Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy

The in vivo influence of renal anisotropy and of urinary and vascular pressure on elasticity values using ultrasonic supersonic shear wave elastography was studied in pigs. Experiments were conducted in agreement with the European Commission guidelines and directives of the French Research Ministry....

Full description

Saved in:
Bibliographic Details
Published in:Ultrasound in medicine & biology Vol. 38; no. 9; p. 1559
Main Authors: Gennisson, Jean-Luc, Grenier, Nicolas, Combe, Christian, Tanter, Mickaël
Format: Journal Article
Language:English
Published: England 01.09.2012
Subjects:
ISSN:1879-291X, 1879-291X
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The in vivo influence of renal anisotropy and of urinary and vascular pressure on elasticity values using ultrasonic supersonic shear wave elastography was studied in pigs. Experiments were conducted in agreement with the European Commission guidelines and directives of the French Research Ministry. Six kidneys in three pigs were studied in vivo. Elasticity of renal cortex and medulla was quantified through the shear modulus (μ) by using the supersonic shear imaging technique with an 8 MHz linear ultrasound probe. All measurements were done peroperatively both in the axis and perpendicular to the main axis of pyramids, in normal condition, after progressive increase of urinary pressure, and after renal artery and renal vein ligation. In normal conditions, cortical (C) and medullary (M) elasticity values were always higher when acquisitions were realized with the ultrasound main axis perpendicular to main pyramid axis (C(//): 7.7 ± 2.3 kPa; M(//): 8.7 ± 2.5 kPa) than parallel (C(⊥): 6.9 ± 1.4 kPa; M(⊥): 6.6 ± 2.3 kPa), demonstrating an effect of renal anisotropy. In renal cortex, two bands were separated, inner cortex showing higher elasticity values (IC(⊥): 8.1 ± 1.9 kPa) than outer cortex (OC(⊥): 6.9 ± 1.4 kPa). Renal artery and renal vein ligation induced a decrease and an increase of elasticity respectively. Parenchymal elasticity increased linearly with elevation of urinary pressure. Intrarenal elasticity values vary with tissue anisotropy and, with vascular and urinary pressure levels. These parameters have to be taken into account for interpretation of tissue changes. Separation of outer and inner cortex could be attributable to perfusion differences.
AbstractList The in vivo influence of renal anisotropy and of urinary and vascular pressure on elasticity values using ultrasonic supersonic shear wave elastography was studied in pigs. Experiments were conducted in agreement with the European Commission guidelines and directives of the French Research Ministry. Six kidneys in three pigs were studied in vivo. Elasticity of renal cortex and medulla was quantified through the shear modulus (μ) by using the supersonic shear imaging technique with an 8 MHz linear ultrasound probe. All measurements were done peroperatively both in the axis and perpendicular to the main axis of pyramids, in normal condition, after progressive increase of urinary pressure, and after renal artery and renal vein ligation. In normal conditions, cortical (C) and medullary (M) elasticity values were always higher when acquisitions were realized with the ultrasound main axis perpendicular to main pyramid axis (C(//): 7.7 ± 2.3 kPa; M(//): 8.7 ± 2.5 kPa) than parallel (C(⊥): 6.9 ± 1.4 kPa; M(⊥): 6.6 ± 2.3 kPa), demonstrating an effect of renal anisotropy. In renal cortex, two bands were separated, inner cortex showing higher elasticity values (IC(⊥): 8.1 ± 1.9 kPa) than outer cortex (OC(⊥): 6.9 ± 1.4 kPa). Renal artery and renal vein ligation induced a decrease and an increase of elasticity respectively. Parenchymal elasticity increased linearly with elevation of urinary pressure. Intrarenal elasticity values vary with tissue anisotropy and, with vascular and urinary pressure levels. These parameters have to be taken into account for interpretation of tissue changes. Separation of outer and inner cortex could be attributable to perfusion differences.
The in vivo influence of renal anisotropy and of urinary and vascular pressure on elasticity values using ultrasonic supersonic shear wave elastography was studied in pigs. Experiments were conducted in agreement with the European Commission guidelines and directives of the French Research Ministry. Six kidneys in three pigs were studied in vivo. Elasticity of renal cortex and medulla was quantified through the shear modulus (μ) by using the supersonic shear imaging technique with an 8 MHz linear ultrasound probe. All measurements were done peroperatively both in the axis and perpendicular to the main axis of pyramids, in normal condition, after progressive increase of urinary pressure, and after renal artery and renal vein ligation. In normal conditions, cortical (C) and medullary (M) elasticity values were always higher when acquisitions were realized with the ultrasound main axis perpendicular to main pyramid axis (C(//): 7.7 ± 2.3 kPa; M(//): 8.7 ± 2.5 kPa) than parallel (C(⊥): 6.9 ± 1.4 kPa; M(⊥): 6.6 ± 2.3 kPa), demonstrating an effect of renal anisotropy. In renal cortex, two bands were separated, inner cortex showing higher elasticity values (IC(⊥): 8.1 ± 1.9 kPa) than outer cortex (OC(⊥): 6.9 ± 1.4 kPa). Renal artery and renal vein ligation induced a decrease and an increase of elasticity respectively. Parenchymal elasticity increased linearly with elevation of urinary pressure. Intrarenal elasticity values vary with tissue anisotropy and, with vascular and urinary pressure levels. These parameters have to be taken into account for interpretation of tissue changes. Separation of outer and inner cortex could be attributable to perfusion differences.The in vivo influence of renal anisotropy and of urinary and vascular pressure on elasticity values using ultrasonic supersonic shear wave elastography was studied in pigs. Experiments were conducted in agreement with the European Commission guidelines and directives of the French Research Ministry. Six kidneys in three pigs were studied in vivo. Elasticity of renal cortex and medulla was quantified through the shear modulus (μ) by using the supersonic shear imaging technique with an 8 MHz linear ultrasound probe. All measurements were done peroperatively both in the axis and perpendicular to the main axis of pyramids, in normal condition, after progressive increase of urinary pressure, and after renal artery and renal vein ligation. In normal conditions, cortical (C) and medullary (M) elasticity values were always higher when acquisitions were realized with the ultrasound main axis perpendicular to main pyramid axis (C(//): 7.7 ± 2.3 kPa; M(//): 8.7 ± 2.5 kPa) than parallel (C(⊥): 6.9 ± 1.4 kPa; M(⊥): 6.6 ± 2.3 kPa), demonstrating an effect of renal anisotropy. In renal cortex, two bands were separated, inner cortex showing higher elasticity values (IC(⊥): 8.1 ± 1.9 kPa) than outer cortex (OC(⊥): 6.9 ± 1.4 kPa). Renal artery and renal vein ligation induced a decrease and an increase of elasticity respectively. Parenchymal elasticity increased linearly with elevation of urinary pressure. Intrarenal elasticity values vary with tissue anisotropy and, with vascular and urinary pressure levels. These parameters have to be taken into account for interpretation of tissue changes. Separation of outer and inner cortex could be attributable to perfusion differences.
Author Combe, Christian
Grenier, Nicolas
Gennisson, Jean-Luc
Tanter, Mickaël
Author_xml – sequence: 1
  givenname: Jean-Luc
  surname: Gennisson
  fullname: Gennisson, Jean-Luc
  email: jl.gennisson@espci.fr
  organization: Institut Langevin-Ondes et Images, ESPCI ParisTech, CNRS UMR7587, INSERM U979, Paris, France. jl.gennisson@espci.fr
– sequence: 2
  givenname: Nicolas
  surname: Grenier
  fullname: Grenier, Nicolas
– sequence: 3
  givenname: Christian
  surname: Combe
  fullname: Combe, Christian
– sequence: 4
  givenname: Mickaël
  surname: Tanter
  fullname: Tanter, Mickaël
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22698515$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtOwzAQRS1URB_wC8hixYIGPxLbYYcqXlIlFoDELnKSSeuS2sFOirrhW_gWvoxUPMRqzlwdjTR3jAbWWUDohJKIEirOV1FXt16HNZS5cREjlEUkjgjle2hElUynLKXPg388ROMQVoQQKbg8QEPGRKoSmozQ-0PXgA_OmgKHJWiP3_QGMNQ6tG7hdbPcYldhYz8_NmbjcGMW-MWUFrYXfVjVHdgCdkZeO1fixkMInYcz3Hljtd_-JVjbErem5x2a4Frvmu0h2q90HeDoZ07Q0_XV4-x2Or-_uZtdzqeFSEQ7TXkVQwoqj1klYqKUSPo9pQWoSgktOZVlrgqlqFC0lLHiAFrwokg5EZLmbIJOv-823r12ENpsbUIBda0tuC5klHAmueQx79XjH7XL-4azxpt1_0j22xn7AgGGd9Q
CitedBy_id crossref_primary_10_34067_KID_0002942021
crossref_primary_10_7863_ultra_32_10_1769
crossref_primary_10_1016_j_ultrasmedbio_2020_01_011
crossref_primary_10_4103_jmu_jmu_24_22
crossref_primary_10_1007_s00366_022_01690_x
crossref_primary_10_1109_TUFFC_2016_2634329
crossref_primary_10_3389_fbioe_2020_00979
crossref_primary_10_3390_biomedicines12122671
crossref_primary_10_14366_usg_16026
crossref_primary_10_1016_j_trsl_2019_02_009
crossref_primary_10_1002_cnm_3857
crossref_primary_10_4142_jvs_23101
crossref_primary_10_14366_usg_17002
crossref_primary_10_1088_1361_6560_aca9b8
crossref_primary_10_2460_ajvr_82_12_981
crossref_primary_10_1038_nrneph_2016_44
crossref_primary_10_1088_0031_9155_59_24_7735
crossref_primary_10_1016_j_semcancer_2015_09_001
crossref_primary_10_1016_j_ultrasmedbio_2020_03_026
crossref_primary_10_1016_j_ultrasmedbio_2019_05_010
crossref_primary_10_1097_RLI_0000000000000511
crossref_primary_10_1016_j_media_2021_101960
crossref_primary_10_1109_TUFFC_2018_2865203
crossref_primary_10_1007_s00330_023_09507_1
crossref_primary_10_1088_0031_9155_61_15_5741
crossref_primary_10_1002_jcu_23862
crossref_primary_10_1002_jum_14584
crossref_primary_10_1016_j_ultrasmedbio_2018_03_016
crossref_primary_10_1016_j_kint_2016_06_042
crossref_primary_10_1007_s00261_014_0315_6
crossref_primary_10_1186_s12882_015_0120_7
crossref_primary_10_3390_diagnostics12112678
crossref_primary_10_34067_KID_0004282022
crossref_primary_10_1681_ASN_2016101089
crossref_primary_10_1186_s13052_025_02090_9
crossref_primary_10_1016_j_eml_2019_01_009
crossref_primary_10_1097_RUQ_0000000000000461
crossref_primary_10_1080_0886022X_2024_2407882
crossref_primary_10_1007_s00247_021_05068_x
crossref_primary_10_1016_j_ccrj_2023_04_006
crossref_primary_10_1109_TMI_2014_2360835
crossref_primary_10_1007_s10157_021_02063_2
crossref_primary_10_1016_j_ultrasmedbio_2016_05_003
crossref_primary_10_3390_diagnostics14090938
crossref_primary_10_1016_j_jmps_2016_05_023
crossref_primary_10_3389_fped_2020_00546
crossref_primary_10_4329_wjr_v16_i12_782
crossref_primary_10_1007_s00261_023_03881_6
crossref_primary_10_1002_jmri_24826
crossref_primary_10_1002_jmri_29799
crossref_primary_10_1109_TUFFC_2021_3065884
crossref_primary_10_1007_s10396_021_01127_w
crossref_primary_10_1016_j_xkme_2022_100596
crossref_primary_10_1007_s00247_014_3174_y
crossref_primary_10_1016_j_jmu_2017_04_003
crossref_primary_10_1016_j_ultrasmedbio_2024_08_022
crossref_primary_10_1371_journal_pone_0115051
crossref_primary_10_14366_usg_16003
crossref_primary_10_1016_j_jmbbm_2017_03_033
crossref_primary_10_1186_s12882_023_03357_1
crossref_primary_10_1080_0886022X_2023_2171887
crossref_primary_10_1007_s00330_023_10492_8
crossref_primary_10_1016_j_ultras_2025_107566
crossref_primary_10_1148_radiol_2019182574
crossref_primary_10_1002_jum_14217
crossref_primary_10_1016_j_ultrasmedbio_2018_07_001
crossref_primary_10_3390_jcm10020214
crossref_primary_10_3390_s24154961
crossref_primary_10_1002_jum_15654
crossref_primary_10_1016_j_ultrasmedbio_2015_06_009
crossref_primary_10_5410_wjcu_v4_i3_100
crossref_primary_10_1016_j_ultrasmedbio_2023_01_003
crossref_primary_10_1007_s00380_017_1063_7
crossref_primary_10_1016_j_diii_2013_02_003
crossref_primary_10_1007_s00330_014_3162_5
crossref_primary_10_1016_j_jbiomech_2015_04_033
crossref_primary_10_1016_j_jpurol_2025_08_011
crossref_primary_10_1016_j_xkme_2022_100464
crossref_primary_10_1088_0031_9155_60_8_3151
crossref_primary_10_1177_0284185117748488
crossref_primary_10_1097_MD_0000000000016464
crossref_primary_10_1007_s00261_015_0383_2
crossref_primary_10_1007_s13244_016_0514_5
crossref_primary_10_5500_wjt_v14_i1_89255
crossref_primary_10_1371_journal_pone_0068925
crossref_primary_10_1002_jum_14848
crossref_primary_10_1007_s00261_021_03351_x
crossref_primary_10_1097_RLI_0000000000000588
crossref_primary_10_1002_jum_14209
crossref_primary_10_1016_j_ultrasmedbio_2021_03_030
crossref_primary_10_1148_radiol_2015142884
crossref_primary_10_1016_j_ultrasmedbio_2013_04_007
crossref_primary_10_3390_app112210612
crossref_primary_10_1109_TUFFC_2014_006847
crossref_primary_10_1016_j_ultrasmedbio_2019_06_417
crossref_primary_10_3389_fbioe_2023_1236949
crossref_primary_10_1016_j_cult_2013_06_002
crossref_primary_10_1016_j_ultrasmedbio_2014_04_002
crossref_primary_10_1007_s00247_014_3072_3
crossref_primary_10_1016_j_ejrad_2020_109180
crossref_primary_10_1016_j_clinimag_2014_11_008
crossref_primary_10_1007_s10396_016_0760_7
crossref_primary_10_1007_s00330_013_2959_y
crossref_primary_10_1097_MD_0000000000023576
crossref_primary_10_1016_j_mric_2018_09_004
crossref_primary_10_1109_TUFFC_2015_007023
crossref_primary_10_1016_j_mehy_2020_110146
crossref_primary_10_3390_app14104308
crossref_primary_10_1038_nature14329
crossref_primary_10_1292_jvms_23_0065
crossref_primary_10_1371_journal_pone_0296411
crossref_primary_10_1259_bjr_20220288
crossref_primary_10_1016_j_eml_2017_09_009
crossref_primary_10_1016_j_ultrasmedbio_2019_12_019
crossref_primary_10_1007_s00261_025_04806_1
crossref_primary_10_1002_jum_15190
crossref_primary_10_1111_echo_70231
crossref_primary_10_1016_j_nephro_2016_02_014
crossref_primary_10_1007_s11547_020_01176_0
crossref_primary_10_1186_s12882_017_0679_2
crossref_primary_10_1016_j_ultrasmedbio_2019_08_011
crossref_primary_10_30565_medalanya_876543
crossref_primary_10_1002_nbm_3832
crossref_primary_10_1016_j_ultrasmedbio_2016_01_023
crossref_primary_10_1016_j_jmps_2018_06_009
crossref_primary_10_1371_journal_pone_0119713
crossref_primary_10_1186_s13244_024_01837_y
crossref_primary_10_1016_j_transproceed_2017_03_045
crossref_primary_10_7863_ultra_34_4_649
crossref_primary_10_1007_s13246_023_01358_w
crossref_primary_10_1002_jmri_28828
crossref_primary_10_1109_TUFFC_2023_3240283
crossref_primary_10_1016_j_actbio_2025_03_016
crossref_primary_10_1259_bjr_20140714
crossref_primary_10_1007_s10334_017_0671_7
crossref_primary_10_1109_TUFFC_2020_3019002
crossref_primary_10_1002_nbm_4237
crossref_primary_10_1016_j_transproceed_2023_08_017
crossref_primary_10_1109_TMI_2022_3141084
crossref_primary_10_1007_s00261_020_02460_3
crossref_primary_10_1109_TUFFC_2020_3030040
crossref_primary_10_3389_fphy_2022_910036
crossref_primary_10_3390_cancers13081891
crossref_primary_10_1097_JIM_0000000000000186
crossref_primary_10_1016_j_jbiomech_2014_11_011
crossref_primary_10_1007_s10396_023_01304_z
crossref_primary_10_1016_j_jbiomech_2013_11_051
crossref_primary_10_1148_radiol_2018170577
crossref_primary_10_1016_j_ejrad_2020_108949
crossref_primary_10_1016_j_jbiomech_2019_109370
crossref_primary_10_1016_j_jradio_2013_01_008
crossref_primary_10_1177_0161734618779789
crossref_primary_10_1016_j_jpedsurg_2023_11_017
crossref_primary_10_1016_j_ultrasmedbio_2016_05_021
crossref_primary_10_1007_s00261_024_04613_0
crossref_primary_10_1007_s11517_016_1522_9
crossref_primary_10_1111_iju_15054
crossref_primary_10_1371_journal_pone_0113761
crossref_primary_10_3390_jcm12237385
crossref_primary_10_1016_j_ultrasmedbio_2018_01_007
crossref_primary_10_1002_jum_14487
crossref_primary_10_1007_s00330_015_3723_2
crossref_primary_10_1002_adhm_202400807
crossref_primary_10_2460_ajvr_20_12_0202
crossref_primary_10_1016_j_ultrasmedbio_2017_04_019
crossref_primary_10_1002_mrm_26892
crossref_primary_10_1097_RLI_0000000000000271
crossref_primary_10_3389_fphys_2024_1327407
crossref_primary_10_1016_j_cmpb_2024_108035
crossref_primary_10_7863_ultra_34_5_869
crossref_primary_10_1097_MNH_0000000000000650
crossref_primary_10_1109_TUFFC_2017_2690223
crossref_primary_10_1088_0031_9155_61_13_5000
crossref_primary_10_1097_SHK_0000000000002070
crossref_primary_10_1097_RUQ_0000000000000640
crossref_primary_10_1111_ijcp_14811
crossref_primary_10_1016_j_ultrasmedbio_2013_10_003
crossref_primary_10_1088_1361_6560_ad2d80
crossref_primary_10_1016_j_ultrasmedbio_2019_01_024
crossref_primary_10_1080_17434440_2018_1538782
crossref_primary_10_12688_f1000research_16188_1
ContentType Journal Article
Copyright Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.ultrasmedbio.2012.04.013
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Biology
Physics
EISSN 1879-291X
ExternalDocumentID 22698515
Genre Journal Article
GroupedDBID ---
--K
-DZ
.1-
.55
.FO
.GJ
0R~
123
1B1
1P~
1RT
1~5
29Q
3O-
4.4
457
4G.
53G
5RE
5VS
7-5
AACTN
AAEDT
AAEDW
AALRI
AAQFI
AAQXK
AAWTL
AAXUO
ABDPE
ABJNI
ABLJU
ABMAC
ABNEU
ABOCM
ABTAH
ABWVN
ACGFS
ACIUM
ACRPL
ADBBV
ADMUD
ADNMO
AENEX
AEVXI
AFCTW
AFJKZ
AFRHN
AFTJW
AHHHB
AITUG
AJUYK
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BELOY
C5W
CGR
CS3
CUY
CVF
DU5
EBS
ECM
EFJIC
EIF
EJD
F5P
FDB
FEDTE
FGOYB
FIRID
G-2
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
M29
M41
MO0
NPM
NQ-
O9-
OI~
OU0
P2P
R2-
RIG
ROL
RPZ
SAE
SDG
SEL
SES
SEW
SSZ
WUQ
X7M
XH2
Z5R
ZGI
ZXP
ZY4
~S-
7X8
AAYWO
EFKBS
ID FETCH-LOGICAL-c656t-93f4e9e8b42f64088654e991ce8f86a7317db8c881681d7483eea63cc930671b2
IEDL.DBID 7X8
ISICitedReferencesCount 220
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000307378900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1879-291X
IngestDate Sat Sep 27 21:19:18 EDT 2025
Thu Apr 03 07:08:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c656t-93f4e9e8b42f64088654e991ce8f86a7317db8c881681d7483eea63cc930671b2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22698515
PQID 1032737343
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1032737343
pubmed_primary_22698515
PublicationCentury 2000
PublicationDate 2012-09-01
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Ultrasound in medicine & biology
PublicationTitleAlternate Ultrasound Med Biol
PublicationYear 2012
SSID ssj0007637
Score 2.4865334
Snippet The in vivo influence of renal anisotropy and of urinary and vascular pressure on elasticity values using ultrasonic supersonic shear wave elastography was...
The in vivo influence of renal anisotropy and of urinary and vascular pressure on elasticity values using ultrasonic supersonic shear wave elastography was...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1559
SubjectTerms Animals
Anisotropy
Blood Pressure
Elastic Modulus
Elasticity Imaging Techniques - methods
Female
Kidney - diagnostic imaging
Kidney - physiology
Pressure
Swine
Title Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy
URI https://www.ncbi.nlm.nih.gov/pubmed/22698515
https://www.proquest.com/docview/1032737343
Volume 38
WOSCitedRecordID wos000307378900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS-QwFA6uruJFXdcf4y-y4NHqNE0nqRcRUbw4CLowtyFNX6UobW07I3Pwf_e9tKOnBWEvpQ0tlJeXly8vX97H2LE2UqjEhl6Shn1coMjYM4lIPfQN4xsBwkDsxCbUcKhHo-i-S7jVHa1yHhNdoE4KSznyMyr8pgIVyOCifPVINYp2VzsJjR9sKUAoQ16tRl_VwnHsOHEVrSJPRP5oXnTU8bsmL01lapxy4owOAVJOUJ72SebgX1DTTTk36__7sxtsrQOb_LL1jl9sAfJNttzKT8422cpdt7GOjY4Jauvf7P1hUjoUnllek9w1fzNT4IAou-nKW_Mi5VnOp9m04GX2xJ-zJIfZObZ1gif0gmPEc0eznVRwwimrb6rZZws3ecIb1-14m9VFUxXlbIv9vbl-vLr1Oo0GzyISbLwoSCVEoGMp0oHEkDUI8TnyLehUD4xCeJLE2mqS9_ATJXUAYAaBtRGtVfxYbLPFvMhhl3FfgNFS2D52lRT9ENdaVO1QATFkEen12J-5scc4Bmhjw-RQTOrxl7l7bKftsXHZFusYI7yMEFWGe9_4ep-tkiO0FLIDtpRiBIBD9tNO0RzVkXMuvA7v7z4AlCzaVA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supersonic+shear+wave+elastography+of+in%C2%A0vivo+pig+kidney%3A+influence+of+blood+pressure%2C+urinary+pressure+and+tissue+anisotropy&rft.jtitle=Ultrasound+in+medicine+%26+biology&rft.au=Gennisson%2C+Jean-Luc&rft.au=Grenier%2C+Nicolas&rft.au=Combe%2C+Christian&rft.au=Tanter%2C+Micka%C3%ABl&rft.date=2012-09-01&rft.eissn=1879-291X&rft.volume=38&rft.issue=9&rft.spage=1559&rft_id=info:doi/10.1016%2Fj.ultrasmedbio.2012.04.013&rft_id=info%3Apmid%2F22698515&rft_id=info%3Apmid%2F22698515&rft.externalDocID=22698515
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1879-291X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1879-291X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1879-291X&client=summon