Manifold regularized multitask feature learning for multimodality disease classification

Multimodality based methods have shown great advantages in classification of Alzheimer's disease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Recently, multitask feature selection methods are typically used for joint selection of common features across multiple modali...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Human brain mapping Ročník 36; číslo 2; s. 489 - 507
Hlavní autori: Jie, Biao, Zhang, Daoqiang, Cheng, Bo, Shen, Dinggang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Blackwell Publishing Ltd 01.02.2015
John Wiley & Sons, Inc
John Wiley and Sons Inc
Predmet:
ISSN:1065-9471, 1097-0193, 1097-0193
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Multimodality based methods have shown great advantages in classification of Alzheimer's disease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Recently, multitask feature selection methods are typically used for joint selection of common features across multiple modalities. However, one disadvantage of existing multimodality based methods is that they ignore the useful data distribution information in each modality, which is essential for subsequent classification. Accordingly, in this paper we propose a manifold regularized multitask feature learning method to preserve both the intrinsic relatedness among multiple modalities of data and the data distribution information in each modality. Specifically, we denote the feature learning on each modality as a single task, and use group‐sparsity regularizer to capture the intrinsic relatedness among multiple tasks (i.e., modalities) and jointly select the common features from multiple tasks. Furthermore, we introduce a new manifold‐based Laplacian regularizer to preserve the data distribution information from each task. Finally, we use the multikernel support vector machine method to fuse multimodality data for eventual classification. Conversely, we also extend our method to the semisupervised setting, where only partial data are labeled. We evaluate our method using the baseline magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG‐PET), and cerebrospinal fluid (CSF) data of subjects from AD neuroimaging initiative database. The experimental results demonstrate that our proposed method can not only achieve improved classification performance, but also help to discover the disease‐related brain regions useful for disease diagnosis. Hum Brain Mapp 36:489–507, 2015. © 2014 Wiley Periodicals, Inc.
AbstractList Multimodality based methods have shown great advantages in classification of Alzheimer's disease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Recently, multitask feature selection methods are typically used for joint selection of common features across multiple modalities. However, one disadvantage of existing multimodality based methods is that they ignore the useful data distribution information in each modality, which is essential for subsequent classification. Accordingly, in this paper we propose a manifold regularized multitask feature learning method to preserve both the intrinsic relatedness among multiple modalities of data and the data distribution information in each modality. Specifically, we denote the feature learning on each modality as a single task, and use group‐sparsity regularizer to capture the intrinsic relatedness among multiple tasks (i.e., modalities) and jointly select the common features from multiple tasks. Furthermore, we introduce a new manifold‐based Laplacian regularizer to preserve the data distribution information from each task. Finally, we use the multikernel support vector machine method to fuse multimodality data for eventual classification. Conversely, we also extend our method to the semisupervised setting, where only partial data are labeled. We evaluate our method using the baseline magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG‐PET), and cerebrospinal fluid (CSF) data of subjects from AD neuroimaging initiative database. The experimental results demonstrate that our proposed method can not only achieve improved classification performance, but also help to discover the disease‐related brain regions useful for disease diagnosis. Hum Brain Mapp 36:489–507, 2015. © 2014 Wiley Periodicals, Inc.
Multimodality based methods have shown great advantages in classification of Alzheimer's disease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Recently, multitask feature selection methods are typically used for joint selection of common features across multiple modalities. However, one disadvantage of existing multimodality based methods is that they ignore the useful data distribution information in each modality, which is essential for subsequent classification. Accordingly, in this paper we propose a manifold regularized multitask feature learning method to preserve both the intrinsic relatedness among multiple modalities of data and the data distribution information in each modality. Specifically, we denote the feature learning on each modality as a single task, and use group-sparsity regularizer to capture the intrinsic relatedness among multiple tasks (i.e., modalities) and jointly select the common features from multiple tasks. Furthermore, we introduce a new manifold-based Laplacian regularizer to preserve the data distribution information from each task. Finally, we use the multikernel support vector machine method to fuse multimodality data for eventual classification. Conversely, we also extend our method to the semisupervised setting, where only partial data are labeled. We evaluate our method using the baseline magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET), and cerebrospinal fluid (CSF) data of subjects from AD neuroimaging initiative database. The experimental results demonstrate that our proposed method can not only achieve improved classification performance, but also help to discover the disease-related brain regions useful for disease diagnosis. Hum Brain Mapp 36:489-507, 2015. copyright 2014 Wiley Periodicals, Inc.
Multimodality based methods have shown great advantages in classification of Alzheimer's disease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Recently, multitask feature selection methods are typically used for joint selection of common features across multiple modalities. However, one disadvantage of existing multimodality based methods is that they ignore the useful data distribution information in each modality, which is essential for subsequent classification. Accordingly, in this paper we propose a manifold regularized multitask feature learning method to preserve both the intrinsic relatedness among multiple modalities of data and the data distribution information in each modality. Specifically, we denote the feature learning on each modality as a single task, and use group-sparsity regularizer to capture the intrinsic relatedness among multiple tasks (i.e., modalities) and jointly select the common features from multiple tasks. Furthermore, we introduce a new manifold-based Laplacian regularizer to preserve the data distribution information from each task. Finally, we use the multikernel support vector machine method to fuse multimodality data for eventual classification. Conversely, we also extend our method to the semisupervised setting, where only partial data are labeled. We evaluate our method using the baseline magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET), and cerebrospinal fluid (CSF) data of subjects from AD neuroimaging initiative database. The experimental results demonstrate that our proposed method can not only achieve improved classification performance, but also help to discover the disease-related brain regions useful for disease diagnosis.
Multimodality based methods have shown great advantages in classification of Alzheimer's disease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Recently, multitask feature selection methods are typically used for joint selection of common features across multiple modalities. However, one disadvantage of existing multimodality based methods is that they ignore the useful data distribution information in each modality, which is essential for subsequent classification. Accordingly, in this paper we propose a manifold regularized multitask feature learning method to preserve both the intrinsic relatedness among multiple modalities of data and the data distribution information in each modality. Specifically, we denote the feature learning on each modality as a single task, and use group-sparsity regularizer to capture the intrinsic relatedness among multiple tasks (i.e., modalities) and jointly select the common features from multiple tasks. Furthermore, we introduce a new manifold-based Laplacian regularizer to preserve the data distribution information from each task. Finally, we use the multikernel support vector machine method to fuse multimodality data for eventual classification. Conversely, we also extend our method to the semisupervised setting, where only partial data are labeled. We evaluate our method using the baseline magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET), and cerebrospinal fluid (CSF) data of subjects from AD neuroimaging initiative database. The experimental results demonstrate that our proposed method can not only achieve improved classification performance, but also help to discover the disease-related brain regions useful for disease diagnosis.Multimodality based methods have shown great advantages in classification of Alzheimer's disease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Recently, multitask feature selection methods are typically used for joint selection of common features across multiple modalities. However, one disadvantage of existing multimodality based methods is that they ignore the useful data distribution information in each modality, which is essential for subsequent classification. Accordingly, in this paper we propose a manifold regularized multitask feature learning method to preserve both the intrinsic relatedness among multiple modalities of data and the data distribution information in each modality. Specifically, we denote the feature learning on each modality as a single task, and use group-sparsity regularizer to capture the intrinsic relatedness among multiple tasks (i.e., modalities) and jointly select the common features from multiple tasks. Furthermore, we introduce a new manifold-based Laplacian regularizer to preserve the data distribution information from each task. Finally, we use the multikernel support vector machine method to fuse multimodality data for eventual classification. Conversely, we also extend our method to the semisupervised setting, where only partial data are labeled. We evaluate our method using the baseline magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET), and cerebrospinal fluid (CSF) data of subjects from AD neuroimaging initiative database. The experimental results demonstrate that our proposed method can not only achieve improved classification performance, but also help to discover the disease-related brain regions useful for disease diagnosis.
Multimodality based methods have shown great advantages in classification of Alzheimer's disease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Recently, multitask feature selection methods are typically used for joint selection of common features across multiple modalities. However, one disadvantage of existing multimodality based methods is that they ignore the useful data distribution information in each modality, which is essential for subsequent classification. Accordingly, in this paper we propose a manifold regularized multitask feature learning method to preserve both the intrinsic relatedness among multiple modalities of data and the data distribution information in each modality. Specifically, we denote the feature learning on each modality as a single task, and use group‐sparsity regularizer to capture the intrinsic relatedness among multiple tasks (i.e., modalities) and jointly select the common features from multiple tasks. Furthermore, we introduce a new manifold‐based Laplacian regularizer to preserve the data distribution information from each task. Finally, we use the multikernel support vector machine method to fuse multimodality data for eventual classification. Conversely, we also extend our method to the semisupervised setting, where only partial data are labeled. We evaluate our method using the baseline magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG‐PET), and cerebrospinal fluid (CSF) data of subjects from AD neuroimaging initiative database. The experimental results demonstrate that our proposed method can not only achieve improved classification performance, but also help to discover the disease‐related brain regions useful for disease diagnosis. Hum Brain Mapp 36:489–507, 2015 . © 2014 Wiley Periodicals, Inc.
Author Zhang, Daoqiang
Shen, Dinggang
Cheng, Bo
Jie, Biao
AuthorAffiliation 1 Department of Computer Science and Engineering Nanjing University of Aeronautics and Astronautics Nanjing China
2 Department of Computer Science and Technology Anhui Normal University Wuhu China
4 Department of Brain and Cognitive Engineering Korea University, Seoul Republic of Korea
3 Department of Radiology and BRIC University of North Carolina at Chapel Hill Chapel Hill North Carolina
AuthorAffiliation_xml – name: 1 Department of Computer Science and Engineering Nanjing University of Aeronautics and Astronautics Nanjing China
– name: 3 Department of Radiology and BRIC University of North Carolina at Chapel Hill Chapel Hill North Carolina
– name: 2 Department of Computer Science and Technology Anhui Normal University Wuhu China
– name: 4 Department of Brain and Cognitive Engineering Korea University, Seoul Republic of Korea
Author_xml – sequence: 1
  givenname: Biao
  surname: Jie
  fullname: Jie, Biao
  organization: Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 2
  givenname: Daoqiang
  surname: Zhang
  fullname: Zhang, Daoqiang
  email: dqzhang@nuaa.edu.cn
  organization: Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 3
  givenname: Bo
  surname: Cheng
  fullname: Cheng, Bo
  organization: Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 4
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
  email: dqzhang@nuaa.edu.cn
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25277605$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1vFCEUhompsR964R8wk3ijF9MCA8zMjYk2trXp1hg1ekdYOGxpGagwo66_XtZtN9pE4xUkPO-bw3l20VaIARB6TPA-wZgeXMyHfUoFo_fQDsF9W2PSN1uru-B1z1qyjXZzvsSYEI7JA7RNOW1bgfkO-jxTwdnoTZVgMXmV3A8w1TD50Y0qX1UW1DglqDyoFFxYVDam9fMQjfJuXFbGZVAZKu1Vzs46rUYXw0N03yqf4dHNuYc-Hr3-cHhSn709fnP48qzWgmNaU9xbYrsOW85wT1qjOSMgLDYGiCaGasZEpwhTtpljURjKccOIZgL6eceaPfRi3Xs9zQcwGsKYlJfXyQ0qLWVUTv75EtyFXMSvkrEWN6ItBc9uClL8MkEe5eCyBu9VgDhlSQRnQvSc9f-D0qZjgouCPr2DXsYphbKJQjFRzJT1F-rJ78Nvpr71U4Dna0CnmHMCu0EIliv3sriXv9wX9uAOq4vDlYvyb-f_lfjmPCz_Xi1PXs1uE_U64fII3zcJla5kWWXL5afzY0lP3_N3p7NzedT8BGY3zwM
CitedBy_id crossref_primary_10_1109_TMI_2022_3161828
crossref_primary_10_1007_s11682_015_9480_7
crossref_primary_10_1109_TBME_2021_3077875
crossref_primary_10_1109_TMI_2022_3152157
crossref_primary_10_1016_j_patcog_2022_108695
crossref_primary_10_1109_ACCESS_2019_2894530
crossref_primary_10_3389_fnins_2019_00668
crossref_primary_10_1016_j_compbiomed_2022_106116
crossref_primary_10_1016_j_patcog_2020_107645
crossref_primary_10_1016_j_eswa_2019_02_005
crossref_primary_10_1007_s00521_021_06149_6
crossref_primary_10_1007_s10072_021_05568_6
crossref_primary_10_1016_j_jneumeth_2015_07_006
crossref_primary_10_1109_TBME_2016_2553663
crossref_primary_10_1016_j_neuroimage_2018_08_042
crossref_primary_10_1007_s11517_020_02154_4
crossref_primary_10_1016_j_neucom_2025_130855
crossref_primary_10_1007_s11517_020_02193_x
crossref_primary_10_3389_fnins_2021_634124
crossref_primary_10_1007_s11604_018_0794_4
crossref_primary_10_1016_j_media_2018_11_006
crossref_primary_10_1007_s00415_020_09890_5
crossref_primary_10_1109_TCYB_2016_2644718
crossref_primary_10_1016_j_asoc_2024_112332
crossref_primary_10_1016_j_patcog_2018_01_028
crossref_primary_10_1007_s40747_024_01680_0
crossref_primary_10_1016_j_media_2018_03_013
crossref_primary_10_1016_j_patcog_2016_10_009
crossref_primary_10_1109_ACCESS_2019_2891948
crossref_primary_10_1016_j_neuroimage_2018_05_051
crossref_primary_10_1007_s10044_024_01268_x
crossref_primary_10_3389_fnagi_2018_00290
crossref_primary_10_1109_TCYB_2018_2839693
crossref_primary_10_1007_s11633_023_1442_8
crossref_primary_10_1016_j_bspc_2024_106398
crossref_primary_10_1007_s11042_020_09062_7
crossref_primary_10_1007_s13042_022_01692_7
crossref_primary_10_1109_JBHI_2017_2655720
crossref_primary_10_1016_j_patcog_2019_01_015
crossref_primary_10_1016_j_media_2020_101662
crossref_primary_10_1109_JBHI_2021_3097721
crossref_primary_10_1016_j_media_2020_101652
crossref_primary_10_1016_j_bspc_2025_108485
crossref_primary_10_1109_TMI_2021_3063150
crossref_primary_10_1109_JBHI_2018_2872581
crossref_primary_10_3390_bioengineering12040388
crossref_primary_10_1109_TMI_2022_3170701
crossref_primary_10_1016_j_bspc_2020_102362
crossref_primary_10_1016_j_media_2016_07_012
crossref_primary_10_1007_s11682_015_9356_x
crossref_primary_10_1109_TBME_2016_2549363
crossref_primary_10_1155_2020_8015156
crossref_primary_10_1007_s10489_024_05663_z
crossref_primary_10_1016_j_cmpb_2023_107905
crossref_primary_10_1016_j_inffus_2025_103486
crossref_primary_10_1016_j_neuroimage_2019_116317
crossref_primary_10_1002_hbm_23575
crossref_primary_10_1016_j_ymeth_2020_04_008
crossref_primary_10_1016_j_bspc_2024_107061
crossref_primary_10_1016_j_jbi_2021_103863
crossref_primary_10_1007_s11760_019_01629_8
crossref_primary_10_3390_app14104144
crossref_primary_10_1016_j_patrec_2020_07_005
crossref_primary_10_1109_TBME_2018_2869989
crossref_primary_10_1109_TMI_2024_3412399
crossref_primary_10_1016_j_knosys_2024_111676
crossref_primary_10_1016_j_media_2021_102294
crossref_primary_10_1016_j_jbi_2023_104326
crossref_primary_10_1007_s11517_019_01974_3
crossref_primary_10_3389_fnagi_2021_704661
crossref_primary_10_1016_j_compeleceng_2018_09_019
crossref_primary_10_3389_fnins_2019_00509
crossref_primary_10_1016_j_bspc_2023_105709
crossref_primary_10_1016_j_compbiomed_2024_108000
crossref_primary_10_1016_j_compmedimag_2019_101663
crossref_primary_10_1007_s12021_016_9318_5
crossref_primary_10_1109_TIP_2018_2799706
crossref_primary_10_3390_app10051894
crossref_primary_10_1016_j_patcog_2018_11_027
crossref_primary_10_1016_j_nicl_2024_103663
crossref_primary_10_3389_fnhum_2017_00362
crossref_primary_10_1016_j_neuroimage_2024_120929
crossref_primary_10_1093_cercor_bhab507
crossref_primary_10_1109_TMI_2017_2721301
crossref_primary_10_1109_JBHI_2018_2885331
crossref_primary_10_1007_s12021_016_9307_8
crossref_primary_10_1016_j_patcog_2022_108566
crossref_primary_10_1109_TBME_2019_2921207
crossref_primary_10_1016_j_bspc_2024_106404
crossref_primary_10_1007_s11682_018_9846_8
crossref_primary_10_1016_j_bbr_2018_02_017
crossref_primary_10_1038_s41598_017_06509_0
crossref_primary_10_3389_fnagi_2017_00006
crossref_primary_10_1016_j_media_2023_102883
crossref_primary_10_1109_TETCI_2022_3224937
crossref_primary_10_1016_j_cmpb_2018_04_028
crossref_primary_10_1134_S2070048222020065
Cites_doi 10.1126/science.6474172
10.1007/s11222-008-9111-x
10.1016/j.jneumeth.2013.10.003
10.1007/s00259-003-1194-1
10.1016/j.neuroimage.2011.10.003
10.1148/radiol.2503080751
10.1109/MC.2011.117
10.1016/j.neuroimage.2011.09.069
10.1016/j.neuroimage.2013.03.073
10.1034/j.1600-0404.107.s179.10.x
10.1016/j.neuroimage.2013.09.015
10.1016/j.neuroimage.2012.03.059
10.1002/cne.23418
10.1016/j.neurobiolaging.2010.01.020
10.1023/B:MACH.0000033120.25363.1e
10.1016/j.jalz.2007.04.381
10.1109/ICDM.2009.128
10.1093/brain/awm177
10.1007/s10994-007-5040-8
10.1016/j.neuroimage.2011.01.008
10.1137/080716542
10.1016/j.neuroimage.2010.10.081
10.1212/WNL.0b013e3181af79fb
10.3389/fnhum.2010.00192
10.1371/journal.pone.0025074
10.1016/j.neuroimage.2012.01.055
10.1080/13554790490896938
10.1016/j.neuroimage.2008.07.055
10.1111/j.2517-6161.1996.tb02080.x
10.3174/ajnr.A1809
10.1007/s00234-007-0269-2
10.1016/j.media.2013.08.004
10.1016/j.neuroimage.2007.10.031
10.1016/j.media.2011.12.003
10.1016/j.neuroimage.2009.05.056
10.1109/42.906424
10.1109/TMI.2002.803111
10.1016/j.neuroimage.2010.08.044
10.1016/j.neurobiolaging.2010.05.003
10.1016/j.neuroimage.2008.02.043
10.1016/j.neurobiolaging.2006.05.006
10.1016/j.neuroimage.2012.09.065
10.1016/S0079-6123(08)61268-6
10.1097/00001756-200210280-00022
10.1016/j.neurobiolaging.2008.08.013
10.1002/hbm.22353
10.1002/path.2565
10.3233/JAD-2010-1322
10.1016/j.jneumeth.2011.10.031
10.1016/j.pscychresns.2011.06.014
10.1111/j.1467-9868.2005.00532.x
10.1007/s00259-008-0869-z
10.1016/j.media.2011.03.001
10.1109/TBME.2013.2284195
10.1016/S0006-3223(99)00306-6
10.1016/S0197-4580(99)00107-4
10.1371/journal.pone.0077810
10.1016/j.neuroimage.2011.10.015
10.3233/JAD-2011-110041
10.1002/sim.1719
10.1016/j.neubiorev.2012.01.004
10.1007/978-3-642-22092-0_50
10.1212/WNL.0b013e3181e8e8b8
10.1016/j.neuroimage.2011.05.083
10.1016/j.neuroimage.2010.12.066
10.2147/nedt.2006.2.2.207
10.1007/s00259-008-0773-6
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
2015 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
– notice: 2015 Wiley Periodicals, Inc.
CorporateAuthor the Alzheimer's Disease Neuroimaging Initiative
Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: the Alzheimer's Disease Neuroimaging Initiative
– name: Alzheimer's Disease Neuroimaging Initiative
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.22642
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Neurosciences Abstracts

MEDLINE
MEDLINE - Academic
Technology Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Manifold Regularized Multitask Feature Learning
EISSN 1097-0193
EndPage 507
ExternalDocumentID PMC4470367
3560240991
25277605
10_1002_hbm_22642
HBM22642
ark_67375_WNG_2JS5QJMN_F
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61422204 ; 61473149
– fundername: NIH grants
  funderid: EB006733 ; EB008374 ; EB009634 ; AG041721
– fundername: the NUAA Fundamental Research Funds
  funderid: NE2013105
– fundername: the Specialized Research Fund for the Doctoral Program of Higher Education
  funderid: 20123218110009
– fundername: National Institutes of Health Grant
  funderid: U01 AG024904
– fundername: the National Institute on Aging; the National Institute of Biomedical Imaging and Bioengineering; Abbott; AstraZeneca AB; Bayer Schering Pharma AG; Bristol‐Myers Squibb; Eisai Global Clinical Development; Elan Corporation; Genentech; GE Healthcare; GlaxoSmithKline; Innogenetics; Johnson and Johnson; Eli Lilly and Co.; Medpace, Inc.; Merck and Co., Inc.; Novartis AG, Pfizer Inc; F. Hoffman‐La Roche; Schering‐Plough; Synarc, Inc.; as well as non‐profit partners the Alzheimer's Association and Alzheimer's Drug Discovery Foundation, with participation from the U.S. Food and Drug Administration; Foundation for the National Institutes of Health (www.fnih.org) (ADNI)
– fundername: the Jiangsu Natural Science Foundation for Distinguished Young Scholar
  funderid: BK20130034
– fundername: NIBIB NIH HHS
  grantid: R01 EB006733
– fundername: NIBIB NIH HHS
  grantid: R01 EB009634
– fundername: NIA NIH HHS
  grantid: R01 AG042599
– fundername: NIBIB NIH HHS
  grantid: EB009634
– fundername: NIBIB NIH HHS
  grantid: EB006733
– fundername: NIA NIH HHS
  grantid: AG041721
– fundername: NIBIB NIH HHS
  grantid: EB008374
– fundername: NIBIB NIH HHS
  grantid: R01 EB008374
– fundername: NIA NIH HHS
  grantid: R01 AG041721
– fundername: NIA NIH HHS
  grantid: U01 AG024904
– fundername: the NUAA Fundamental Research Funds
  grantid: NE2013105
– fundername: NIH grants
  grantid: EB006733 ; EB008374 ; EB009634 ; AG041721
– fundername: National Natural Science Foundation of China
  grantid: 61422204 ; 61473149
– fundername: the Specialized Research Fund for the Doctoral Program of Higher Education
  grantid: 20123218110009
– fundername: the Jiangsu Natural Science Foundation for Distinguished Young Scholar
  grantid: BK20130034
– fundername: National Institutes of Health Grant
  grantid: U01 AG024904
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAMMB
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
AEFGJ
AEIMD
AENEX
AFBPY
AFGKR
AFKRA
AFPKN
AFRAH
AFZJQ
AGQPQ
AGXDD
AHMBA
AIDQK
AIDYY
AIQQE
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PIMPY
PQQKQ
PUEGO
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
33P
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALIPV
C45
RWD
RWI
WRC
WUP
AAYXX
AFFHD
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c6502-209f1f880f540917dc541e6f0dde1c1d2c4468a14af3b06409250341c46e9b843
IEDL.DBID WIN
ISICitedReferencesCount 125
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000348378800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1065-9471
1097-0193
IngestDate Tue Sep 30 16:53:49 EDT 2025
Sat Sep 27 20:41:04 EDT 2025
Wed Oct 01 12:40:27 EDT 2025
Sat Nov 29 14:50:49 EST 2025
Mon Jul 21 06:01:27 EDT 2025
Tue Nov 18 22:08:17 EST 2025
Sat Nov 29 06:33:45 EST 2025
Wed Jan 22 16:56:38 EST 2025
Sun Sep 21 06:22:59 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords manifold regularization
group-sparsity regularizer
multimodality classification
multitask learning
Alzheimer's disease
feature selection
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6502-209f1f880f540917dc541e6f0dde1c1d2c4468a14af3b06409250341c46e9b843
Notes istex:DE2C348E4671A776D1A8B4EFCF1ED5255616E230
the NUAA Fundamental Research Funds - No. NE2013105
National Institutes of Health Grant - No. U01 AG024904
NIH grants - No. EB006733; No. EB008374; No. EB009634; No. AG041721
ArticleID:HBM22642
ark:/67375/WNG-2JS5QJMN-F
National Natural Science Foundation of China - No. 61422204; No. 61473149
the Jiangsu Natural Science Foundation for Distinguished Young Scholar - No. BK20130034
the Specialized Research Fund for the Doctoral Program of Higher Education - No. 20123218110009
the National Institute on Aging; the National Institute of Biomedical Imaging and Bioengineering; Abbott; AstraZeneca AB; Bayer Schering Pharma AG; Bristol-Myers Squibb; Eisai Global Clinical Development; Elan Corporation; Genentech; GE Healthcare; GlaxoSmithKline; Innogenetics; Johnson and Johnson; Eli Lilly and Co.; Medpace, Inc.; Merck and Co., Inc.; Novartis AG, Pfizer Inc; F. Hoffman-La Roche; Schering-Plough; Synarc, Inc.; as well as non-profit partners the Alzheimer's Association and Alzheimer's Drug Discovery Foundation, with participation from the U.S. Food and Drug Administration; Foundation for the National Institutes of Health (www.fnih.org) (ADNI)
As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at
www.loni.ucla.edu/ADNI/Collaboration/ADNI_Authorship_list.pdf
Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
.
www.loni.ucla.edu/ADNI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (http://www.loni.ucla.edu/ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://www.loni.ucla.edu/ADNI/Collaboration/ADNI_Authorship_list.pdf.
OpenAccessLink http://doi.org/10.1002/hbm.22642
PMID 25277605
PQID 1646106605
PQPubID 996345
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4470367
proquest_miscellaneous_1654669549
proquest_miscellaneous_1652384656
proquest_journals_1646106605
pubmed_primary_25277605
crossref_primary_10_1002_hbm_22642
crossref_citationtrail_10_1002_hbm_22642
wiley_primary_10_1002_hbm_22642_HBM22642
istex_primary_ark_67375_WNG_2JS5QJMN_F
PublicationCentury 2000
PublicationDate February 2015
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: February 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Antonio
– name: Hoboken
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2015
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References Wachinger C, Navab N (2012). Entropy and Laplacian images: structural representations for multi-modal registration. Med Image Anal 16;1-17.
Yang H, Liu J, Sui J, Pearlson G, Calhoun VD (2010): A hybrid machine learning method for fusing fMRI and genetic data: Combining both improves classification of Schizophrenia. Front Hum Neurosci 4:192.
Fan Y, Resnick SM, Wu X, Davatzikos C (2008a): Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study. Neuroimage 41:277-285.
Wolz R, Aljabar P, Hajnal JV, Lotjonen J, Rueckert D (2012): Nonlinear dimensionality reduction combining MR imaging with non-imaging information. Med Image Anal 16:819-830.
Orru G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A (2012): Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review. Neurosci Biobehav Rev 36:1140-1152.
Dittrich E, Riklin Raviv T, Kasprian G, Donner R, Brugger PC, Prayer D, Langs G (2014): A spatio-temporal latent atlas for semi-supervised learning of fetal brain segmentations and morphological age estimation. Med Image Anal 18:9-21.
Jie B, Zhang D, Wee CY, Shen D (2014b): Topological graph kernel on multiple thresholded functional connectivity networks for mild cognitive impairment classification. Hum Brain Mapp 35:2876-2897.
Jie B, Zhang D, Gao W, Wang Q, Wee CY, Shen D (2014a): Integration of network topological and connectivity properties for neuroimaging classification. IEEE Trans Biomed Eng 61:576-589.
Hunt A, Schonknecht P, Henze M, Toro P, Haberkorn U, Schroder J (2006): CSF tau protein and FDG PET in patients with aging-associated cognitive decline and Alzheimer's disease. Neuropsychiatr Dis Treat 2:207-212.
Hyman BT, Hoesen GWV, Damasio AR, Barnes CL (1984): Alzheimer's disease: Cell-specific pathology isolates the hippocampal formation. Science 225:1168-1170.
Chetelat G, Desgranges B, de la Sayette V, Viader F, Eustache F, Baron J-C(2002): Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment. Neuroreport 13:1939-1943.
Van Hoesen GW, Hyman BT (1990): Hippocampal formation: anatomy and the patterns of pathology in Alzheimer's disease. Prog Brain Res 83:445-457.
Karas G, Scheltens P, Rombouts S, van Schijndel R, Klein M, Jones B, van der Flier W, Vrenken H, Barkhof F (2007): Precuneus atrophy in early-onset Alzheimer's disease: a morphometric structural MRI study. Neuroradiology 49:967-976.
Knafo S, Venero C, Merino-Serrais P, Fernaud-Espinosa I, Gonzalez-Soriano J, Ferrer I, Santpere G, DeFelipe J (2009): Morphological alterations to neurons of the amygdala and impaired fear conditioning in a transgenic mouse model of Alzheimer's disease. J Pathol 219:41-51.
Chincarini A, Bosco P, Calvini P, Gemme G, Esposito M, Olivieri C, Rei L, Squarcia S, Rodriguez G, Bellotti R, Cerello P, De Mitri I, Retico A, Nobili F (2011): Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease. Neuroimage 58:469-480.
Dai WY, Lopez OL, Carmichael OT, Becker JT, Kuller LH, Gach HM (2009): Mild cognitive impairment and Alzheimer disease: Patterns of altered cerebral blood flow at MR imaging. Radiology 250:856-866.
Landau SM, Harvey D, Madison CM, Reiman EM, Foster NL, Aisen PS, Petersen RC, Shaw LM, Trojanowski JQ, Jack CR, Jr., Weiner MW, Jagust WJ (2010): Comparing predictors of conversion and decline in mild cognitive impairment. Neurology 75:230-238.
Obozinski G, Taskar B, Jordan MI (2010): Joint covariate selection and joint subspace selection for multiple classification problems. Stat Comput 20:231-252.
Wolf H, Jelic V, Gertz HJ, Nordberg A, Julin P, Wahlund LO (2003): A critical discussion of the role of neuroimaging in mild cognitive impairment. Acta Neurologica Scand 107:52-76.
Wang C, Stebbins GT, Medina DA, Shah RC, Bammer R, Moseley ME, deToledo-Morrell L (2012): Atrophy and dysfunction of parahippocampal white matter in mild Alzheimer's disease. Neurobiol Aging 33:43-52.
Hinrichs C, Singh V, Mukherjee L, Xu G, Chung MK, Johnson SC (2009): Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. Neuroimage 48:138-149.
Argyriou A, Evgeniou T, Pontil M 2008: Convex multi-task feature learning. Machine Learn 73:243-272.
Gray KR, Aljabar P, Heckemann RA, Hammers A, Rueckert D (2013): Random forest-based similarity measures for multi-modal classification of Alzheimer's disease. Neuroimage 65:167-175.
Filipovych R, Davatzikos C (2011): Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI). Neuroimage 55:1109-1119.
Solodkin A, Chen EE, Van Hoesen GW, Heimer L, Shereen A, Kruggel F, Mastrianni J (2013): In vivo parahippocampal white matter pathology as a biomarker of disease progression to Alzheimer's disease. J Comp Neurol 521:4300-4317.
Walhovd KB, Fjell AM, Brewer J, McEvoy LK, Fennema-Notestine C, Hagler DJ, Jr., Jennings RG, Karow D, Dale AM (2010a): Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease. AJNR Am J Neuroradiol 31:347-354.
Yuan L, Wang Y, Thompson PM, Narayan VA, Ye J (2012): Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data. Neuroimage 61:622-632.
Apostolova LG, Hwang KS, Andrawis JP, Green AE, Babakchanian S, Morra JH, Cummings JL, Toga AW, Trojanowski JQ, Shaw LM, Jack CR, Jr, Petersen RC, Aisen PS, Jagust WJ, Koeppe RA, Mathis CA, Weiner MW, Thompson PM (2010): 3D PIB and CSF biomarker associations with hippocampal atrophy in ADNI subjects. Neurobiol Aging 31:1284-1303.
Zhang D, Shen D (2012). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. Neuroimage 59:895-907.
Convit A, de Asis J, de Leon MJ, Tarshish CY, De Santi S, Rusinek H, (2000): Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer's disease. Neurobiol Aging 21:19-26.
Shen D, Davatzikos C (2002): HAMMER: Hierarchical attribute matching mechanism for elastic registration. IEEE Trans Med Imaging 21:1421-1439.
Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, Schwaiger M, Kurz A (2003): Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer's disease: A PET follow-up study. Eur J Nucl Med Mol Imaging 30:1104-1113.
Zhou J, Liu J, Narayan VA, Ye J (2013): Modeling disease progression via multi-task learning. Neuroimage 78:233-248.
Yuan M, Lin Y (2006). Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B 68:49-67.
Aljabar R, Rueckert D, Crum WR (2008): Automated morphological analysis of magnetic resonance brain imaging using spectral analysis. Neuroimage 43:225-235.
Bouwman FH, Schoonenboom SN, van der Flier WM, van Elk EJ, Kok A, Barkhof F, Blankenstein MA, Scheltens P (2007): CSF biomarkers and medial temporal lobe atrophy predict dementia in mild cognitive impairment. Neurobiol Aging 28:1070-1074.
Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, Knopman DS, Petersen RC, Jack CR Jr. (2009): MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change. Neurology 73, 294-301.
Belkin M, Niyogi P (2004): Semi-supervised learning on Riemannian manifolds. Machine Learn 56:209-239.
Chetelat G, Eustache F, Viader F, De La Sayette V, Pelerin A, Mezenge F, Hannequin D, Dupuy B, Baron JC, Desgranges B (2005): FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment. Neurocase 11:14-25.
Ota K, Oishi N, Ito K, Fukuyama H (2014). A comparison of three brain atlases for MCI prediction. J Neurosci Methods 221:139-150.
Wee CY, Yap PT, Zhang D, Denny K, Browndyke JN, Potter GG, Welsh-Bohmer KA, Wang L, Shen D (2012): Identification of MCI individuals using structural and functional connectivity networks. Neuroimage 59:2045-2056.
Liu F, Wee CY, Chen HF, Shen DG (2014): Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's Disease and mild cognitive impairment identification. Neuroimage 84:466-475.
Beck A, Teboulle M 2009: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. Siam J Imaging Sci 2:183-202.
Ye JP, Wu T, Li J, Chen KW (2011): Machine learning approaches for the neuroimaging study of Alzheimer's Disease. Computer 44:99-101.
Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007): Forecasting the global burden of Alzheimer's disease. Alzheimers Dement 3:186-191.
Sui J, Adali T, Yu Q, Chen J, Calhoun VD (2012): A review of multivariate methods for multimodal fusion of brain imaging data. J Neurosci Methods 204:68-81.
Zhang Y, Brady M, Smith S (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm. IEEE Trans Med Imaging 20:45-57.
Hinrichs C, Singh V, Xu G, Johnson SC (2011): Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. Neuroimage 55:574-589.
Derflinger S, Sorg C, Gaser C, Myers N, Arsic M, Kurz A, Zimmer C, Wohlschlager A, Muhlau M (2011): Grey-matter atrophy in Alzheimer's disease is asymmetric but not lateralized. J Alzheimers Dis 25:347-357.
Dai ZJ, Yan CG, Wang ZQ, Wang JH, Xia MR, Li KC, He Y (2012): Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3). Neuroimage 59:2187-2195.
Aksu Y, Miller DJ, Kesidis G, Bigler DC, Yang QX (2011): An MRI-derived definition of MCI-to-AD conversion for long-term, automatic prognosis of MCI patients. PLoS One 6:e25074.
Walhovd KB, Fjell AM, Dale AM, McEvoy LK, Brewer J, Karow DS, Salmon DP, Fennema-Notestine C (2010b): Multi-modal imaging predicts memory performance in normal aging a
2012; 61
1991; 17
2010a; 31
2000; 47
2013; 65
2010; 18
2002; 13
2004; 23
2011; 55
2013; 521
2008; 35
2011; 54
2012; 16
2011; 58
2012; 59
2008b; 39
2011; 14
2010b; 31
2008; 73
2011; 194
2012; 204
2009; 48
2008a; 41
2007; 28
2010; 20
2001
2006; 68
2007; 130
2011; 22
2014a; 61
2014; 18
2007; 3
2011; 25
2014; 9
2010; 4
2010; 31
2010; 75
2012
2011
2000; 21
1984; 225
2009
2009; 250
2006; 2
2012; 36
1996; 58
2014; 84
2011; 6
2009; 219
2003; 30
2012; 33
2001; 20
1990; 83
2009; 73
2003; 107
2014b; 35
2013; 78
2004; 56
2002; 21
2011; 44
2008; 43
2009; 2
2014; 221
2005; 11
2007; 49
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
Guerrero R (e_1_2_7_27_1) 2011; 14
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_67_1
Oliveira PJ (e_1_2_7_46_1) 2010; 18
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_29_1
Sokolova LV (e_1_2_7_51_1) 1991; 17
e_1_2_7_72_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
Tibshirani R. (e_1_2_7_54_1) 1996; 58
e_1_2_7_38_1
21995074 - Med Image Comput Comput Assist Interv. 2011;14(Pt 2):566-73
18648805 - Eur J Nucl Med Mol Imaging. 2008 Dec;35(12):2191-202
24140118 - J Neurosci Methods. 2014 Jan 15;221:139-50
22019883 - Neuroimage. 2012 Feb 1;59(3):2045-56
21146621 - Neuroimage. 2011 Mar 15;55(2):574-89
19595937 - Alzheimers Dement. 2007 Jul;3(3):186-91
18418593 - Eur J Nucl Med Mol Imaging. 2008 Jul;35(7):1357-66
24045077 - Neuroimage. 2014 Jan 1;84:466-75
18761093 - Neuroimage. 2008 Nov 1;43(2):225-35
23583359 - Neuroimage. 2013 Sep;78:233-48
21992749 - Neuroimage. 2012 Jan 16;59(2):895-907
18400519 - Neuroimage. 2008 Jun;41(2):277-85
20075088 - AJNR Am J Neuroradiol. 2010 Feb;31(2):347-54
20800095 - Neuroimage. 2011 Jan 15;54(2):1178-87
19636049 - Neurology. 2009 Jul 28;73(4):294-301
24108708 - IEEE Trans Biomed Eng. 2014 Feb;61(2):576-89
19481161 - Neuroimage. 2009 Oct 15;48(1):138-49
19412465 - Neuropsychiatr Dis Treat. 2006 Jun;2(2):207-12
22270352 - Neuroimage. 2012 Apr 2;60(2):1106-16
18838195 - Neurobiol Aging. 2010 Jul;31(7):1107-21
14716732 - Stat Med. 2004 Jan 30;23(2):315-26
12575879 - IEEE Trans Med Imaging. 2002 Nov;21(11):1421-39
21119772 - Front Hum Neurosci. 2010 Oct 25;4:192
1778369 - Fiziol Cheloveka. 1991 Sep-Oct;17(5):125-9
21632274 - Med Image Anal. 2012 Jan;16(1):1-17
21920712 - Psychiatry Res. 2011 Oct 31;194(1):7-13
23839862 - J Comp Neurol. 2013 Dec 15;521(18):4300-17
2392569 - Prog Brain Res. 1990;83:445-57
21236349 - Neuroimage. 2011 Apr 1;55(3):856-67
22022375 - PLoS One. 2011;6(10):e25074
19164119 - Radiology. 2009 Mar;250(3):856-66
20592257 - Neurology. 2010 Jul 20;75(3):230-8
17704526 - Brain. 2007 Oct;130(Pt 10):2616-35
12603252 - Acta Neurol Scand Suppl. 2003;179:52-76
11293691 - IEEE Trans Med Imaging. 2001 Jan;20(1):45-57
24038749 - Hum Brain Mapp. 2014 Jul;35(7):2876-97
12395096 - Neuroreport. 2002 Oct 28;13(15):1939-43
16782233 - Neurobiol Aging. 2007 Jul;28(7):1070-4
20359781 - Neurobiol Aging. 2012 Jan;33(1):43-52
22244037 - Med Image Anal. 2012 May;16(4):819-30
24080527 - Med Image Anal. 2014 Jan;18(1):9-21
21195776 - Neuroimage. 2011 Apr 1;55(3):1109-19
22305994 - Neurosci Biobehav Rev. 2012 Apr;36(4):1140-52
21422522 - J Alzheimers Dis. 2011;25(2):347-57
17955233 - Neuroradiology. 2007 Dec;49(12):967-76
18053747 - Neuroimage. 2008 Feb 15;39(4):1731-43
19449368 - J Pathol. 2009 Sep;219(1):41-51
15804920 - Neurocase. 2005 Feb;11(1):14-25
6474172 - Science. 1984 Sep 14;225(4667):1168-70
22108139 - J Neurosci Methods. 2012 Feb 15;204(1):68-81
10794844 - Neurobiol Aging. 2000 Jan-Feb;21(1):19-26
21718788 - Neuroimage. 2011 Sep 15;58(2):469-80
10862805 - Biol Psychiatry. 2000 Jun 15;47(12):1056-63
23041336 - Neuroimage. 2013 Jan 15;65:167-75
22008370 - Neuroimage. 2012 Feb 1;59(3):2187-95
20061613 - J Alzheimers Dis. 2010;19(4):1263-72
22498655 - Neuroimage. 2012 Jul 2;61(3):622-32
24489639 - PLoS One. 2014;9(1):e77810
21761690 - Inf Process Med Imaging. 2011;22:612-23
20538372 - Neurobiol Aging. 2010 Aug;31(8):1284-303
12764551 - Eur J Nucl Med Mol Imaging. 2003 Aug;30(8):1104-13
References_xml – reference: Foster NL, Heidebrink JL, Clark CM, Jagust WJ, Arnold SE, Barbas NR, DeCarli CS, Turner RS, Koeppe RA, Higdon R, Minoshima S (2007): FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer's disease. Brain 130:2616-2635.
– reference: Hinrichs C, Singh V, Xu G, Johnson SC (2011): Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. Neuroimage 55:574-589.
– reference: Filipovych R, Davatzikos C (2011): Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI). Neuroimage 55:1109-1119.
– reference: Poulin SP, Dautoff R, Morris JC, Barrett LF, Dickerson BC, Initia ADN (2011): Amygdala atrophy is prominent in early Alzheimer's disease and relates to symptom severity. Psychiatry Res-Neuroimaging 194:7-13.
– reference: Knafo S, Venero C, Merino-Serrais P, Fernaud-Espinosa I, Gonzalez-Soriano J, Ferrer I, Santpere G, DeFelipe J (2009): Morphological alterations to neurons of the amygdala and impaired fear conditioning in a transgenic mouse model of Alzheimer's disease. J Pathol 219:41-51.
– reference: Jie B, Zhang D, Wee CY, Shen D (2014b): Topological graph kernel on multiple thresholded functional connectivity networks for mild cognitive impairment classification. Hum Brain Mapp 35:2876-2897.
– reference: Yang H, Liu J, Sui J, Pearlson G, Calhoun VD (2010): A hybrid machine learning method for fusing fMRI and genetic data: Combining both improves classification of Schizophrenia. Front Hum Neurosci 4:192.
– reference: Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, Knopman DS, Petersen RC, Jack CR Jr. (2009): MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change. Neurology 73, 294-301.
– reference: Landau SM, Harvey D, Madison CM, Reiman EM, Foster NL, Aisen PS, Petersen RC, Shaw LM, Trojanowski JQ, Jack CR, Jr., Weiner MW, Jagust WJ (2010): Comparing predictors of conversion and decline in mild cognitive impairment. Neurology 75:230-238.
– reference: Wee CY, Yap PT, Zhang D, Denny K, Browndyke JN, Potter GG, Welsh-Bohmer KA, Wang L, Shen D (2012): Identification of MCI individuals using structural and functional connectivity networks. Neuroimage 59:2045-2056.
– reference: Walhovd KB, Fjell AM, Brewer J, McEvoy LK, Fennema-Notestine C, Hagler DJ, Jr., Jennings RG, Karow D, Dale AM (2010a): Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease. AJNR Am J Neuroradiol 31:347-354.
– reference: Wang C, Stebbins GT, Medina DA, Shah RC, Bammer R, Moseley ME, deToledo-Morrell L (2012): Atrophy and dysfunction of parahippocampal white matter in mild Alzheimer's disease. Neurobiol Aging 33:43-52.
– reference: Yuan M, Lin Y (2006). Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B 68:49-67.
– reference: Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007): Forecasting the global burden of Alzheimer's disease. Alzheimers Dement 3:186-191.
– reference: Zhang D, Shen D (2012). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. Neuroimage 59:895-907.
– reference: Ota K, Oishi N, Ito K, Fukuyama H (2014). A comparison of three brain atlases for MCI prediction. J Neurosci Methods 221:139-150.
– reference: Zhou J, Liu J, Narayan VA, Ye J (2013): Modeling disease progression via multi-task learning. Neuroimage 78:233-248.
– reference: Jie B, Zhang D, Gao W, Wang Q, Wee CY, Shen D (2014a): Integration of network topological and connectivity properties for neuroimaging classification. IEEE Trans Biomed Eng 61:576-589.
– reference: Sokolova LV (1991): The specific spectral characteristics of the EEG of children with difficulties in learning to read. Fiziol Cheloveka 17:125-129.
– reference: Bouwman FH, Schoonenboom SN, van der Flier WM, van Elk EJ, Kok A, Barkhof F, Blankenstein MA, Scheltens P (2007): CSF biomarkers and medial temporal lobe atrophy predict dementia in mild cognitive impairment. Neurobiol Aging 28:1070-1074.
– reference: Sui J, Adali T, Yu Q, Chen J, Calhoun VD (2012): A review of multivariate methods for multimodal fusion of brain imaging data. J Neurosci Methods 204:68-81.
– reference: Wachinger C, Navab N (2012). Entropy and Laplacian images: structural representations for multi-modal registration. Med Image Anal 16;1-17.
– reference: Gray KR, Aljabar P, Heckemann RA, Hammers A, Rueckert D (2013): Random forest-based similarity measures for multi-modal classification of Alzheimer's disease. Neuroimage 65:167-175.
– reference: Fan Y, Resnick SM, Wu X, Davatzikos C (2008a): Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study. Neuroimage 41:277-285.
– reference: Derflinger S, Sorg C, Gaser C, Myers N, Arsic M, Kurz A, Zimmer C, Wohlschlager A, Muhlau M (2011): Grey-matter atrophy in Alzheimer's disease is asymmetric but not lateralized. J Alzheimers Dis 25:347-357.
– reference: Chincarini A, Bosco P, Calvini P, Gemme G, Esposito M, Olivieri C, Rei L, Squarcia S, Rodriguez G, Bellotti R, Cerello P, De Mitri I, Retico A, Nobili F (2011): Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease. Neuroimage 58:469-480.
– reference: Solodkin A, Chen EE, Van Hoesen GW, Heimer L, Shereen A, Kruggel F, Mastrianni J (2013): In vivo parahippocampal white matter pathology as a biomarker of disease progression to Alzheimer's disease. J Comp Neurol 521:4300-4317.
– reference: Van Hoesen GW, Hyman BT (1990): Hippocampal formation: anatomy and the patterns of pathology in Alzheimer's disease. Prog Brain Res 83:445-457.
– reference: Dittrich E, Riklin Raviv T, Kasprian G, Donner R, Brugger PC, Prayer D, Langs G (2014): A spatio-temporal latent atlas for semi-supervised learning of fetal brain segmentations and morphological age estimation. Med Image Anal 18:9-21.
– reference: Shen D, Davatzikos C (2002): HAMMER: Hierarchical attribute matching mechanism for elastic registration. IEEE Trans Med Imaging 21:1421-1439.
– reference: Convit A, de Asis J, de Leon MJ, Tarshish CY, De Santi S, Rusinek H, (2000): Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer's disease. Neurobiol Aging 21:19-26.
– reference: Oliveira PJ, Nitrini R, Busatto G, Buchpiguel C, Sato J, Amaro EJ (2010): Use of SVM methods with surface-based cortical and volumetric subcortical measurements to detect Alzheimer's disease. J Alzheimers Dis 18:1263-1272.
– reference: Westman E, Simmons A, Zhang Y, Muehlboeck JS, Tunnard C, Liu Y, Collins L, Evans A, Mecocci P, Vellas B, Tsolaki M, Kloszewska I, Soininen H, Lovestone S, Spenger C, Wahlund LO (2011): Multivariate analysis of MRI data for Alzheimer's disease, mild cognitive impairment and healthy controls. Neuroimage 54:1178-1187.
– reference: Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, Schwaiger M, Kurz A (2003): Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer's disease: A PET follow-up study. Eur J Nucl Med Mol Imaging 30:1104-1113.
– reference: Aksu Y, Miller DJ, Kesidis G, Bigler DC, Yang QX (2011): An MRI-derived definition of MCI-to-AD conversion for long-term, automatic prognosis of MCI patients. PLoS One 6:e25074.
– reference: Beck A, Teboulle M 2009: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. Siam J Imaging Sci 2:183-202.
– reference: Nobili F, Salmaso D, Morbelli S, Girtler N, Piccardo A, Brugnolo A, Dessi B, Larsson SA, Rodriguez G, Pagani M (2008): Principal component analysis of FDG PET in amnestic MCI. Eur J Nucl Med Mol Imaging 35:2191-2202.
– reference: Wang Y, Nie J, Yap PT, Li G, Shi F, Geng X, Guo L, Shen D (2014): Knowledge-guided robust MRI brain extraction for diverse large-scale neuroimaging studies on humans and non-human primates. PLoS One 9:e77810.
– reference: Obozinski G, Taskar B, Jordan MI (2010): Joint covariate selection and joint subspace selection for multiple classification problems. Stat Comput 20:231-252.
– reference: Chetelat G, Eustache F, Viader F, De La Sayette V, Pelerin A, Mezenge F, Hannequin D, Dupuy B, Baron JC, Desgranges B (2005): FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment. Neurocase 11:14-25.
– reference: Higdon R, Foster NL, Koeppe RA, DeCarli CS, Jagust WJ, Clark CM, Barbas NR, Arnold SE, Turner RS, Heidebrink JL, Minoshima S (2004): A comparison of classification methods for differentiating fronto-temporal dementia from Alzheimer's disease using FDG-PET imaging. Stat Med 23:315-326.
– reference: Karas G, Scheltens P, Rombouts S, van Schijndel R, Klein M, Jones B, van der Flier W, Vrenken H, Barkhof F (2007): Precuneus atrophy in early-onset Alzheimer's disease: a morphometric structural MRI study. Neuroradiology 49:967-976.
– reference: Orru G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A (2012): Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review. Neurosci Biobehav Rev 36:1140-1152.
– reference: Walhovd KB, Fjell AM, Dale AM, McEvoy LK, Brewer J, Karow DS, Salmon DP, Fennema-Notestine C (2010b): Multi-modal imaging predicts memory performance in normal aging and cognitive decline. Neurobiol Aging 31:1107-1121.
– reference: Ye JP, Wu T, Li J, Chen KW (2011): Machine learning approaches for the neuroimaging study of Alzheimer's Disease. Computer 44:99-101.
– reference: Apostolova LG, Hwang KS, Andrawis JP, Green AE, Babakchanian S, Morra JH, Cummings JL, Toga AW, Trojanowski JQ, Shaw LM, Jack CR, Jr, Petersen RC, Aisen PS, Jagust WJ, Koeppe RA, Mathis CA, Weiner MW, Thompson PM (2010): 3D PIB and CSF biomarker associations with hippocampal atrophy in ADNI subjects. Neurobiol Aging 31:1284-1303.
– reference: Dai WY, Lopez OL, Carmichael OT, Becker JT, Kuller LH, Gach HM (2009): Mild cognitive impairment and Alzheimer disease: Patterns of altered cerebral blood flow at MR imaging. Radiology 250:856-866.
– reference: Liu F, Wee CY, Chen HF, Shen DG (2014): Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's Disease and mild cognitive impairment identification. Neuroimage 84:466-475.
– reference: Dai ZJ, Yan CG, Wang ZQ, Wang JH, Xia MR, Li KC, He Y (2012): Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3). Neuroimage 59:2187-2195.
– reference: Hinrichs C, Singh V, Mukherjee L, Xu G, Chung MK, Johnson SC (2009): Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. Neuroimage 48:138-149.
– reference: Wolz R, Aljabar P, Hajnal JV, Lotjonen J, Rueckert D (2012): Nonlinear dimensionality reduction combining MR imaging with non-imaging information. Med Image Anal 16:819-830.
– reference: Belkin M, Niyogi P (2004): Semi-supervised learning on Riemannian manifolds. Machine Learn 56:209-239.
– reference: Yuan L, Wang Y, Thompson PM, Narayan VA, Ye J (2012): Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data. Neuroimage 61:622-632.
– reference: Guerrero R, Wolz R, Rueckert D (2011): Laplacian Eigenmaps manifold learning for landmark localization in brain MR images. Med Image Comput Comput Assist Interv 14:566-573.
– reference: Chetelat G, Desgranges B, de la Sayette V, Viader F, Eustache F, Baron J-C(2002): Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment. Neuroreport 13:1939-1943.
– reference: Hyman BT, Hoesen GWV, Damasio AR, Barnes CL (1984): Alzheimer's disease: Cell-specific pathology isolates the hippocampal formation. Science 225:1168-1170.
– reference: Zhang D, Wang Y, Zhou L, Yuan H, Shen D (2011): Multimodal classification of Alzheimer's disease and mild cognitive impairment. Neuroimage 55:856-867.
– reference: Laakso MP, Frisoni GB, Kononen M, Mikkonen M, Beltramello A, Geroldi C, Bianchetti A, Trabucchi M, Soininen H, Aronen HJ (2000): Hippocampus and entorhinal cortex in frontotemporal dementia and Alzheimer's disease: a morphometric MRI study. Biol Psychiatry 47:1056-1063.
– reference: Wolf H, Jelic V, Gertz HJ, Nordberg A, Julin P, Wahlund LO (2003): A critical discussion of the role of neuroimaging in mild cognitive impairment. Acta Neurologica Scand 107:52-76.
– reference: Aljabar R, Rueckert D, Crum WR (2008): Automated morphological analysis of magnetic resonance brain imaging using spectral analysis. Neuroimage 43:225-235.
– reference: Argyriou A, Evgeniou T, Pontil M 2008: Convex multi-task feature learning. Machine Learn 73:243-272.
– reference: Hunt A, Schonknecht P, Henze M, Toro P, Haberkorn U, Schroder J (2006): CSF tau protein and FDG PET in patients with aging-associated cognitive decline and Alzheimer's disease. Neuropsychiatr Dis Treat 2:207-212.
– reference: Fan Y, Batmanghelich N, Clark CM, Davatzikos C, Initia ADN (2008b); Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. Neuroimage 39:1731-1743.
– reference: Del Sole A, Clerici F, Chiti A, Lecchi M, Mariani C, Maggiore L, Mosconi L, Lucignani G, (2008): Individual cerebral metabolic deficits in Alzheimer's disease and amnestic mild cognitive impairment: An FDG PET study. Eur J Nucl Med Mol Imaging 35, 1357-1366.
– reference: Tibshirani, R., 1996. Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B 58:267-288.
– reference: Zhang Y, Brady M, Smith S (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm. IEEE Trans Med Imaging 20:45-57.
– year: 2011
– volume: 35
  start-page: 2191
  year: 2008
  end-page: 2202
  article-title: Principal component analysis of FDG PET in amnestic MCI
  publication-title: Eur J Nucl Med Mol Imaging
– year: 2009
– volume: 33
  start-page: 43
  year: 2012
  end-page: 52
  article-title: Atrophy and dysfunction of parahippocampal white matter in mild Alzheimer's disease
  publication-title: Neurobiol Aging
– volume: 73
  start-page: 294
  year: 2009
  end-page: 301
  article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change
  publication-title: Neurology
– volume: 39
  start-page: 1731
  year: 2008b
  end-page: 1743
  article-title: Spatial patterns of brain atrophy in MCI patients, identified via high‐dimensional pattern classification, predict subsequent cognitive decline
  publication-title: Neuroimage
– volume: 84
  start-page: 466
  year: 2014
  end-page: 475
  article-title: Inter‐modality relationship constrained multi‐modality multi‐task feature selection for Alzheimer's Disease and mild cognitive impairment identification
  publication-title: Neuroimage
– volume: 36
  start-page: 1140
  year: 2012
  end-page: 1152
  article-title: Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review
  publication-title: Neurosci Biobehav Rev
– volume: 31
  start-page: 1284
  year: 2010
  end-page: 1303
  article-title: 3D PIB and CSF biomarker associations with hippocampal atrophy in ADNI subjects
  publication-title: Neurobiol Aging
– volume: 54
  start-page: 1178
  year: 2011
  end-page: 1187
  article-title: Multivariate analysis of MRI data for Alzheimer's disease, mild cognitive impairment and healthy controls
  publication-title: Neuroimage
– year: 2001
– volume: 14
  start-page: 566
  year: 2011
  end-page: 573
  article-title: Laplacian Eigenmaps manifold learning for landmark localization in brain MR images
  publication-title: Med Image Comput Comput Assist Interv
– volume: 59
  start-page: 2045
  year: 2012
  end-page: 2056
  article-title: Identification of MCI individuals using structural and functional connectivity networks
  publication-title: Neuroimage
– volume: 194
  start-page: 7
  year: 2011
  end-page: 13
  article-title: Amygdala atrophy is prominent in early Alzheimer's disease and relates to symptom severity
  publication-title: Psychiatry Res‐Neuroimaging
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm
  publication-title: IEEE Trans Med Imaging
– volume: 2
  start-page: 183
  year: 2009
  end-page: 202
  article-title: A fast iterative shrinkage‐thresholding algorithm for linear inverse problems
  publication-title: Siam J Imaging Sci
– volume: 30
  start-page: 1104
  year: 2003
  end-page: 1113
  article-title: Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer's disease: A PET follow‐up study
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 521
  start-page: 4300
  year: 2013
  end-page: 4317
  article-title: In vivo parahippocampal white matter pathology as a biomarker of disease progression to Alzheimer's disease
  publication-title: J Comp Neurol
– start-page: , 746
  year: 2009
  end-page: 751
– volume: 49
  start-page: 967
  year: 2007
  end-page: 976
  article-title: Precuneus atrophy in early‐onset Alzheimer's disease: a morphometric structural MRI study
  publication-title: Neuroradiology
– volume: 44
  start-page: 99
  year: 2011
  end-page: 101
  article-title: Machine learning approaches for the neuroimaging study of Alzheimer's Disease
  publication-title: Computer
– volume: 20
  start-page: 231
  year: 2010
  end-page: 252
  article-title: Joint covariate selection and joint subspace selection for multiple classification problems
  publication-title: Stat Comput
– volume: 2
  start-page: 207
  year: 2006
  end-page: 212
  article-title: CSF tau protein and FDG PET in patients with aging‐associated cognitive decline and Alzheimer's disease
  publication-title: Neuropsychiatr Dis Treat
– volume: 250
  start-page: 856
  year: 2009
  end-page: 866
  article-title: Mild cognitive impairment and Alzheimer disease: Patterns of altered cerebral blood flow at MR imaging
  publication-title: Radiology
– volume: 204
  start-page: 68
  year: 2012
  end-page: 81
  article-title: A review of multivariate methods for multimodal fusion of brain imaging data
  publication-title: J Neurosci Methods
– volume: 16
  start-page: 819
  year: 2012
  end-page: 830
  article-title: Nonlinear dimensionality reduction combining MR imaging with non‐imaging information
  publication-title: Med Image Anal
– volume: 73
  start-page: 243
  year: 2008
  end-page: 272
  article-title: Convex multi‐task feature learning
  publication-title: Machine Learn
– volume: 221
  start-page: 139
  year: 2014
  end-page: 150
  article-title: A comparison of three brain atlases for MCI prediction
  publication-title: J Neurosci Methods
– volume: 3
  start-page: 186
  year: 2007
  end-page: 191
  article-title: Forecasting the global burden of Alzheimer's disease
  publication-title: Alzheimers Dement
– volume: 43
  start-page: 225
  year: 2008
  end-page: 235
  article-title: Automated morphological analysis of magnetic resonance brain imaging using spectral analysis
  publication-title: Neuroimage
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J R Stat Soc Ser B
– volume: 18
  start-page: 9
  year: 2014
  end-page: 21
  article-title: A spatio‐temporal latent atlas for semi‐supervised learning of fetal brain segmentations and morphological age estimation
  publication-title: Med Image Anal
– volume: 68
  start-page: 49
  year: 2006
  end-page: 67
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: J R Stat Soc Ser B
– volume: 6
  start-page: e25074
  year: 2011
  article-title: An MRI‐derived definition of MCI‐to‐AD conversion for long‐term, automatic prognosis of MCI patients
  publication-title: PLoS One
– volume: 35
  start-page: 2876
  year: 2014b
  end-page: 2897
  article-title: Topological graph kernel on multiple thresholded functional connectivity networks for mild cognitive impairment classification
  publication-title: Hum Brain Mapp
– volume: 75
  start-page: 230
  year: 2010
  end-page: 238
  article-title: Comparing predictors of conversion and decline in mild cognitive impairment
  publication-title: Neurology
– volume: 55
  start-page: 574
  year: 2011
  end-page: 589
  article-title: Predictive markers for AD in a multi‐modality framework: an analysis of MCI progression in the ADNI population
  publication-title: Neuroimage
– volume: 18
  start-page: 1263
  year: 2010
  end-page: 1272
  article-title: Use of SVM methods with surface‐based cortical and volumetric subcortical measurements to detect Alzheimer's disease
  publication-title: J Alzheimers Dis
– volume: 4
  start-page: 192
  year: 2010
  article-title: A hybrid machine learning method for fusing fMRI and genetic data: Combining both improves classification of Schizophrenia
  publication-title: Front Hum Neurosci
– volume: 11
  start-page: 14
  year: 2005
  end-page: 25
  article-title: FDG‐PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment
  publication-title: Neurocase
– volume: 31
  start-page: 1107
  year: 2010b
  end-page: 1121
  article-title: Multi‐modal imaging predicts memory performance in normal aging and cognitive decline
  publication-title: Neurobiol Aging
– volume: 28
  start-page: 1070
  year: 2007
  end-page: 1074
  article-title: CSF biomarkers and medial temporal lobe atrophy predict dementia in mild cognitive impairment
  publication-title: Neurobiol Aging
– volume: 219
  start-page: 41
  year: 2009
  end-page: 51
  article-title: Morphological alterations to neurons of the amygdala and impaired fear conditioning in a transgenic mouse model of Alzheimer's disease
  publication-title: J Pathol
– volume: 41
  start-page: 277
  year: 2008a
  end-page: 285
  article-title: Structural and functional biomarkers of prodromal Alzheimer's disease: a high‐dimensional pattern classification study
  publication-title: Neuroimage
– volume: 22
  start-page: 612
  year: 2011
  end-page: 623
– volume: 13
  start-page: 1939
  year: 2002
  end-page: 1943
  article-title: Mapping gray matter loss with voxel‐based morphometry in mild cognitive impairment
  publication-title: Neuroreport
– volume: 21
  start-page: 1421
  year: 2002
  end-page: 1439
  article-title: HAMMER: Hierarchical attribute matching mechanism for elastic registration
  publication-title: IEEE Trans Med Imaging
– volume: 31
  start-page: 347
  year: 2010a
  end-page: 354
  article-title: Combining MR imaging, positron‐emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease
  publication-title: AJNR Am J Neuroradiol
– volume: 83
  start-page: 445
  year: 1990
  end-page: 457
  article-title: Hippocampal formation: anatomy and the patterns of pathology in Alzheimer's disease
  publication-title: Prog Brain Res
– volume: 9
  start-page: e77810
  year: 2014
  article-title: Knowledge‐guided robust MRI brain extraction for diverse large‐scale neuroimaging studies on humans and non‐human primates
  publication-title: PLoS One
– volume: 17
  start-page: 125
  year: 1991
  end-page: 129
  article-title: The specific spectral characteristics of the EEG of children with difficulties in learning to read
  publication-title: Fiziol Cheloveka
– volume: 47
  start-page: 1056
  year: 2000
  end-page: 1063
  article-title: Hippocampus and entorhinal cortex in frontotemporal dementia and Alzheimer's disease: a morphometric MRI study
  publication-title: Biol Psychiatry
– volume: 59
  start-page: 2187
  year: 2012
  end-page: 2195
  article-title: Discriminative analysis of early Alzheimer's disease using multi‐modal imaging and multi‐level characterization with multi‐classifier (M3)
  publication-title: Neuroimage
– volume: 61
  start-page: 622
  year: 2012
  end-page: 632
  article-title: Multi‐source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data
  publication-title: Neuroimage
– volume: 56
  start-page: 209
  year: 2004
  end-page: 239
  article-title: Semi‐supervised learning on Riemannian manifolds
  publication-title: Machine Learn
– year: 2012
– volume: 48
  start-page: 138
  year: 2009
  end-page: 149
  article-title: Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset
  publication-title: Neuroimage
– volume: 59
  start-page: 895
  year: 2012
  end-page: 907
  article-title: Multi‐modal multi‐task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease
  publication-title: Neuroimage
– volume: 225
  start-page: 1168
  year: 1984
  end-page: 1170
  article-title: Alzheimer's disease: Cell‐specific pathology isolates the hippocampal formation
  publication-title: Science
– volume: 61
  start-page: 576
  year: 2014a
  end-page: 589
  article-title: Integration of network topological and connectivity properties for neuroimaging classification
  publication-title: IEEE Trans Biomed Eng
– volume: 130
  start-page: 2616
  year: 2007
  end-page: 2635
  article-title: FDG‐PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer's disease
  publication-title: Brain
– volume: 21
  start-page: 19
  year: 2000
  end-page: 26
  article-title: Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non‐demented elderly predict decline to Alzheimer's disease
  publication-title: Neurobiol Aging
– volume: 25
  start-page: 347
  year: 2011
  end-page: 357
  article-title: Grey‐matter atrophy in Alzheimer's disease is asymmetric but not lateralized
  publication-title: J Alzheimers Dis
– volume: 55
  start-page: 1109
  year: 2011
  end-page: 1119
  article-title: Semi‐supervised pattern classification of medical images: application to mild cognitive impairment (MCI)
  publication-title: Neuroimage
– volume: 23
  start-page: 315
  year: 2004
  end-page: 326
  article-title: A comparison of classification methods for differentiating fronto‐temporal dementia from Alzheimer's disease using FDG‐PET imaging
  publication-title: Stat Med
– volume: 58
  start-page: 469
  year: 2011
  end-page: 480
  article-title: Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease
  publication-title: Neuroimage
– volume: 55
  start-page: 856
  year: 2011
  end-page: 867
  article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment
  publication-title: Neuroimage
– volume: 16
  start-page: 1
  year: 2012
  end-page: 17
  article-title: Entropy and Laplacian images: structural representations for multi‐modal registration
  publication-title: Med Image Anal
– volume: 107
  start-page: 52
  year: 2003
  end-page: 76
  article-title: A critical discussion of the role of neuroimaging in mild cognitive impairment
  publication-title: Acta Neurologica Scand
– volume: 65
  start-page: 167
  year: 2013
  end-page: 175
  article-title: Random forest‐based similarity measures for multi‐modal classification of Alzheimer's disease
  publication-title: Neuroimage
– volume: 35
  start-page: 1357
  year: 2008
  end-page: 1366
  article-title: Individual cerebral metabolic deficits in Alzheimer's disease and amnestic mild cognitive impairment: An FDG PET study
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 78
  start-page: 233
  year: 2013
  end-page: 248
  article-title: Modeling disease progression via multi‐task learning
  publication-title: Neuroimage
– ident: e_1_2_7_33_1
  doi: 10.1126/science.6474172
– ident: e_1_2_7_45_1
  doi: 10.1007/s11222-008-9111-x
– ident: e_1_2_7_48_1
  doi: 10.1016/j.jneumeth.2013.10.003
– ident: e_1_2_7_21_1
  doi: 10.1007/s00259-003-1194-1
– ident: e_1_2_7_17_1
  doi: 10.1016/j.neuroimage.2011.10.003
– ident: e_1_2_7_16_1
  doi: 10.1148/radiol.2503080751
– ident: e_1_2_7_67_1
  doi: 10.1109/MC.2011.117
– ident: e_1_2_7_74_1
– ident: e_1_2_7_70_1
  doi: 10.1016/j.neuroimage.2011.09.069
– ident: e_1_2_7_73_1
  doi: 10.1016/j.neuroimage.2013.03.073
– ident: e_1_2_7_64_1
  doi: 10.1034/j.1600-0404.107.s179.10.x
– ident: e_1_2_7_40_1
  doi: 10.1016/j.neuroimage.2013.09.015
– ident: e_1_2_7_10_1
– ident: e_1_2_7_69_1
  doi: 10.1016/j.neuroimage.2012.03.059
– ident: e_1_2_7_52_1
  doi: 10.1002/cne.23418
– ident: e_1_2_7_60_1
  doi: 10.1016/j.neurobiolaging.2010.01.020
– ident: e_1_2_7_41_1
– ident: e_1_2_7_7_1
  doi: 10.1023/B:MACH.0000033120.25363.1e
– ident: e_1_2_7_9_1
  doi: 10.1016/j.jalz.2007.04.381
– ident: e_1_2_7_11_1
  doi: 10.1109/ICDM.2009.128
– ident: e_1_2_7_25_1
  doi: 10.1093/brain/awm177
– ident: e_1_2_7_5_1
  doi: 10.1007/s10994-007-5040-8
– ident: e_1_2_7_72_1
  doi: 10.1016/j.neuroimage.2011.01.008
– ident: e_1_2_7_6_1
  doi: 10.1137/080716542
– ident: e_1_2_7_30_1
  doi: 10.1016/j.neuroimage.2010.10.081
– ident: e_1_2_7_56_1
  doi: 10.1212/WNL.0b013e3181af79fb
– ident: e_1_2_7_66_1
  doi: 10.3389/fnhum.2010.00192
– ident: e_1_2_7_2_1
  doi: 10.1371/journal.pone.0025074
– ident: e_1_2_7_42_1
  doi: 10.1016/j.neuroimage.2012.01.055
– ident: e_1_2_7_13_1
  doi: 10.1080/13554790490896938
– ident: e_1_2_7_3_1
  doi: 10.1016/j.neuroimage.2008.07.055
– volume: 58
  start-page: 267
  year: 1996
  ident: e_1_2_7_54_1
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: e_1_2_7_58_1
  doi: 10.3174/ajnr.A1809
– ident: e_1_2_7_36_1
  doi: 10.1007/s00234-007-0269-2
– ident: e_1_2_7_20_1
  doi: 10.1016/j.media.2013.08.004
– ident: e_1_2_7_23_1
  doi: 10.1016/j.neuroimage.2007.10.031
– ident: e_1_2_7_65_1
  doi: 10.1016/j.media.2011.12.003
– ident: e_1_2_7_29_1
  doi: 10.1016/j.neuroimage.2009.05.056
– ident: e_1_2_7_71_1
  doi: 10.1109/42.906424
– ident: e_1_2_7_50_1
  doi: 10.1109/TMI.2002.803111
– ident: e_1_2_7_63_1
  doi: 10.1016/j.neuroimage.2010.08.044
– ident: e_1_2_7_4_1
  doi: 10.1016/j.neurobiolaging.2010.05.003
– ident: e_1_2_7_22_1
  doi: 10.1016/j.neuroimage.2008.02.043
– ident: e_1_2_7_8_1
  doi: 10.1016/j.neurobiolaging.2006.05.006
– ident: e_1_2_7_26_1
  doi: 10.1016/j.neuroimage.2012.09.065
– ident: e_1_2_7_55_1
  doi: 10.1016/S0079-6123(08)61268-6
– ident: e_1_2_7_12_1
  doi: 10.1097/00001756-200210280-00022
– ident: e_1_2_7_59_1
  doi: 10.1016/j.neurobiolaging.2008.08.013
– ident: e_1_2_7_35_1
  doi: 10.1002/hbm.22353
– ident: e_1_2_7_37_1
  doi: 10.1002/path.2565
– volume: 18
  start-page: 1263
  year: 2010
  ident: e_1_2_7_46_1
  article-title: Use of SVM methods with surface‐based cortical and volumetric subcortical measurements to detect Alzheimer's disease
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2010-1322
– ident: e_1_2_7_53_1
  doi: 10.1016/j.jneumeth.2011.10.031
– volume: 14
  start-page: 566
  year: 2011
  ident: e_1_2_7_27_1
  article-title: Laplacian Eigenmaps manifold learning for landmark localization in brain MR images
  publication-title: Med Image Comput Comput Assist Interv
– ident: e_1_2_7_49_1
  doi: 10.1016/j.pscychresns.2011.06.014
– ident: e_1_2_7_68_1
  doi: 10.1111/j.1467-9868.2005.00532.x
– ident: e_1_2_7_44_1
  doi: 10.1007/s00259-008-0869-z
– ident: e_1_2_7_57_1
  doi: 10.1016/j.media.2011.03.001
– ident: e_1_2_7_34_1
  doi: 10.1109/TBME.2013.2284195
– ident: e_1_2_7_38_1
  doi: 10.1016/S0006-3223(99)00306-6
– ident: e_1_2_7_15_1
  doi: 10.1016/S0197-4580(99)00107-4
– ident: e_1_2_7_61_1
  doi: 10.1371/journal.pone.0077810
– volume: 17
  start-page: 125
  year: 1991
  ident: e_1_2_7_51_1
  article-title: The specific spectral characteristics of the EEG of children with difficulties in learning to read
  publication-title: Fiziol Cheloveka
– ident: e_1_2_7_62_1
  doi: 10.1016/j.neuroimage.2011.10.015
– ident: e_1_2_7_19_1
  doi: 10.3233/JAD-2011-110041
– ident: e_1_2_7_28_1
  doi: 10.1002/sim.1719
– ident: e_1_2_7_47_1
  doi: 10.1016/j.neubiorev.2012.01.004
– ident: e_1_2_7_43_1
  doi: 10.1007/978-3-642-22092-0_50
– ident: e_1_2_7_39_1
  doi: 10.1212/WNL.0b013e3181e8e8b8
– ident: e_1_2_7_14_1
  doi: 10.1016/j.neuroimage.2011.05.083
– ident: e_1_2_7_24_1
  doi: 10.1016/j.neuroimage.2010.12.066
– ident: e_1_2_7_32_1
  doi: 10.2147/nedt.2006.2.2.207
– ident: e_1_2_7_31_1
– ident: e_1_2_7_18_1
  doi: 10.1007/s00259-008-0773-6
– reference: 21422522 - J Alzheimers Dis. 2011;25(2):347-57
– reference: 22305994 - Neurosci Biobehav Rev. 2012 Apr;36(4):1140-52
– reference: 14716732 - Stat Med. 2004 Jan 30;23(2):315-26
– reference: 24080527 - Med Image Anal. 2014 Jan;18(1):9-21
– reference: 22498655 - Neuroimage. 2012 Jul 2;61(3):622-32
– reference: 22019883 - Neuroimage. 2012 Feb 1;59(3):2045-56
– reference: 21236349 - Neuroimage. 2011 Apr 1;55(3):856-67
– reference: 19449368 - J Pathol. 2009 Sep;219(1):41-51
– reference: 12395096 - Neuroreport. 2002 Oct 28;13(15):1939-43
– reference: 24489639 - PLoS One. 2014;9(1):e77810
– reference: 24038749 - Hum Brain Mapp. 2014 Jul;35(7):2876-97
– reference: 17704526 - Brain. 2007 Oct;130(Pt 10):2616-35
– reference: 21995074 - Med Image Comput Comput Assist Interv. 2011;14(Pt 2):566-73
– reference: 20061613 - J Alzheimers Dis. 2010;19(4):1263-72
– reference: 10794844 - Neurobiol Aging. 2000 Jan-Feb;21(1):19-26
– reference: 18838195 - Neurobiol Aging. 2010 Jul;31(7):1107-21
– reference: 21119772 - Front Hum Neurosci. 2010 Oct 25;4:192
– reference: 22008370 - Neuroimage. 2012 Feb 1;59(3):2187-95
– reference: 12764551 - Eur J Nucl Med Mol Imaging. 2003 Aug;30(8):1104-13
– reference: 21761690 - Inf Process Med Imaging. 2011;22:612-23
– reference: 19481161 - Neuroimage. 2009 Oct 15;48(1):138-49
– reference: 20592257 - Neurology. 2010 Jul 20;75(3):230-8
– reference: 23041336 - Neuroimage. 2013 Jan 15;65:167-75
– reference: 16782233 - Neurobiol Aging. 2007 Jul;28(7):1070-4
– reference: 19412465 - Neuropsychiatr Dis Treat. 2006 Jun;2(2):207-12
– reference: 19164119 - Radiology. 2009 Mar;250(3):856-66
– reference: 23839862 - J Comp Neurol. 2013 Dec 15;521(18):4300-17
– reference: 21146621 - Neuroimage. 2011 Mar 15;55(2):574-89
– reference: 24140118 - J Neurosci Methods. 2014 Jan 15;221:139-50
– reference: 22022375 - PLoS One. 2011;6(10):e25074
– reference: 10862805 - Biol Psychiatry. 2000 Jun 15;47(12):1056-63
– reference: 12603252 - Acta Neurol Scand Suppl. 2003;179:52-76
– reference: 24108708 - IEEE Trans Biomed Eng. 2014 Feb;61(2):576-89
– reference: 18648805 - Eur J Nucl Med Mol Imaging. 2008 Dec;35(12):2191-202
– reference: 2392569 - Prog Brain Res. 1990;83:445-57
– reference: 11293691 - IEEE Trans Med Imaging. 2001 Jan;20(1):45-57
– reference: 22270352 - Neuroimage. 2012 Apr 2;60(2):1106-16
– reference: 21920712 - Psychiatry Res. 2011 Oct 31;194(1):7-13
– reference: 6474172 - Science. 1984 Sep 14;225(4667):1168-70
– reference: 21195776 - Neuroimage. 2011 Apr 1;55(3):1109-19
– reference: 18400519 - Neuroimage. 2008 Jun;41(2):277-85
– reference: 20538372 - Neurobiol Aging. 2010 Aug;31(8):1284-303
– reference: 19595937 - Alzheimers Dement. 2007 Jul;3(3):186-91
– reference: 22244037 - Med Image Anal. 2012 May;16(4):819-30
– reference: 18418593 - Eur J Nucl Med Mol Imaging. 2008 Jul;35(7):1357-66
– reference: 21992749 - Neuroimage. 2012 Jan 16;59(2):895-907
– reference: 21718788 - Neuroimage. 2011 Sep 15;58(2):469-80
– reference: 1778369 - Fiziol Cheloveka. 1991 Sep-Oct;17(5):125-9
– reference: 17955233 - Neuroradiology. 2007 Dec;49(12):967-76
– reference: 20800095 - Neuroimage. 2011 Jan 15;54(2):1178-87
– reference: 20359781 - Neurobiol Aging. 2012 Jan;33(1):43-52
– reference: 23583359 - Neuroimage. 2013 Sep;78:233-48
– reference: 15804920 - Neurocase. 2005 Feb;11(1):14-25
– reference: 20075088 - AJNR Am J Neuroradiol. 2010 Feb;31(2):347-54
– reference: 24045077 - Neuroimage. 2014 Jan 1;84:466-75
– reference: 22108139 - J Neurosci Methods. 2012 Feb 15;204(1):68-81
– reference: 21632274 - Med Image Anal. 2012 Jan;16(1):1-17
– reference: 18053747 - Neuroimage. 2008 Feb 15;39(4):1731-43
– reference: 12575879 - IEEE Trans Med Imaging. 2002 Nov;21(11):1421-39
– reference: 19636049 - Neurology. 2009 Jul 28;73(4):294-301
– reference: 18761093 - Neuroimage. 2008 Nov 1;43(2):225-35
SSID ssj0011501
Score 2.5136821
Snippet Multimodality based methods have shown great advantages in classification of Alzheimer's disease (AD) and its prodromal stage, that is, mild cognitive...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 489
SubjectTerms Aged
Algorithms
Alzheimer Disease - classification
Alzheimer Disease - diagnosis
Alzheimer Disease - physiopathology
Alzheimer's disease
Artificial Intelligence
Brain - physiopathology
Brain Mapping
Cognitive Dysfunction - classification
Cognitive Dysfunction - diagnosis
Cognitive Dysfunction - physiopathology
Databases, Factual
feature selection
Fluorodeoxyglucose F18
group-sparsity regularizer
Humans
Magnetic Resonance Imaging - methods
manifold regularization
Multimodal Imaging - methods
multimodality classification
multitask learning
Pattern Recognition, Automated
Positron-Emission Tomography - methods
Radiopharmaceuticals
Title Manifold regularized multitask feature learning for multimodality disease classification
URI https://api.istex.fr/ark:/67375/WNG-2JS5QJMN-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.22642
https://www.ncbi.nlm.nih.gov/pubmed/25277605
https://www.proquest.com/docview/1646106605
https://www.proquest.com/docview/1652384656
https://www.proquest.com/docview/1654669549
https://pubmed.ncbi.nlm.nih.gov/PMC4470367
Volume 36
WOSCitedRecordID wos000348378800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: WIN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB2VghAXPlqghlItCFVc3MYbf6qntiKUilggQM1ttbte06iNUzkpAn59Z8aOIaIgJG6Rdqwk45nd9zzjNwAvE2fKzOjMDxLT80Ot-75BDOcHWhqjU1KY4qkl75I8T0ej7P0K7C3ehWn0IboHbpQZvF9Tgmsz2_0pGnpqJjv0Fijtv0HISXnyNu8qCAh0mGzhEetnuAMvVIV6cre7cuksuklu_XYd0Py9X_JXHMsH0eDef_2F-3C3xZ9ivwmYB7DiqjVY36-Qe0--i23BHaH8qH0Nbg_bwvs6jIa6GpfT80LUPLy-Hv9wheBuxLmenYnSsUCoaIdQfBGIhZvlybRgqC_aUpCwhNepQYlj4iF8Hrz-dHjkt0MZfItgTmJWZWVQYtaXiPWQ6xU2CgMXlz3cJwMbFNIiwUx1EOqyb6hMmCHIwqPShrHLTBr2H8FqNa3cBogsRbiBBFNahzyNZGNkoZE-xVJmuh9bD14tbo-yrWI5Dc44V43WslToQMUO9OBFZ3rRyHRcZ7TN97iz0PUZ9bUlkTrJ3yh5_DH6cDzM1cCDzUUQqDalZ4qE2DCakP558LxbxmSkCouu3PSSbJDXpyRB91ebMI6puurB4yauuh8kI5kk_A3JUsR1BiQGvrxSjU9ZFDwMSUotQZ9xxP3ZC-roYMgfnvy76VO4g0AxarrVN2F1Xl-6Z3DLfp2PZ_UW3EhG6Ran3xUPqTC3
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NGwJe-NiABQYYhCZewhrX-ZJ4GYjSjSYCMbS-WbbjbNXWFKUdAv567pw0UDEQEm-RfFGSy539O9_5dwDPYqvLVKvUD2Ld84VSfV8jhvMDxbVWCTFMua4lozjPk_E4fb8GL5dnYRp-iG7DjTzDzdfk4LQhvfeTNfRUT1_QMVCcgDdEhMidzpMc5F0OAaGOC7dwkfVTnIOXvEI9vtfdurIabZBiv14GNX-vmPwVybqlaHDz_z7iFtxoISjbb2zmNqzZahO29isMv6ff2C5zRaFut30TrmZt7n0LxpmqJuXsvGC1619fT77bgrmCxIWan7HSOo5Q1vahOGEIh5vh6axwaJ-12SBmCLJTjZIzizvwafDm6PXQb_sy-AbxHEfHSsugRMcvEe5huFeYUAQ2Kns4VQYmKLjBGDNRgVBlX1OmMEWchaulEZFNdSL6d2G9mlV2G1iaIOLAGJMbi6EaMcfwQmEEFXGeqn5kPHi-_D_StKTl1DvjXDZ0y1yiAqVToAdPO9HPDVPHZUK77id3Eqo-o9K2OJTH-VvJDz-GHw6zXA482FlagWy9ei6Jiw3NCSNAD550w-iPlGRRlZ1dkAyG9gmx0P1VRkQRJVg9uNcYVvdCPORx7J4Qr5hcJ0B84Ksj1eTU8YILQWxqMerMmdyftSCHrzJ3cf_fRR_DteFRNpKjg_zdA7iOuDFsitd3YH1RX9iHcMV8WUzm9SPnhT8AEqIz_w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NG5p44WPjIzDAIDTxEta4zoclXsZH2cYaDQFa3yzbcVi1NZ3SDgF_PXdOGqgYCIm3Sr4o6eXO97vc-XcAT1NnSmm0DKPU9EKhdT80iOHCSHNjdEYMU35qyWGa59loJI9W4MXiLEzDD9F9cCPP8Ps1Obg7L8qdn6yhJ2bynI6B4ga8JhIMfXSeZD_vaggIdXy6hUE2lLgHL3iFenynu3QpGq2RYr9eBjV_75j8Fcn6UDS4_n9_4gZcayEo221s5iasuGoDNncrTL8n39g2802h_mv7BqwP29r7JoyGuhqX07OC1X5-fT3-7grmGxLnenbKSuc5Qlk7h-IzQzjcLE-mhUf7rK0GMUuQnXqUvFncgk-DNx9f7YXtXIbQIp7j6FiyjEp0_BLhHqZ7hY1F5JKyh1tlZKOCW8wxMx0JXfYNVQol4iyMllYkTppM9G_DajWt3F1gMkPEgTkmtw5TNWKO4YXGDCrhXOp-YgN4tng_yrak5TQ740w1dMtcoQKVV2AATzrR84ap4zKhbf-SOwldn1JrWxqr4_yt4gcf4vcHw1wNAthaWIFqvXqmiIsNzQkzwAAed8voj1Rk0ZWbXpAMpvYZsdD9VUYkCRVYA7jTGFb3QDzmaervkC6ZXCdAfODLK9X4xPOCC0FsainqzJvcn7Wg9l4O_Y97_y76CNaPXg_U4X7-7j5cRdgYN73rW7A6ry_cA7hiv8zHs_qhd8IfMt0zcQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manifold+regularized+multitask+feature+learning+for+multimodality+disease+classification&rft.jtitle=Human+brain+mapping&rft.au=Jie%2C+Biao&rft.au=Zhang%2C+Daoqiang&rft.au=Cheng%2C+Bo&rft.au=Shen%2C+Dinggang&rft.date=2015-02-01&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=36&rft.issue=2&rft.spage=489&rft.epage=507&rft_id=info:doi/10.1002%2Fhbm.22642&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_22642
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon