Plants’ Response Mechanisms to Salinity Stress
Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately threatening global food security. The condition arises from excessive salt accumulation in the soil, primarily due to anthropogenic activities such...
Gespeichert in:
| Veröffentlicht in: | Plants (Basel) Jg. 12; H. 12; S. 2253 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
08.06.2023
MDPI |
| Schlagworte: | |
| ISSN: | 2223-7747, 2223-7747 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately threatening global food security. The condition arises from excessive salt accumulation in the soil, primarily due to anthropogenic activities such as irrigation, improper land uses, and overfertilization. The presence of Na⁺, Cl−, and other related ions in the soil above normal levels can disrupt plant cellular functions and lead to alterations in essential metabolic processes such as seed germination and photosynthesis, causing severe damage to plant tissues and even plant death in the worst circumstances. To counteract the effects of salt stress, plants have developed various mechanisms, including modulating ion homeostasis, ion compartmentalization and export, and the biosynthesis of osmoprotectants. Recent advances in genomic and proteomic technologies have enabled the identification of genes and proteins involved in plant salt-tolerance mechanisms. This review provides a short overview of the impact of salinity stress on plants and the underlying mechanisms of salt-stress tolerance, particularly the functions of salt-stress-responsive genes associated with these mechanisms. This review aims at summarizing recent advances in our understanding of salt-stress tolerance mechanisms, providing the key background knowledge for improving crops’ salt tolerance, which could contribute to the yield and quality enhancement in major crops grown under saline conditions or in arid and semiarid regions of the world. |
|---|---|
| AbstractList | Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately threatening global food security. The condition arises from excessive salt accumulation in the soil, primarily due to anthropogenic activities such as irrigation, improper land uses, and overfertilization. The presence of Na⁺, Cl
, and other related ions in the soil above normal levels can disrupt plant cellular functions and lead to alterations in essential metabolic processes such as seed germination and photosynthesis, causing severe damage to plant tissues and even plant death in the worst circumstances. To counteract the effects of salt stress, plants have developed various mechanisms, including modulating ion homeostasis, ion compartmentalization and export, and the biosynthesis of osmoprotectants. Recent advances in genomic and proteomic technologies have enabled the identification of genes and proteins involved in plant salt-tolerance mechanisms. This review provides a short overview of the impact of salinity stress on plants and the underlying mechanisms of salt-stress tolerance, particularly the functions of salt-stress-responsive genes associated with these mechanisms. This review aims at summarizing recent advances in our understanding of salt-stress tolerance mechanisms, providing the key background knowledge for improving crops' salt tolerance, which could contribute to the yield and quality enhancement in major crops grown under saline conditions or in arid and semiarid regions of the world. Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately threatening global food security. The condition arises from excessive salt accumulation in the soil, primarily due to anthropogenic activities such as irrigation, improper land uses, and overfertilization. The presence of Na⁺, Cl−, and other related ions in the soil above normal levels can disrupt plant cellular functions and lead to alterations in essential metabolic processes such as seed germination and photosynthesis, causing severe damage to plant tissues and even plant death in the worst circumstances. To counteract the effects of salt stress, plants have developed various mechanisms, including modulating ion homeostasis, ion compartmentalization and export, and the biosynthesis of osmoprotectants. Recent advances in genomic and proteomic technologies have enabled the identification of genes and proteins involved in plant salt-tolerance mechanisms. This review provides a short overview of the impact of salinity stress on plants and the underlying mechanisms of salt-stress tolerance, particularly the functions of salt-stress-responsive genes associated with these mechanisms. This review aims at summarizing recent advances in our understanding of salt-stress tolerance mechanisms, providing the key background knowledge for improving crops’ salt tolerance, which could contribute to the yield and quality enhancement in major crops grown under saline conditions or in arid and semiarid regions of the world. Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately threatening global food security. The condition arises from excessive salt accumulation in the soil, primarily due to anthropogenic activities such as irrigation, improper land uses, and overfertilization. The presence of Na⁺, Cl[sup.−] , and other related ions in the soil above normal levels can disrupt plant cellular functions and lead to alterations in essential metabolic processes such as seed germination and photosynthesis, causing severe damage to plant tissues and even plant death in the worst circumstances. To counteract the effects of salt stress, plants have developed various mechanisms, including modulating ion homeostasis, ion compartmentalization and export, and the biosynthesis of osmoprotectants. Recent advances in genomic and proteomic technologies have enabled the identification of genes and proteins involved in plant salt-tolerance mechanisms. This review provides a short overview of the impact of salinity stress on plants and the underlying mechanisms of salt-stress tolerance, particularly the functions of salt-stress-responsive genes associated with these mechanisms. This review aims at summarizing recent advances in our understanding of salt-stress tolerance mechanisms, providing the key background knowledge for improving crops’ salt tolerance, which could contribute to the yield and quality enhancement in major crops grown under saline conditions or in arid and semiarid regions of the world. Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately threatening global food security. The condition arises from excessive salt accumulation in the soil, primarily due to anthropogenic activities such as irrigation, improper land uses, and overfertilization. The presence of Na⁺, Cl⁻, and other related ions in the soil above normal levels can disrupt plant cellular functions and lead to alterations in essential metabolic processes such as seed germination and photosynthesis, causing severe damage to plant tissues and even plant death in the worst circumstances. To counteract the effects of salt stress, plants have developed various mechanisms, including modulating ion homeostasis, ion compartmentalization and export, and the biosynthesis of osmoprotectants. Recent advances in genomic and proteomic technologies have enabled the identification of genes and proteins involved in plant salt-tolerance mechanisms. This review provides a short overview of the impact of salinity stress on plants and the underlying mechanisms of salt-stress tolerance, particularly the functions of salt-stress-responsive genes associated with these mechanisms. This review aims at summarizing recent advances in our understanding of salt-stress tolerance mechanisms, providing the key background knowledge for improving crops’ salt tolerance, which could contribute to the yield and quality enhancement in major crops grown under saline conditions or in arid and semiarid regions of the world. Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately threatening global food security. The condition arises from excessive salt accumulation in the soil, primarily due to anthropogenic activities such as irrigation, improper land uses, and overfertilization. The presence of Na⁺, Cl-, and other related ions in the soil above normal levels can disrupt plant cellular functions and lead to alterations in essential metabolic processes such as seed germination and photosynthesis, causing severe damage to plant tissues and even plant death in the worst circumstances. To counteract the effects of salt stress, plants have developed various mechanisms, including modulating ion homeostasis, ion compartmentalization and export, and the biosynthesis of osmoprotectants. Recent advances in genomic and proteomic technologies have enabled the identification of genes and proteins involved in plant salt-tolerance mechanisms. This review provides a short overview of the impact of salinity stress on plants and the underlying mechanisms of salt-stress tolerance, particularly the functions of salt-stress-responsive genes associated with these mechanisms. This review aims at summarizing recent advances in our understanding of salt-stress tolerance mechanisms, providing the key background knowledge for improving crops' salt tolerance, which could contribute to the yield and quality enhancement in major crops grown under saline conditions or in arid and semiarid regions of the world.Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately threatening global food security. The condition arises from excessive salt accumulation in the soil, primarily due to anthropogenic activities such as irrigation, improper land uses, and overfertilization. The presence of Na⁺, Cl-, and other related ions in the soil above normal levels can disrupt plant cellular functions and lead to alterations in essential metabolic processes such as seed germination and photosynthesis, causing severe damage to plant tissues and even plant death in the worst circumstances. To counteract the effects of salt stress, plants have developed various mechanisms, including modulating ion homeostasis, ion compartmentalization and export, and the biosynthesis of osmoprotectants. Recent advances in genomic and proteomic technologies have enabled the identification of genes and proteins involved in plant salt-tolerance mechanisms. This review provides a short overview of the impact of salinity stress on plants and the underlying mechanisms of salt-stress tolerance, particularly the functions of salt-stress-responsive genes associated with these mechanisms. This review aims at summarizing recent advances in our understanding of salt-stress tolerance mechanisms, providing the key background knowledge for improving crops' salt tolerance, which could contribute to the yield and quality enhancement in major crops grown under saline conditions or in arid and semiarid regions of the world. |
| Audience | Academic |
| Author | Esmaeili, Nardana Zhang, Hong Shen, Guoxin Balasubramaniam, Thuvaraki |
| AuthorAffiliation | 2 Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China 1 Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; thuvaraki.balasubramaniam@ttu.edu (T.B.); hong.zhang@ttu.edu (H.Z.) |
| AuthorAffiliation_xml | – name: 1 Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; thuvaraki.balasubramaniam@ttu.edu (T.B.); hong.zhang@ttu.edu (H.Z.) – name: 2 Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China |
| Author_xml | – sequence: 1 givenname: Thuvaraki orcidid: 0009-0005-4242-1190 surname: Balasubramaniam fullname: Balasubramaniam, Thuvaraki – sequence: 2 givenname: Guoxin surname: Shen fullname: Shen, Guoxin – sequence: 3 givenname: Nardana orcidid: 0000-0002-4912-9695 surname: Esmaeili fullname: Esmaeili, Nardana – sequence: 4 givenname: Hong surname: Zhang fullname: Zhang, Hong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37375879$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUk9vFCEcJabG1tqrRzOJFz1s5d8MzMk0jdVNajRdPRMGmC2bWViBMfbWr-HX85P4226tnSZGIIHAe-8Hj_cU7YUYHELPCT5mrMVvNoMOJRNKKKU1e4QOYGYzIbjYu7feR0c5rzA0CYM0T9A-E0zUUrQHCH--0fh1_bO6cHkTQ3bVR2cudfB5nasSq4UefPDlqlqU5HJ-hh73esju6HY-RF_P3n05_TA7__R-fnpyPjNNLcqMEl4LzkztMCbWYNM7q4XmglODO0HaTnPqGLVaEs14x6VpjaSa9TXvhOXsEM13ujbqldokv9bpSkXt1c1GTEulU_FmcMpKENgWkDXlxlJpSN01thHaMQtlQOvtTmszdmtnjQsl6WEiOj0J_lIt43dFMMNYtA0ovLpVSPHb6HJRa5-NG8A8F8esGOaYU8kI-S8UULhpRNtu7_XyAXQVxxTAVkDRVta4qSWgjneopYbH-tBHuKOBbt3aG0hE72H_BD6USwI5AMLrCQEwxf0oSz3mrOaLiyn2xX1r7jz5k5C_1U2KOSfX30EIVtsUqmkKgcAfEIwvuvi4tdYP_6L9BpTJ39E |
| CitedBy_id | crossref_primary_10_1016_j_scienta_2023_112720 crossref_primary_10_3390_ijms25189818 crossref_primary_10_1007_s12042_024_09378_w crossref_primary_10_3390_plants13030369 crossref_primary_10_3390_plants14010054 crossref_primary_10_1080_07352689_2024_2354981 crossref_primary_10_3390_plants14162582 crossref_primary_10_3390_plants13081162 crossref_primary_10_3390_agriculture14101750 crossref_primary_10_1016_j_stress_2025_100837 crossref_primary_10_3390_plants12213708 crossref_primary_10_1016_j_indcrop_2024_119319 crossref_primary_10_1007_s42729_024_02132_x crossref_primary_10_3390_plants13101404 crossref_primary_10_3390_horticulturae10040388 crossref_primary_10_1007_s42729_024_02154_5 crossref_primary_10_1039_D5EN00292C crossref_primary_10_1007_s12298_025_01626_x crossref_primary_10_1021_acs_jafc_5c00194 crossref_primary_10_1016_j_plaphy_2025_109830 crossref_primary_10_1007_s11101_024_10057_7 crossref_primary_10_3390_antiox14050518 crossref_primary_10_1016_j_plaphy_2024_108482 crossref_primary_10_1016_j_jaridenv_2025_105444 crossref_primary_10_1186_s12870_025_06965_1 crossref_primary_10_3390_plants14182851 crossref_primary_10_3390_f15030479 crossref_primary_10_1038_s41598_025_15008_6 crossref_primary_10_1007_s42535_025_01243_9 crossref_primary_10_1038_s41598_025_15589_2 crossref_primary_10_3390_chemosensors13070256 crossref_primary_10_3389_fpls_2024_1479925 crossref_primary_10_1080_01140671_2024_2435456 crossref_primary_10_3390_agriculture14010080 crossref_primary_10_3390_plants13243599 crossref_primary_10_3390_ijms252312537 crossref_primary_10_1111_jipb_13641 crossref_primary_10_3390_ijms26199276 crossref_primary_10_3390_microorganisms12071357 crossref_primary_10_1016_j_agwat_2025_109585 crossref_primary_10_1016_j_jafr_2025_102145 crossref_primary_10_3390_phycology5030031 crossref_primary_10_1007_s10709_025_00242_7 crossref_primary_10_1016_j_scienta_2025_114323 crossref_primary_10_1016_j_plaphy_2025_110132 crossref_primary_10_1016_j_algal_2024_103686 crossref_primary_10_1016_j_plaphy_2025_110133 crossref_primary_10_3390_plants13162225 crossref_primary_10_3390_su162411113 crossref_primary_10_1186_s12870_025_06300_8 crossref_primary_10_3390_plants14132031 crossref_primary_10_1007_s42729_025_02603_9 crossref_primary_10_3390_plants13030390 crossref_primary_10_1007_s11105_024_01450_9 crossref_primary_10_3390_antiox13101209 crossref_primary_10_1080_01140671_2025_2513685 crossref_primary_10_3390_f16010185 crossref_primary_10_3390_plants13213111 crossref_primary_10_1016_j_plaphy_2025_110249 crossref_primary_10_1038_s41598_024_82173_5 crossref_primary_10_3390_agronomy15071620 crossref_primary_10_3390_horticulturae11060670 crossref_primary_10_3390_plants13111468 crossref_primary_10_3390_mi15030311 crossref_primary_10_1016_j_plaphy_2025_110484 crossref_primary_10_1016_j_cej_2024_157740 crossref_primary_10_1007_s10681_025_03574_9 crossref_primary_10_1007_s42729_025_02354_7 crossref_primary_10_1007_s00203_024_03913_9 crossref_primary_10_3389_fpls_2024_1406542 crossref_primary_10_3390_environments12070239 crossref_primary_10_1186_s12870_024_05676_3 crossref_primary_10_1134_S1021443724609248 crossref_primary_10_3390_agronomy15071746 crossref_primary_10_1071_FP25031 crossref_primary_10_1016_j_indcrop_2025_121951 crossref_primary_10_1111_jac_12739 crossref_primary_10_3390_plants14172743 crossref_primary_10_3390_horticulturae11091066 crossref_primary_10_1016_j_cj_2025_02_003 crossref_primary_10_3390_ijms252212339 crossref_primary_10_1134_S1021443725602599 crossref_primary_10_1007_s40003_024_00710_0 crossref_primary_10_1016_j_csbj_2025_04_035 crossref_primary_10_3390_agronomy15020427 crossref_primary_10_1016_j_plantsci_2025_112567 crossref_primary_10_1007_s00709_023_01908_9 crossref_primary_10_1016_j_plaphy_2025_110193 crossref_primary_10_1002_ajb2_70076 crossref_primary_10_1016_j_sajb_2023_07_037 crossref_primary_10_1111_ppl_14563 crossref_primary_10_1038_s41598_023_46487_0 crossref_primary_10_3390_plants13060778 crossref_primary_10_3390_f15122081 crossref_primary_10_1080_1343943X_2025_2451345 crossref_primary_10_1016_j_scienta_2025_114016 crossref_primary_10_3390_horticulturae10070702 crossref_primary_10_3389_fpls_2023_1296286 crossref_primary_10_1186_s13568_024_01799_w crossref_primary_10_3390_plants13101337 crossref_primary_10_3389_fpls_2023_1268750 crossref_primary_10_3390_soilsystems8010011 crossref_primary_10_1002_fsn3_4435 crossref_primary_10_1016_j_envexpbot_2024_105876 crossref_primary_10_3390_soilsystems9030073 crossref_primary_10_32615_bp_2025_004 crossref_primary_10_1016_j_micres_2024_127708 crossref_primary_10_1080_01140671_2025_2454619 crossref_primary_10_1590_1807_1929_agriambi_v29n12e293088 crossref_primary_10_1186_s12870_025_07211_4 crossref_primary_10_3390_metabo15060384 crossref_primary_10_1111_jac_70047 crossref_primary_10_1186_s12870_025_06477_y crossref_primary_10_3390_horticulturae11050457 crossref_primary_10_1016_j_stress_2025_100892 crossref_primary_10_3390_plants13182630 crossref_primary_10_1007_s10265_025_01640_w crossref_primary_10_3390_ijms26073099 crossref_primary_10_3389_fpls_2024_1394223 crossref_primary_10_3390_agronomy13112807 crossref_primary_10_3390_plants13121634 crossref_primary_10_3390_agronomy14091952 crossref_primary_10_3390_f15040605 crossref_primary_10_1016_j_pestbp_2024_105778 crossref_primary_10_1038_s41598_025_11637_z crossref_primary_10_1111_jipb_13755 crossref_primary_10_1016_j_plaphy_2025_109988 crossref_primary_10_1080_23311932_2024_2348695 crossref_primary_10_1002_ird_4003 crossref_primary_10_3390_horticulturae11030280 crossref_primary_10_3390_ijms25105437 crossref_primary_10_3390_ijms252212424 crossref_primary_10_1016_j_scienta_2025_114354 crossref_primary_10_1111_ppl_14239 crossref_primary_10_1016_j_plantsci_2025_112538 crossref_primary_10_3390_plants13060782 crossref_primary_10_1016_j_plantsci_2025_112533 crossref_primary_10_3390_horticulturae10080878 crossref_primary_10_3390_ijms25158276 crossref_primary_10_1016_j_jgeb_2024_100432 crossref_primary_10_1016_j_heliyon_2024_e38159 crossref_primary_10_1080_15226514_2025_2519276 crossref_primary_10_1007_s11738_024_03717_w crossref_primary_10_3390_d15111119 crossref_primary_10_1016_j_jhazmat_2025_139674 crossref_primary_10_3389_fpls_2025_1547723 crossref_primary_10_3390_ijms25021229 crossref_primary_10_3390_microorganisms13061345 crossref_primary_10_3390_plants13233373 crossref_primary_10_3390_su16167186 crossref_primary_10_3390_ijms26167834 crossref_primary_10_1007_s42729_024_01980_x crossref_primary_10_1038_s41598_024_51302_5 crossref_primary_10_3390_nitrogen6020027 crossref_primary_10_1080_02757540_2024_2439830 crossref_primary_10_1007_s00344_024_11447_z crossref_primary_10_1007_s11756_024_01836_w crossref_primary_10_1007_s42729_024_01854_2 crossref_primary_10_3390_ijms25052654 crossref_primary_10_1007_s10725_025_01298_3 crossref_primary_10_3390_microorganisms12122604 crossref_primary_10_1007_s11240_024_02750_4 crossref_primary_10_1080_23311932_2024_2327666 crossref_primary_10_1002_csc2_70082 crossref_primary_10_3390_w16081164 crossref_primary_10_1016_j_plantsci_2024_112371 crossref_primary_10_3390_app15073606 crossref_primary_10_1016_j_plaphy_2025_109799 crossref_primary_10_1016_j_plaphy_2025_110413 crossref_primary_10_1016_j_bcab_2025_103536 crossref_primary_10_1111_tpj_70469 crossref_primary_10_1590_1807_1929_agriambi_v29n10e293009 crossref_primary_10_3390_genes15050555 crossref_primary_10_1080_01904167_2024_2445086 crossref_primary_10_1007_s44372_025_00355_5 crossref_primary_10_1016_j_envexpbot_2024_106033 crossref_primary_10_1186_s12870_024_05734_w crossref_primary_10_3390_crops5050061 crossref_primary_10_3390_plants14142223 crossref_primary_10_1007_s42729_025_02536_3 crossref_primary_10_1111_jac_70116 crossref_primary_10_1080_23311932_2024_2389445 crossref_primary_10_1016_j_plaphy_2025_109666 crossref_primary_10_1093_bbb_zbaf061 crossref_primary_10_32604_phyton_2024_057536 crossref_primary_10_1016_j_sajb_2025_04_006 crossref_primary_10_1080_15324982_2025_2504985 crossref_primary_10_1080_23311932_2024_2392042 crossref_primary_10_1016_j_jclepro_2025_145330 crossref_primary_10_3390_agriculture15131421 crossref_primary_10_3390_agronomy13092213 crossref_primary_10_1007_s11104_025_07772_1 crossref_primary_10_3390_plants14060855 crossref_primary_10_1007_s11103_024_01489_y crossref_primary_10_1016_j_snb_2025_137253 crossref_primary_10_61186_gppj_2_1_121 crossref_primary_10_1016_j_agwat_2025_109765 crossref_primary_10_17221_127_2024_PPS crossref_primary_10_1007_s11105_024_01488_9 crossref_primary_10_32604_phyton_2025_059930 crossref_primary_10_1007_s42976_024_00491_w crossref_primary_10_1016_j_biteb_2024_101789 crossref_primary_10_3390_su162310516 crossref_primary_10_1007_s11738_025_03822_4 crossref_primary_10_3389_fpls_2024_1397552 crossref_primary_10_1002_ird_70005 crossref_primary_10_1016_j_cpb_2024_100408 crossref_primary_10_3390_biology14030287 crossref_primary_10_3390_plants14060902 crossref_primary_10_1134_S1062359024612631 crossref_primary_10_1016_j_cpb_2024_100410 crossref_primary_10_1002_tpg2_20468 crossref_primary_10_1016_j_jfca_2024_106296 crossref_primary_10_1038_s41598_024_84048_1 crossref_primary_10_3390_plants13040525 crossref_primary_10_1007_s11104_025_07340_7 crossref_primary_10_1016_j_scitotenv_2025_180082 crossref_primary_10_1007_s12298_024_01515_9 crossref_primary_10_1007_s44371_024_00046_2 crossref_primary_10_3389_fsufs_2025_1659331 crossref_primary_10_3390_j7010006 crossref_primary_10_1007_s11258_025_01543_9 crossref_primary_10_3390_plants13152094 crossref_primary_10_3390_plants13020195 crossref_primary_10_3390_agriculture14050705 crossref_primary_10_1007_s00344_025_11823_3 crossref_primary_10_1007_s40502_024_00831_2 crossref_primary_10_3390_agronomy13092197 crossref_primary_10_1007_s42729_024_01950_3 crossref_primary_10_3390_biology13090673 crossref_primary_10_1007_s41204_025_00428_6 crossref_primary_10_1186_s12284_025_00781_9 crossref_primary_10_1007_s42994_025_00209_4 crossref_primary_10_3390_agriculture14081337 crossref_primary_10_1093_aob_mcae166 crossref_primary_10_1080_00103624_2025_2523537 crossref_primary_10_1007_s11120_024_01128_z crossref_primary_10_3389_fpls_2025_1592555 crossref_primary_10_1016_j_kjs_2025_100464 crossref_primary_10_1039_D5EN00327J crossref_primary_10_3390_environments11010017 crossref_primary_10_32604_phyton_2024_056360 crossref_primary_10_1007_s00344_024_11608_0 crossref_primary_10_3390_horticulturae11091004 crossref_primary_10_3390_plants14131930 crossref_primary_10_3390_plants13162309 crossref_primary_10_3390_stresses4020026 crossref_primary_10_1111_pce_15544 crossref_primary_10_1186_s12870_025_07401_0 crossref_primary_10_1007_s10343_025_01199_5 crossref_primary_10_1007_s11270_024_07658_5 crossref_primary_10_1016_j_plaphy_2025_109902 crossref_primary_10_1039_D4EN00685B crossref_primary_10_3390_stresses5030050 crossref_primary_10_1016_j_sajb_2024_02_039 crossref_primary_10_36253_ahsc_16803 crossref_primary_10_3390_agronomy15020270 crossref_primary_10_1016_j_indcrop_2025_121648 crossref_primary_10_1186_s12870_025_06753_x crossref_primary_10_3390_plants13121593 crossref_primary_10_1038_s41598_025_94973_4 crossref_primary_10_1016_j_ecofro_2024_10_015 crossref_primary_10_3390_plants14091402 crossref_primary_10_1186_s12870_024_05462_1 crossref_primary_10_3389_fpls_2024_1489380 crossref_primary_10_3390_ijms26052109 crossref_primary_10_1016_j_plaphy_2023_108328 crossref_primary_10_3389_fpls_2024_1458540 crossref_primary_10_1016_j_stress_2025_100927 crossref_primary_10_1111_ppl_70402 |
| Cites_doi | 10.3389/fsufs.2021.618092 10.3390/plants11182381 10.1111/plb.12884 10.1007/s10681-013-0957-4 10.3390/ijms21041480 10.1038/s41587-020-0581-5 10.1146/annurev.pp.45.060194.001235 10.3389/fenvs.2021.712831 10.1186/s12575-014-0013-3 10.3389/fpls.2016.00081 10.1093/pcp/pcu059 10.1111/j.1469-8137.2007.02128.x 10.1007/s11104-017-3309-7 10.1111/gcbb.12351 10.3390/ijms20153745 10.1590/S0103-90162011000100010 10.1073/pnas.2034853100 10.1111/j.1365-3040.2009.02080.x 10.1016/j.plaphy.2019.06.012 10.1080/17429145.2012.718376 10.1660/062.122.0105 10.1371/journal.pone.0107678 10.1007/s10725-014-9890-3 10.3390/agronomy12102279 10.1371/journal.pone.0181450 10.1073/pnas.0907095106 10.3389/fpls.2017.00155 10.3389/fpls.2020.559876 10.1016/bs.agron.2021.03.001 10.1093/jxb/erz476 10.3389/fpls.2013.00410 10.1016/j.sajb.2016.03.011 10.1071/PP9860143 10.3390/biom9070285 10.3390/ijms21010148 10.4141/P97-020 10.1016/j.plantsci.2018.05.026 10.1007/s11105-014-0739-8 10.1093/jxb/err135 10.1111/pce.12883 10.1186/s12870-020-02345-z 10.1016/j.ecoenv.2020.110164 10.1146/annurev.arplant.59.032607.092911 10.1073/pnas.132092099 10.1016/j.molp.2020.11.002 10.1016/j.plaphy.2022.03.003 10.3389/fpls.2022.854116 10.1111/ppl.12653 10.1016/j.envexpbot.2022.104934 10.4141/P00-079 10.1016/j.sajb.2010.07.010 10.1111/sum.12772 10.1007/s00425-022-03847-w 10.1073/pnas.191389398 10.3390/genes9100475 10.3389/fpls.2017.01896 10.1016/j.jplph.2012.10.004 10.1016/j.plaphy.2020.08.042 10.14720/aas.2017.109.2.12 10.2135/cropsci2005.0437 10.1073/pnas.122224699 10.1007/s10535-018-0823-2 10.1016/j.tplants.2020.06.008 10.1111/jipb.12144 10.1126/science.285.5431.1256 10.1186/s12870-016-0817-1 10.1111/j.1467-7652.2010.00535.x 10.1186/s12870-016-0771-y 10.1371/journal.pgen.1004664 10.3389/fpls.2022.860056 10.1111/j.1467-7652.2012.00678.x 10.1093/mp/ssn058 10.1016/j.plaphy.2011.10.001 10.1007/BF03321921 10.1007/s11816-012-0269-5 10.13080/z-a.2016.103.030 10.1111/plb.12106 10.1016/j.ecoenv.2020.110732 10.1093/jxb/ers250 10.1080/01904168109362814 10.1007/s12038-007-0061-9 10.3389/fpls.2022.1011985 10.3390/horticulturae3020030 10.1046/j.1365-313X.2003.01871.x 10.3390/ijms23179900 10.1073/pnas.120170197 10.1016/j.envexpbot.2021.104687 10.1007/s11032-006-9048-8 10.1093/plphys/kiab538 10.1093/pcp/pch071 10.1111/pce.12832 10.1093/pcp/pcq096 10.5958/0975-928X.2017.00151.X 10.3389/fpls.2017.01000 10.1186/s12870-019-1963-z 10.1007/s11248-007-9085-z 10.1111/j.1365-3040.2009.02056.x 10.1038/s41598-022-16922-9 10.1016/j.bbrc.2017.11.043 10.1073/pnas.231476498 10.1016/S0304-4238(98)00192-7 10.3390/plants10030428 10.1007/s11103-013-0099-z 10.1111/j.1365-3040.2008.01838.x 10.1038/s41598-023-29954-6 10.3390/plants10050845 10.1111/nph.13519 10.3389/fpls.2022.1006617 10.3389/fpls.2019.00230 10.1016/j.plantsci.2020.110499 10.1093/pcp/pci201 10.1104/pp.16.01848 10.1007/s00344-022-10797-w 10.1007/s11120-013-9813-6 10.1101/2022.08.22.504861 10.1016/j.plaphy.2019.05.012 10.3389/fgene.2022.811732 10.1093/pcp/pcw055 10.1016/j.xplc.2022.100417 10.3389/fpls.2022.978304 10.1186/s42397-021-00086-4 10.1016/j.plaphy.2021.05.042 10.3390/plants11050590 10.1038/s41598-019-44062-0 10.4161/psb.6.6.15223 10.1111/j.1365-313X.2007.03318.x 10.1007/s00299-017-2210-4 10.1111/pbi.12145 10.1038/26879 10.1016/j.jksus.2022.102506 10.1126/science.1118642 10.1016/j.molp.2016.05.010 10.1111/pbi.13476 10.1111/jipb.12899 10.1023/A:1001013913773 10.3390/agronomy11081631 10.1002/jpln.200420516 10.1146/annurev-arplant-042916-040936 10.3389/fpls.2019.00080 10.1017/S0021859697004309 10.1104/pp.110.168047 10.1007/s00425-020-03366-6 10.1038/nbt766 10.3390/ijms19103206 10.1080/14620316.2013.11512989 10.1007/s00709-018-1275-4 10.1023/A:1025003628446 10.1046/j.0016-8025.2001.00808.x 10.1111/plb.13079 10.3389/fpls.2021.588847 10.1111/ppl.13467 10.3390/ijms22094663 10.1105/tpc.010371 10.1111/j.1365-313X.2009.04073.x 10.1105/tpc.111.087395 10.1111/j.1365-313X.2008.03627.x 10.3390/ijms22147687 10.1016/j.fcr.2013.06.011 10.3389/fpls.2021.680131 10.1016/j.jplph.2011.10.007 10.1590/0103-8478cr20180351 10.1007/s10725-014-0013-y 10.1061/JRCEA4.0001137 10.3389/fpls.2014.00147 10.1590/1678-4685-gmb-2016-0106 10.18502/kls.v3i4.708 10.1093/aob/mcu239 10.1007/s13580-014-0003-z 10.3390/ijms22094609 10.1007/s11816-011-0200-5 10.1111/j.1469-8137.2005.01487.x 10.1016/j.jphotobiol.2018.04.047 10.1007/s12374-010-9135-6 10.1093/pcp/pcaa037 10.1093/jxb/erg277 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION NPM ISR 3V. 7SN 7SS 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7X8 7S9 L.6 5PM DOA |
| DOI | 10.3390/plants12122253 |
| DatabaseName | CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Agricultural Science Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Collection (ProQuest) ProQuest Biological Science Collection Agricultural Science Database Biological Science Database (ProQuest) Biotechnology and BioEngineering Abstracts Environmental Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | PubMed Agricultural Science Database AGRICOLA MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany Agriculture |
| EISSN | 2223-7747 |
| ExternalDocumentID | oai_doaj_org_article_d834bcfed8524cd28c15b6d67ae3da42 PMC10300796 A758481253 37375879 10_3390_plants12122253 |
| Genre | Journal Article Review |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 31402140 – fundername: Key Technologies R & D Program for Crop Breeding of Zhejiang Province grantid: 2021C02072-5 – fundername: Natural Science Foundation of China grantid: 31402140 |
| GroupedDBID | 53G 5VS 7X2 7XC 8FE 8FH AADQD AAHBH AAYXX ADBBV AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS BBNVY BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ HYE IAG IAO IGH ISR ITC KQ8 LK8 M0K M48 M7P MODMG M~E OK1 OZF PATMY PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PYCSY RPM NPM 3V. 7SN 7SS 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c657t-2145743c5e001dc0cfeda7a4742c0b719ba42e32da81a34b48c9c82a3f54b7d43 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 344 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001017834600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2223-7747 |
| IngestDate | Fri Oct 03 12:43:08 EDT 2025 Tue Nov 04 02:06:56 EST 2025 Fri Sep 05 14:08:05 EDT 2025 Fri Sep 05 10:29:02 EDT 2025 Fri Jul 25 12:02:06 EDT 2025 Tue Nov 04 18:36:04 EST 2025 Wed Nov 26 11:27:47 EST 2025 Thu Apr 03 07:03:01 EDT 2025 Sat Nov 29 07:13:31 EST 2025 Tue Nov 18 22:29:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | salt tolerance ion homeostasis seed germination anthropogenic activities salinization |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c657t-2145743c5e001dc0cfeda7a4742c0b719ba42e32da81a34b48c9c82a3f54b7d43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0009-0005-4242-1190 0000-0002-4912-9695 |
| OpenAccessLink | https://doaj.org/article/d834bcfed8524cd28c15b6d67ae3da42 |
| PMID | 37375879 |
| PQID | 2829850658 |
| PQPubID | 2032347 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d834bcfed8524cd28c15b6d67ae3da42 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10300796 proquest_miscellaneous_3040428311 proquest_miscellaneous_2830667992 proquest_journals_2829850658 gale_infotracacademiconefile_A758481253 gale_incontextgauss_ISR_A758481253 pubmed_primary_37375879 crossref_primary_10_3390_plants12122253 crossref_citationtrail_10_3390_plants12122253 |
| PublicationCentury | 2000 |
| PublicationDate | 20230608 |
| PublicationDateYYYYMMDD | 2023-06-08 |
| PublicationDate_xml | – month: 6 year: 2023 text: 20230608 day: 8 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Plants (Basel) |
| PublicationTitleAlternate | Plants (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_139 Chen (ref_184) 2014; 73 Segami (ref_96) 2010; 51 Wang (ref_33) 2018; 163 Kim (ref_70) 2013; 170 Magome (ref_137) 2008; 56 Wang (ref_141) 2014; 55 ref_131 Ismail (ref_155) 2017; 68 Umezawa (ref_129) 2009; 106 Petretto (ref_21) 2019; 141 Abderrahim (ref_27) 2016; 105 ref_132 ref_135 Nguyen (ref_146) 2019; 141 Fu (ref_166) 2022; 188 Silva (ref_34) 2011; 68 Yue (ref_87) 2012; 169 Rahman (ref_162) 2017; 8 Knauth (ref_10) 1998; 395 ref_17 Qiu (ref_82) 2002; 99 ref_16 Zhang (ref_58) 2013; 115 Sussman (ref_95) 1994; 45 ref_15 Kumar (ref_170) 2018; 37 Esmaeili (ref_108) 2021; 19 Balasubramaniam (ref_99) 2022; 200 Khedr (ref_74) 2003; 54 ref_126 Amombo (ref_54) 2022; 255 Chen (ref_113) 2007; 19 Zsigmond (ref_72) 2008; 53 ref_127 Singh (ref_2) 2022; 38 Zhu (ref_62) 2022; 13 Wijewardene (ref_100) 2020; 296 ref_25 ref_22 Byrt (ref_80) 2017; 40 ref_20 Su (ref_93) 2015; 17 ref_124 Sofy (ref_67) 2020; 200 Turki (ref_156) 2023; 35 Liu (ref_114) 2010; 53 Afzal (ref_147) 2023; 42 Betzen (ref_43) 2019; 122 Apse (ref_97) 2003; 36 Shi (ref_81) 2000; 97 Almeida (ref_94) 2017; 40 ref_158 Sarker (ref_122) 2020; 11 Foronda (ref_9) 2022; 16 Chakraborty (ref_160) 2012; 51 Verma (ref_178) 2007; 32 Krishnamurthy (ref_118) 2011; 62 Annunziata (ref_66) 2019; 10 Singh (ref_75) 2022; 13 Wang (ref_90) 2014; 56 Nguyen (ref_71) 2013; 193 Schilling (ref_110) 2014; 12 ref_153 Geetha (ref_154) 2021; 8 Azeem (ref_120) 2023; 13 Qin (ref_23) 2020; 22 Leidi (ref_117) 2010; 61 Guo (ref_149) 2022; 13 Pramanik (ref_163) 2021; 14 Alasvandyari (ref_64) 2018; 23 Fan (ref_187) 2018; 255 Gupta (ref_119) 2014; 2014 Baisakh (ref_186) 2012; 10 Shaheen (ref_49) 2013; 8 Tian (ref_172) 2011; 77 Huihui (ref_30) 2020; 190 Cai (ref_130) 2017; 174 ref_148 Chen (ref_128) 2020; 62 Li (ref_65) 2003; 25 Li (ref_104) 2010; 33 Zahra (ref_29) 2021; 166 Munns (ref_6) 2008; 59 ref_88 ref_144 Geilfus (ref_55) 2019; 21 Niste (ref_40) 2014; 7 He (ref_115) 2005; 46 Stavridou (ref_56) 2017; 9 Singroha (ref_140) 2022; 13 Pan (ref_171) 2016; 9 Hu (ref_41) 2005; 168 Sheldon (ref_45) 2017; 418 Yamaguchi (ref_98) 2013; 4 Lang (ref_159) 2017; 8 Shi (ref_180) 2003; 21 Bassil (ref_111) 2012; 63 Chinnusamy (ref_150) 2005; 45 Zhang (ref_107) 2011; 6 Cruz (ref_38) 2018; 48 Liu (ref_176) 2008; 31 (ref_46) 2014; 16 Kumar (ref_185) 2017; 8 ref_182 ref_181 Han (ref_143) 2020; 61 Quintero (ref_83) 2002; 99 Jiang (ref_134) 2016; 7 Chaudhuri (ref_44) 1997; 40 Hauser (ref_89) 2010; 33 Rodriguez (ref_50) 1997; 128 ref_61 Chen (ref_173) 2008; 17 Ullah (ref_11) 2021; 5 Qin (ref_109) 2013; 7 Chen (ref_179) 2014; 55 Shen (ref_105) 2015; 33 Qamer (ref_121) 2021; 4 Hopmans (ref_4) 2021; 169 Wang (ref_28) 2013; 7 Pineda (ref_91) 2017; 40 ref_168 Farooq (ref_161) 2021; 12 Yang (ref_86) 2009; 2 Zahra (ref_26) 2022; 178 Berry (ref_35) 1981; 3 Rajasekaran (ref_47) 2001; 81 Munns (ref_51) 2015; 208 Achard (ref_136) 2006; 311 Ullah (ref_24) 2022; 193 Banjara (ref_175) 2012; 6 ref_116 Wani (ref_169) 2020; 251 Yu (ref_59) 2020; 25 ref_36 Arif (ref_57) 2020; 156 Stavi (ref_8) 2021; 330 ref_32 Hasana (ref_39) 2017; 3 Shi (ref_84) 2002; 14 Esmaeili (ref_151) 2022; 13 Delorge (ref_76) 2014; 5 Zhang (ref_174) 2001; 98 Wu (ref_177) 2004; 45 Pasapula (ref_106) 2011; 9 Sharkhuu (ref_125) 2013; 83 Yousefirad (ref_152) 2018; 62 Pehlivan (ref_85) 2016; 57 Esmaeili (ref_101) 2019; 9 Yadav (ref_18) 2019; 7 Horie (ref_92) 2011; 156 Munns (ref_37) 1986; 13 Gaxiola (ref_103) 2001; 98 Hussain (ref_123) 2022; 12 Jamil (ref_73) 2018; 37 Lu (ref_165) 2020; 38 Zafar (ref_167) 2020; 71 Demidchik (ref_79) 2007; 175 Sun (ref_102) 2018; 274 Goussi (ref_31) 2018; 183 Fahad (ref_60) 2015; 75 Grattan (ref_42) 1998; 78 Slama (ref_63) 2015; 115 Pujni (ref_78) 2007; 16 Liang (ref_77) 2018; 495 Abbasi (ref_13) 2016; 103 Maas (ref_53) 1977; 103 ref_183 Munns (ref_12) 2005; 167 Mirfattahi (ref_48) 2017; 109 Munns (ref_19) 2002; 25 Nishiyama (ref_138) 2011; 23 ref_1 Apse (ref_112) 1999; 285 ref_3 Volkmar (ref_52) 1998; 78 Cisse (ref_68) 2021; 12 Feng (ref_142) 2022; 13 Ali (ref_157) 2013; 154 Isayenkov (ref_14) 2019; 10 Ohta (ref_133) 2003; 100 ref_5 Yung (ref_145) 2021; 173 Abdelhamid (ref_69) 2013; 88 Shelake (ref_164) 2022; 3 ref_7 |
| References_xml | – volume: 5 start-page: 618092 year: 2021 ident: ref_11 article-title: Climate change and salinity effects on crops and chemical communication between plants and plant growth-promoting microorganisms under stress publication-title: Front. Sustain. Food Syst. doi: 10.3389/fsufs.2021.618092 – ident: ref_15 doi: 10.3390/plants11182381 – volume: 21 start-page: 31 year: 2019 ident: ref_55 article-title: Salinity and crop yield publication-title: Plant Biol. doi: 10.1111/plb.12884 – volume: 193 start-page: 101 year: 2013 ident: ref_71 article-title: Physiological and metabolomic analysis of a knockout mutant suggests a critical role of MtP5CS3 gene in osmotic stress tolerance of Medicago truncatula publication-title: Euphytica doi: 10.1007/s10681-013-0957-4 – ident: ref_144 doi: 10.3390/ijms21041480 – volume: 38 start-page: 1402 year: 2020 ident: ref_165 article-title: Targeted, efficient sequence insertion and replacement in rice publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0581-5 – volume: 45 start-page: 211 year: 1994 ident: ref_95 article-title: Molecular analysis of proteins in the plant plasma membrane publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.pp.45.060194.001235 – volume: 330 start-page: 712831 year: 2021 ident: ref_8 article-title: Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2021.712831 – volume: 17 start-page: 1 year: 2015 ident: ref_93 article-title: Model of cation transportation mediated by high-affinity potassium transporters (HKTs) in higher plants publication-title: Biol. Proced. Online doi: 10.1186/s12575-014-0013-3 – volume: 7 start-page: 81 year: 2016 ident: ref_134 article-title: Salt stress affects the redox status of Arabidopsis root meristems publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00081 – volume: 55 start-page: 1354 year: 2014 ident: ref_141 article-title: Induced and constitutive DNA methylation in a salinity-tolerant wheat introgression line publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcu059 – volume: 175 start-page: 387 year: 2007 ident: ref_79 article-title: Physiological roles of nonselective cation channels in plants: From salt stress to signalling and development publication-title: New Phytol. doi: 10.1111/j.1469-8137.2007.02128.x – volume: 418 start-page: 477 year: 2017 ident: ref_45 article-title: The effect of salinity on plant-available water publication-title: Plant Soil doi: 10.1007/s11104-017-3309-7 – volume: 9 start-page: 92 year: 2017 ident: ref_56 article-title: The impact of soil salinity on the yield, composition and physiology of the bioenergy grass Miscanthus × giganteus publication-title: GCB Bioenergy doi: 10.1111/gcbb.12351 – ident: ref_124 doi: 10.3390/ijms20153745 – ident: ref_1 – volume: 68 start-page: 62 year: 2011 ident: ref_34 article-title: Salt stress induced damages on the photosynthesis of physic nut young plants publication-title: Sci. Agric. doi: 10.1590/S0103-90162011000100010 – volume: 100 start-page: 11771 year: 2003 ident: ref_133 article-title: A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2034853100 – volume: 33 start-page: 272 year: 2010 ident: ref_104 article-title: Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.) publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2009.02080.x – volume: 141 start-page: 325 year: 2019 ident: ref_146 article-title: Chromatin remodeling for the transcription of type 2C protein phosphatase genes in response to salt stress publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2019.06.012 – volume: 8 start-page: 85 year: 2013 ident: ref_49 article-title: Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms in Solanum melongena L. publication-title: J. Plant Interact. doi: 10.1080/17429145.2012.718376 – volume: 122 start-page: 49 year: 2019 ident: ref_43 article-title: Effects of increasing salinity on photosynthesis and plant water potential in Kansas salt marsh species publication-title: Trans. Kans. Acad. Sci. doi: 10.1660/062.122.0105 – ident: ref_135 doi: 10.1371/journal.pone.0107678 – volume: 73 start-page: 299 year: 2014 ident: ref_184 article-title: GmHKT1;4, a novel soybean gene regulating Na+/K+ ratio in roots enhances salt tolerance in transgenic plants publication-title: Plant Growth Regul. doi: 10.1007/s10725-014-9890-3 – ident: ref_22 doi: 10.3390/agronomy12102279 – ident: ref_181 doi: 10.1371/journal.pone.0181450 – volume: 106 start-page: 17588 year: 2009 ident: ref_129 article-title: Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0907095106 – volume: 8 start-page: 155 year: 2017 ident: ref_162 article-title: Mechanistic insight into salt tolerance of Acacia auriculiformis: The importance of ion selectivity, osmoprotection, tissue tolerance, and Na+ exclusion publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00155 – volume: 11 start-page: 559876 year: 2020 ident: ref_122 article-title: The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.559876 – volume: 169 start-page: 1 year: 2021 ident: ref_4 article-title: Critical knowledge gaps and research priorities in global soil salinity publication-title: Adv. Agron. doi: 10.1016/bs.agron.2021.03.001 – volume: 71 start-page: 470 year: 2020 ident: ref_167 article-title: Engineering abiotic stress tolerance via CRISPR/Cas-mediated genome editing publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz476 – volume: 4 start-page: 414 year: 2013 ident: ref_98 article-title: Sodium transport system in plant cells publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00410 – volume: 105 start-page: 306 year: 2016 ident: ref_27 article-title: Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. publication-title: S. Afr. J. Bot. doi: 10.1016/j.sajb.2016.03.011 – volume: 13 start-page: 143 year: 1986 ident: ref_37 article-title: Whole-plant responses to salinity publication-title: Funct. Plant Biol. doi: 10.1071/PP9860143 – ident: ref_61 doi: 10.3390/biom9070285 – ident: ref_7 doi: 10.3390/ijms21010148 – volume: 78 start-page: 19 year: 1998 ident: ref_52 article-title: Physiological responses of plants to salinity: A review publication-title: Can. J. Plant Sci. doi: 10.4141/P97-020 – volume: 274 start-page: 271 year: 2018 ident: ref_102 article-title: Co-overexpression of AVP1 and PP2A-C5 in Arabidopsis makes plants tolerant to multiple abiotic stresses publication-title: Plant Sci. doi: 10.1016/j.plantsci.2018.05.026 – volume: 33 start-page: 167 year: 2015 ident: ref_105 article-title: Co-overexpression of AVP1 and AtNHX1 in cotton further improves drought and salt tolerance in transgenic cotton plants publication-title: Plant Mol. Biol. Rep. doi: 10.1007/s11105-014-0739-8 – volume: 62 start-page: 4215 year: 2011 ident: ref_118 article-title: Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.) publication-title: J. Exp. Bot. doi: 10.1093/jxb/err135 – volume: 40 start-page: 658 year: 2017 ident: ref_91 article-title: The sodium transporter encoded by the HKT1;2 gene modulates sodium/potassium homeostasis in tomato shoots under salinity publication-title: Plant Cell Environ. doi: 10.1111/pce.12883 – ident: ref_116 doi: 10.1186/s12870-020-02345-z – volume: 190 start-page: 110164 year: 2020 ident: ref_30 article-title: Chlorophyll synthesis and the photoprotective mechanism in leaves of mulberry (Morus alba L.) seedlings under NaCl and NaHCO3 stress revealed by TMT-based proteomics analyses publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.110164 – volume: 59 start-page: 651 year: 2008 ident: ref_6 article-title: Mechanisms of salinity tolerance publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092911 – volume: 99 start-page: 9061 year: 2002 ident: ref_83 article-title: Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.132092099 – volume: 14 start-page: 127 year: 2021 ident: ref_163 article-title: CRISPR-mediated engineering across the central dogma in plant biology for basic research and crop improvement publication-title: Mol. Plant doi: 10.1016/j.molp.2020.11.002 – volume: 178 start-page: 55 year: 2022 ident: ref_26 article-title: Regulation of photosynthesis under salt stress and associated tolerance mechanisms publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2022.03.003 – volume: 13 start-page: 854116 year: 2022 ident: ref_149 article-title: Mechanisms of Salt Tolerance and Molecular Breeding of Salt-Tolerant Ornamental Plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2022.854116 – volume: 163 start-page: 45 year: 2018 ident: ref_33 article-title: Diffusional conductance to CO2 is the key limitation to photosynthesis in salt-stressed leaves of rice (Oryza sativa) publication-title: Physiol. Plant. doi: 10.1111/ppl.12653 – volume: 200 start-page: 104934 year: 2022 ident: ref_99 article-title: Co-overexpression of AVP1, PP2A-C5, and AtCLCc in Arabidopsis thaliana greatly increases tolerance to salt and drought stresses publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2022.104934 – volume: 81 start-page: 487 year: 2001 ident: ref_47 article-title: Stress metabolism. IX. Effect of salt stress on trigonelline accumulation in tomato publication-title: Can. J. Plant Sci. doi: 10.4141/P00-079 – volume: 77 start-page: 160 year: 2011 ident: ref_172 article-title: Overexpression of Na+/H+ antiporter gene AtNHX1 from Arabidopsis thaliana improves the salt tolerance of kiwifruit (Actinidia deliciosa) publication-title: S. Afr. J. Bot. doi: 10.1016/j.sajb.2010.07.010 – volume: 38 start-page: 39 year: 2022 ident: ref_2 article-title: Soil salinity: A global threat to sustainable development publication-title: Soil Use Manag. doi: 10.1111/sum.12772 – volume: 255 start-page: 71 year: 2022 ident: ref_54 article-title: Exploring the correlation between salt tolerance and yield: Research advances and perspectives for salt-tolerant forage sorghum selection and genetic improvement publication-title: Planta doi: 10.1007/s00425-022-03847-w – volume: 98 start-page: 11444 year: 2001 ident: ref_103 article-title: Drought-and salt-tolerant plants result from overexpression of the AVP1 H+-pump publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.191389398 – ident: ref_183 doi: 10.3390/genes9100475 – volume: 8 start-page: 1896 year: 2017 ident: ref_185 article-title: Co-expression of Arabidopsis NHX1 and bar improves the tolerance to salinity, oxidative stress, and herbicide in transgenic mungbean publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01896 – volume: 170 start-page: 291 year: 2013 ident: ref_70 article-title: A novel Δ1-pyrroline-5-carboxylate synthetase gene of Medicago truncatula plays a predominant role in stress-induced proline accumulation during symbiotic nitrogen fixation publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2012.10.004 – volume: 156 start-page: 64 year: 2020 ident: ref_57 article-title: Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2020.08.042 – volume: 109 start-page: 291 year: 2017 ident: ref_48 article-title: Salinity induced changes in water relations, oxidative damage and morpho-physiological adaptations of pistachio genotypes in soilless culture publication-title: Acta Agric. Slov. doi: 10.14720/aas.2017.109.2.12 – volume: 45 start-page: 437 year: 2005 ident: ref_150 article-title: Understanding and improving salt tolerance in plants publication-title: Crop Sci. doi: 10.2135/cropsci2005.0437 – volume: 99 start-page: 8436 year: 2002 ident: ref_82 article-title: Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.122224699 – volume: 62 start-page: 775 year: 2018 ident: ref_152 article-title: Salt oversensitivity derived from mutation breeding improves salinity tolerance in barley via ion homeostasis publication-title: Biol. Plant. doi: 10.1007/s10535-018-0823-2 – volume: 25 start-page: 1117 year: 2020 ident: ref_59 article-title: How plant hormones mediate salt stress responses publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2020.06.008 – volume: 56 start-page: 315 year: 2014 ident: ref_90 article-title: SbHKT1;4, a member of the high-affinity potassium transporter gene family from Sorghum bicolor, functions to maintain optimal Na+/K+ balance under Na+ stress publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12144 – volume: 285 start-page: 1256 year: 1999 ident: ref_112 article-title: Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis publication-title: Science doi: 10.1126/science.285.5431.1256 – ident: ref_131 doi: 10.1186/s12870-016-0817-1 – volume: 9 start-page: 88 year: 2011 ident: ref_106 article-title: Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought-and salt tolerance and increases fibre yield in the field conditions publication-title: Plant Biotechnol. J. doi: 10.1111/j.1467-7652.2010.00535.x – ident: ref_126 doi: 10.1186/s12870-016-0771-y – ident: ref_139 doi: 10.1371/journal.pgen.1004664 – volume: 13 start-page: 860056 year: 2022 ident: ref_142 article-title: Epigenetic regulation of plant tolerance to salt stress by histone acetyltransferase GsMYST1 from wild soybean publication-title: Front. Plant Sci. doi: 10.3389/fpls.2022.860056 – volume: 10 start-page: 453 year: 2012 ident: ref_186 article-title: Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel publication-title: Plant Biotechnol. J. doi: 10.1111/j.1467-7652.2012.00678.x – volume: 2 start-page: 22 year: 2009 ident: ref_86 article-title: Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis publication-title: Mol. Plant doi: 10.1093/mp/ssn058 – volume: 51 start-page: 90 year: 2012 ident: ref_160 article-title: Differential expression of salt overly sensitive pathway genes determines salinity stress tolerance in Brassica genotypes publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2011.10.001 – volume: 16 start-page: 1 year: 2007 ident: ref_78 article-title: Increased tolerance to salinity and drought in transgenic indica rice by mannitol accumulation publication-title: J. Plant Biochem. Biotechnol. doi: 10.1007/BF03321921 – volume: 7 start-page: 345 year: 2013 ident: ref_109 article-title: Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene AVP1 in peanut to improve drought and salt tolerance publication-title: Plant Biotechnol. Rep. doi: 10.1007/s11816-012-0269-5 – volume: 103 start-page: 229 year: 2016 ident: ref_13 article-title: Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: A review publication-title: Zemdirb. Agric. doi: 10.13080/z-a.2016.103.030 – volume: 16 start-page: 757 year: 2014 ident: ref_46 article-title: Long-term effect of salinity on plant quality, water relations, photosynthetic parameters and ion distribution in Callistemon citrinus publication-title: Plant Biol. doi: 10.1111/plb.12106 – volume: 200 start-page: 110732 year: 2020 ident: ref_67 article-title: Glycine betaine counters salinity stress by maintaining high K+/Na+ ratio and antioxidant defense via limiting Na+ uptake in common bean (Phaseolus vulgaris L.) publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.110732 – volume: 63 start-page: 5727 year: 2012 ident: ref_111 article-title: Cellular ion homeostasis: Emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers250 – volume: 3 start-page: 13 year: 1981 ident: ref_35 article-title: Toxicity: The concept and relationship to the dose response curve publication-title: J. Plant Nutr. doi: 10.1080/01904168109362814 – volume: 32 start-page: 621 year: 2007 ident: ref_178 article-title: Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice publication-title: J. Biosci. doi: 10.1007/s12038-007-0061-9 – volume: 13 start-page: 1011985 year: 2022 ident: ref_151 article-title: Genetic manipulation for abiotic stress resistance traits in crops publication-title: Front. Plant Sci. doi: 10.3389/fpls.2022.1011985 – ident: ref_3 doi: 10.3390/horticulturae3020030 – volume: 36 start-page: 229 year: 2003 ident: ref_97 article-title: Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter publication-title: Plant J. doi: 10.1046/j.1365-313X.2003.01871.x – ident: ref_88 doi: 10.3390/ijms23179900 – volume: 97 start-page: 6896 year: 2000 ident: ref_81 article-title: The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.120170197 – volume: 193 start-page: 104687 year: 2022 ident: ref_24 article-title: Proline accumulation, ion homeostasis and antioxidant defence system alleviate salt stress and protect carbon assimilation in bread wheat genotypes of Omani origin publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2021.104687 – volume: 19 start-page: 215 year: 2007 ident: ref_113 article-title: Over-expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice publication-title: Mol. Breed. doi: 10.1007/s11032-006-9048-8 – volume: 188 start-page: 1248 year: 2022 ident: ref_166 article-title: Vacuolar H+-pyrophosphatase HVP10 enhances salt tolerance via promoting Na+ translocation into root vacuoles publication-title: Plant Physiol. doi: 10.1093/plphys/kiab538 – volume: 45 start-page: 600 year: 2004 ident: ref_177 article-title: The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pch071 – volume: 40 start-page: 802 year: 2017 ident: ref_80 article-title: Non-selective cation channel activity of aquaporin AtPIP2;1 regulated by Ca2+ and pH publication-title: Plant Cell Environ. doi: 10.1111/pce.12832 – volume: 51 start-page: 1350 year: 2010 ident: ref_96 article-title: Quantification, organspecific accumulation and intracellular localization of type II H+- pyrophosphatase in Arabidopsis thaliana publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcq096 – volume: 8 start-page: 1013 year: 2021 ident: ref_154 article-title: Development of sodicity tolerant rice varieties through marker assisted backcross breeding publication-title: Electron. J. Plant Breed. doi: 10.5958/0975-928X.2017.00151.X – volume: 8 start-page: 1000 year: 2017 ident: ref_159 article-title: Quantitative trait locus mapping of salt tolerance identification of salt-tolerant genes in Brassica napus L. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01000 – ident: ref_182 doi: 10.1186/s12870-019-1963-z – ident: ref_36 – volume: 17 start-page: 121 year: 2008 ident: ref_173 article-title: Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum) publication-title: Transgenic Res. doi: 10.1007/s11248-007-9085-z – volume: 33 start-page: 552 year: 2010 ident: ref_89 article-title: A conserved primary salt tolerance mechanism mediated by HKT transporters: A mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2009.02056.x – volume: 12 start-page: 12677 year: 2022 ident: ref_123 article-title: Role of mineral nutrients, antioxidants, osmotic adjustment and PSII stability in salt tolerance of contrasting wheat genotypes publication-title: Sci. Rep. doi: 10.1038/s41598-022-16922-9 – volume: 495 start-page: 286 year: 2018 ident: ref_77 article-title: Plant salt-tolerance mechanism: A review publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.11.043 – volume: 98 start-page: 12832 year: 2001 ident: ref_174 article-title: Engineering salt-tolerant Brassica plants: Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.231476498 – volume: 78 start-page: 127 year: 1998 ident: ref_42 article-title: Salinity–mineral nutrient relations in horticultural crops publication-title: Sci. Hortic. doi: 10.1016/S0304-4238(98)00192-7 – ident: ref_158 doi: 10.3390/plants10030428 – volume: 83 start-page: 405 year: 2013 ident: ref_125 article-title: The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress publication-title: Plant Mol. Biol. doi: 10.1007/s11103-013-0099-z – volume: 31 start-page: 1325 year: 2008 ident: ref_176 article-title: Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na+/H+ antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2008.01838.x – volume: 13 start-page: 2895 year: 2023 ident: ref_120 article-title: Salinity stress improves antioxidant potential by modulating physio-biochemical responses in Moringa oleifera Lam publication-title: Sci. Rep. doi: 10.1038/s41598-023-29954-6 – ident: ref_5 – ident: ref_32 doi: 10.3390/plants10050845 – volume: 208 start-page: 668 year: 2015 ident: ref_51 article-title: Salinity tolerance of crops–what is the cost? publication-title: New Phytol. doi: 10.1111/nph.13519 – volume: 13 start-page: 1006617 year: 2022 ident: ref_75 article-title: Salt stress resilience in plants mediated through osmolyte accumulation and its crosstalk mechanism with phytohormones publication-title: Front. Plant Sci. doi: 10.3389/fpls.2022.1006617 – volume: 10 start-page: 230 year: 2019 ident: ref_66 article-title: Spatial and temporal profile of glycine betaine accumulation in plants under abiotic stresses publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00230 – volume: 296 start-page: 110499 year: 2020 ident: ref_100 article-title: Improving drought-, salinity-, and heat-tolerance in transgenic plants by co-overexpressing Arabidopsis vacuolar pyrophos-phatase gene AVP1 and Larrea Rubisco activase gene RCA publication-title: Plant Sci. doi: 10.1016/j.plantsci.2020.110499 – volume: 46 start-page: 1848 year: 2005 ident: ref_115 article-title: Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pci201 – volume: 174 start-page: 732 year: 2017 ident: ref_130 article-title: Evolutionary conservation of ABA signaling for stomatal closure publication-title: Plant Physiol. doi: 10.1104/pp.16.01848 – volume: 42 start-page: 3365 year: 2023 ident: ref_147 article-title: Potential breeding strategies for improving salt tolerance in crop plants publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-022-10797-w – volume: 115 start-page: 1 year: 2013 ident: ref_58 article-title: Physiological and molecular mechanisms of plant salt tolerance publication-title: Photosynth. Res. doi: 10.1007/s11120-013-9813-6 – ident: ref_17 doi: 10.1101/2022.08.22.504861 – volume: 141 start-page: 30 year: 2019 ident: ref_21 article-title: Effect of salinity (NaCl) on plant growth, nutrient content, and glucosinolate hydrolysis products trends in rocket genotypes publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2019.05.012 – volume: 13 start-page: 811732 year: 2022 ident: ref_140 article-title: Uncovering the epigenetic marks involved in mediating salt stress tolerance in plants publication-title: Front. Genet. doi: 10.3389/fgene.2022.811732 – volume: 57 start-page: 1069 year: 2016 ident: ref_85 article-title: Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcw055 – volume: 3 start-page: 100417 year: 2022 ident: ref_164 article-title: Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives publication-title: Plant Commun. doi: 10.1016/j.xplc.2022.100417 – volume: 13 start-page: 978304 year: 2022 ident: ref_62 article-title: Glycine betaine increases salt tolerance in maize (Zea mays L.) by regulating Na+ homeostasis publication-title: Front. Plant Sci. doi: 10.3389/fpls.2022.978304 – volume: 4 start-page: 9 year: 2021 ident: ref_121 article-title: Review of oxidative stress and antioxidative defense mechanisms in Gossypium hirsutum L. in response to extreme abiotic conditions publication-title: J. Cotton Res. doi: 10.1186/s42397-021-00086-4 – volume: 166 start-page: 53 year: 2021 ident: ref_29 article-title: Oxidative stress tolerance potential of milk thistle ecotypes after supplementation of different plant growth-promoting agents under salinity publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2021.05.042 – ident: ref_16 doi: 10.3390/plants11050590 – volume: 23 start-page: 265 year: 2018 ident: ref_64 article-title: Effect of glycine betaine and salinity on photosynthetic pigments and ion concentration of safflower publication-title: Desert – volume: 9 start-page: 1 year: 2019 ident: ref_101 article-title: Co-overexpression of AVP1 and OsSIZ1 in Arabidopsis substantially enhances plant tolerance to drought, salt, and heat stresses publication-title: Sci. Rep. doi: 10.1038/s41598-019-44062-0 – volume: 6 start-page: 861 year: 2011 ident: ref_107 article-title: Creating drought-and salt-tolerant cotton by overexpressing a vacuolar pyrophosphatase gene publication-title: Plant Signal. Behav. doi: 10.4161/psb.6.6.15223 – volume: 53 start-page: 11 year: 2008 ident: ref_72 article-title: Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03318.x – volume: 37 start-page: 61 year: 2018 ident: ref_170 article-title: Plant small RNAs: The essential epigenetic regulators of gene expression for salt-stress responses and tolerance publication-title: Plant Cell Rep. doi: 10.1007/s00299-017-2210-4 – volume: 12 start-page: 378 year: 2014 ident: ref_110 article-title: Expression of the A rabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12145 – volume: 395 start-page: 554 year: 1998 ident: ref_10 article-title: Salinity history of the Earth’s early ocean publication-title: Nature doi: 10.1038/26879 – volume: 35 start-page: 102506 year: 2023 ident: ref_156 article-title: Mapping novel QTLs for tolerance to salt stress at the late vegetative stage in durum wheat (Triticum durum L.) publication-title: J. King Saud Univ. Sci. doi: 10.1016/j.jksus.2022.102506 – volume: 16 start-page: 56 year: 2022 ident: ref_9 article-title: Reclamation of a saline-sodic soil with organic amendments and leaching publication-title: Environ. Sci. Proc. – volume: 311 start-page: 91 year: 2006 ident: ref_136 article-title: Integration of plant responses to environmentally activated phytohormonal signals publication-title: Science doi: 10.1126/science.1118642 – volume: 9 start-page: 1337 year: 2016 ident: ref_171 article-title: Soybean miR172a improves salt tolerance and can function as a long-distance signal publication-title: Mol. Plant doi: 10.1016/j.molp.2016.05.010 – volume: 19 start-page: 462 year: 2021 ident: ref_108 article-title: Towards doubling fibre yield for cotton in the semiarid agricultural area by increasing tolerance to drought, heat and salinity simultaneously publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.13476 – volume: 62 start-page: 25 year: 2020 ident: ref_128 article-title: Abscisic acid dynamics, signaling, and functions in plants publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12899 – ident: ref_20 – volume: 40 start-page: 373 year: 1997 ident: ref_44 article-title: Effects of short-term NaCl stress on water relations and gas exchange of two jute species publication-title: Biol. Plant. doi: 10.1023/A:1001013913773 – ident: ref_148 doi: 10.3390/agronomy11081631 – volume: 168 start-page: 541 year: 2005 ident: ref_41 article-title: Drought and salinity: A comparison of their effects on mineral nutrition of plants publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.200420516 – volume: 68 start-page: 405 year: 2017 ident: ref_155 article-title: Genomics, physiology, and molecular breeding approaches for improving salt tolerance publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042916-040936 – volume: 10 start-page: 80 year: 2019 ident: ref_14 article-title: Plant salinity stress: Many unanswered questions remain publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00080 – volume: 128 start-page: 439 year: 1997 ident: ref_50 article-title: Effects of salinity on growth, shoot water relations and root hydraulic conductivity in tomato plants publication-title: J. Agric. Sci. doi: 10.1017/S0021859697004309 – volume: 7 start-page: 1793 year: 2019 ident: ref_18 article-title: Impact of salt stress on growth, productivity and physicochemical properties of plants: A Review publication-title: Int. J. Chem. Stud. – volume: 156 start-page: 1493 year: 2011 ident: ref_92 article-title: K+ transport by the OsHKT2;4 transporter from rice with atypical Na+ transport properties and competition in permeation of K+ over Mg2+ and Ca2+ ions publication-title: Plant Physiol. doi: 10.1104/pp.110.168047 – volume: 251 start-page: 76 year: 2020 ident: ref_169 article-title: Engineering salinity tolerance in plants: Progress and prospects publication-title: Planta doi: 10.1007/s00425-020-03366-6 – volume: 21 start-page: 81 year: 2003 ident: ref_180 article-title: Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana publication-title: Nat. Biotechnol. doi: 10.1038/nbt766 – ident: ref_127 doi: 10.3390/ijms19103206 – volume: 88 start-page: 439 year: 2013 ident: ref_69 article-title: Exogenous application of proline alleviates salt-induced oxidative stress in Phaseolus vulgaris L. publication-title: plants. J. Hortic. Sci. Biotechnol. doi: 10.1080/14620316.2013.11512989 – volume: 255 start-page: 1827 year: 2018 ident: ref_187 article-title: Over-expression of a plasma membrane H+-ATPase SpAHA1 conferred salt tolerance to transgenic Arabidopsis publication-title: Protoplasma doi: 10.1007/s00709-018-1275-4 – volume: 25 start-page: 1431 year: 2003 ident: ref_65 article-title: Molecular cloning and characterization of betaine aldehyde dehydrogenase gene from Suaeda liaotungensis and its use in improved tolerance to salinity in transgenic tobacco publication-title: Biotechnol. Lett. doi: 10.1023/A:1025003628446 – volume: 25 start-page: 239 year: 2002 ident: ref_19 article-title: Comparative physiology of salt and water stress publication-title: Plant Cell Environ. doi: 10.1046/j.0016-8025.2001.00808.x – volume: 7 start-page: 71 year: 2014 ident: ref_40 article-title: Plant nutrition affected by soil salinity and response of rhizobium regarding the nutrients accumulation publication-title: ProEnviron. Promediu – volume: 22 start-page: 357 year: 2020 ident: ref_23 article-title: Beneficial role of acetylcholine in chlorophyll metabolism and photosynthetic gas exchange in Nicotiana benthamiana seedlings under salinity stress publication-title: Plant Biol. doi: 10.1111/plb.13079 – volume: 12 start-page: 588847 year: 2021 ident: ref_68 article-title: Gly Betaine surpasses melatonin to improve salt tolerance in Dalbergia Odorifera publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.588847 – volume: 173 start-page: 1495 year: 2021 ident: ref_145 article-title: Histone modifications and chromatin remodelling in plants in response to salt stress publication-title: Physiol. Plant. doi: 10.1111/ppl.13467 – ident: ref_153 – ident: ref_25 doi: 10.3390/ijms22094663 – volume: 14 start-page: 465 year: 2002 ident: ref_84 article-title: The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants publication-title: Plant Cell doi: 10.1105/tpc.010371 – volume: 61 start-page: 495 year: 2010 ident: ref_117 article-title: The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato publication-title: Plant J. doi: 10.1111/j.1365-313X.2009.04073.x – volume: 23 start-page: 2169 year: 2011 ident: ref_138 article-title: Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis publication-title: Plant Cell doi: 10.1105/tpc.111.087395 – volume: 56 start-page: 613 year: 2008 ident: ref_137 article-title: The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03627.x – ident: ref_168 doi: 10.3390/ijms22147687 – volume: 154 start-page: 65 year: 2013 ident: ref_157 article-title: Stress indices and selectable traits in SALTOL QTL introgressed rice genotypes for reproductive stage tolerance to sodicity and salinity stresses publication-title: Field Crops Res. doi: 10.1016/j.fcr.2013.06.011 – volume: 12 start-page: 680131 year: 2021 ident: ref_161 article-title: Rice cultivars under salt stress Show differential expression of genes related to the regulation of Na+/K+ balance publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.680131 – volume: 7 start-page: 289 year: 2013 ident: ref_28 article-title: Influence of natural saline-alkali stress on chlorophyll content and chloroplast ultrastructure of two contrasting rice (Oryza sativa L. japonica) cultivars. publication-title: Aust. J. Crop Sci. – volume: 169 start-page: 255 year: 2012 ident: ref_87 article-title: SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2011.10.007 – volume: 48 start-page: e20180351 year: 2018 ident: ref_38 article-title: Salinity reduces nutrients absorption and efficiency of their utilization in cassava plants publication-title: Ciência Rural doi: 10.1590/0103-8478cr20180351 – volume: 75 start-page: 391 year: 2015 ident: ref_60 article-title: Phytohormones and plant responses to salinity stress: A review publication-title: Plant Growth Regul. doi: 10.1007/s10725-014-0013-y – volume: 2014 start-page: 701596 year: 2014 ident: ref_119 article-title: Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization publication-title: Int. J. Genom. – volume: 37 start-page: 160 year: 2018 ident: ref_73 article-title: Inducing salinity tolerance in red pepper (Capsicum annuum L.) through exogenous application of proline and L-tryptophan publication-title: Soil Environ. – volume: 103 start-page: 115 year: 1977 ident: ref_53 article-title: Crop salt tolerance-current assessment publication-title: J. Irrig. Drain. Div. doi: 10.1061/JRCEA4.0001137 – volume: 5 start-page: 147 year: 2014 ident: ref_76 article-title: Fine tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00147 – volume: 40 start-page: 326 year: 2017 ident: ref_94 article-title: Regulation of Na+ and K+ homeostasis in plants: Towards improved salt stress tolerance in crop plants publication-title: Genet. Mol. Biol. doi: 10.1590/1678-4685-gmb-2016-0106 – volume: 3 start-page: 219 year: 2017 ident: ref_39 article-title: Salinity stress alters nutrient uptake and causes the damage of root and leaf anatomy in maize publication-title: KnE Life Sci. doi: 10.18502/kls.v3i4.708 – volume: 115 start-page: 433 year: 2015 ident: ref_63 article-title: Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress publication-title: Ann. Bot. doi: 10.1093/aob/mcu239 – volume: 55 start-page: 213 year: 2014 ident: ref_179 article-title: Overexpression of StNHX1, a novel vacuolar Na+/H+ antiporter gene from Solanum torvum, enhances salt tolerance in transgenic vegetable soybean publication-title: Hortic. Environ. Biotechnol. doi: 10.1007/s13580-014-0003-z – ident: ref_132 doi: 10.3390/ijms22094609 – volume: 6 start-page: 59 year: 2012 ident: ref_175 article-title: Expression of an Arabidopsis sodium/proton antiporter gene (AtNHX1) in peanut to improve salt tolerance publication-title: Plant Biotechnol. Rep. doi: 10.1007/s11816-011-0200-5 – volume: 167 start-page: 645 year: 2005 ident: ref_12 article-title: Genes and salt tolerance: Bringing them together publication-title: New Phytol. doi: 10.1111/j.1469-8137.2005.01487.x – volume: 183 start-page: 275 year: 2018 ident: ref_31 article-title: Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsuginea publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/j.jphotobiol.2018.04.047 – volume: 53 start-page: 444 year: 2010 ident: ref_114 article-title: Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in rice publication-title: J. Plant Biol. doi: 10.1007/s12374-010-9135-6 – volume: 61 start-page: 1120 year: 2020 ident: ref_143 article-title: Changes and associations of genomic transcription and histone methylation with salt stress in castor bean publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcaa037 – volume: 54 start-page: 2553 year: 2003 ident: ref_74 article-title: Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress publication-title: J. Exp. Bot. doi: 10.1093/jxb/erg277 |
| SSID | ssj0000800816 |
| Score | 2.6642752 |
| SecondaryResourceType | review_article |
| Snippet | Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 2253 |
| SubjectTerms | Abiotic stress Abnormalities Agriculture anthropogenic activities Anthropogenic factors Biosynthesis Botanical research Cell cycle Cell division Chlorophyll Crop yields Crops Cyclin-dependent kinases death exports Flowers & plants Food security Genes Genetically altered foods genomics Germination Homeostasis Human influences ion homeostasis irrigation Kinases Land use Nitrogen Nutrients Osmoprotectants Osmosis osmotolerance Photosynthesis Plant growth Plant tissues Plants (botany) Potassium Proteomics Review Salinity Salinity effects Salinity tolerance Salinization Salt salt stress Salt stress (Botany) Salt tolerance Seed germination Semi arid areas Semiarid zones soil Soil salinity soil salinization Soil stresses Soils |
| SummonAdditionalLinks | – databaseName: Biological Science Database (ProQuest) dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag9EAPPMorUFBASJyiJrYT2ye0RVRwoFp1QeotcmxnWakk280uUm_8Df4ev4QZxxsaoXLhFiUTaewZz8Mef0PIa5E7keqKJsxRm3DrWKIqAU91xSnkzawSlW82IU5O5NmZmoYNty6UVW5tojfUtjW4R36IJ36IrpbLt8uLBLtG4elqaKFxk9xClATqS_emwx4LRkMyK3qsRgbZ_eHyHKtLgBbTHDbyRR6y_2_DfMUzjasmr7ih47v_O4B75E4IQONJrzH3yQ3X7JO9yXwVQDjcPtk9aiFkvHxA0qkfyK8fP-PTvpbWxZ8c3hVedN-6eN3GM403K9eX8czfOXlIvhy___zuQxJaLCSmyMU6QZxyiCFM7sBdWZOa2lktNIeE2aSVyFSlOXWMWi0zzXjFpVFGUs3qnINIOXtEdpq2cU9IzBWkfuD6pNGOu9pAYmdz6yz8LGrFTUSS7WSXJuCPYxuM8xLyEBROORZORN4M9MseeeNayiOU3UCFiNn-Rbual2EBllYC-zg8mVNuLJUmy6vCFkI7ZmGQEXmFki8RE6PBopu53nRd-XF2Wk4gp-IQCHmeAlHdAu9GhzsMMAMIozWiPNhqQRmsQlf-UYGIvBw-w3rGQxrduHaDNAzrjpWi19MwsLwIlJdlEXncK-UweCYYMCFURORIXUezM_7SLL56XHHsOJcKVTz9N-_PyG0KkZ6vl5MHZGe92rjnZNd8Xy-61Qu_An8D2a08dw priority: 102 providerName: ProQuest |
| Title | Plants’ Response Mechanisms to Salinity Stress |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37375879 https://www.proquest.com/docview/2829850658 https://www.proquest.com/docview/2830667992 https://www.proquest.com/docview/3040428311 https://pubmed.ncbi.nlm.nih.gov/PMC10300796 https://doaj.org/article/d834bcfed8524cd28c15b6d67ae3da42 |
| Volume | 12 |
| WOSCitedRecordID | wos001017834600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2223-7747 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800816 issn: 2223-7747 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2223-7747 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800816 issn: 2223-7747 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Agriculture Science Database customDbUrl: eissn: 2223-7747 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800816 issn: 2223-7747 databaseCode: M0K dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2223-7747 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800816 issn: 2223-7747 databaseCode: M7P dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 2223-7747 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800816 issn: 2223-7747 databaseCode: PATMY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 2223-7747 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800816 issn: 2223-7747 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2223-7747 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800816 issn: 2223-7747 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELag9MCl4p-UsgoIiVPUJHZi-9hFW1GhXUW7IC0ny7GdsqgkVbOL1AviNXg9noQZJ11thCouXKwonijON7ZnRhl_Q8gbnjke6zKNqEttxKyjkSw5XFUlSyFupiUvfbEJPpuJ5VIWO6W-MCesowfugDu2grLSVM6KLGXGpsIkWZnbnGtHrWZ-94253AmmvvZ-kEjyjqWRQlx_fHmBeSUJ7NQwg-nACnmy_r-35B2bNMyX3DFApw_IQe85hifdiB-SO65-RPbHDXh3149JXPg3__75K5x3aa8unDo81rtqv7XhugkXGg9Brq_DhT8e8oR8Op18fPc-6qshRCbP-DpCSnEw9yZzYFmsiRETzTWD2NbEJU9kCWg4mlotEg2YMWGkEammVcYAfUafkr26qd1zEjIJURpYKWG0Y64yEIPZzDoLD_NKMhOQ6AYdZXqqcKxYcaEgZEA01RDNgLzdyl92JBm3So4R7K0Uklv7G6By1atc_UvlAXmNqlJIX1Fjfsy53rStOlvM1QmEPwx8Fj-mXqhqYOxG98cNAAFkvBpIHt2oXPULuFX4gxnJ_DIRkFfbblh6-D9F167ZoAzFFGEp09tlKGySyGmXJAF51s2i7cdTTmEQXAZEDObXAJ1hT7364inAsTgczPr88H_g-YLcT8F18wlw4ojsra827iXZN9_Xq_ZqRO7ypRiRe-PJrJiP_DKDdhp_wJYX2P6YQH9xNi0-_wE0TjIa |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VtBJw4Kf8GQoYBOJk1d5dZ-0DQilQNWoTRW2R2pNZ765DpGKHOAHlxmvwEjwUT8KM44RaqNx64GbFE2t2Pb_emW8AXsjQSl-lzOOWGU8Yy704lXiVpYJh3sxTmVbDJmS_H52cxIM1-LnshaGyyqVNrAy1KTR9I9-mEz9CVwujN-MvHk2NotPV5QiNhVjs2_k3TNnK1913-H5fMrb7_vjtnldPFfB0O5RTj6C50W3q0KKFNtrXmTVKKoE5ovZTGcSpEsxyZlQUKC5SEelYR0zxLBS4CsHxuVdgXZCwt2B90O0NTldfdSj-ioL2Ah2S89jfHp9RPUuAHgI1hze8XzUk4G9XcM4XNus0zzm-3Zv_25bdght1iO12FjpxG9ZsvgnXO8NJDTNiN2Fjp8CgeH4H_EG1cb--_3APF9XC1u1Z6oYelZ9Ld1q4R4p6R6dz96jqqrkLHy6F93vQyovcPgBXxJjconOPtLLCZhpTVxMaa_DPMouFdsBbvtxE1wjrNOjjLMFMi4QhaQqDA69W9OMFtsiFlDskKysqwgSvfigmw6Q2MYmJkH1aXhQyoQ2LdBCmbdOWynKDi3TgOUlaQqgfOZUVDdWsLJPu0WHSwaxRYKhX8VQTZQXyrlXdpYE7QEBhDcqtpdQltd0rkz8i58Cz1W20WHQMpXJbzIiGU2V1HLOLaTj6FoICDAIH7i-UYLV4LjkyIWMHooZ6NHaneScffaqQ02mmni_j9sN_8_4Uru4d9w6Sg25__xFcYxjXVtWB0Ra0ppOZfQwb-ut0VE6e1PrvwsfL1p_fdXWa1w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VtEJw4Kf8GQoYBOJkxfaus-sDQimlIiqNogak9mTWu-sQqdghTkC58Rq8Co_DkzDjOKEWKrceuEX2OJpdz6935huAZyKywldp6DEbGo8by7w4FfgrS3mIeTNLRVoNmxD9vjw-jgcb8HPVC0NllSubWBlqU2j6Rt6mEz9CV4tkO6vLIgZ7-68mXzyaIEUnratxGksRObCLb5i-lS97e_iun4fh_pv3r9969YQBT3ciMfMIphtdqI4sWmujfZ1Zo4TimC9qPxVBnCoeWhYaJQPFeMqljrUMFcsijiviDP_3EmwKeqAFm4Pe4eBk_YWHYjEZdJZIkYzFfntySrUtAXoL1CLW8ITVwIC_3cIZv9is2TzjBPev_8_bdwOu1aG3213qyk3YsPk2XO2OpjX8iN2Grd0Cg-XFLfAH1Sb--v7DPVpWEVv30FKX9Lj8XLqzwh0q6imdLdxh1W1zGz5cCO93oJUXub0HLo8x6UWnL7Wy3GYaU1oTGWvwYZHFXDvgrV50omvkdRoAcppgBkaCkTQFw4EXa_rJEnPkXMpdkps1FWGFVxeK6SipTU9iJLJPy5NRyLUJpQ6itGM6QllmcJEOPCWpSwgNJCfBGKl5WSa94VHSxWySYwhY8VQTZQXyrlXdvYE7QABiDcqdlQQmtT0skz_i58CT9W20ZHQ8pXJbzImGUcV1HIfn0zD0OQQRGAQO3F0qxHrxTDBkQsQOyIaqNHaneScff6oQ1WnWni_izv1_8_4YLqPSJO96_YMHcCXEcLcqGpQ70JpN5_YhbOmvs3E5fVSbAhc-XrT6_Aad3aOX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plants%E2%80%99+Response+Mechanisms+to+Salinity+Stress&rft.jtitle=Plants+%28Basel%29&rft.au=Balasubramaniam%2C+Thuvaraki&rft.au=Shen%2C+Guoxin&rft.au=Esmaeili%2C+Nardana&rft.au=Zhang%2C+Hong&rft.date=2023-06-08&rft.pub=MDPI&rft.eissn=2223-7747&rft.volume=12&rft.issue=12&rft_id=info:doi/10.3390%2Fplants12122253&rft_id=info%3Apmid%2F37375879&rft.externalDocID=PMC10300796 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon |