ref_5
Yung (ref_145) 2021; 173
Abdelhamid (ref_69) 2013; 88
Shelake (ref_164) 2022; 3
ref_7
References_xml – volume: 5
  start-page: 618092
  year: 2021
  ident: ref_11
  article-title: Climate change and salinity effects on crops and chemical communication between plants and plant growth-promoting microorganisms under stress
  publication-title: Front. Sustain. Food Syst.
  doi: 10.3389/fsufs.2021.618092
– ident: ref_15
  doi: 10.3390/plants11182381
– volume: 21
  start-page: 31
  year: 2019
  ident: ref_55
  article-title: Salinity and crop yield
  publication-title: Plant Biol.
  doi: 10.1111/plb.12884
– volume: 193
  start-page: 101
  year: 2013
  ident: ref_71
  article-title: Physiological and metabolomic analysis of a knockout mutant suggests a critical role of MtP5CS3 gene in osmotic stress tolerance of Medicago truncatula
  publication-title: Euphytica
  doi: 10.1007/s10681-013-0957-4
– ident: ref_144
  doi: 10.3390/ijms21041480
– volume: 38
  start-page: 1402
  year: 2020
  ident: ref_165
  article-title: Targeted, efficient sequence insertion and replacement in rice
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0581-5
– volume: 45
  start-page: 211
  year: 1994
  ident: ref_95
  article-title: Molecular analysis of proteins in the plant plasma membrane
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.pp.45.060194.001235
– volume: 330
  start-page: 712831
  year: 2021
  ident: ref_8
  article-title: Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2021.712831
– volume: 17
  start-page: 1
  year: 2015
  ident: ref_93
  article-title: Model of cation transportation mediated by high-affinity potassium transporters (HKTs) in higher plants
  publication-title: Biol. Proced. Online
  doi: 10.1186/s12575-014-0013-3
– volume: 7
  start-page: 81
  year: 2016
  ident: ref_134
  article-title: Salt stress affects the redox status of Arabidopsis root meristems
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00081
– volume: 55
  start-page: 1354
  year: 2014
  ident: ref_141
  article-title: Induced and constitutive DNA methylation in a salinity-tolerant wheat introgression line
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcu059
– volume: 175
  start-page: 387
  year: 2007
  ident: ref_79
  article-title: Physiological roles of nonselective cation channels in plants: From salt stress to signalling and development
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2007.02128.x
– volume: 418
  start-page: 477
  year: 2017
  ident: ref_45
  article-title: The effect of salinity on plant-available water
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3309-7
– volume: 9
  start-page: 92
  year: 2017
  ident: ref_56
  article-title: The impact of soil salinity on the yield, composition and physiology of the bioenergy grass Miscanthus × giganteus
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12351
– ident: ref_124
  doi: 10.3390/ijms20153745
– ident: ref_1
– volume: 68
  start-page: 62
  year: 2011
  ident: ref_34
  article-title: Salt stress induced damages on the photosynthesis of physic nut young plants
  publication-title: Sci. Agric.
  doi: 10.1590/S0103-90162011000100010
– volume: 100
  start-page: 11771
  year: 2003
  ident: ref_133
  article-title: A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2034853100
– volume: 33
  start-page: 272
  year: 2010
  ident: ref_104
  article-title: Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.)
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2009.02080.x
– volume: 141
  start-page: 325
  year: 2019
  ident: ref_146
  article-title: Chromatin remodeling for the transcription of type 2C protein phosphatase genes in response to salt stress
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2019.06.012
– volume: 8
  start-page: 85
  year: 2013
  ident: ref_49
  article-title: Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms in Solanum melongena L.
  publication-title: J. Plant Interact.
  doi: 10.1080/17429145.2012.718376
– volume: 122
  start-page: 49
  year: 2019
  ident: ref_43
  article-title: Effects of increasing salinity on photosynthesis and plant water potential in Kansas salt marsh species
  publication-title: Trans. Kans. Acad. Sci.
  doi: 10.1660/062.122.0105
– ident: ref_135
  doi: 10.1371/journal.pone.0107678
– volume: 73
  start-page: 299
  year: 2014
  ident: ref_184
  article-title: GmHKT1;4, a novel soybean gene regulating Na+/K+ ratio in roots enhances salt tolerance in transgenic plants
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-014-9890-3
– ident: ref_22
  doi: 10.3390/agronomy12102279
– ident: ref_181
  doi: 10.1371/journal.pone.0181450
– volume: 106
  start-page: 17588
  year: 2009
  ident: ref_129
  article-title: Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0907095106
– volume: 8
  start-page: 155
  year: 2017
  ident: ref_162
  article-title: Mechanistic insight into salt tolerance of Acacia auriculiformis: The importance of ion selectivity, osmoprotection, tissue tolerance, and Na+ exclusion
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00155
– volume: 11
  start-page: 559876
  year: 2020
  ident: ref_122
  article-title: The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.559876
– volume: 169
  start-page: 1
  year: 2021
  ident: ref_4
  article-title: Critical knowledge gaps and research priorities in global soil salinity
  publication-title: Adv. Agron.
  doi: 10.1016/bs.agron.2021.03.001
– volume: 71
  start-page: 470
  year: 2020
  ident: ref_167
  article-title: Engineering abiotic stress tolerance via CRISPR/Cas-mediated genome editing
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erz476
– volume: 4
  start-page: 414
  year: 2013
  ident: ref_98
  article-title: Sodium transport system in plant cells
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2013.00410
– volume: 105
  start-page: 306
  year: 2016
  ident: ref_27
  article-title: Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L.
  publication-title: S. Afr. J. Bot.
  doi: 10.1016/j.sajb.2016.03.011
– volume: 13
  start-page: 143
  year: 1986
  ident: ref_37
  article-title: Whole-plant responses to salinity
  publication-title: Funct. Plant Biol.
  doi: 10.1071/PP9860143
– ident: ref_61
  doi: 10.3390/biom9070285
– ident: ref_7
  doi: 10.3390/ijms21010148
– volume: 78
  start-page: 19
  year: 1998
  ident: ref_52
  article-title: Physiological responses of plants to salinity: A review
  publication-title: Can. J. Plant Sci.
  doi: 10.4141/P97-020
– volume: 274
  start-page: 271
  year: 2018
  ident: ref_102
  article-title: Co-overexpression of AVP1 and PP2A-C5 in Arabidopsis makes plants tolerant to multiple abiotic stresses
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2018.05.026
– volume: 33
  start-page: 167
  year: 2015
  ident: ref_105
  article-title: Co-overexpression of AVP1 and AtNHX1 in cotton further improves drought and salt tolerance in transgenic cotton plants
  publication-title: Plant Mol. Biol. Rep.
  doi: 10.1007/s11105-014-0739-8
– volume: 62
  start-page: 4215
  year: 2011
  ident: ref_118
  article-title: Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.)
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/err135
– volume: 40
  start-page: 658
  year: 2017
  ident: ref_91
  article-title: The sodium transporter encoded by the HKT1;2 gene modulates sodium/potassium homeostasis in tomato shoots under salinity
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12883
– ident: ref_116
  doi: 10.1186/s12870-020-02345-z
– volume: 190
  start-page: 110164
  year: 2020
  ident: ref_30
  article-title: Chlorophyll synthesis and the photoprotective mechanism in leaves of mulberry (Morus alba L.) seedlings under NaCl and NaHCO3 stress revealed by TMT-based proteomics analyses
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.110164
– volume: 59
  start-page: 651
  year: 2008
  ident: ref_6
  article-title: Mechanisms of salinity tolerance
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092911
– volume: 99
  start-page: 9061
  year: 2002
  ident: ref_83
  article-title: Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.132092099
– volume: 14
  start-page: 127
  year: 2021
  ident: ref_163
  article-title: CRISPR-mediated engineering across the central dogma in plant biology for basic research and crop improvement
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2020.11.002
– volume: 178
  start-page: 55
  year: 2022
  ident: ref_26
  article-title: Regulation of photosynthesis under salt stress and associated tolerance mechanisms
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2022.03.003
– volume: 13
  start-page: 854116
  year: 2022
  ident: ref_149
  article-title: Mechanisms of Salt Tolerance and Molecular Breeding of Salt-Tolerant Ornamental Plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.854116
– volume: 163
  start-page: 45
  year: 2018
  ident: ref_33
  article-title: Diffusional conductance to CO2 is the key limitation to photosynthesis in salt-stressed leaves of rice (Oryza sativa)
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.12653
– volume: 200
  start-page: 104934
  year: 2022
  ident: ref_99
  article-title: Co-overexpression of AVP1, PP2A-C5, and AtCLCc in Arabidopsis thaliana greatly increases tolerance to salt and drought stresses
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2022.104934
– volume: 81
  start-page: 487
  year: 2001
  ident: ref_47
  article-title: Stress metabolism. IX. Effect of salt stress on trigonelline accumulation in tomato
  publication-title: Can. J. Plant Sci.
  doi: 10.4141/P00-079
– volume: 77
  start-page: 160
  year: 2011
  ident: ref_172
  article-title: Overexpression of Na+/H+ antiporter gene AtNHX1 from Arabidopsis thaliana improves the salt tolerance of kiwifruit (Actinidia deliciosa)
  publication-title: S. Afr. J. Bot.
  doi: 10.1016/j.sajb.2010.07.010
– volume: 38
  start-page: 39
  year: 2022
  ident: ref_2
  article-title: Soil salinity: A global threat to sustainable development
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12772
– volume: 255
  start-page: 71
  year: 2022
  ident: ref_54
  article-title: Exploring the correlation between salt tolerance and yield: Research advances and perspectives for salt-tolerant forage sorghum selection and genetic improvement
  publication-title: Planta
  doi: 10.1007/s00425-022-03847-w
– volume: 98
  start-page: 11444
  year: 2001
  ident: ref_103
  article-title: Drought-and salt-tolerant plants result from overexpression of the AVP1 H+-pump
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.191389398
– ident: ref_183
  doi: 10.3390/genes9100475
– volume: 8
  start-page: 1896
  year: 2017
  ident: ref_185
  article-title: Co-expression of Arabidopsis NHX1 and bar improves the tolerance to salinity, oxidative stress, and herbicide in transgenic mungbean
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01896
– volume: 170
  start-page: 291
  year: 2013
  ident: ref_70
  article-title: A novel Δ1-pyrroline-5-carboxylate synthetase gene of Medicago truncatula plays a predominant role in stress-induced proline accumulation during symbiotic nitrogen fixation
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2012.10.004
– volume: 156
  start-page: 64
  year: 2020
  ident: ref_57
  article-title: Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2020.08.042
– volume: 109
  start-page: 291
  year: 2017
  ident: ref_48
  article-title: Salinity induced changes in water relations, oxidative damage and morpho-physiological adaptations of pistachio genotypes in soilless culture
  publication-title: Acta Agric. Slov.
  doi: 10.14720/aas.2017.109.2.12
– volume: 45
  start-page: 437
  year: 2005
  ident: ref_150
  article-title: Understanding and improving salt tolerance in plants
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2005.0437
– volume: 99
  start-page: 8436
  year: 2002
  ident: ref_82
  article-title: Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.122224699
– volume: 62
  start-page: 775
  year: 2018
  ident: ref_152
  article-title: Salt oversensitivity derived from mutation breeding improves salinity tolerance in barley via ion homeostasis
  publication-title: Biol. Plant.
  doi: 10.1007/s10535-018-0823-2
– volume: 25
  start-page: 1117
  year: 2020
  ident: ref_59
  article-title: How plant hormones mediate salt stress responses
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2020.06.008
– volume: 56
  start-page: 315
  year: 2014
  ident: ref_90
  article-title: SbHKT1;4, a member of the high-affinity potassium transporter gene family from Sorghum bicolor, functions to maintain optimal Na+/K+ balance under Na+ stress
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12144
– volume: 285
  start-page: 1256
  year: 1999
  ident: ref_112
  article-title: Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis
  publication-title: Science
  doi: 10.1126/science.285.5431.1256
– ident: ref_131
  doi: 10.1186/s12870-016-0817-1
– volume: 9
  start-page: 88
  year: 2011
  ident: ref_106
  article-title: Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought-and salt tolerance and increases fibre yield in the field conditions
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2010.00535.x
– ident: ref_126
  doi: 10.1186/s12870-016-0771-y
– ident: ref_139
  doi: 10.1371/journal.pgen.1004664
– volume: 13
  start-page: 860056
  year: 2022
  ident: ref_142
  article-title: Epigenetic regulation of plant tolerance to salt stress by histone acetyltransferase GsMYST1 from wild soybean
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.860056
– volume: 10
  start-page: 453
  year: 2012
  ident: ref_186
  article-title: Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2012.00678.x
– volume: 2
  start-page: 22
  year: 2009
  ident: ref_86
  article-title: Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssn058
– volume: 51
  start-page: 90
  year: 2012
  ident: ref_160
  article-title: Differential expression of salt overly sensitive pathway genes determines salinity stress tolerance in Brassica genotypes
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2011.10.001
– volume: 16
  start-page: 1
  year: 2007
  ident: ref_78
  article-title: Increased tolerance to salinity and drought in transgenic indica rice by mannitol accumulation
  publication-title: J. Plant Biochem. Biotechnol.
  doi: 10.1007/BF03321921
– volume: 7
  start-page: 345
  year: 2013
  ident: ref_109
  article-title: Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene AVP1 in peanut to improve drought and salt tolerance
  publication-title: Plant Biotechnol. Rep.
  doi: 10.1007/s11816-012-0269-5
– volume: 103
  start-page: 229
  year: 2016
  ident: ref_13
  article-title: Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: A review
  publication-title: Zemdirb. Agric.
  doi: 10.13080/z-a.2016.103.030
– volume: 16
  start-page: 757
  year: 2014
  ident: ref_46
  article-title: Long-term effect of salinity on plant quality, water relations, photosynthetic parameters and ion distribution in Callistemon citrinus
  publication-title: Plant Biol.
  doi: 10.1111/plb.12106
– volume: 200
  start-page: 110732
  year: 2020
  ident: ref_67
  article-title: Glycine betaine counters salinity stress by maintaining high K+/Na+ ratio and antioxidant defense via limiting Na+ uptake in common bean (Phaseolus vulgaris L.)
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.110732
– volume: 63
  start-page: 5727
  year: 2012
  ident: ref_111
  article-title: Cellular ion homeostasis: Emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers250
– volume: 3
  start-page: 13
  year: 1981
  ident: ref_35
  article-title: Toxicity: The concept and relationship to the dose response curve
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904168109362814
– volume: 32
  start-page: 621
  year: 2007
  ident: ref_178
  article-title: Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice
  publication-title: J. Biosci.
  doi: 10.1007/s12038-007-0061-9
– volume: 13
  start-page: 1011985
  year: 2022
  ident: ref_151
  article-title: Genetic manipulation for abiotic stress resistance traits in crops
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.1011985
– ident: ref_3
  doi: 10.3390/horticulturae3020030
– volume: 36
  start-page: 229
  year: 2003
  ident: ref_97
  article-title: Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2003.01871.x
– ident: ref_88
  doi: 10.3390/ijms23179900
– volume: 97
  start-page: 6896
  year: 2000
  ident: ref_81
  article-title: The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.120170197
– volume: 193
  start-page: 104687
  year: 2022
  ident: ref_24
  article-title: Proline accumulation, ion homeostasis and antioxidant defence system alleviate salt stress and protect carbon assimilation in bread wheat genotypes of Omani origin
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2021.104687
– volume: 19
  start-page: 215
  year: 2007
  ident: ref_113
  article-title: Over-expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-006-9048-8
– volume: 188
  start-page: 1248
  year: 2022
  ident: ref_166
  article-title: Vacuolar H+-pyrophosphatase HVP10 enhances salt tolerance via promoting Na+ translocation into root vacuoles
  publication-title: Plant Physiol.
  doi: 10.1093/plphys/kiab538
– volume: 45
  start-page: 600
  year: 2004
  ident: ref_177
  article-title: The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pch071
– volume: 40
  start-page: 802
  year: 2017
  ident: ref_80
  article-title: Non-selective cation channel activity of aquaporin AtPIP2;1 regulated by Ca2+ and pH
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12832
– volume: 51
  start-page: 1350
  year: 2010
  ident: ref_96
  article-title: Quantification, organspecific accumulation and intracellular localization of type II H+- pyrophosphatase in Arabidopsis thaliana
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcq096
– volume: 8
  start-page: 1013
  year: 2021
  ident: ref_154
  article-title: Development of sodicity tolerant rice varieties through marker assisted backcross breeding
  publication-title: Electron. J. Plant Breed.
  doi: 10.5958/0975-928X.2017.00151.X
– volume: 8
  start-page: 1000
  year: 2017
  ident: ref_159
  article-title: Quantitative trait locus mapping of salt tolerance identification of salt-tolerant genes in Brassica napus L.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01000
– ident: ref_182
  doi: 10.1186/s12870-019-1963-z
– ident: ref_36
– volume: 17
  start-page: 121
  year: 2008
  ident: ref_173
  article-title: Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum)
  publication-title: Transgenic Res.
  doi: 10.1007/s11248-007-9085-z
– volume: 33
  start-page: 552
  year: 2010
  ident: ref_89
  article-title: A conserved primary salt tolerance mechanism mediated by HKT transporters: A mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2009.02056.x
– volume: 12
  start-page: 12677
  year: 2022
  ident: ref_123
  article-title: Role of mineral nutrients, antioxidants, osmotic adjustment and PSII stability in salt tolerance of contrasting wheat genotypes
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-16922-9
– volume: 495
  start-page: 286
  year: 2018
  ident: ref_77
  article-title: Plant salt-tolerance mechanism: A review
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2017.11.043
– volume: 98
  start-page: 12832
  year: 2001
  ident: ref_174
  article-title: Engineering salt-tolerant Brassica plants: Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.231476498
– volume: 78
  start-page: 127
  year: 1998
  ident: ref_42
  article-title: Salinity–mineral nutrient relations in horticultural crops
  publication-title: Sci. Hortic.
  doi: 10.1016/S0304-4238(98)00192-7
– ident: ref_158
  doi: 10.3390/plants10030428
– volume: 83
  start-page: 405
  year: 2013
  ident: ref_125
  article-title: The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-013-0099-z
– volume: 31
  start-page: 1325
  year: 2008
  ident: ref_176
  article-title: Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na+/H+ antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2008.01838.x
– volume: 13
  start-page: 2895
  year: 2023
  ident: ref_120
  article-title: Salinity stress improves antioxidant potential by modulating physio-biochemical responses in Moringa oleifera Lam
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-29954-6
– ident: ref_5
– ident: ref_32
  doi: 10.3390/plants10050845
– volume: 208
  start-page: 668
  year: 2015
  ident: ref_51
  article-title: Salinity tolerance of crops–what is the cost?
  publication-title: New Phytol.
  doi: 10.1111/nph.13519
– volume: 13
  start-page: 1006617
  year: 2022
  ident: ref_75
  article-title: Salt stress resilience in plants mediated through osmolyte accumulation and its crosstalk mechanism with phytohormones
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.1006617
– volume: 10
  start-page: 230
  year: 2019
  ident: ref_66
  article-title: Spatial and temporal profile of glycine betaine accumulation in plants under abiotic stresses
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00230
– volume: 296
  start-page: 110499
  year: 2020
  ident: ref_100
  article-title: Improving drought-, salinity-, and heat-tolerance in transgenic plants by co-overexpressing Arabidopsis vacuolar pyrophos-phatase gene AVP1 and Larrea Rubisco activase gene RCA
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2020.110499
– volume: 46
  start-page: 1848
  year: 2005
  ident: ref_115
  article-title: Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pci201
– volume: 174
  start-page: 732
  year: 2017
  ident: ref_130
  article-title: Evolutionary conservation of ABA signaling for stomatal closure
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.01848
– volume: 42
  start-page: 3365
  year: 2023
  ident: ref_147
  article-title: Potential breeding strategies for improving salt tolerance in crop plants
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-022-10797-w
– volume: 115
  start-page: 1
  year: 2013
  ident: ref_58
  article-title: Physiological and molecular mechanisms of plant salt tolerance
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-013-9813-6
– ident: ref_17
  doi: 10.1101/2022.08.22.504861
– volume: 141
  start-page: 30
  year: 2019
  ident: ref_21
  article-title: Effect of salinity (NaCl) on plant growth, nutrient content, and glucosinolate hydrolysis products trends in rocket genotypes
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2019.05.012
– volume: 13
  start-page: 811732
  year: 2022
  ident: ref_140
  article-title: Uncovering the epigenetic marks involved in mediating salt stress tolerance in plants
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2022.811732
– volume: 57
  start-page: 1069
  year: 2016
  ident: ref_85
  article-title: Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcw055
– volume: 3
  start-page: 100417
  year: 2022
  ident: ref_164
  article-title: Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives
  publication-title: Plant Commun.
  doi: 10.1016/j.xplc.2022.100417
– volume: 13
  start-page: 978304
  year: 2022
  ident: ref_62
  article-title: Glycine betaine increases salt tolerance in maize (Zea mays L.) by regulating Na+ homeostasis
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.978304
– volume: 4
  start-page: 9
  year: 2021
  ident: ref_121
  article-title: Review of oxidative stress and antioxidative defense mechanisms in Gossypium hirsutum L. in response to extreme abiotic conditions
  publication-title: J. Cotton Res.
  doi: 10.1186/s42397-021-00086-4
– volume: 166
  start-page: 53
  year: 2021
  ident: ref_29
  article-title: Oxidative stress tolerance potential of milk thistle ecotypes after supplementation of different plant growth-promoting agents under salinity
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2021.05.042
– ident: ref_16
  doi: 10.3390/plants11050590
– volume: 23
  start-page: 265
  year: 2018
  ident: ref_64
  article-title: Effect of glycine betaine and salinity on photosynthetic pigments and ion concentration of safflower
  publication-title: Desert
– volume: 9
  start-page: 1
  year: 2019
  ident: ref_101
  article-title: Co-overexpression of AVP1 and OsSIZ1 in Arabidopsis substantially enhances plant tolerance to drought, salt, and heat stresses
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-44062-0
– volume: 6
  start-page: 861
  year: 2011
  ident: ref_107
  article-title: Creating drought-and salt-tolerant cotton by overexpressing a vacuolar pyrophosphatase gene
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.6.6.15223
– volume: 53
  start-page: 11
  year: 2008
  ident: ref_72
  article-title: Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2007.03318.x
– volume: 37
  start-page: 61
  year: 2018
  ident: ref_170
  article-title: Plant small RNAs: The essential epigenetic regulators of gene expression for salt-stress responses and tolerance
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-017-2210-4
– volume: 12
  start-page: 378
  year: 2014
  ident: ref_110
  article-title: Expression of the A rabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12145
– volume: 395
  start-page: 554
  year: 1998
  ident: ref_10
  article-title: Salinity history of the Earth’s early ocean
  publication-title: Nature
  doi: 10.1038/26879
– volume: 35
  start-page: 102506
  year: 2023
  ident: ref_156
  article-title: Mapping novel QTLs for tolerance to salt stress at the late vegetative stage in durum wheat (Triticum durum L.)
  publication-title: J. King Saud Univ. Sci.
  doi: 10.1016/j.jksus.2022.102506
– volume: 16
  start-page: 56
  year: 2022
  ident: ref_9
  article-title: Reclamation of a saline-sodic soil with organic amendments and leaching
  publication-title: Environ. Sci. Proc.
– volume: 311
  start-page: 91
  year: 2006
  ident: ref_136
  article-title: Integration of plant responses to environmentally activated phytohormonal signals
  publication-title: Science
  doi: 10.1126/science.1118642
– volume: 9
  start-page: 1337
  year: 2016
  ident: ref_171
  article-title: Soybean miR172a improves salt tolerance and can function as a long-distance signal
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2016.05.010
– volume: 19
  start-page: 462
  year: 2021
  ident: ref_108
  article-title: Towards doubling fibre yield for cotton in the semiarid agricultural area by increasing tolerance to drought, heat and salinity simultaneously
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.13476
– volume: 62
  start-page: 25
  year: 2020
  ident: ref_128
  article-title: Abscisic acid dynamics, signaling, and functions in plants
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12899
– ident: ref_20
– volume: 40
  start-page: 373
  year: 1997
  ident: ref_44
  article-title: Effects of short-term NaCl stress on water relations and gas exchange of two jute species
  publication-title: Biol. Plant.
  doi: 10.1023/A:1001013913773
– ident: ref_148
  doi: 10.3390/agronomy11081631
– volume: 168
  start-page: 541
  year: 2005
  ident: ref_41
  article-title: Drought and salinity: A comparison of their effects on mineral nutrition of plants
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.200420516
– volume: 68
  start-page: 405
  year: 2017
  ident: ref_155
  article-title: Genomics, physiology, and molecular breeding approaches for improving salt tolerance
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042916-040936
– volume: 10
  start-page: 80
  year: 2019
  ident: ref_14
  article-title: Plant salinity stress: Many unanswered questions remain
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00080
– volume: 128
  start-page: 439
  year: 1997
  ident: ref_50
  article-title: Effects of salinity on growth, shoot water relations and root hydraulic conductivity in tomato plants
  publication-title: J. Agric. Sci.
  doi: 10.1017/S0021859697004309
– volume: 7
  start-page: 1793
  year: 2019
  ident: ref_18
  article-title: Impact of salt stress on growth, productivity and physicochemical properties of plants: A Review
  publication-title: Int. J. Chem. Stud.
– volume: 156
  start-page: 1493
  year: 2011
  ident: ref_92
  article-title: K+ transport by the OsHKT2;4 transporter from rice with atypical Na+ transport properties and competition in permeation of K+ over Mg2+ and Ca2+ ions
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.168047
– volume: 251
  start-page: 76
  year: 2020
  ident: ref_169
  article-title: Engineering salinity tolerance in plants: Progress and prospects
  publication-title: Planta
  doi: 10.1007/s00425-020-03366-6
– volume: 21
  start-page: 81
  year: 2003
  ident: ref_180
  article-title: Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt766
– ident: ref_127
  doi: 10.3390/ijms19103206
– volume: 88
  start-page: 439
  year: 2013
  ident: ref_69
  article-title: Exogenous application of proline alleviates salt-induced oxidative stress in Phaseolus vulgaris L.
  publication-title: plants. J. Hortic. Sci. Biotechnol.
  doi: 10.1080/14620316.2013.11512989
– volume: 255
  start-page: 1827
  year: 2018
  ident: ref_187
  article-title: Over-expression of a plasma membrane H+-ATPase SpAHA1 conferred salt tolerance to transgenic Arabidopsis
  publication-title: Protoplasma
  doi: 10.1007/s00709-018-1275-4
– volume: 25
  start-page: 1431
  year: 2003
  ident: ref_65
  article-title: Molecular cloning and characterization of betaine aldehyde dehydrogenase gene from Suaeda liaotungensis and its use in improved tolerance to salinity in transgenic tobacco
  publication-title: Biotechnol. Lett.
  doi: 10.1023/A:1025003628446
– volume: 25
  start-page: 239
  year: 2002
  ident: ref_19
  article-title: Comparative physiology of salt and water stress
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.0016-8025.2001.00808.x
– volume: 7
  start-page: 71
  year: 2014
  ident: ref_40
  article-title: Plant nutrition affected by soil salinity and response of rhizobium regarding the nutrients accumulation
  publication-title: ProEnviron. Promediu
– volume: 22
  start-page: 357
  year: 2020
  ident: ref_23
  article-title: Beneficial role of acetylcholine in chlorophyll metabolism and photosynthetic gas exchange in Nicotiana benthamiana seedlings under salinity stress
  publication-title: Plant Biol.
  doi: 10.1111/plb.13079
– volume: 12
  start-page: 588847
  year: 2021
  ident: ref_68
  article-title: Gly Betaine surpasses melatonin to improve salt tolerance in Dalbergia Odorifera
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.588847
– volume: 173
  start-page: 1495
  year: 2021
  ident: ref_145
  article-title: Histone modifications and chromatin remodelling in plants in response to salt stress
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.13467
– ident: ref_153
– ident: ref_25
  doi: 10.3390/ijms22094663
– volume: 14
  start-page: 465
  year: 2002
  ident: ref_84
  article-title: The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants
  publication-title: Plant Cell
  doi: 10.1105/tpc.010371
– volume: 61
  start-page: 495
  year: 2010
  ident: ref_117
  article-title: The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2009.04073.x
– volume: 23
  start-page: 2169
  year: 2011
  ident: ref_138
  article-title: Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.087395
– volume: 56
  start-page: 613
  year: 2008
  ident: ref_137
  article-title: The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03627.x
– ident: ref_168
  doi: 10.3390/ijms22147687
– volume: 154
  start-page: 65
  year: 2013
  ident: ref_157
  article-title: Stress indices and selectable traits in SALTOL QTL introgressed rice genotypes for reproductive stage tolerance to sodicity and salinity stresses
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2013.06.011
– volume: 12
  start-page: 680131
  year: 2021
  ident: ref_161
  article-title: Rice cultivars under salt stress Show differential expression of genes related to the regulation of Na+/K+ balance
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.680131
– volume: 7
  start-page: 289
  year: 2013
  ident: ref_28
  article-title: Influence of natural saline-alkali stress on chlorophyll content and chloroplast ultrastructure of two contrasting rice (Oryza sativa L. japonica) cultivars.
  publication-title: Aust. J. Crop Sci.
– volume: 169
  start-page: 255
  year: 2012
  ident: ref_87
  article-title: SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2011.10.007
– volume: 48
  start-page: e20180351
  year: 2018
  ident: ref_38
  article-title: Salinity reduces nutrients absorption and efficiency of their utilization in cassava plants
  publication-title: Ciência Rural
  doi: 10.1590/0103-8478cr20180351
– volume: 75
  start-page: 391
  year: 2015
  ident: ref_60
  article-title: Phytohormones and plant responses to salinity stress: A review
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-014-0013-y
– volume: 2014
  start-page: 701596
  year: 2014
  ident: ref_119
  article-title: Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization
  publication-title: Int. J. Genom.
– volume: 37
  start-page: 160
  year: 2018
  ident: ref_73
  article-title: Inducing salinity tolerance in red pepper (Capsicum annuum L.) through exogenous application of proline and L-tryptophan
  publication-title: Soil Environ.
– volume: 103
  start-page: 115
  year: 1977
  ident: ref_53
  article-title: Crop salt tolerance-current assessment
  publication-title: J. Irrig. Drain. Div.
  doi: 10.1061/JRCEA4.0001137
– volume: 5
  start-page: 147
  year: 2014
  ident: ref_76
  article-title: Fine tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2014.00147
– volume: 40
  start-page: 326
  year: 2017
  ident: ref_94
  article-title: Regulation of Na+ and K+ homeostasis in plants: Towards improved salt stress tolerance in crop plants
  publication-title: Genet. Mol. Biol.
  doi: 10.1590/1678-4685-gmb-2016-0106
– volume: 3
  start-page: 219
  year: 2017
  ident: ref_39
  article-title: Salinity stress alters nutrient uptake and causes the damage of root and leaf anatomy in maize
  publication-title: KnE Life Sci.
  doi: 10.18502/kls.v3i4.708
– volume: 115
  start-page: 433
  year: 2015
  ident: ref_63
  article-title: Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcu239
– volume: 55
  start-page: 213
  year: 2014
  ident: ref_179
  article-title: Overexpression of StNHX1, a novel vacuolar Na+/H+ antiporter gene from Solanum torvum, enhances salt tolerance in transgenic vegetable soybean
  publication-title: Hortic. Environ. Biotechnol.
  doi: 10.1007/s13580-014-0003-z
– ident: ref_132
  doi: 10.3390/ijms22094609
– volume: 6
  start-page: 59
  year: 2012
  ident: ref_175
  article-title: Expression of an Arabidopsis sodium/proton antiporter gene (AtNHX1) in peanut to improve salt tolerance
  publication-title: Plant Biotechnol. Rep.
  doi: 10.1007/s11816-011-0200-5
– volume: 167
  start-page: 645
  year: 2005
  ident: ref_12
  article-title: Genes and salt tolerance: Bringing them together
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2005.01487.x
– volume: 183
  start-page: 275
  year: 2018
  ident: ref_31
  article-title: Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsuginea
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/j.jphotobiol.2018.04.047
– volume: 53
  start-page: 444
  year: 2010
  ident: ref_114
  article-title: Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in rice
  publication-title: J. Plant Biol.
  doi: 10.1007/s12374-010-9135-6
– volume: 61
  start-page: 1120
  year: 2020
  ident: ref_143
  article-title: Changes and associations of genomic transcription and histone methylation with salt stress in castor bean
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcaa037
– volume: 54
  start-page: 2553
  year: 2003
  ident: ref_74
  article-title: Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erg277
SSID ssj0000800816
Score 2.6642752
SecondaryResourceType review_article
Snippet Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2253
SubjectTerms Abiotic stress
Abnormalities
Agriculture
anthropogenic activities
Anthropogenic factors
Biosynthesis
Botanical research
Cell cycle
Cell division
Chlorophyll
Crop yields
Crops
Cyclin-dependent kinases
death
exports
Flowers & plants
Food security
Genes
Genetically altered foods
genomics
Germination
Homeostasis
Human influences
ion homeostasis
irrigation
Kinases
Land use
Nitrogen
Nutrients
Osmoprotectants
Osmosis
osmotolerance
Photosynthesis
Plant growth
Plant tissues
Plants (botany)
Potassium
Proteomics
Review
Salinity
Salinity effects
Salinity tolerance
Salinization
Salt
salt stress
Salt stress (Botany)
Salt tolerance
Seed germination
Semi arid areas
Semiarid zones
soil
Soil salinity
soil salinization
Soil stresses
Soils
SummonAdditionalLinks – databaseName: Biological Science Database (ProQuest)
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag9EAPPMorUFBASJyiJrYT2ye0RVRwoFp1QeotcmxnWakk280uUm_8Df4ev4QZxxsaoXLhFiUTaewZz8Mef0PIa5E7keqKJsxRm3DrWKIqAU91xSnkzawSlW82IU5O5NmZmoYNty6UVW5tojfUtjW4R36IJ36IrpbLt8uLBLtG4elqaKFxk9xClATqS_emwx4LRkMyK3qsRgbZ_eHyHKtLgBbTHDbyRR6y_2_DfMUzjasmr7ih47v_O4B75E4IQONJrzH3yQ3X7JO9yXwVQDjcPtk9aiFkvHxA0qkfyK8fP-PTvpbWxZ8c3hVedN-6eN3GM403K9eX8czfOXlIvhy___zuQxJaLCSmyMU6QZxyiCFM7sBdWZOa2lktNIeE2aSVyFSlOXWMWi0zzXjFpVFGUs3qnINIOXtEdpq2cU9IzBWkfuD6pNGOu9pAYmdz6yz8LGrFTUSS7WSXJuCPYxuM8xLyEBROORZORN4M9MseeeNayiOU3UCFiNn-Rbual2EBllYC-zg8mVNuLJUmy6vCFkI7ZmGQEXmFki8RE6PBopu53nRd-XF2Wk4gp-IQCHmeAlHdAu9GhzsMMAMIozWiPNhqQRmsQlf-UYGIvBw-w3rGQxrduHaDNAzrjpWi19MwsLwIlJdlEXncK-UweCYYMCFURORIXUezM_7SLL56XHHsOJcKVTz9N-_PyG0KkZ6vl5MHZGe92rjnZNd8Xy-61Qu_An8D2a08dw
  priority: 102
  providerName: ProQuest
Title Plants’ Response Mechanisms to Salinity Stress
URI https://www.ncbi.nlm.nih.gov/pubmed/37375879
https://www.proquest.com/docview/2829850658
https://www.proquest.com/docview/2830667992
https://www.proquest.com/docview/3040428311
https://pubmed.ncbi.nlm.nih.gov/PMC10300796
https://doaj.org/article/d834bcfed8524cd28c15b6d67ae3da42
Volume 12
WOSCitedRecordID wos001017834600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2223-7747
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800816
  issn: 2223-7747
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2223-7747
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800816
  issn: 2223-7747
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agriculture Science Database
  customDbUrl:
  eissn: 2223-7747
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800816
  issn: 2223-7747
  databaseCode: M0K
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2223-7747
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800816
  issn: 2223-7747
  databaseCode: M7P
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 2223-7747
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800816
  issn: 2223-7747
  databaseCode: PATMY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 2223-7747
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800816
  issn: 2223-7747
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2223-7747
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800816
  issn: 2223-7747
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELag9MCl4p-UsgoIiVPUJHZi-9hFW1GhXUW7IC0ny7GdsqgkVbOL1AviNXg9noQZJ11thCouXKwonijON7ZnRhl_Q8gbnjke6zKNqEttxKyjkSw5XFUlSyFupiUvfbEJPpuJ5VIWO6W-MCesowfugDu2grLSVM6KLGXGpsIkWZnbnGtHrWZ-94253AmmvvZ-kEjyjqWRQlx_fHmBeSUJ7NQwg-nACnmy_r-35B2bNMyX3DFApw_IQe85hifdiB-SO65-RPbHDXh3149JXPg3__75K5x3aa8unDo81rtqv7XhugkXGg9Brq_DhT8e8oR8Op18fPc-6qshRCbP-DpCSnEw9yZzYFmsiRETzTWD2NbEJU9kCWg4mlotEg2YMWGkEammVcYAfUafkr26qd1zEjIJURpYKWG0Y64yEIPZzDoLD_NKMhOQ6AYdZXqqcKxYcaEgZEA01RDNgLzdyl92JBm3So4R7K0Uklv7G6By1atc_UvlAXmNqlJIX1Fjfsy53rStOlvM1QmEPwx8Fj-mXqhqYOxG98cNAAFkvBpIHt2oXPULuFX4gxnJ_DIRkFfbblh6-D9F167ZoAzFFGEp09tlKGySyGmXJAF51s2i7cdTTmEQXAZEDObXAJ1hT7364inAsTgczPr88H_g-YLcT8F18wlw4ojsra827iXZN9_Xq_ZqRO7ypRiRe-PJrJiP_DKDdhp_wJYX2P6YQH9xNi0-_wE0TjIa
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VtBJw4Kf8GQoYBOJk1d5dZ-0DQilQNWoTRW2R2pNZ765DpGKHOAHlxmvwEjwUT8KM44RaqNx64GbFE2t2Pb_emW8AXsjQSl-lzOOWGU8Yy704lXiVpYJh3sxTmVbDJmS_H52cxIM1-LnshaGyyqVNrAy1KTR9I9-mEz9CVwujN-MvHk2NotPV5QiNhVjs2_k3TNnK1913-H5fMrb7_vjtnldPFfB0O5RTj6C50W3q0KKFNtrXmTVKKoE5ovZTGcSpEsxyZlQUKC5SEelYR0zxLBS4CsHxuVdgXZCwt2B90O0NTldfdSj-ioL2Ah2S89jfHp9RPUuAHgI1hze8XzUk4G9XcM4XNus0zzm-3Zv_25bdght1iO12FjpxG9ZsvgnXO8NJDTNiN2Fjp8CgeH4H_EG1cb--_3APF9XC1u1Z6oYelZ9Ld1q4R4p6R6dz96jqqrkLHy6F93vQyovcPgBXxJjconOPtLLCZhpTVxMaa_DPMouFdsBbvtxE1wjrNOjjLMFMi4QhaQqDA69W9OMFtsiFlDskKysqwgSvfigmw6Q2MYmJkH1aXhQyoQ2LdBCmbdOWynKDi3TgOUlaQqgfOZUVDdWsLJPu0WHSwaxRYKhX8VQTZQXyrlXdpYE7QEBhDcqtpdQltd0rkz8i58Cz1W20WHQMpXJbzIiGU2V1HLOLaTj6FoICDAIH7i-UYLV4LjkyIWMHooZ6NHaneScffaqQ02mmni_j9sN_8_4Uru4d9w6Sg25__xFcYxjXVtWB0Ra0ppOZfQwb-ut0VE6e1PrvwsfL1p_fdXWa1w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VtEJw4Kf8GQoYBOJkxfaus-sDQimlIiqNogak9mTWu-sQqdghTkC58Rq8Co_DkzDjOKEWKrceuEX2OJpdz6935huAZyKywldp6DEbGo8by7w4FfgrS3mIeTNLRVoNmxD9vjw-jgcb8HPVC0NllSubWBlqU2j6Rt6mEz9CV4tkO6vLIgZ7-68mXzyaIEUnratxGksRObCLb5i-lS97e_iun4fh_pv3r9969YQBT3ciMfMIphtdqI4sWmujfZ1Zo4TimC9qPxVBnCoeWhYaJQPFeMqljrUMFcsijiviDP_3EmwKeqAFm4Pe4eBk_YWHYjEZdJZIkYzFfntySrUtAXoL1CLW8ITVwIC_3cIZv9is2TzjBPev_8_bdwOu1aG3213qyk3YsPk2XO2OpjX8iN2Grd0Cg-XFLfAH1Sb--v7DPVpWEVv30FKX9Lj8XLqzwh0q6imdLdxh1W1zGz5cCO93oJUXub0HLo8x6UWnL7Wy3GYaU1oTGWvwYZHFXDvgrV50omvkdRoAcppgBkaCkTQFw4EXa_rJEnPkXMpdkps1FWGFVxeK6SipTU9iJLJPy5NRyLUJpQ6itGM6QllmcJEOPCWpSwgNJCfBGKl5WSa94VHSxWySYwhY8VQTZQXyrlXdvYE7QABiDcqdlQQmtT0skz_i58CT9W20ZHQ8pXJbzImGUcV1HIfn0zD0OQQRGAQO3F0qxHrxTDBkQsQOyIaqNHaneScff6oQ1WnWni_izv1_8_4YLqPSJO96_YMHcCXEcLcqGpQ70JpN5_YhbOmvs3E5fVSbAhc-XrT6_Aad3aOX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plants%E2%80%99+Response+Mechanisms+to+Salinity+Stress&rft.jtitle=Plants+%28Basel%29&rft.au=Balasubramaniam%2C+Thuvaraki&rft.au=Shen%2C+Guoxin&rft.au=Esmaeili%2C+Nardana&rft.au=Zhang%2C+Hong&rft.date=2023-06-08&rft.pub=MDPI&rft.eissn=2223-7747&rft.volume=12&rft.issue=12&rft_id=info:doi/10.3390%2Fplants12122253&rft_id=info%3Apmid%2F37375879&rft.externalDocID=PMC10300796
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon