Transcriptome sequencing in a 6-hydroxydopamine rat model of Parkinson’s disease

The neurotoxin 6-hydroxydopamine (6-OHDA) has been widely exploited as a tool for modeling Parkinson’s disease (PD) in the rat. This study aimed to provide a comprehensive profile of the mRNAs and long noncoding RNAs (lncRNAs) in rats treated with 6-OHDA as a model of PD. Female SPF Wistar rats were...

Full description

Saved in:
Bibliographic Details
Published in:Genes & Genetic Systems Vol. 94; no. 2; pp. 61 - 69
Main Authors: Chen, Jiajun, Li, Jia, Sun, Yajuan
Format: Journal Article
Language:English
Published: Japan The Genetics Society of Japan 01.04.2019
Japan Science and Technology Agency
Subjects:
ISSN:1341-7568, 1880-5779, 1880-5779
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The neurotoxin 6-hydroxydopamine (6-OHDA) has been widely exploited as a tool for modeling Parkinson’s disease (PD) in the rat. This study aimed to provide a comprehensive profile of the mRNAs and long noncoding RNAs (lncRNAs) in rats treated with 6-OHDA as a model of PD. Female SPF Wistar rats were randomly divided into two groups: a PD model group and a control group. The PD model was induced by 6-OHDA injection. RNA-seq analysis was performed on 6-OHDA-treated rats and corresponding controls. Novel lncRNAs were identified. Differentially expressed genes (DEGs) and differentially expressed lncRNAs were identified in the PD group compared with controls. Gene Ontology function and pathway enrichment analyses were conducted on the DEGs, followed by construction of a protein–protein interaction (PPI) network. In addition, prediction of lncRNA target genes and function prediction of lncRNAs were performed. Moreover, microRNAs (miRNAs) that interacted with the DEGs and differentially expressed lncRNAs were predicted to construct a miRNA–lncRNA–mRNA regulatory network. A total of 536 DEGs and 512 differentially expressed lncRNAs (44 up-regulated and 10 down-regulated known lncRNAs; 407 up-regulated and 51 down-regulated novel lncRNAs) were identified in the PD rat model compared with controls. The DEGs and target genes of lncRNAs were mainly associated with the innate immune response, 2′-5′-oligoadenylate synthetase activity, GTPase activity, GTP binding and the RIG-I-like receptor signaling pathway. IRF7 and ISG15 were hub proteins in the PPI network. Many mRNAs and lncRNAs interacted with other molecules in a competing endogenous RNA network, such as MAS1, TMPRSS2, NPTX1, XLOC_016191, XLOC_026924 and XLOC_005439. We conclude that IRF7, ISG15, MAS1, TMPRSS2, NPTX1, XLOC_016191, XLOC_026924 and XLOC_005439 may contribute critical roles in the pathogenesis of PD.
AbstractList The neurotoxin 6-hydroxydopamine (6-OHDA) has been widely exploited as a tool for modeling Parkinson's disease (PD) in the rat. This study aimed to provide a comprehensive profile of the mRNAs and long noncoding RNAs (lncRNAs) in rats treated with 6-OHDA as a model of PD. Female SPF Wistar rats were randomly divided into two groups: a PD model group and a control group. The PD model was induced by 6-OHDA injection. RNA-seq analysis was performed on 6-OHDA-treated rats and corresponding controls. Novel lncRNAs were identified. Differentially expressed genes (DEGs) and differentially expressed lncRNAs were identified in the PD group compared with controls. Gene Ontology function and pathway enrichment analyses were conducted on the DEGs, followed by construction of a protein-protein interaction (PPI) network. In addition, prediction of lncRNA target genes and function prediction of lncRNAs were performed. Moreover, microRNAs (miRNAs) that interacted with the DEGs and differentially expressed lncRNAs were predicted to construct a miRNA-lncRNA-mRNA regulatory network. A total of 536 DEGs and 512 differentially expressed lncRNAs (44 up-regulated and 10 down-regulated known lncRNAs; 407 up-regulated and 51 down-regulated novel lncRNAs) were identified in the PD rat model compared with controls. The DEGs and target genes of lncRNAs were mainly associated with the innate immune response, 2'-5'-oligoadenylate synthetase activity, GTPase activity, GTP binding and the RIG-I-like receptor signaling pathway. IRF7 and ISG15 were hub proteins in the PPI network. Many mRNAs and lncRNAs interacted with other molecules in a competing endogenous RNA network, such as MAS1, TMPRSS2, NPTX1, XLOC_016191, XLOC_026924 and XLOC_005439. We conclude that IRF7, ISG15, MAS1, TMPRSS2, NPTX1, XLOC_016191, XLOC_026924 and XLOC_005439 may contribute critical roles in the pathogenesis of PD.
The neurotoxin 6-hydroxydopamine (6-OHDA) has been widely exploited as a tool for modeling Parkinson's disease (PD) in the rat. This study aimed to provide a comprehensive profile of the mRNAs and long noncoding RNAs (lncRNAs) in rats treated with 6-OHDA as a model of PD. Female SPF Wistar rats were randomly divided into two groups: a PD model group and a control group. The PD model was induced by 6-OHDA injection. RNA-seq analysis was performed on 6-OHDA-treated rats and corresponding controls. Novel lncRNAs were identified. Differentially expressed genes (DEGs) and differentially expressed lncRNAs were identified in the PD group compared with controls. Gene Ontology function and pathway enrichment analyses were conducted on the DEGs, followed by construction of a protein-protein interaction (PPI) network. In addition, prediction of lncRNA target genes and function prediction of lncRNAs were performed. Moreover, microRNAs (miRNAs) that interacted with the DEGs and differentially expressed lncRNAs were predicted to construct a miRNA-lncRNA-mRNA regulatory network. A total of 536 DEGs and 512 differentially expressed lncRNAs (44 up-regulated and 10 down-regulated known lncRNAs; 407 up-regulated and 51 down-regulated novel lncRNAs) were identified in the PD rat model compared with controls. The DEGs and target genes of lncRNAs were mainly associated with the innate immune response, 2'-5'-oligoadenylate synthetase activity, GTPase activity, GTP binding and the RIG-I-like receptor signaling pathway. IRF7 and ISG15 were hub proteins in the PPI network. Many mRNAs and lncRNAs interacted with other molecules in a competing endogenous RNA network, such as MAS1, TMPRSS2, NPTX1, XLOC_016191, XLOC_026924 and XLOC_005439. We conclude that IRF7, ISG15, MAS1, TMPRSS2, NPTX1, XLOC_016191, XLOC_026924 and XLOC_005439 may contribute critical roles in the pathogenesis of PD.The neurotoxin 6-hydroxydopamine (6-OHDA) has been widely exploited as a tool for modeling Parkinson's disease (PD) in the rat. This study aimed to provide a comprehensive profile of the mRNAs and long noncoding RNAs (lncRNAs) in rats treated with 6-OHDA as a model of PD. Female SPF Wistar rats were randomly divided into two groups: a PD model group and a control group. The PD model was induced by 6-OHDA injection. RNA-seq analysis was performed on 6-OHDA-treated rats and corresponding controls. Novel lncRNAs were identified. Differentially expressed genes (DEGs) and differentially expressed lncRNAs were identified in the PD group compared with controls. Gene Ontology function and pathway enrichment analyses were conducted on the DEGs, followed by construction of a protein-protein interaction (PPI) network. In addition, prediction of lncRNA target genes and function prediction of lncRNAs were performed. Moreover, microRNAs (miRNAs) that interacted with the DEGs and differentially expressed lncRNAs were predicted to construct a miRNA-lncRNA-mRNA regulatory network. A total of 536 DEGs and 512 differentially expressed lncRNAs (44 up-regulated and 10 down-regulated known lncRNAs; 407 up-regulated and 51 down-regulated novel lncRNAs) were identified in the PD rat model compared with controls. The DEGs and target genes of lncRNAs were mainly associated with the innate immune response, 2'-5'-oligoadenylate synthetase activity, GTPase activity, GTP binding and the RIG-I-like receptor signaling pathway. IRF7 and ISG15 were hub proteins in the PPI network. Many mRNAs and lncRNAs interacted with other molecules in a competing endogenous RNA network, such as MAS1, TMPRSS2, NPTX1, XLOC_016191, XLOC_026924 and XLOC_005439. We conclude that IRF7, ISG15, MAS1, TMPRSS2, NPTX1, XLOC_016191, XLOC_026924 and XLOC_005439 may contribute critical roles in the pathogenesis of PD.
Author Chen, Jiajun
Sun, Yajuan
Li, Jia
Author_xml – sequence: 1
  fullname: Chen, Jiajun
  organization: Department of Neurology, China–Japan Union Hospital of Jilin University
– sequence: 1
  fullname: Li, Jia
  organization: Department of Neurology, China–Japan Union Hospital of Jilin University
– sequence: 1
  fullname: Sun, Yajuan
  organization: Department of Neurology, China–Japan Union Hospital of Jilin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30713215$$D View this record in MEDLINE/PubMed
BookMark eNp1kU2LFDEQhoOsuB968ywNXjzYaz6608lRF12FBUXWc6iuTs9k7E7GJAPOzb_h3_OXmJnZHWFBSKoCed6qN6lzcuKDt4Q8Z_SScSnfLBbpkqmaUirkI3LGlKJ123X6pJxFw-quleqUnKe0opRTrcQTcipoxwRn7Rn5ehvBJ4xuncNsq2R_bKxH5xeV8xVUsl5uhxh-boewhtl5W0XI1RwGO1VhrL5A_O58Cv7Pr9-pGlyykOxT8niEKdlnd_mCfPvw_vbqY33z-frT1dubGmXb5BokSgp26Jph7JEPqsMeew1C9s3QSo2yV1qrsdcdpS1r0SLqTmiEfvckIS7Iq0PddQzFdcpmdgntNIG3YZMMZ50uukbogr58gK7CJvriznDelNVQoQr14o7a9LMdzDq6GeLW3P9WAV4fAIwhpWjHI8Ko2Q3DlGEYpsx-GAXnD3B0GbILPkdw0_9E1wdRceAQpuCn8u3__OJSFH5bjFOmi0Y3lJfEypb7oAVXVCpeKr07VFqlDAt79AoxO5zsvq1uDN-F-_bHS1xCNNaLvy2Pu8E
CitedBy_id crossref_primary_10_1111_cns_13702
crossref_primary_10_3389_fcell_2020_584513
crossref_primary_10_1155_2022_3012778
crossref_primary_10_3389_fimmu_2020_01757
crossref_primary_10_1007_s11064_021_03230_3
crossref_primary_10_1186_s13024_021_00439_2
crossref_primary_10_1002_ame2_12093
crossref_primary_10_1007_s13205_020_02483_z
crossref_primary_10_1007_s10753_023_01918_y
crossref_primary_10_4103_aian_AIAN_292_20
crossref_primary_10_3389_fneur_2020_01044
crossref_primary_10_3390_molecules27217414
crossref_primary_10_1080_17590914_2025_2513881
crossref_primary_10_3390_neuroglia6030036
crossref_primary_10_1016_j_expneurol_2023_114651
crossref_primary_10_3389_fcimb_2022_1041682
crossref_primary_10_1111_psyg_12900
crossref_primary_10_1007_s11011_022_01034_0
crossref_primary_10_1007_s12035_021_02450_6
crossref_primary_10_1515_revneuro_2021_0047
crossref_primary_10_1155_2020_5374307
crossref_primary_10_1016_j_neuint_2024_105906
crossref_primary_10_3389_fncel_2020_581191
Cites_doi 10.1002/glia.23028
10.1016/j.cell.2018.01.011
10.1016/j.gene.2018.03.086
10.1093/nar/gkt646
10.1021/bi061960m
10.1371/journal.pone.0135458
10.1007/978-3-642-00296-0_5
10.1371/journal.pone.0016422
10.1093/bioinformatics/btr026
10.1016/j.yexcr.2007.07.007
10.1007/s11481-009-9176-0
10.1038/nature03464
10.1016/j.nbd.2009.11.004
10.1186/1471-2105-8-298
10.1073/pnas.1423573112
10.1007/s00401-007-0309-3
10.1371/journal.pcbi.1003517
10.1111/j.2517-6161.1995.tb02031.x
10.3791/1376
10.1093/nar/gkm391
10.1177/1535370218761149
10.1186/gb-2010-11-8-r90
10.1101/gr.1239303
10.1007/978-1-4939-3578-9_19
10.1038/nprot.2008.211
10.3389/fncel.2015.00114
10.2147/OTT.S149308
10.1007/s00109-017-1533-5
10.1089/omi.2011.0118
10.1073/pnas.0504754102
ContentType Journal Article
Copyright 2019 by The Genetics Society of Japan
Copyright Japan Science and Technology Agency 2019
Copyright_xml – notice: 2019 by The Genetics Society of Japan
– notice: Copyright Japan Science and Technology Agency 2019
CorporateAuthor Department of Neurology
China-Japan Union Hospital of Jilin University
CorporateAuthor_xml – name: China-Japan Union Hospital of Jilin University
– name: Department of Neurology
DBID AAYXX
CITATION
NPM
7SS
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
DOI 10.1266/ggs.18-00036
DatabaseName CrossRef
PubMed
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Nursing and Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Entomology Abstracts
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Entomology Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1880-5779
EndPage 69
ExternalDocumentID 30713215
10_1266_ggs_18_00036
ch3ggsys_2019_009402_001_0061_00693280682
article_ggs_94_2_94_18_00036_article_char_en
Genre Journal Article
GroupedDBID ---
-~X
.55
29H
2WC
36B
53G
5GY
ACGFO
ACPRK
ADBBV
AENEX
AHMBA
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
F5P
GROUPED_DOAJ
GX1
JMI
JSF
JSH
KQ8
L7B
MOJWN
OK1
OVT
PQQKQ
RJT
RNS
RZJ
SV3
TR2
W2D
X7M
XSB
AAYXX
CITATION
NPM
7SS
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
ID FETCH-LOGICAL-c654t-a6c60aed74dfbc2d87cbcb9a36b4d569c6b8998fb9700515cecc9739cab756833
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474329800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1341-7568
1880-5779
IngestDate Thu Oct 02 04:03:31 EDT 2025
Tue Oct 07 06:19:51 EDT 2025
Thu Apr 03 07:00:51 EDT 2025
Tue Nov 18 21:02:09 EST 2025
Sat Nov 29 06:43:45 EST 2025
Thu Jul 10 16:10:18 EDT 2025
Wed Sep 03 05:59:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 6-hydroxydopamine
lncRNA
functional enrichment
Parkinson’s disease
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c654t-a6c60aed74dfbc2d87cbcb9a36b4d569c6b8998fb9700515cecc9739cab756833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://dx.doi.org/10.1266/ggs.18-00036
PMID 30713215
PQID 2242244038
PQPubID 1996350
PageCount 9
ParticipantIDs proquest_miscellaneous_2179515439
proquest_journals_2242244038
pubmed_primary_30713215
crossref_primary_10_1266_ggs_18_00036
crossref_citationtrail_10_1266_ggs_18_00036
medicalonline_journals_ch3ggsys_2019_009402_001_0061_00693280682
jstage_primary_article_ggs_94_2_94_18_00036_article_char_en
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Mishima
PublicationTitle Genes & Genetic Systems
PublicationTitleAlternate Genes Genet. Syst.
PublicationYear 2019
Publisher The Genetics Society of Japan
Japan Science and Technology Agency
Publisher_xml – name: The Genetics Society of Japan
– name: Japan Science and Technology Agency
References Lahiry, P., Racacho, L., Wang, J., Robinson, J. F., Gloor, G. B., Rupar, C. A., Siu, V. M., Bulman, D. E., and Hegele, R. A. (2013) A mutation in the serine protease TMPRSS4 in a novel pediatric neurodegenerative disorder. Orphanet J. Rare Dis. 8, 126.
Betel, D., Koppal, A., Agius, P., Sander, C., and Leslie, C. (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 11, R90.
Zhao, C., Denison, C., Huibregtse, J. M., Gygi, S., and Krug, R. M. (2005) Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. Proc. Natl. Acad. Sci. USA 102, 10200–10205.
Guo, L., Gandhi, P. N., Wang, W., Petersen, R. B., Wilson-Delfosse, A. L., and Chen, S. G. (2007) The Parkinson’s disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity. Exp. Cell Res. 313, 3658–3670.
Tansey, M. G., and Goldberg, M. S. (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol. Dis. 37, 510–518.
Santiago, J. A., and Potashkin, J. A. (2015) Network-based metaanalysis identifies HNF4A and PTBP1 as longitudinally dynamic biomarkers for Parkinson’s disease. Proc. Natl. Acad. Sci. USA 112, 2257–2262.
Kopp, F., and Mendell, J. T. (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172, 393–407.
Paxinos, G., and Watson, C. (1997) The Rat Brain in Stereotaxic Coordinates, 3rd Ed. Academic Press, San Diego, USA.
Goldknopf, I. L., Sheta, E. A., Appel, S. H., Simpson, E. P., and Yen, A. A. (2006) 2’-5’-oligoadenylate synthetase like protein as a biomarker for neurodegenerative disease. U.S. Patent US20060115856A1. 2006-06-01.
Wood, L. M., Sankar, S., Reed, R. E., Haas, A. L., Liu, L. F., McKinnon, P., and Desai, S. D. (2011) A novel role for ATM in regulating proteasome-mediated protein degradation through suppression of the ISG15 conjugation pathway. PLoS One 6, e16422.
Benjamini, Y., and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B (Methodological), 57, 289–300.
Liu, F. C., Huang, W. Y., Lin, T. Y., Shen, C. H., Chou, Y. C., Lin, C. L., Lin, K. T., and Kao, C. H. (2015) Inverse sssociation of Parkinson disease with systemic lupus erythematosus: a nationwide population-based study. Medicine (Baltimore) 94, e2097.
Mistry, J., Bateman, A., and Finn, R. D. (2007) Predicting active site residue annotations in the Pfam database. BMC Bioinformatics 8, 298.
Jungverdorben, J., Till, A., and Brüstle, O. (2017) Induced pluripotent stem cell-based modeling of neurodegenerative diseases: a focus on autophagy. J. Mol. Med. (Berl) 95, 705–718.
West, A. B., Moore, D. J., Choi, C., Andrabi, S. A., Li, X., Dikeman, D., Biskup, S., Zhang, Z., Lim, K. L., Dawson, V. L., et al. (2007) Parkinson’s disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum. Mol. Genet. 16, 223–232.
Kong, L., Zhang, Y., Ye, Z.-Q., Liu, X.-Q., Zhao, S.-Q., Wei, L., and Gao, G. (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 35, W345–W349.
Lun, A. T. L., Chen, Y., and Smyth, G. K. (2016) It’s DE-licious: a recipe for differential expression analyses of RNA-seq experiments using quasi-likelihood methods in edgeR. Methods Mol. Biol. 1418, 391–416.
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504.
Wennström, M., Surova, Y., Hall, S., Nilsson, C., Minthon, L., Hansson, O., and Nielsen, H. M. (2015) The inflammatory marker YKL-40 is elevated in cerebrospinal fluid from patients with Alzheimer’s but Not Parkinson’s disease or dementia with Lewy bodies. PLoS One 10, e0135458.
Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287.
Yuan, N., Zhang, G., Bie, F., Ma, M., Ma, Y., Jiang, X., Wang, Y., and Hao, X. (2017) Integrative analysis of lncRNAs and miRNAs with coding RNAs associated with ceRNA crosstalk network in triple negative breast cancer. OncoTargets Ther. 10, 5883–5897.
Sun, L., Luo, H., Bu, D., Zhao, G., Yu, K., Zhang, C., Liu, Y., Chen, R., and Zhao, Y. (2013) Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 41, e166.
Benesty, J., Chen, J., Huang, Y., and Cohen, I. (2009) Pearson correlation coefficient. In: Noise Reduction in Speech Processing, vol. 2. pp. 37–40. Springer, Heidelberg.
Honda, K., Yanai, H., Negishi, H., Asagiri, M., Sato, M., Mizutani, T., Shimada, N., Ohba, Y., Takaoka, A., Yoshida, N., et al. (2005) IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772–777.
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., and Wold, B. (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628.
Carrieri, C., Forrest, A. R. R., Santoro, C., Persichetti, F., Carninci, P., Zucchelli, S., and Gustincich, S. (2015) Expression analysis of the long non-coding RNA antisense to Uchl1 (AS Uchl1) during dopaminergic cells’ differentiation in vitro and in neurochemical models of Parkinson’s disease. Front. Cell. Neurosci. 9, 114.
Qu, Z., and D’Mello, S. R. (2018) Proteomic analysis identifies NPTX1 and HIP1R as potential targets of histone deacetylase-3-mediated neurodegeneration. Exp. Biol. Med. (Maywood) 243, 627–638.
Vo, A., Sako, W., Fujita, K., Peng, S., Mattis, P. J., Skidmore, F. M., Ma, Y., Uluğ, A. M., and Eidelberg, D. (2017) Parkinson’s disease-related network topographies characterized with resting state functional MRI. Hum. Brain Mapp. 38, 617–630.
Ito, G., Okai, T., Fujino, G., Takeda, K., Ichijo, H., Katada, T., and Iwatsubo, T. (2007) GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson’s disease. Biochemistry 46, 1380–1388.
Schmieder, R., and Edwards, R. (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864.
da Conceição, F. S. L., Ngo-Abdalla, S., Houzel, J.-C., and Rehen, S. K. (2010) Murine model for Parkinson’s disease: from 6-OH dopamine lesion to behavioral test. J. Vis. Exp. 15, 1376.
Main, B. S., Zhang, M., Brody, K. M., Ayton, S., Frugier, T., Steer, D., Finkelstein, D., Crack, P. J., and Taylor, J. M. (2016) Type-1 interferons contribute to the neuroinflammatory response and disease progression of the MPTP mouse model of Parkinson’s disease. Glia 64, 1590–1604.
Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57.
Soreq, L., Guffanti, A., Salomonis, N., Simchovitz, A., Israel, Z., Bergman, H., and Soreq, H. (2014) Long non-coding RNA and alternative splicing modulations in Parkinson’s leukocytes identified by RNA sequencing. PLoS Comput. Biol. 10, e1003517.
Moran, L. B., Hickey, L., Michael, G. J., Derkacs, M., Christian, L. M., Kalaitzakis, M. E., Pearce, R. K. B., and Graeber, M. B. (2008) Neuronal pentraxin II is highly upregulated in Parkinson’s disease and a novel component of Lewy bodies. Acta Neuropathol. 115, 471–478.
Yeo, S., Sung, B., Hong, Y. M., van den Noort, M., Bosch, P., Lee, S. H., Song, J., Park, S. K., and Lim, S. (2018) Decreased expression of serum- and glucocorticoid-inducible kinase 1 (SGK1) promotes alpha-synuclein increase related with down-regulation of dopaminergic cell in the Substantia Nigra of chronic MPTP-induced Parkinsonism mice and in SH-SY5Y cells. Gene 661, 189–195.
Lee, J. K., Tran, T., and Tansey, M. G. (2009) Neuroinflammation in Parkinson’s disease. J. Neuroimmune Pharmacol. 4, 419–429.
Dann, A., Poeck, H., Croxford, A. L., Gaupp, S., Kierdorf, K., Knust, M., Pfeifer, D., Maihoefer, C., Endres, S., Kalinke, U., et al. (2011) Cytosolic RIG-I-like helicases act as negative regulators of sterile inflammation in the CNS. Nat. Neurosci. 15, 98–106.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
36
15
37
(14) 2018; 172
16
17
18
19
1
2
3
4
5
6
7
8
9
(20) 2007; 8
21
References_xml – reference: Lee, J. K., Tran, T., and Tansey, M. G. (2009) Neuroinflammation in Parkinson’s disease. J. Neuroimmune Pharmacol. 4, 419–429.
– reference: Benjamini, Y., and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B (Methodological), 57, 289–300.
– reference: Lahiry, P., Racacho, L., Wang, J., Robinson, J. F., Gloor, G. B., Rupar, C. A., Siu, V. M., Bulman, D. E., and Hegele, R. A. (2013) A mutation in the serine protease TMPRSS4 in a novel pediatric neurodegenerative disorder. Orphanet J. Rare Dis. 8, 126.
– reference: Yuan, N., Zhang, G., Bie, F., Ma, M., Ma, Y., Jiang, X., Wang, Y., and Hao, X. (2017) Integrative analysis of lncRNAs and miRNAs with coding RNAs associated with ceRNA crosstalk network in triple negative breast cancer. OncoTargets Ther. 10, 5883–5897.
– reference: Honda, K., Yanai, H., Negishi, H., Asagiri, M., Sato, M., Mizutani, T., Shimada, N., Ohba, Y., Takaoka, A., Yoshida, N., et al. (2005) IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772–777.
– reference: Tansey, M. G., and Goldberg, M. S. (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol. Dis. 37, 510–518.
– reference: Soreq, L., Guffanti, A., Salomonis, N., Simchovitz, A., Israel, Z., Bergman, H., and Soreq, H. (2014) Long non-coding RNA and alternative splicing modulations in Parkinson’s leukocytes identified by RNA sequencing. PLoS Comput. Biol. 10, e1003517.
– reference: Dann, A., Poeck, H., Croxford, A. L., Gaupp, S., Kierdorf, K., Knust, M., Pfeifer, D., Maihoefer, C., Endres, S., Kalinke, U., et al. (2011) Cytosolic RIG-I-like helicases act as negative regulators of sterile inflammation in the CNS. Nat. Neurosci. 15, 98–106.
– reference: Liu, F. C., Huang, W. Y., Lin, T. Y., Shen, C. H., Chou, Y. C., Lin, C. L., Lin, K. T., and Kao, C. H. (2015) Inverse sssociation of Parkinson disease with systemic lupus erythematosus: a nationwide population-based study. Medicine (Baltimore) 94, e2097.
– reference: Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504.
– reference: Wood, L. M., Sankar, S., Reed, R. E., Haas, A. L., Liu, L. F., McKinnon, P., and Desai, S. D. (2011) A novel role for ATM in regulating proteasome-mediated protein degradation through suppression of the ISG15 conjugation pathway. PLoS One 6, e16422.
– reference: Benesty, J., Chen, J., Huang, Y., and Cohen, I. (2009) Pearson correlation coefficient. In: Noise Reduction in Speech Processing, vol. 2. pp. 37–40. Springer, Heidelberg.
– reference: Santiago, J. A., and Potashkin, J. A. (2015) Network-based metaanalysis identifies HNF4A and PTBP1 as longitudinally dynamic biomarkers for Parkinson’s disease. Proc. Natl. Acad. Sci. USA 112, 2257–2262.
– reference: Carrieri, C., Forrest, A. R. R., Santoro, C., Persichetti, F., Carninci, P., Zucchelli, S., and Gustincich, S. (2015) Expression analysis of the long non-coding RNA antisense to Uchl1 (AS Uchl1) during dopaminergic cells’ differentiation in vitro and in neurochemical models of Parkinson’s disease. Front. Cell. Neurosci. 9, 114.
– reference: Ito, G., Okai, T., Fujino, G., Takeda, K., Ichijo, H., Katada, T., and Iwatsubo, T. (2007) GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson’s disease. Biochemistry 46, 1380–1388.
– reference: Wennström, M., Surova, Y., Hall, S., Nilsson, C., Minthon, L., Hansson, O., and Nielsen, H. M. (2015) The inflammatory marker YKL-40 is elevated in cerebrospinal fluid from patients with Alzheimer’s but Not Parkinson’s disease or dementia with Lewy bodies. PLoS One 10, e0135458.
– reference: Lun, A. T. L., Chen, Y., and Smyth, G. K. (2016) It’s DE-licious: a recipe for differential expression analyses of RNA-seq experiments using quasi-likelihood methods in edgeR. Methods Mol. Biol. 1418, 391–416.
– reference: Paxinos, G., and Watson, C. (1997) The Rat Brain in Stereotaxic Coordinates, 3rd Ed. Academic Press, San Diego, USA.
– reference: Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., and Wold, B. (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628.
– reference: Sun, L., Luo, H., Bu, D., Zhao, G., Yu, K., Zhang, C., Liu, Y., Chen, R., and Zhao, Y. (2013) Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 41, e166.
– reference: Kopp, F., and Mendell, J. T. (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172, 393–407.
– reference: Kong, L., Zhang, Y., Ye, Z.-Q., Liu, X.-Q., Zhao, S.-Q., Wei, L., and Gao, G. (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 35, W345–W349.
– reference: Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57.
– reference: Mistry, J., Bateman, A., and Finn, R. D. (2007) Predicting active site residue annotations in the Pfam database. BMC Bioinformatics 8, 298.
– reference: Qu, Z., and D’Mello, S. R. (2018) Proteomic analysis identifies NPTX1 and HIP1R as potential targets of histone deacetylase-3-mediated neurodegeneration. Exp. Biol. Med. (Maywood) 243, 627–638.
– reference: Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287.
– reference: Main, B. S., Zhang, M., Brody, K. M., Ayton, S., Frugier, T., Steer, D., Finkelstein, D., Crack, P. J., and Taylor, J. M. (2016) Type-1 interferons contribute to the neuroinflammatory response and disease progression of the MPTP mouse model of Parkinson’s disease. Glia 64, 1590–1604.
– reference: Zhao, C., Denison, C., Huibregtse, J. M., Gygi, S., and Krug, R. M. (2005) Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. Proc. Natl. Acad. Sci. USA 102, 10200–10205.
– reference: Goldknopf, I. L., Sheta, E. A., Appel, S. H., Simpson, E. P., and Yen, A. A. (2006) 2’-5’-oligoadenylate synthetase like protein as a biomarker for neurodegenerative disease. U.S. Patent US20060115856A1. 2006-06-01.
– reference: Guo, L., Gandhi, P. N., Wang, W., Petersen, R. B., Wilson-Delfosse, A. L., and Chen, S. G. (2007) The Parkinson’s disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity. Exp. Cell Res. 313, 3658–3670.
– reference: Yeo, S., Sung, B., Hong, Y. M., van den Noort, M., Bosch, P., Lee, S. H., Song, J., Park, S. K., and Lim, S. (2018) Decreased expression of serum- and glucocorticoid-inducible kinase 1 (SGK1) promotes alpha-synuclein increase related with down-regulation of dopaminergic cell in the Substantia Nigra of chronic MPTP-induced Parkinsonism mice and in SH-SY5Y cells. Gene 661, 189–195.
– reference: Vo, A., Sako, W., Fujita, K., Peng, S., Mattis, P. J., Skidmore, F. M., Ma, Y., Uluğ, A. M., and Eidelberg, D. (2017) Parkinson’s disease-related network topographies characterized with resting state functional MRI. Hum. Brain Mapp. 38, 617–630.
– reference: da Conceição, F. S. L., Ngo-Abdalla, S., Houzel, J.-C., and Rehen, S. K. (2010) Murine model for Parkinson’s disease: from 6-OH dopamine lesion to behavioral test. J. Vis. Exp. 15, 1376.
– reference: Jungverdorben, J., Till, A., and Brüstle, O. (2017) Induced pluripotent stem cell-based modeling of neurodegenerative diseases: a focus on autophagy. J. Mol. Med. (Berl) 95, 705–718.
– reference: West, A. B., Moore, D. J., Choi, C., Andrabi, S. A., Li, X., Dikeman, D., Biskup, S., Zhang, Z., Lim, K. L., Dawson, V. L., et al. (2007) Parkinson’s disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum. Mol. Genet. 16, 223–232.
– reference: Betel, D., Koppal, A., Agius, P., Sander, C., and Leslie, C. (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 11, R90.
– reference: Schmieder, R., and Edwards, R. (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864.
– reference: Moran, L. B., Hickey, L., Michael, G. J., Derkacs, M., Christian, L. M., Kalaitzakis, M. E., Pearce, R. K. B., and Graeber, M. B. (2008) Neuronal pentraxin II is highly upregulated in Parkinson’s disease and a novel component of Lewy bodies. Acta Neuropathol. 115, 471–478.
– ident: 19
  doi: 10.1002/glia.23028
– volume: 172
  start-page: 393
  issn: 0092-8674
  year: 2018
  ident: 14
  publication-title: Cell
  doi: 10.1016/j.cell.2018.01.011
– ident: 34
  doi: 10.1016/j.gene.2018.03.086
– ident: 29
  doi: 10.1093/nar/gkt646
– ident: 11
  doi: 10.1021/bi061960m
– ident: 31
  doi: 10.1371/journal.pone.0135458
– ident: 1
  doi: 10.1007/978-3-642-00296-0_5
– ident: 33
  doi: 10.1371/journal.pone.0016422
– ident: 26
  doi: 10.1093/bioinformatics/btr026
– ident: 8
  doi: 10.1016/j.yexcr.2007.07.007
– ident: 16
  doi: 10.1007/s11481-009-9176-0
– ident: 9
  doi: 10.1038/nature03464
– ident: 30
  doi: 10.1016/j.nbd.2009.11.004
– volume: 8
  start-page: 298
  issn: 1471-2105
  year: 2007
  ident: 20
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-298
– ident: 25
  doi: 10.1073/pnas.1423573112
– ident: 7
– ident: 22
– ident: 17
– ident: 21
  doi: 10.1007/s00401-007-0309-3
– ident: 28
  doi: 10.1371/journal.pcbi.1003517
– ident: 2
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: 5
  doi: 10.3791/1376
– ident: 13
  doi: 10.1093/nar/gkm391
– ident: 24
  doi: 10.1177/1535370218761149
– ident: 3
  doi: 10.1186/gb-2010-11-8-r90
– ident: 15
– ident: 32
– ident: 27
  doi: 10.1101/gr.1239303
– ident: 18
  doi: 10.1007/978-1-4939-3578-9_19
– ident: 10
  doi: 10.1038/nprot.2008.211
– ident: 4
  doi: 10.3389/fncel.2015.00114
– ident: 36
  doi: 10.2147/OTT.S149308
– ident: 6
– ident: 12
  doi: 10.1007/s00109-017-1533-5
– ident: 35
  doi: 10.1089/omi.2011.0118
– ident: 37
  doi: 10.1073/pnas.0504754102
– ident: 23
SSID ssj0020983
ssib058492816
ssib044737543
Score 2.3166442
Snippet The neurotoxin 6-hydroxydopamine (6-OHDA) has been widely exploited as a tool for modeling Parkinson’s disease (PD) in the rat. This study aimed to provide a...
The neurotoxin 6-hydroxydopamine (6-OHDA) has been widely exploited as a tool for modeling Parkinson's disease (PD) in the rat. This study aimed to provide a...
SourceID proquest
pubmed
crossref
medicalonline
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 61
SubjectTerms 6-Hydroxydopamine
functional enrichment
Gene expression
Guanosine triphosphatases
Guanosine triphosphate
Immune response
Innate immunity
Interferon regulatory factor 7
lncRNA
miRNA
Movement disorders
Neurodegenerative diseases
Parkinson's disease
Rodents
Signal transduction
Title Transcriptome sequencing in a 6-hydroxydopamine rat model of Parkinson’s disease
URI https://www.jstage.jst.go.jp/article/ggs/94/2/94_18-00036/_article/-char/en
http://mol.medicalonline.jp/library/journal/download?GoodsID=ch3ggsys/2019/009402/001&name=0061-0069e
https://www.ncbi.nlm.nih.gov/pubmed/30713215
https://www.proquest.com/docview/2242244038
https://www.proquest.com/docview/2179515439
Volume 94
WOSCitedRecordID wos000474329800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Genes & Genetic Systems, 2019/04/01, Vol.94(2), pp.61-69
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1880-5779
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020983
  issn: 1341-7568
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1880-5779
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044737543
  issn: 1341-7568
  databaseCode: M~E
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYGBISQnxTGFOQqHioMtI4iW3xAhqtECplEp1UnqzYSUYnmpalResLfzt3tpO2GpPGA1JlVc7ly_fz-S6-D0JesTAReSEKv5tH1I90rn0FK7nPVZenYZjFSWQChQdsOOTjsTh2sSeVKSfAypJfXIj5f2U19AGzMXT2H9jdXBQ64D8wHVpgO7TXYzyuPkYWzKZ5x7lKu8iVtJP431cZuq5kYC1PUcUECNh6OMYdLsVv58ZBhFVbuzdOgcU01ZXBCzwABkC6XNCNaj4w7gGfJo24_7o0gu1berZcI_GoDgqZQHe5-emhKzY8Vqy0hMnvx8xWgznM_9LnRKytY-ygFG7IS5uI_ZIYB60Bhvn0tDrsct_kzFkvV_UW_fCL7J8MBnLUG4_atD__6WMpMdxyb9MPlq075GbIYiFqS9vZ4YEw2VmbJ3XxEHDTN5u33NJU9s5AWccsDHemdgPNJjK52i4x-snoHrnrDAvvvQXEfXIjLx-QW7bU6OohOd6ChbeGhTcpvdS7BAsPYOEZWHizwmtg8bryHCgekZN-b3T00XfVNHydxNHCTxOdBGmesSgrlA4zzrTSSqQ0URFMSaEThbZ3oQQzhX9g2mrBqNCpYnHCKX1MdstZmT8lXoQR3RoUa66KiGrFWabiohBUhZGG3hbp1CMntUs1jxVPfkg0OWGcJYyz7HJpxrlF2g313KZYuYLurWVCQ-XmmKESkQyxqambgxi9CHKhRd5tcU66KVsBAYULrCqJEJfoahuE6OopUb3HBkwcHiQ8bJH9mtnrs0EFhl8UUHjrl81hkNG48ZaW-WwJNLDqwYiC7t8iTyxImneg-JkI9O5n1zj7Obm9nob7ZHdxvsxfkD39azGpzg_IDhvzAwN1aD__7v0BWDS8eg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptome+sequencing+in+a+6-hydroxydopamine+rat+model+of+Parkinson%27s+disease&rft.jtitle=Genes+%26+genetic+systems&rft.au=Li%2C+Jia&rft.au=Sun%2C+Yajuan&rft.au=Chen%2C+Jiajun&rft.date=2019-04-01&rft.issn=1880-5779&rft.eissn=1880-5779&rft.volume=94&rft.issue=2&rft.spage=61&rft_id=info:doi/10.1266%2Fggs.18-00036&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-7568&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-7568&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-7568&client=summon