Option Pricing Under a Mixed-Exponential Jump Diffusion Model

This paper aims to extend the analytical tractability of the Black-Scholes model to alternative models with arbitrary jump size distributions. More precisely, we propose a jump diffusion model for asset prices whose jump sizes have a mixed-exponential distribution, which is a weighted average of exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Management science Jg. 57; H. 11; S. 2067 - 2081
Hauptverfasser: Cai, Ning, Kou, S. G.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hanover, MD INFORMS 01.11.2011
Institute for Operations Research and the Management Sciences
Schlagworte:
ISSN:0025-1909, 1526-5501
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper aims to extend the analytical tractability of the Black-Scholes model to alternative models with arbitrary jump size distributions. More precisely, we propose a jump diffusion model for asset prices whose jump sizes have a mixed-exponential distribution, which is a weighted average of exponential distributions but with possibly negative weights. The new model extends existing models, such as hyperexponential and double-exponential jump diffusion models, because the mixed-exponential distribution can approximate any distribution as closely as possible, including the normal distribution and various heavy-tailed distributions. The mixed-exponential jump diffusion model can lead to analytical solutions for Laplace transforms of prices and sensitivity parameters for path-dependent options such as lookback and barrier options. The Laplace transforms can be inverted via the Euler inversion algorithm. Numerical experiments indicate that the formulae are easy to implement and accurate. The analytical solutions are made possible mainly because we solve a high-order integro-differential equation explicitly. A calibration example for SPY options shows that the model can provide a reasonable fit even for options with very short maturity, such as one day. This paper was accepted by Michael Fu, stochastic models and simulation.
AbstractList This paper aims to extend the analytical tractability of the Black-Scholes model to alternative models with arbitrary jump size distributions. More precisely, we propose a jump diffusion model for asset prices whose jump sizes have a mixed-exponential distribution, which is a weighted average of exponential distributions but with possibly negative weights. The new model extends existing models, such as hyperexponential and double-exponential jump diffusion models,, because the mixed-exponential distribution can approximate any distribution as closely as possible, including the normal distribution and various heavy-tailed distributions. The mixed-exponential jump diffusion model can lead to analytical solutions for Laplace transforms of prices and sensitivity parameters for path-dependent options such as lookback and barrier options. The Laplace transforms can be inverted via the Euler inversion algorithm. Numerical experiments indicate that the formulae are easy to implement and accurate. The analytical solutions are made possible mainly because we solve a high-order integro-differential equation explicitly. A calibration example for SPY options shows that the model can provide a reasonable fit even for options with very short maturity, such as one day.
This paper aims to extend the analytical tractability of the Black-Scholes model to alternative models with arbitrary jump size distributions. More precisely, we propose a jump diffusion model for asset prices whose jump sizes have a mixed-exponential distribution, which is a weighted average of exponential distributions but with possibly negative weights. The new model extends existing models, such as hyperexponential and double-exponential jump diffusion models, because the mixed-exponential distribution can approximate any distribution as closely as possible, including the normal distribution and various heavy-tailed distributions. The mixed-exponential jump diffusion model can lead to analytical solutions for Laplace transforms of prices and sensitivity parameters for path-dependent options such as lookback and barrier options. The Laplace transforms can be inverted via the Euler inversion algorithm. Numerical experiments indicate that the formulae are easy to implement and accurate. The analytical solutions are made possible mainly because we solve a high-order integro-differential equation explicitly. A calibration example for SPY options shows that the model can provide a reasonable fit even for options with very short maturity, such as one day. [PUBLICATION ABSTRACT]
This paper aims to extend the analytical tractability of the Black-Scholes model to alternative models with arbitrary jump size distributions. More precisely, we propose a jump diffusion model for asset prices whose jump sizes have a mixed-exponential distribution, which is a weighted average of exponential distributions but with possibly negative weights. The new model extends existing models, such as hyperexponential and double-exponential jump diffusion models, because the mixed-exponential distribution can approximate any distribution as closely as possible, including the normal distribution and various heavy-tailed distributions. The mixed-exponential jump diffusion model can lead to analytical solutions for Laplace transforms of prices and sensitivity parameters for path-dependent options such as lookback and barrier options. The Laplace transforms can be inverted via the Euler inversion algorithm. Numerical experiments indicate that the formulae are easy to implement and accurate. The analytical solutions are made possible mainly because we solve a high-order integro-differential equation explicitly. A calibration example for SPY options shows that the model can provide a reasonable fit even for options with very short maturity, such as one day. This paper was accepted by Michael Fu, stochastic models and simulation.
This paper aims to extend the analytical tractability of the Black–Scholes model to alternative models with arbitrary jump size distributions. More precisely, we propose a jump diffusion model for asset prices whose jump sizes have a mixed-exponential distribution, which is a weighted average of exponential distributions but with possibly negative weights. The new model extends existing models, such as hyperexponential and double-exponential jump diffusion models, because the mixed-exponential distribution can approximate any distribution as closely as possible, including the normal distribution and various heavy-tailed distributions. The mixed-exponential jump diffusion model can lead to analytical solutions for Laplace transforms of prices and sensitivity parameters for path-dependent options such as lookback and barrier options. The Laplace transforms can be inverted via the Euler inversion algorithm. Numerical experiments indicate that the formulae are easy to implement and accurate. The analytical solutions are made possible mainly because we solve a high-order integro-differential equation explicitly. A calibration example for SPY options shows that the model can provide a reasonable fit even for options with very short maturity, such as one day. This paper was accepted by Michael Fu, stochastic models and simulation.
This paper aims to extend the analytical tractability of the Black-Scholes model to alternative models with arbitrary jump size distributions. More precisely, we propose a jump diffusion model for asset prices whose jump sizes have a mixed-exponential distribution, which is a weighted average of exponential distributions but with possibly negative weights. The new model extends existing models, such as hyperexponential and double-exponential jump diffusion models,, because the mixed-exponential distribution can approximate any distribution as closely as possible, including the normal distribution and various heavy-tailed distributions. The mixed-exponential jump diffusion model can lead to analytical solutions for Laplace transforms of prices and sensitivity parameters for path-dependent options such as lookback and barrier options. The Laplace transforms can be inverted via the Euler inversion algorithm. Numerical experiments indicate that the formulae are easy to implement and accurate. The analytical solutions are made possible mainly because we solve a high-order integro-differential equation explicitly. A calibration example for SPY options shows that the model can provide a reasonable fit even for options with very short maturity, such as one day. Key words: jump diffusion; mixed-exponential distributions; lookback options; barrier options; Merton's normal jump diffusion model; first passage times History: Received December 30, 2008; accepted May 1, 2011, by Michael Fu, stochastic models and simulation. Published online in Articles in Advance August 12, 2011.
This paper aims to extend the analytical tractability of the Black-Scholes model to alternative models with arbitrary jump size distributions. More precisely, we propose a jump diffusion model for asset prices whose jump sizes have a mixed-exponential distribution, which is a weighted average of exponential distributions but with possibly negative weights. The new model extends existing models, such as hyperexponential and double-exponential jump diffusion models, because the mixed-exponential distribution can approximate any distribution as closely as possible, including the normal distribution and various heavy-tailed distributions. The mixed-exponential jump diffusion model can lead to analytical solutions for Laplace transforms of prices and sensitivity parameters for path-dependent options such as lookback and barrier options. The Laplace transforms can be inverted via the Euler inversion algorithm. Numerical experiments indicate that the formulae are easy to implement and accurate. The analytical solutions are made possible mainly because we solve a high-order integro-differential equation explicitly. A calibration example for SPY options shows that the model can provide a reasonable fit even for options with very short maturity, such as one day. Reprinted by permission of the Institute for Operations Research and Management Science (INFORMS)
Audience Trade
Academic
Author Cai, Ning
Kou, S. G.
Author_xml – sequence: 1
  givenname: Ning
  surname: Cai
  fullname: Cai, Ning
– sequence: 2
  givenname: S. G.
  surname: Kou
  fullname: Kou, S. G.
BackLink http://www.econis.eu/PPNSET?PPN=681262109$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24771737$$DView record in Pascal Francis
BookMark eNqFksuL1TAUxouM4J3RrTuxKOLGXnPSPNqFi2EcX8wwLpx1SNOk5tKmnaSF8b83oeM85IoEEhJ-3zknH99hduBGp7PsOaAt4Iq_H1xQW4B0LevyUbYBillBKYKDbIMQpgXUqH6SHYawQwjxirNN9uFimu3o8u_eKuu6_NK12ucyP7fXui1Or6fYw81W9vm3ZZjyj9aYJSTB-djq_mn22Mg-6Gc351F2-en0x8mX4uzi89eT47NCMQpzAbqVqqaIc1k2JS8BY0IAN0DrBlEDBsm6NDVrGuCAiAalZEWlwoqbxlBSHmVv17qTH68WHWYx2KB030unxyWIGiPEOCc8kq_-Infj4l0cTtSAqopxwiL0eoU62WthnRlnL1UqKY4xJwhXFKWmxR6q00572UdbjI3PD_jtHj6uVg9W7RW8uydooq9Oh7gF2_2cQyeXEB7ib26-JoOSvfHSKRvE5O0g_S-BCefAy2TBy5XTsek9gFWAGQZUR4KshPJjCF4boewsUw7ixLYXgERKlEiJEilRIiXq7oO3sj-l_yl4sQp2YR79LU3SHIjhO4eTWX4I_6v3Gwo74oA
CODEN MSCIAM
CitedBy_id crossref_primary_10_1016_j_amc_2022_127251
crossref_primary_10_1080_03610926_2021_1891439
crossref_primary_10_1080_14697688_2024_2379919
crossref_primary_10_1016_j_qref_2022_08_001
crossref_primary_10_1016_j_chaos_2020_110463
crossref_primary_10_1002_fut_21803
crossref_primary_10_1155_2018_5908646
crossref_primary_10_1007_s10915_017_0423_x
crossref_primary_10_1080_14697688_2017_1403151
crossref_primary_10_1080_14697688_2024_2357731
crossref_primary_10_1080_15326349_2014_958424
crossref_primary_10_1239_jap_1450802754
crossref_primary_10_1007_s10203_024_00504_7
crossref_primary_10_1007_s12652_021_03435_y
crossref_primary_10_1007_s10479_020_03678_6
crossref_primary_10_1016_j_cam_2024_116014
crossref_primary_10_1016_j_jedc_2019_01_005
crossref_primary_10_1016_j_asoc_2025_113164
crossref_primary_10_1080_03610926_2025_2492390
crossref_primary_10_1080_00036846_2019_1566688
crossref_primary_10_1007_s10614_020_10055_9
crossref_primary_10_1017_S0269964818000311
crossref_primary_10_1155_2014_571724
crossref_primary_10_1080_14697688_2020_1736612
crossref_primary_10_1016_j_iref_2018_10_002
crossref_primary_10_1080_00036846_2015_1137548
crossref_primary_10_1111_mafi_12302
crossref_primary_10_1016_j_physa_2019_123242
crossref_primary_10_1080_03610926_2021_1939381
crossref_primary_10_1016_j_orl_2017_01_007
crossref_primary_10_1017_apr_2025_8
crossref_primary_10_1016_j_frl_2022_103409
crossref_primary_10_1016_j_amc_2013_07_049
crossref_primary_10_1016_j_cam_2016_04_021
crossref_primary_10_1016_j_ejor_2018_08_033
crossref_primary_10_1002_fut_21789
crossref_primary_10_1109_ACCESS_2022_3176088
crossref_primary_10_3390_fractalfract8050283
crossref_primary_10_1088_1367_2630_adee40
crossref_primary_10_1016_j_najef_2023_101944
crossref_primary_10_1016_j_physa_2016_03_100
crossref_primary_10_1214_14_AAP1093
crossref_primary_10_3724_SP_J_1383_202006
crossref_primary_10_1016_j_jedc_2021_104262
crossref_primary_10_1016_j_chaos_2017_05_012
crossref_primary_10_1287_mnsc_2016_2522
crossref_primary_10_1239_aap_1409319559
crossref_primary_10_3390_risks6020051
crossref_primary_10_1287_opre_2019_1934
crossref_primary_10_1080_1350486X_2013_820524
crossref_primary_10_1016_j_ejor_2016_01_050
crossref_primary_10_1016_j_orl_2025_107253
crossref_primary_10_1080_14697688_2019_1585562
crossref_primary_10_2139_ssrn_3805213
crossref_primary_10_1007_s10915_017_0604_7
crossref_primary_10_1080_03610926_2020_1833221
crossref_primary_10_1016_j_jedc_2014_01_004
crossref_primary_10_1108_QRFM_05_2022_0092
crossref_primary_10_1155_2021_9713521
crossref_primary_10_1016_j_jmaa_2015_11_055
crossref_primary_10_3390_fractalfract7090680
crossref_primary_10_3724_SP_J_1383_204012
crossref_primary_10_1016_j_ejor_2023_01_059
crossref_primary_10_1007_s10479_022_04578_7
crossref_primary_10_1016_j_frl_2018_08_014
crossref_primary_10_1016_j_ejor_2012_07_003
crossref_primary_10_1017_S0021900200113099
crossref_primary_10_1287_ijoc_2020_0980
crossref_primary_10_1016_j_ejor_2025_01_001
crossref_primary_10_1016_j_frl_2016_06_009
crossref_primary_10_1016_j_insmatheco_2021_09_004
crossref_primary_10_1057_s41308_025_00280_3
crossref_primary_10_1080_14697688_2014_882010
crossref_primary_10_1016_j_apnum_2025_06_010
crossref_primary_10_1016_j_frl_2019_08_017
crossref_primary_10_1080_14697688_2014_971520
crossref_primary_10_1287_opre_2022_2360
crossref_primary_10_1016_j_cam_2015_08_015
crossref_primary_10_1007_s10479_013_1521_2
crossref_primary_10_1007_s10614_020_10043_z
crossref_primary_10_1016_j_cam_2013_11_031
crossref_primary_10_3390_e25030527
crossref_primary_10_3390_math8111932
crossref_primary_10_1088_1742_6596_1725_1_012092
crossref_primary_10_1080_1350486X_2016_1145066
crossref_primary_10_1186_s13662_018_1593_z
crossref_primary_10_1016_j_iref_2020_05_014
crossref_primary_10_1016_j_insmatheco_2020_02_011
crossref_primary_10_1016_j_cam_2018_03_036
crossref_primary_10_1016_j_jedc_2015_04_006
crossref_primary_10_1109_TFUZZ_2016_2637372
crossref_primary_10_1016_j_jedc_2022_104518
crossref_primary_10_1080_14697688_2021_1962959
crossref_primary_10_1016_j_orl_2024_107135
crossref_primary_10_1017_S0269964822000493
crossref_primary_10_1111_jori_12423
crossref_primary_10_1017_S0269964824000032
crossref_primary_10_1080_03461238_2023_2275276
crossref_primary_10_1155_2017_3596037
crossref_primary_10_1007_s11403_021_00343_4
crossref_primary_10_1007_s13160_025_00723_4
crossref_primary_10_1016_j_jedc_2025_105178
crossref_primary_10_1016_j_najef_2025_102372
crossref_primary_10_1016_j_cam_2012_12_004
crossref_primary_10_1007_s11147_022_09193_z
crossref_primary_10_3982_QE2096
crossref_primary_10_1007_s11766_015_3211_0
crossref_primary_10_1017_S0001867800007369
crossref_primary_10_1080_14697688_2021_1998585
crossref_primary_10_1016_j_camwa_2017_04_018
crossref_primary_10_1016_j_insmatheco_2020_12_002
crossref_primary_10_1016_j_physa_2015_12_158
crossref_primary_10_1016_j_cam_2015_11_012
crossref_primary_10_1002_fut_21629
crossref_primary_10_1007_s40314_022_01783_9
crossref_primary_10_1080_03610926_2018_1459715
crossref_primary_10_1007_s10203_019_00241_2
crossref_primary_10_1016_j_physa_2020_124883
crossref_primary_10_1239_jap_1316796904
crossref_primary_10_1111_mafi_12041
crossref_primary_10_1016_j_insmatheco_2013_08_010
crossref_primary_10_1016_j_jimonfin_2022_102797
crossref_primary_10_1080_03610926_2020_1740268
crossref_primary_10_1016_j_intfin_2021_101295
crossref_primary_10_1016_j_jedc_2021_104113
crossref_primary_10_1155_2016_5914657
crossref_primary_10_1016_j_ejor_2018_07_025
crossref_primary_10_1017_asb_2014_32
crossref_primary_10_1016_j_najef_2022_101676
crossref_primary_10_1155_2012_343794
crossref_primary_10_1111_mafi_12445
crossref_primary_10_1287_mnsc_2018_3157
crossref_primary_10_1287_opre_1110_1006
Cites_doi 10.1016/S0927-0507(07)15007-6
10.1287/opre.51.2.185.12782
10.1214/aoap/1060202835
10.1016/S0165-1889(97)00028-6
10.1201/9781420057607
10.1016/S0304-4149(02)00104-7
10.1007/978-0-387-22757-3
10.2139/ssrn.896260
10.1016/j.orl.2003.10.011
10.1287/mnsc.48.8.1086.166
10.1142/S0219024909005610
10.1080/14697680902896057
10.1214/aoms/1177697296
10.1287/moor.1100.0447
10.1239/aap/1051201658
10.1016/j.orl.2003.06.004
10.1016/j.orl.2009.02.006
10.1111/1467-9965.00020
10.1239/jap/1014843099
10.1016/0304-405X(76)90022-2
10.2139/ssrn.1272081
10.21314/JCF.1999.043
10.1007/978-1-4757-1862-1
10.1007/BF01158520
10.1214/aoap/1037125863
10.1093/rfs/9.1.69
10.1080/14697680903413605
10.1142/S0219024910005681
10.1287/opre.1070.0419
10.1016/S0166-5316(97)00003-5
10.1016/j.spa.2003.07.005
10.1016/j.cam.2007.10.017
10.1111/j.1540-6261.1997.tb02749.x
10.1287/mnsc.47.7.949.9804
10.1007/BF01536187
10.1080/14697680400000039
10.1287/mnsc.1030.0163
ContentType Journal Article
Copyright 2011 INFORMS
2015 INIST-CNRS
COPYRIGHT 2011 Institute for Operations Research and the Management Sciences
Copyright Institute for Operations Research and the Management Sciences Nov 2011
Copyright_xml – notice: 2011 INFORMS
– notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2011 Institute for Operations Research and the Management Sciences
– notice: Copyright Institute for Operations Research and the Management Sciences Nov 2011
DBID AAYXX
CITATION
OQ6
IQODW
N95
8BJ
FQK
JBE
DOI 10.1287/mnsc.1110.1393
DatabaseName CrossRef
ECONIS
Pascal-Francis
Gale Business: Insights
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
DatabaseTitleList


International Bibliography of the Social Sciences (IBSS)


CrossRef

International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Business
Mathematics
Applied Sciences
Statistics
EISSN 1526-5501
EndPage 2081
ExternalDocumentID 2536831191
A274028504
24771737
681262109
10_1287_mnsc_1110_1393
41262062
mnsc.1110.1393
Genre Research Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 08R
0R1
1AW
1OL
29M
2AX
3EH
3R3
3V.
4
4.4
41
5GY
6XO
7WY
7X5
85S
8AO
8FI
8FJ
8FL
8VB
AABCJ
AAIKC
AAPBV
AAYJJ
ABBHK
ABEFU
ABIVO
ABNOP
ABPPZ
ABSIS
ABTRL
ABUFD
ABUWG
ABZEH
ACDCL
ACHQT
ACNCT
ACTDY
ACVYA
ACYGS
ADBBV
ADDCT
ADGDI
ADNFJ
AEILP
AENEX
AETEA
AEUPB
AFDAS
AFFDN
AFFNX
AFKRA
AJPNJ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AQNXB
AQSKT
AQUVI
AZQEC
B-7
BBAFP
BENPR
BEZIV
BPHCQ
BVXVI
CBXGM
CCKSF
CS3
CWXUR
CYVLN
DU5
DWQXO
EBA
EBE
EBO
EBR
EBS
EBU
ECR
EHE
EJD
EMK
EPL
F20
F5P
FH7
FRNLG
FYUFA
G8K
GENNL
GNUQQ
GROUPED_ABI_INFORM_ARCHIVE
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUPYA
HGD
HVGLF
H~9
IAO
IEA
IGG
IOF
IPO
ISM
ITC
JAV
JBC
JPL
JSODD
JST
K6
K60
L8O
LI
M0C
M0T
M2M
MV1
N95
NEJ
NIEAY
P-O
P2P
PQEST
PQQKQ
PQUKI
PRINS
PROAC
QWB
REX
RNS
RPU
SA0
SJN
TH9
TN5
U5U
UKR
VOH
VQA
WH7
X
XFK
XHC
XI7
XXP
XZL
Y99
YCJ
YNT
YZZ
ZCG
ZL0
-~X
18M
AAAZS
AAMNW
AAWTO
AAXLS
ABAWQ
ABDNZ
ABKVW
ABLWH
ABXSQ
ABYYQ
ACGFO
ACHJO
ACXJH
ADEPB
ADMHG
ADNWM
ADULT
AEGXH
AEMOZ
AFAIT
AFTQD
AGKTX
AHAJD
AHQJS
AIAGR
ALIPV
APTMU
ASMEE
BAAKF
IPC
IPSME
IPY
ISL
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPPEU
K1G
K6~
OFU
XSW
.-4
41~
AADHG
AAYXX
ABDPE
AFFHD
CCPQU
CITATION
LPU
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PSYQQ
UKHRP
YYP
AABXT
AAYOK
OQ6
IQODW
8BJ
FQK
JBE
ID FETCH-LOGICAL-c651t-1edac95077a3b3731224412b159b05f1f0a93f96bb17104e1cca85ac2c7fbf543
ISICitedReferencesCount 147
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000296976400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-1909
IngestDate Wed Oct 01 14:18:11 EDT 2025
Tue Nov 11 05:32:07 EST 2025
Mon Oct 20 22:39:01 EDT 2025
Sat Nov 29 11:20:04 EST 2025
Mon Oct 20 16:46:34 EDT 2025
Sat Nov 29 08:32:25 EST 2025
Mon Jul 21 09:16:46 EDT 2025
Sat Mar 08 17:23:19 EST 2025
Tue Nov 18 22:11:21 EST 2025
Sat Nov 29 04:10:03 EST 2025
Thu May 29 08:45:23 EDT 2025
Tue Jan 05 23:25:09 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Euler equation
Exponential distribution
Differential equation
Black Scholes model
Gaussian distribution
Inversion
Modeling
jump diffusion
mixed-exponential distributions
Stock exchange
Pricing
Diffusion process
Jump process
barrier options
Integrodifferential equation
Analytical solution
Mixed distribution
Heavy tail
Calibration
Mean estimation
Weighting
first passage times
lookback options
Mixed model
Merton's normal jump diffusion model
First passage time
Distribution tail
Laplace transformation
Financial option
Tariffication
Maturity
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c651t-1edac95077a3b3731224412b159b05f1f0a93f96bb17104e1cca85ac2c7fbf543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 910886746
PQPubID 40737
PageCount 15
ParticipantIDs proquest_journals_910886746
gale_businessinsightsgauss_A274028504
econis_primary_681262109
jstor_primary_41262062
gale_infotracgeneralonefile_A274028504
pascalfrancis_primary_24771737
crossref_citationtrail_10_1287_mnsc_1110_1393
crossref_primary_10_1287_mnsc_1110_1393
informs_primary_10_1287_mnsc_1110_1393
gale_infotracacademiconefile_A274028504
gale_infotracmisc_A274028504
proquest_miscellaneous_920067747
ProviderPackageCode Y99
RPU
NIEAY
PublicationCentury 2000
PublicationDate 2011-11-01
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Hanover, MD
PublicationPlace_xml – name: Hanover, MD
– name: Linthicum
PublicationTitle Management science
PublicationYear 2011
Publisher INFORMS
Institute for Operations Research and the Management Sciences
Publisher_xml – name: INFORMS
– name: Institute for Operations Research and the Management Sciences
References B20
B42
B21
B43
B22
B44
B23
B24
B25
B26
B27
B28
B29
B30
B31
B10
B32
B11
B33
B12
B34
B13
B35
B14
B36
B15
B37
B16
B38
B17
B39
B18
B19
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
Lipton A. (B38) 2002; 15
Hull J. (B30) 2005
Hirshman I. I. (B29) 1955
Kou S. G. (B36) 2005; 74
Cont R. (B21) 2004
Cai N. (B13) 2011
References_xml – ident: B12
– ident: B9
– ident: B35
– ident: B14
– ident: B10
– ident: B3
– ident: B43
– ident: B20
– ident: B41
– ident: B1
– ident: B27
– ident: B7
– ident: B5
– ident: B29
– ident: B25
– ident: B23
– ident: B21
– ident: B18
– ident: B16
– ident: B31
– ident: B33
– ident: B37
– ident: B39
– ident: B8
– ident: B36
– ident: B11
– ident: B13
– ident: B2
– ident: B42
– ident: B40
– ident: B26
– ident: B4
– ident: B28
– ident: B44
– ident: B6
– ident: B24
– ident: B22
– ident: B17
– ident: B32
– ident: B15
– ident: B30
– ident: B34
– ident: B19
– ident: B38
– ident: B27
  doi: 10.1016/S0927-0507(07)15007-6
– ident: B24
  doi: 10.1287/opre.51.2.185.12782
– volume-title: The Convolution Transform
  year: 1955
  ident: B29
– ident: B37
  doi: 10.1214/aoap/1060202835
– ident: B12
  doi: 10.1016/S0165-1889(97)00028-6
– ident: B32
  doi: 10.1201/9781420057607
– ident: B3
  doi: 10.1016/S0304-4149(02)00104-7
– volume: 74
  start-page: 1
  issue: 1
  year: 2005
  ident: B36
  publication-title: Kyoto Econom. Rev.
– ident: B43
  doi: 10.1007/978-0-387-22757-3
– ident: B8
  doi: 10.2139/ssrn.896260
– ident: B28
  doi: 10.1016/j.orl.2003.10.011
– volume-title: Options, Futures, and Other Derivatives
  year: 2005
  ident: B30
– ident: B33
  doi: 10.1287/mnsc.48.8.1086.166
– ident: B10
  doi: 10.1142/S0219024909005610
– ident: B31
  doi: 10.1080/14697680902896057
– ident: B5
  doi: 10.1214/aoms/1177697296
– ident: B15
  doi: 10.1287/moor.1100.0447
– ident: B34
  doi: 10.1239/aap/1051201658
– ident: B41
  doi: 10.1016/j.orl.2003.06.004
– ident: B14
  doi: 10.1016/j.orl.2009.02.006
– ident: B19
  doi: 10.1111/1467-9965.00020
– volume-title: Financial Modelling with Jump Processes
  year: 2004
  ident: B21
– volume: 15
  start-page: 149
  issue: 9
  year: 2002
  ident: B38
  publication-title: Risk Magazine
– ident: B42
  doi: 10.1239/jap/1014843099
– ident: B40
  doi: 10.1016/0304-405X(76)90022-2
– ident: B9
  doi: 10.2139/ssrn.1272081
– year: 2011
  ident: B13
  publication-title: Oper. Res.
– ident: B18
  doi: 10.21314/JCF.1999.043
– ident: B44
  doi: 10.1007/978-1-4757-1862-1
– ident: B1
  doi: 10.1007/BF01158520
– ident: B11
  doi: 10.1214/aoap/1037125863
– ident: B6
  doi: 10.1093/rfs/9.1.69
– ident: B17
  doi: 10.1080/14697680903413605
– ident: B22
  doi: 10.1142/S0219024910005681
– ident: B26
  doi: 10.1287/opre.1070.0419
– ident: B25
  doi: 10.1016/S0166-5316(97)00003-5
– ident: B2
  doi: 10.1016/j.spa.2003.07.005
– ident: B39
  doi: 10.1016/j.cam.2007.10.017
– ident: B4
  doi: 10.1111/j.1540-6261.1997.tb02749.x
– ident: B23
  doi: 10.1287/mnsc.47.7.949.9804
– ident: B7
  doi: 10.1007/BF01536187
– ident: B20
  doi: 10.1080/14697680400000039
– ident: B35
  doi: 10.1287/mnsc.1030.0163
SSID ssj0007876
Score 2.4592853
Snippet This paper aims to extend the analytical tractability of the Black-Scholes model to alternative models with arbitrary jump size distributions. More precisely,...
This paper aims to extend the analytical tractability of the Black–Scholes model to alternative models with arbitrary jump size distributions. More precisely,...
SourceID proquest
gale
pascalfrancis
econis
crossref
jstor
informs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2067
SubjectTerms Algorithms
Alternative approaches
Applications
Applied sciences
Approximation
Asset pricing
barrier options
Calibration
Call options
Diffusion index
Diffusion models
Distribution
Distribution theory
Economic models
European option
Exact sciences and technology
Experimental economics
Experiments
first passage times
Insurance, economics, finance
jump diffusion
Jump diffusion model
Laplace transformation
Laplace transforms
lookback options
Management science
Mathematical economics
Mathematical models
Mathematics
Merton's normal jump diffusion model
Microelectromechanical systems
mixed-exponential distributions
Modeling
Monte Carlo methods
Normal distribution
Operational research and scientific management
Operational research. Management science
Option pricing
Options (Finance)
Portfolio theory
Prices
Probability and statistics
Probability theory and stochastic processes
Sciences and techniques of general use
Securities prices
Size distribution
Statistics
Stochastic models
Studies
Title Option Pricing Under a Mixed-Exponential Jump Diffusion Model
URI https://www.jstor.org/stable/41262062
http://www.econis.eu/PPNSET?PPN=681262109
https://www.proquest.com/docview/910886746
https://www.proquest.com/docview/920067747
Volume 57
WOSCitedRecordID wos000296976400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1526-5501
  dateEnd: 20201213
  omitProxy: false
  ssIdentifier: ssj0007876
  issn: 0025-1909
  databaseCode: 7WY
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1526-5501
  dateEnd: 20201213
  omitProxy: false
  ssIdentifier: ssj0007876
  issn: 0025-1909
  databaseCode: M0C
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1526-5501
  dateEnd: 20201213
  omitProxy: false
  ssIdentifier: ssj0007876
  issn: 0025-1909
  databaseCode: BENPR
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1526-5501
  dateEnd: 20201213
  omitProxy: false
  ssIdentifier: ssj0007876
  issn: 0025-1909
  databaseCode: M2M
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZgG4gL4te0slHlAOMwWSSOE8fHMbXi0HUT6qCcIsdNqkosK02L-ufznu2kjQoaHLhYbfIUJ_7s5-fn5_cR8pbnErOC51TJLKag_QKa8UhTgVyFoS81N0l9vgzEcJiMx_LaUfpVhk5AlGWyXsv5f4UargHYeHT2H-BuHgoX4DeADiXADuVfAX9llcB8gXvmU8NzuzhTZ7ezdT6h-Xp-V2KAECaNACQNQcoKPWaWE2fbVt1Expy5eXKzYTGzvchNe-bozMo4Uh1X16RxjAaNH6GO648omAdyWzfa5NF1Hwi2NZ1vaTTcrMl8y7yyo5EZ-jT6t2WlUTsjz4ZlRGynvh5epf2bwSAd9caj0_kPiqxguHvuKFIekn0mIokhe-Lrt2amBWUT15S8-OYuKSdU-aFdYcvoOEBPw6xq5uBHNkVtVUekYnisqmCEFJbaZGeWNqbH6Bl56tYM3rnF-jl5kJcvyOP6yMJL4iD3HOSegdxT3g7kHkLuNZB7BvJX5KbfG118oo4Wg-o4CpY0yCdKS7DjhQqzUIS4N8oDloFhmvlRERS-kmEh4ywLwHzkeQCDNImUZloUWRHx8JDslVDxEfHgEUrEhS9UDoIqVwlPIj0Bs5PpiVSyQ2jdbql2OeORuuR7imtHaOcU2xlXkbgvKsMOed_Iz222lD9KHlkYGjlMhBezwIdK3yEwqWNhhaJCP1U1VauqSs-Z4GATRz6HyowcwgcvpZU7UAKfhjnNWpKnLcmpzej-O8GTliCoWt1-jusr937doelKjRjHb_Nj1iHdVt9qBBgXGA8jOuS47mypUypVCiZ9ksSCxx3iNXfx3TBAsszvViCCrkFYyonX94sckycbBXBC9paLVf6GHOify1m16Joh1iX7H3vD68_w79K_wJJd_gL_ptH7
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Option+pricing+under+a+mixed-exponential+jump+diffusion+model&rft.jtitle=Management+science&rft.au=Cai%2C+Ning&rft.au=Kou%2C+S+G&rft.date=2011-11-01&rft.issn=0025-1909&rft.volume=57&rft.issue=11&rft.spage=2067&rft.epage=2081&rft_id=info:doi/10.1287%2Fmnsc.1110.1393&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-1909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-1909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-1909&client=summon