Colored extrinsic fluctuations and stochastic gene expression

Stochasticity is both exploited and controlled by cells. Although the intrinsic stochasticity inherent in biochemistry is relatively well understood, cellular variation, or ‘noise’, is predominantly generated by interactions of the system of interest with other stochastic systems in the cell or its...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Molecular systems biology Ročník 4; číslo 1; s. 196 - n/a
Hlavní autoři: Shahrezaei, Vahid, Ollivier, Julien F, Swain, Peter S
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 2008
John Wiley & Sons, Ltd
EMBO Press
Nature Publishing Group
Springer Nature
Témata:
ISSN:1744-4292, 1744-4292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Stochasticity is both exploited and controlled by cells. Although the intrinsic stochasticity inherent in biochemistry is relatively well understood, cellular variation, or ‘noise’, is predominantly generated by interactions of the system of interest with other stochastic systems in the cell or its environment. Such extrinsic fluctuations are nonspecific, affecting many system components, and have a substantial lifetime, comparable to the cell cycle (they are ‘colored’). Here, we extend the standard stochastic simulation algorithm to include extrinsic fluctuations. We show that these fluctuations affect mean protein numbers and intrinsic noise, can speed up typical network response times, and can explain trends in high‐throughput measurements of variation. If extrinsic fluctuations in two components of the network are correlated, they may combine constructively (amplifying each other) or destructively (attenuating each other). Consequently, we predict that incoherent feedforward loops attenuate stochasticity, while coherent feedforwards amplify it. Our results demonstrate that both the timescales of extrinsic fluctuations and their nonspecificity substantially affect the function and performance of biochemical networks. Synopsis Biochemical networks experience both intrinsic fluctuations, generated by the stochasticity inherent to biochemical reactions within the network, and extrinsic fluctuations arising from the interactions of the network with other stochastic systems in the cell or its environment. Both types of fluctuations can be controlled or exploited by cells. Intrinsic fluctuations are relatively well understood. They arise from random collisions of reacting molecules with other molecules. Such collisions stochastically alter the time for two reactants to meet and their time to cross a reaction's energy barrier. Intrinsic fluctuations can be described mathematically by a master equation or simulated using a stochastic simulation algorithm, such as the Gillespie algorithm. Despite usually being the dominant fluctuations in experimental measurements of in vivo protein levels, extrinsic fluctuations have been much less studied. They have been measured to have a lifetime comparable to the cell cycle, but their source is largely speculative. Here, we extend the Gillespie algorithm to include extrinsic fluctuations with any properties and so enable their systematic study, at least by simulation. Extrinsic fluctuations have a significant lifetime, and, because their lifetime is greater than zero, they are called ‘colored’. We show that their color causes extrinsic fluctuations to have a nonlinear effect on the dynamics of a network. They can shift the mean number of proteins and can alter the intrinsic noise found in protein levels. Intrinsic noise is measured by the variation in the difference between two distinguishable reporters, each expressed by a separate copy of the network under study. We describe how these effects, arising from the lifetime of extrinsic fluctuations, can help explain trends seen in high‐throughput measurements of stochasticity in gene expression. Extrinsic fluctuations are also nonspecific and can potentially simultaneously affect many cellular components. We show that extrinsic fluctuations in different components of a network can combine destructively to negate each other or constructively to amplify fluctuations in the network's output. These interference effects are likely to be exploited by cells in feedforward loops: some types of feedforward loops can attenuate stochasticity because they channel extrinsic fluctuations in the levels of the network's master transcription factor to combine destructively with those of the other regulating transcription factor and so decrease fluctuations in the network's output. Others can cause constructive extrinsic fluctuations in the network's transcription factors and so can amplify fluctuations in the network's output. Our results show that the lifetime of extrinsic fluctuations increases their co‐dependence with intrinsic fluctuations. More generally, they address how to model one stochastic system embedded in and interacting with a larger stochastic system. Mathematically, these interactions, or extrinsic fluctuations, cause the parameters of an already stochastic system to become stochastic themselves. Measurements of the stochasticity in the output of the system will have an intrinsic component, arising from the dynamics of the system itself, and an extrinsic component, arising from fluctuations in the system's parameters. For example, in gene expression, the rate of initiation of translation is stochastic because it is a function of the number of free ribosomes which is itself stochastic. Although the empirical definitions of extrinsic and intrinsic noise do not change, we show that the colored character of extrinsic fluctuations does alter their theoretical justification. Our simulation algorithm and the concepts we propose should help to quantitatively understand endogenous networks and to design effective synthetic ones. Biochemical networks experience both intrinsic fluctuations, generated by the stochasticity inherent to biochemical reactions within the network, and extrinsic fluctuations arising from the interactions of the network with other stochastic systems in the cell or its environment. Here we extend the standard stochastic simulation algorithm to include extrinsic fluctuations with any desired properties. We show that extrinsic fluctuations that are ‘colored’, or have a significant lifetime, can affect both measurements of mean protein numbers and the intrinsic noise and that these effects can explain trends in high throughput measurements of stochasticity. Extrinsic fluctuations can affect the performance of simple, genetic networks. For a negatively autoregulated network, we demonstrate that extrinsic fluctuations can enhance or degrade the ability of the network to attenuate stochasticity and can speed up the network's typical response time. Extrinsic fluctuations are non‐specific, and extrinsic fluctuations in different components of a network can combine destructively to negate each other or constructively to amplify fluctuations in the network's output. These interference effects are likely to be exploited by cells in feedforward loops: incoherent feedforwards can attenuate stochasticity, while coherent feedforwards can amplify it.
AbstractList Stochasticity is both exploited and controlled by cells. Although the intrinsic stochasticity inherent in biochemistry is relatively well understood, cellular variation, or ‘noise’, is predominantly generated by interactions of the system of interest with other stochastic systems in the cell or its environment. Such extrinsic fluctuations are nonspecific, affecting many system components, and have a substantial lifetime, comparable to the cell cycle (they are ‘colored’). Here, we extend the standard stochastic simulation algorithm to include extrinsic fluctuations. We show that these fluctuations affect mean protein numbers and intrinsic noise, can speed up typical network response times, and can explain trends in high-throughput measurements of variation. If extrinsic fluctuations in two components of the network are correlated, they may combine constructively (amplifying each other) or destructively (attenuating each other). Consequently, we predict that incoherent feedforward loops attenuate stochasticity, while coherent feedforwards amplify it. Our results demonstrate that both the timescales of extrinsic fluctuations and their nonspecificity substantially affect the function and performance of biochemical networks.
Abstract Stochasticity is both exploited and controlled by cells. Although the intrinsic stochasticity inherent in biochemistry is relatively well understood, cellular variation, or ‘noise’, is predominantly generated by interactions of the system of interest with other stochastic systems in the cell or its environment. Such extrinsic fluctuations are nonspecific, affecting many system components, and have a substantial lifetime, comparable to the cell cycle (they are ‘colored’). Here, we extend the standard stochastic simulation algorithm to include extrinsic fluctuations. We show that these fluctuations affect mean protein numbers and intrinsic noise, can speed up typical network response times, and can explain trends in high‐throughput measurements of variation. If extrinsic fluctuations in two components of the network are correlated, they may combine constructively (amplifying each other) or destructively (attenuating each other). Consequently, we predict that incoherent feedforward loops attenuate stochasticity, while coherent feedforwards amplify it. Our results demonstrate that both the timescales of extrinsic fluctuations and their nonspecificity substantially affect the function and performance of biochemical networks.
Stochasticity is both exploited and controlled by cells. Although the intrinsic stochasticity inherent in biochemistry is relatively well understood, cellular variation, or ‘noise’, is predominantly generated by interactions of the system of interest with other stochastic systems in the cell or its environment. Such extrinsic fluctuations are nonspecific, affecting many system components, and have a substantial lifetime, comparable to the cell cycle (they are ‘colored’). Here, we extend the standard stochastic simulation algorithm to include extrinsic fluctuations. We show that these fluctuations affect mean protein numbers and intrinsic noise, can speed up typical network response times, and can explain trends in high‐throughput measurements of variation. If extrinsic fluctuations in two components of the network are correlated, they may combine constructively (amplifying each other) or destructively (attenuating each other). Consequently, we predict that incoherent feedforward loops attenuate stochasticity, while coherent feedforwards amplify it. Our results demonstrate that both the timescales of extrinsic fluctuations and their nonspecificity substantially affect the function and performance of biochemical networks. Synopsis Biochemical networks experience both intrinsic fluctuations, generated by the stochasticity inherent to biochemical reactions within the network, and extrinsic fluctuations arising from the interactions of the network with other stochastic systems in the cell or its environment. Both types of fluctuations can be controlled or exploited by cells. Intrinsic fluctuations are relatively well understood. They arise from random collisions of reacting molecules with other molecules. Such collisions stochastically alter the time for two reactants to meet and their time to cross a reaction's energy barrier. Intrinsic fluctuations can be described mathematically by a master equation or simulated using a stochastic simulation algorithm, such as the Gillespie algorithm. Despite usually being the dominant fluctuations in experimental measurements of in vivo protein levels, extrinsic fluctuations have been much less studied. They have been measured to have a lifetime comparable to the cell cycle, but their source is largely speculative. Here, we extend the Gillespie algorithm to include extrinsic fluctuations with any properties and so enable their systematic study, at least by simulation. Extrinsic fluctuations have a significant lifetime, and, because their lifetime is greater than zero, they are called ‘colored’. We show that their color causes extrinsic fluctuations to have a nonlinear effect on the dynamics of a network. They can shift the mean number of proteins and can alter the intrinsic noise found in protein levels. Intrinsic noise is measured by the variation in the difference between two distinguishable reporters, each expressed by a separate copy of the network under study. We describe how these effects, arising from the lifetime of extrinsic fluctuations, can help explain trends seen in high‐throughput measurements of stochasticity in gene expression. Extrinsic fluctuations are also nonspecific and can potentially simultaneously affect many cellular components. We show that extrinsic fluctuations in different components of a network can combine destructively to negate each other or constructively to amplify fluctuations in the network's output. These interference effects are likely to be exploited by cells in feedforward loops: some types of feedforward loops can attenuate stochasticity because they channel extrinsic fluctuations in the levels of the network's master transcription factor to combine destructively with those of the other regulating transcription factor and so decrease fluctuations in the network's output. Others can cause constructive extrinsic fluctuations in the network's transcription factors and so can amplify fluctuations in the network's output. Our results show that the lifetime of extrinsic fluctuations increases their co‐dependence with intrinsic fluctuations. More generally, they address how to model one stochastic system embedded in and interacting with a larger stochastic system. Mathematically, these interactions, or extrinsic fluctuations, cause the parameters of an already stochastic system to become stochastic themselves. Measurements of the stochasticity in the output of the system will have an intrinsic component, arising from the dynamics of the system itself, and an extrinsic component, arising from fluctuations in the system's parameters. For example, in gene expression, the rate of initiation of translation is stochastic because it is a function of the number of free ribosomes which is itself stochastic. Although the empirical definitions of extrinsic and intrinsic noise do not change, we show that the colored character of extrinsic fluctuations does alter their theoretical justification. Our simulation algorithm and the concepts we propose should help to quantitatively understand endogenous networks and to design effective synthetic ones. Biochemical networks experience both intrinsic fluctuations, generated by the stochasticity inherent to biochemical reactions within the network, and extrinsic fluctuations arising from the interactions of the network with other stochastic systems in the cell or its environment. Here we extend the standard stochastic simulation algorithm to include extrinsic fluctuations with any desired properties. We show that extrinsic fluctuations that are ‘colored’, or have a significant lifetime, can affect both measurements of mean protein numbers and the intrinsic noise and that these effects can explain trends in high throughput measurements of stochasticity. Extrinsic fluctuations can affect the performance of simple, genetic networks. For a negatively autoregulated network, we demonstrate that extrinsic fluctuations can enhance or degrade the ability of the network to attenuate stochasticity and can speed up the network's typical response time. Extrinsic fluctuations are non‐specific, and extrinsic fluctuations in different components of a network can combine destructively to negate each other or constructively to amplify fluctuations in the network's output. These interference effects are likely to be exploited by cells in feedforward loops: incoherent feedforwards can attenuate stochasticity, while coherent feedforwards can amplify it.
Stochasticity is both exploited and controlled by cells. Although the intrinsic stochasticity inherent in biochemistry is relatively well understood, cellular variation, or 'noise', is predominantly generated by interactions of the system of interest with other stochastic systems in the cell or its environment. Such extrinsic fluctuations are nonspecific, affecting many system components, and have a substantial lifetime, comparable to the cell cycle (they are 'colored'). Here, we extend the standard stochastic simulation algorithm to include extrinsic fluctuations. We show that these fluctuations affect mean protein numbers and intrinsic noise, can speed up typical network response times, and can explain trends in high-throughput measurements of variation. If extrinsic fluctuations in two components of the network are correlated, they may combine constructively (amplifying each other) or destructively (attenuating each other). Consequently, we predict that incoherent feedforward loops attenuate stochasticity, while coherent feedforwards amplify it. Our results demonstrate that both the timescales of extrinsic fluctuations and their nonspecificity substantially affect the function and performance of biochemical networks.Stochasticity is both exploited and controlled by cells. Although the intrinsic stochasticity inherent in biochemistry is relatively well understood, cellular variation, or 'noise', is predominantly generated by interactions of the system of interest with other stochastic systems in the cell or its environment. Such extrinsic fluctuations are nonspecific, affecting many system components, and have a substantial lifetime, comparable to the cell cycle (they are 'colored'). Here, we extend the standard stochastic simulation algorithm to include extrinsic fluctuations. We show that these fluctuations affect mean protein numbers and intrinsic noise, can speed up typical network response times, and can explain trends in high-throughput measurements of variation. If extrinsic fluctuations in two components of the network are correlated, they may combine constructively (amplifying each other) or destructively (attenuating each other). Consequently, we predict that incoherent feedforward loops attenuate stochasticity, while coherent feedforwards amplify it. Our results demonstrate that both the timescales of extrinsic fluctuations and their nonspecificity substantially affect the function and performance of biochemical networks.
Stochasticity is both exploited and controlled by cells. Although the intrinsic stochasticity inherent in biochemistry is relatively well understood, cellular variation, or ‘noise’, is predominantly generated by interactions of the system of interest with other stochastic systems in the cell or its environment. Such extrinsic fluctuations are nonspecific, affecting many system components, and have a substantial lifetime, comparable to the cell cycle (they are ‘colored’). Here, we extend the standard stochastic simulation algorithm to include extrinsic fluctuations. We show that these fluctuations affect mean protein numbers and intrinsic noise, can speed up typical network response times, and can explain trends in high‐throughput measurements of variation. If extrinsic fluctuations in two components of the network are correlated, they may combine constructively (amplifying each other) or destructively (attenuating each other). Consequently, we predict that incoherent feedforward loops attenuate stochasticity, while coherent feedforwards amplify it. Our results demonstrate that both the timescales of extrinsic fluctuations and their nonspecificity substantially affect the function and performance of biochemical networks. Synopsis Biochemical networks experience both intrinsic fluctuations, generated by the stochasticity inherent to biochemical reactions within the network, and extrinsic fluctuations arising from the interactions of the network with other stochastic systems in the cell or its environment. Both types of fluctuations can be controlled or exploited by cells. Intrinsic fluctuations are relatively well understood. They arise from random collisions of reacting molecules with other molecules. Such collisions stochastically alter the time for two reactants to meet and their time to cross a reaction's energy barrier. Intrinsic fluctuations can be described mathematically by a master equation or simulated using a stochastic simulation algorithm, such as the Gillespie algorithm. Despite usually being the dominant fluctuations in experimental measurements of in vivo protein levels, extrinsic fluctuations have been much less studied. They have been measured to have a lifetime comparable to the cell cycle, but their source is largely speculative. Here, we extend the Gillespie algorithm to include extrinsic fluctuations with any properties and so enable their systematic study, at least by simulation. Extrinsic fluctuations have a significant lifetime, and, because their lifetime is greater than zero, they are called ‘colored’. We show that their color causes extrinsic fluctuations to have a nonlinear effect on the dynamics of a network. They can shift the mean number of proteins and can alter the intrinsic noise found in protein levels. Intrinsic noise is measured by the variation in the difference between two distinguishable reporters, each expressed by a separate copy of the network under study. We describe how these effects, arising from the lifetime of extrinsic fluctuations, can help explain trends seen in high‐throughput measurements of stochasticity in gene expression. Extrinsic fluctuations are also nonspecific and can potentially simultaneously affect many cellular components. We show that extrinsic fluctuations in different components of a network can combine destructively to negate each other or constructively to amplify fluctuations in the network's output. These interference effects are likely to be exploited by cells in feedforward loops: some types of feedforward loops can attenuate stochasticity because they channel extrinsic fluctuations in the levels of the network's master transcription factor to combine destructively with those of the other regulating transcription factor and so decrease fluctuations in the network's output. Others can cause constructive extrinsic fluctuations in the network's transcription factors and so can amplify fluctuations in the network's output. Our results show that the lifetime of extrinsic fluctuations increases their co‐dependence with intrinsic fluctuations. More generally, they address how to model one stochastic system embedded in and interacting with a larger stochastic system. Mathematically, these interactions, or extrinsic fluctuations, cause the parameters of an already stochastic system to become stochastic themselves. Measurements of the stochasticity in the output of the system will have an intrinsic component, arising from the dynamics of the system itself, and an extrinsic component, arising from fluctuations in the system's parameters. For example, in gene expression, the rate of initiation of translation is stochastic because it is a function of the number of free ribosomes which is itself stochastic. Although the empirical definitions of extrinsic and intrinsic noise do not change, we show that the colored character of extrinsic fluctuations does alter their theoretical justification. Our simulation algorithm and the concepts we propose should help to quantitatively understand endogenous networks and to design effective synthetic ones. Biochemical networks experience both intrinsic fluctuations, generated by the stochasticity inherent to biochemical reactions within the network, and extrinsic fluctuations arising from the interactions of the network with other stochastic systems in the cell or its environment. Here we extend the standard stochastic simulation algorithm to include extrinsic fluctuations with any desired properties. We show that extrinsic fluctuations that are ‘colored’, or have a significant lifetime, can affect both measurements of mean protein numbers and the intrinsic noise and that these effects can explain trends in high throughput measurements of stochasticity. Extrinsic fluctuations can affect the performance of simple, genetic networks. For a negatively autoregulated network, we demonstrate that extrinsic fluctuations can enhance or degrade the ability of the network to attenuate stochasticity and can speed up the network's typical response time. Extrinsic fluctuations are non‐specific, and extrinsic fluctuations in different components of a network can combine destructively to negate each other or constructively to amplify fluctuations in the network's output. These interference effects are likely to be exploited by cells in feedforward loops: incoherent feedforwards can attenuate stochasticity, while coherent feedforwards can amplify it.
Author Ollivier, Julien F
Shahrezaei, Vahid
Swain, Peter S
Author_xml – sequence: 1
  givenname: Vahid
  surname: Shahrezaei
  fullname: Shahrezaei, Vahid
  organization: Department of Physiology, Centre for Non‐linear Dynamics, McGill University
– sequence: 2
  givenname: Julien F
  surname: Ollivier
  fullname: Ollivier, Julien F
  organization: Department of Physiology, Centre for Non‐linear Dynamics, McGill University
– sequence: 3
  givenname: Peter S
  surname: Swain
  fullname: Swain, Peter S
  email: swain@cnd.mcgill.ca
  organization: Department of Physiology, Centre for Non‐linear Dynamics, McGill University, Department of Physiology, Centre for Non‐linear Dynamics, McGill University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18463620$$D View this record in MEDLINE/PubMed
BookMark eNqFkstvFDEMhyNURB9w4o5WQuICuziPyUwOIMGKR6UiDsA5ymScbVazyZLMAP3vye6U0lYVKIdY8eef7djH5CDEgIQ8prCgwJuXm9wuGECz4PQeOaK1EHPBFDu4Zh-S45zXUGjasAfkkDZCcsngiLxaxj4m7Gb4a0g-ZG9nrh_tMJrBx5BnJnSzPER7bvJQfCsMWNBtwpyL_yG570yf8dHlfUK-vX_3dflxfvb5w-nyzdncygro3CnsGuekabiVzhiqOicayplB1zGGwmHdMtY6cFzKUhwAbQwXlePWQIv8hJxOul00a71NfmPShY7G6_1DTCttUqmvR00lIEhRV7WUQprKMOaYq3lb1YpVtC5aryet7dhusLMYhmT6G6I3PcGf61X8oZkoR8ki8OxSIMXvI-ZBb3y22PcmYByzlooqyhr4L0hVDTUoUcCnt8B1HFMoP6oZh9KN4rDL--R64VcV_xlmAegE2BRzTui09cN-jqUP32sKercwuiyM3i2M5rTEPL8VcyV7J80m-qfv8eJfqP705e3O3Ae9mIJy4cMK09_u7srxG7ZI3wE
CitedBy_id crossref_primary_10_1016_j_mbs_2022_108828
crossref_primary_10_1093_nar_gkw1235
crossref_primary_10_1186_1752_0509_5_11
crossref_primary_10_1016_j_jtbi_2010_02_004
crossref_primary_10_1016_j_jtbi_2016_12_012
crossref_primary_10_1073_pnas_1018832108
crossref_primary_10_1007_s11047_014_9424_y
crossref_primary_10_1016_j_biosystems_2009_06_002
crossref_primary_10_1016_j_jmaa_2018_10_042
crossref_primary_10_1093_nar_gks385
crossref_primary_10_1016_j_isci_2024_109708
crossref_primary_10_1088_1478_3975_12_5_055002
crossref_primary_10_1088_1742_5468_aaa78e
crossref_primary_10_1371_journal_pcbi_1000975
crossref_primary_10_1016_j_physa_2017_11_123
crossref_primary_10_1073_pnas_1119407109
crossref_primary_10_1371_journal_pone_0062380
crossref_primary_10_1111_evo_14121
crossref_primary_10_1016_j_jtbi_2020_110494
crossref_primary_10_1080_19491034_2017_1306160
crossref_primary_10_1016_j_bpj_2014_09_017
crossref_primary_10_1016_j_bpj_2013_05_010
crossref_primary_10_1098_rsos_241487
crossref_primary_10_1371_journal_pcbi_1000723
crossref_primary_10_1016_j_biosystems_2022_104648
crossref_primary_10_1016_j_jtbi_2016_12_023
crossref_primary_10_1088_1478_3975_acea4e
crossref_primary_10_1371_journal_pcbi_1007910
crossref_primary_10_1038_s41598_020_65750_2
crossref_primary_10_15252_msb_20199335
crossref_primary_10_1371_journal_pcbi_1004923
crossref_primary_10_1371_journal_pone_0139590
crossref_primary_10_1371_journal_pcbi_1003161
crossref_primary_10_1088_1478_3975_6_3_036015
crossref_primary_10_1016_j_bpj_2010_12_3737
crossref_primary_10_1137_15M1052317
crossref_primary_10_1038_ncomms5761
crossref_primary_10_1016_j_jtbi_2017_05_003
crossref_primary_10_1073_pnas_1200161109
crossref_primary_10_1016_j_cub_2020_01_053
crossref_primary_10_1038_msb_2009_52
crossref_primary_10_1049_iet_syb_2016_0003
crossref_primary_10_1088_1478_3975_12_1_016015
crossref_primary_10_1137_12090229X
crossref_primary_10_1371_journal_pcbi_1002416
crossref_primary_10_1002_bies_201500082
crossref_primary_10_1371_journal_pone_0084301
crossref_primary_10_1371_journal_pone_0104328
crossref_primary_10_1371_journal_pcbi_1002261
crossref_primary_10_1109_TCBB_2014_2368982
crossref_primary_10_1088_1742_5468_adaa6d
crossref_primary_10_1371_journal_pcbi_1003596
crossref_primary_10_1038_nrg2509
crossref_primary_10_1089_cmb_2011_0134
crossref_primary_10_1371_journal_pcbi_1006063
crossref_primary_10_1098_rsos_172234
crossref_primary_10_1098_rsos_190462
crossref_primary_10_1534_genetics_112_147199
crossref_primary_10_1371_journal_pone_0052105
crossref_primary_10_1016_j_isci_2025_112981
crossref_primary_10_3390_math13071154
crossref_primary_10_1088_1478_3975_aa7363
crossref_primary_10_1093_nar_gkt184
crossref_primary_10_1371_journal_pone_0103636
crossref_primary_10_1073_pnas_0803850105
crossref_primary_10_1016_j_mib_2015_01_003
crossref_primary_10_1371_journal_pcbi_1010266
crossref_primary_10_1371_journal_pcbi_1013014
crossref_primary_10_1016_j_bpj_2010_03_032
crossref_primary_10_1016_j_cels_2015_10_011
crossref_primary_10_1038_s41598_018_35927_x
crossref_primary_10_1038_msb_2009_6
crossref_primary_10_1371_journal_pone_0051840
crossref_primary_10_1016_j_jtbi_2008_10_028
crossref_primary_10_1016_j_jtbi_2019_01_003
crossref_primary_10_1371_journal_pcbi_1001101
crossref_primary_10_1016_j_csbj_2014_10_003
crossref_primary_10_1038_nrm3044
crossref_primary_10_1371_journal_pcbi_1004972
crossref_primary_10_1371_journal_pcbi_1007727
crossref_primary_10_1007_s10910_020_01166_7
crossref_primary_10_1016_j_bpj_2014_11_048
crossref_primary_10_15252_msb_20199146
crossref_primary_10_1038_srep26980
crossref_primary_10_1088_1478_3975_13_6_066007
crossref_primary_10_1371_journal_pone_0187259
crossref_primary_10_1103_PhysRevX_5_031014
crossref_primary_10_1093_nar_gkz1134
crossref_primary_10_1049_enb_2017_0004
crossref_primary_10_1038_ncomms3605
crossref_primary_10_1016_j_bpj_2011_08_005
crossref_primary_10_1016_j_cell_2008_09_050
crossref_primary_10_1038_msb_2009_83
crossref_primary_10_1080_00107514_2011_588432
crossref_primary_10_1016_j_bpj_2009_02_064
crossref_primary_10_1016_j_copbio_2008_06_011
crossref_primary_10_1088_1478_3975_13_3_036004
crossref_primary_10_1073_pnas_1609012114
crossref_primary_10_1038_s41598_017_00659_x
crossref_primary_10_3389_fmicb_2016_00479
crossref_primary_10_1016_j_jtbi_2011_01_020
crossref_primary_10_1016_j_jtbi_2009_05_022
crossref_primary_10_1073_pnas_1903549116
crossref_primary_10_1371_journal_pcbi_1003942
crossref_primary_10_1088_1751_8121_aba4d0
crossref_primary_10_1088_1751_8121_aa54d9
crossref_primary_10_1038_srep07088
crossref_primary_10_1371_journal_pcbi_1002209
crossref_primary_10_1371_journal_pcbi_1002960
crossref_primary_10_1016_j_cels_2023_08_004
crossref_primary_10_1371_journal_pcbi_1002965
crossref_primary_10_1371_journal_pone_0041027
crossref_primary_10_1088_1478_3975_6_4_046009
crossref_primary_10_1038_s41598_019_41904_9
crossref_primary_10_1088_0951_7715_22_12_003
crossref_primary_10_1007_s00285_014_0837_0
crossref_primary_10_1186_1471_2105_13_S4_S8
crossref_primary_10_1088_1742_5468_2016_11_113501
crossref_primary_10_1016_j_cels_2021_09_002
crossref_primary_10_1145_2688906
crossref_primary_10_1016_j_jtbi_2014_06_002
crossref_primary_10_1371_journal_pbio_1000560
crossref_primary_10_1073_pnas_1003975107
crossref_primary_10_1371_journal_pcbi_1010623
Cites_doi 10.1038/nature05316
10.1016/j.jmb.2004.09.073
10.1038/msb4100081
10.1038/nature01546
10.1038/msb4100068
10.1073/pnas.2133841100
10.1073/pnas.0736140100
10.1063/1.2204354
10.1063/1.2209571
10.1126/science.1098641
10.1016/S0022-2836(02)00994-4
10.1093/genetics/149.4.1633
10.1126/science.1106914
10.1016/j.cell.2005.09.031
10.1038/ng1869
10.1038/35014651
10.1103/PhysRevLett.97.168302
10.1088/1478-3975/4/1/006
10.1103/PhysRevLett.97.068102
10.1103/PhysRevA.35.4464
10.1073/pnas.162041399
10.1016/0021-9991(76)90041-3
10.1038/ng869
10.1103/PhysRevA.38.5938
10.1126/science.1109090
10.1073/pnas.151588598
10.1021/jp993732q
10.1038/nature04785
10.1038/nbt1253
10.1126/science.1070919
10.1016/j.cell.2004.09.008
10.1038/nrg1615
10.1038/nature02257
10.1126/science.298.5594.824
10.1038/252546a0
10.1063/1.2208927
10.1371/journal.pbio.0050239
10.1038/nature04194
10.1126/science.1140818
10.1063/1.2211787
10.1038/ng1616
10.1126/science.1137455
10.1529/biophysj.107.110403
10.1016/j.jtbi.2004.11.010
10.1038/nature04281
10.1038/ng1807
10.1088/1478-3967/2/1/005
10.1038/msb4100113
10.1016/S0006-3495(01)75949-8
10.1016/j.cell.2007.09.044
10.1186/1752-0509-1-36
ContentType Journal Article
Copyright EMBO and Nature Publishing Group 2008
Copyright © 2008 EMBO and Nature Publishing Group
2008. This work is published under http://creativecommons.org/licenses/by-nc-sa/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2008, EMBO and Nature Publishing Group 2008
Copyright_xml – notice: EMBO and Nature Publishing Group 2008
– notice: Copyright © 2008 EMBO and Nature Publishing Group
– notice: 2008. This work is published under http://creativecommons.org/licenses/by-nc-sa/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2008, EMBO and Nature Publishing Group 2008
DBID C6C
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7TM
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PADUT
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7QO
7X8
5PM
DOA
DOI 10.1038/msb.2008.31
DatabaseName Springer Nature OA Free Journals
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
ProQuest Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Research Library China
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
Biotechnology Research Abstracts
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

Genetics Abstracts
MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1744-4292
EndPage n/a
ExternalDocumentID oai_doaj_org_article_160e0647576646a5a22f2f73b5792517
PMC2424296
18463620
10_1038_msb_2008_31
MSB200831
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-Q-
0R~
123
1OC
24P
29M
2WC
39C
4.4
53G
5VS
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAJSJ
AAMMB
ABDBF
ABUWG
ACCMX
ACGFO
ACPRK
ACUHS
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
AEFGJ
AEGXH
AENEX
AEUYN
AFKRA
AFRAH
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AZFZN
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CAG
CCPQU
COF
CS3
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
EMB
EMOBN
ESX
F5P
FYUFA
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
GX1
H13
HCIFZ
HH5
HK~
HMCUK
HYE
IAO
IHR
INH
ITC
KQ8
LK8
M1P
M2O
M48
M7P
ML0
M~E
NAO
O5R
O5S
OK1
OVT
P2P
PADUT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q2X
RHI
RNS
RPM
SV3
TR2
TUS
UKHRP
WIN
WOQ
WOW
XSB
~8M
AASML
AFFHD
AJAOE
AVUZU
EBLON
HZ~
IGS
O9-
RNTTT
AAYXX
CITATION
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7TM
7U9
7XB
88A
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7QO
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c6501-f9ed8ff6a83c6faa19df48132aefd22e4fe7b22bf0f3661840018a345f3ca0be3
IEDL.DBID M7P
ISICitedReferencesCount 197
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000256459000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1744-4292
IngestDate Mon Nov 10 04:33:40 EST 2025
Tue Nov 04 01:56:09 EST 2025
Thu Oct 02 06:20:13 EDT 2025
Tue Oct 07 09:36:59 EDT 2025
Mon Oct 06 16:57:48 EDT 2025
Thu Apr 03 07:06:28 EDT 2025
Tue Nov 18 22:41:46 EST 2025
Sat Nov 29 06:19:05 EST 2025
Tue Nov 11 03:12:51 EST 2025
Tue Aug 19 01:10:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords stochastic simulation algorithm
extrinsic noise
biochemical networks
intrinsic noise
Language English
License Attribution-NonCommercial-ShareAlike
http://creativecommons.org/licenses/by-nc-sa/3.0
This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits distribution and reproduction in any medium, provided the original author and source are credited. Creation of derivative works is permitted but the resulting work may be distributed only under the same or similar licence to this one. This licence does not permit commercial exploitation without specific permission.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6501-f9ed8ff6a83c6faa19df48132aefd22e4fe7b22bf0f3661840018a345f3ca0be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2300649306?pq-origsite=%requestingapplication%
PMID 18463620
PQID 2300649306
PQPubID 29031
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_160e0647576646a5a22f2f73b5792517
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2424296
proquest_miscellaneous_69191280
proquest_miscellaneous_19707094
proquest_journals_2300649306
pubmed_primary_18463620
crossref_citationtrail_10_1038_msb_2008_31
crossref_primary_10_1038_msb_2008_31
wiley_primary_10_1038_msb_2008_31_MSB200831
springer_journals_10_1038_msb_2008_31
PublicationCentury 2000
PublicationDate 2008
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – year: 2008
  text: 2008
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: Chichester, UK
– name: England
PublicationTitle Molecular systems biology
PublicationTitleAbbrev Mol Syst Biol
PublicationTitleAlternate Mol Syst Biol
PublicationYear 2008
Publisher Nature Publishing Group UK
John Wiley & Sons, Ltd
EMBO Press
Nature Publishing Group
Springer Nature
Publisher_xml – name: Nature Publishing Group UK
– name: John Wiley & Sons, Ltd
– name: EMBO Press
– name: Nature Publishing Group
– name: Springer Nature
References 1987; 35
2006; 439
2006; 97
1976; 22
2004; 344
2002; 297
2002; 31
2005; 234
2006; 38
2006; 16
1988; 38
2002; 298
2002; 99
2007; 93
1992
2006; 2
2004; 427
2004; 304
2001; 81
2007; 317
2007; 315
1990
2006; 24
2000; 104
2005; 123
2002; 323
2000; 405
2007; 131
2005; 307
2005; 6
2007; 4
2007; 5
2007; 3
1998; 149
2005; 2
2005; 37
1974; 252
2003; 422
2007; 1
2004; 118
2003; 100
2006; 441
2006; 444
2001; 98
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Gillespie DT (e_1_2_7_18_1) 1992
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
van Kampen NG (e_1_2_7_53_1) 1990
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
16699522 - Nature. 2006 Jun 15;441(7095):840-6
9691025 - Genetics. 1998 Aug;149(4):1633-48
15790857 - Science. 2005 Mar 25;307(5717):1965-9
11967532 - Nat Genet. 2002 May;31(1):69-73
17155441 - Phys Rev Lett. 2006 Oct 20;97(16):168302
17569828 - Science. 2007 Jul 27;317(5837):526-9
16822034 - Chaos. 2006 Jun;16(2):026102
17704155 - Biophys J. 2007 Dec 1;93(11):3753-61
16715097 - Nat Genet. 2006 Jun;38(6):636-43
10850721 - Nature. 2000 Jun 1;405(6786):590-3
16822040 - Chaos. 2006 Jun;16(2):026108
12183631 - Science. 2002 Aug 16;297(5584):1183-6
17122776 - Nature. 2006 Nov 30;444(7119):643-6
9900341 - Phys Rev A Gen Phys. 1988 Dec 1;38(11):5938-5940
17033664 - Nat Biotechnol. 2006 Oct;24(10):1235-40
16086016 - Nat Genet. 2005 Sep;37(9):937-44
17406085 - Phys Biol. 2007 Mar;4(1):48-59
15883588 - Nat Rev Genet. 2005 Jun;6(6):451-64
15721042 - J Theor Biol. 2005 May 7;234(1):133-43
16360033 - Cell. 2005 Dec 16;123(6):1025-36
17981121 - Cell. 2007 Nov 2;131(3):544-56
15166317 - Science. 2004 Jun 18;304(5678):1811-4
17803359 - PLoS Biol. 2007 Sep;5(9):e239
16822035 - Chaos. 2006 Jun;16(2):026103
4431516 - Nature. 1974 Dec 13;252(5484):546-9
15369668 - Cell. 2004 Sep 17;118(6):675-85
12399590 - Science. 2002 Oct 25;298(5594):824-7
17299413 - Mol Syst Biol. 2007;3:71
15790856 - Science. 2005 Mar 25;307(5717):1962-5
15544806 - J Mol Biol. 2004 Dec 3;344(4):965-76
16773083 - Mol Syst Biol. 2006;2:2006.0033
11720979 - Biophys J. 2001 Dec;81(6):3116-36
16204855 - Phys Biol. 2005 Mar;2(1):36-45
11438714 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8614-9
17683566 - BMC Syst Biol. 2007;1:36
9898048 - Phys Rev A Gen Phys. 1987 May 15;35(10):4464-4466
17379809 - Science. 2007 Mar 23;315(5819):1716-9
17026206 - Phys Rev Lett. 2006 Aug 11;97(6):068102
16372021 - Nature. 2006 Feb 16;439(7078):861-4
14749823 - Nature. 2004 Jan 29;427(6973):415-8
12417193 - J Mol Biol. 2002 Nov 8;323(5):785-93
12671069 - Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4551-6
16883354 - Mol Syst Biol. 2006;2:41
16452980 - Nature. 2006 Feb 2;439(7076):608-11
16936734 - Nat Genet. 2006 Sep;38(9):1082-7
12237400 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12795-800
16822039 - Chaos. 2006 Jun;16(2):026107
14530388 - Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):11980-5
12687005 - Nature. 2003 Apr 10;422(6932):633-7
References_xml – volume: 81
  start-page: 3116
  year: 2001
  end-page: 3136
  article-title: Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations
  publication-title: Biophys J
– volume: 298
  start-page: 824
  year: 2002
  end-page: 827
  article-title: Network motifs: simple building blocks of complex networks
  publication-title: Science
– volume: 4
  start-page: 48
  year: 2007
  end-page: 59
  article-title: Propagation of extrinsic perturbation in a negatively auto‐regulated pathway
  publication-title: Phys Biol
– volume: 441
  start-page: 840
  year: 2006
  end-page: 846
  article-title: Single‐cell proteomic analysis of reveals the architecture of biological noise
  publication-title: Nature
– volume: 2
  start-page: 32
  year: 2006
  article-title: Oscillations and variability in the p53 system
  publication-title: Mol Syst Biol
– volume: 24
  start-page: 1235
  year: 2006
  end-page: 1240
  article-title: Deviant effects in molecular reaction pathways
  publication-title: Nat Biotechnol
– volume: 118
  start-page: 675
  year: 2004
  end-page: 685
  article-title: Robustness of cellular functions
  publication-title: Cell
– volume: 16
  start-page: 026107
  year: 2006
  article-title: Estimations of intrinsic and extrinsic noise in models of nonlinear genetic networks
  publication-title: Chaos
– volume: 297
  start-page: 1183
  year: 2002
  end-page: 1186
  article-title: Stochastic gene expression in a single cell
  publication-title: Science
– year: 1990
– volume: 37
  start-page: 937
  year: 2005
  end-page: 944
  article-title: Contributions of low molecule number and chromosomal positioning to stochastic gene expression
  publication-title: Nat Genet
– volume: 6
  start-page: 451
  year: 2005
  end-page: 464
  article-title: Stochasticity in gene expression: from theories to phenotypes
  publication-title: Nat Rev Genet
– volume: 104
  start-page: 1876
  year: 2000
  end-page: 1889
  article-title: Efficient exact stochastic simulation of chemical systems with many species and many channels
  publication-title: J Phys Chem A
– volume: 93
  start-page: 3753
  year: 2007
  end-page: 3761
  article-title: Noise‐limited frequency signal transmission in gene circuits
  publication-title: Biophys J
– volume: 38
  start-page: 636
  year: 2006
  end-page: 643
  article-title: Noise in protein expression scales with natural protein abundance
  publication-title: Nat Genet
– volume: 97
  start-page: 16830
  year: 2006
  article-title: Linking stochastic dynamics to population distribution: an analytical framework of gene expression
  publication-title: Phys Rev Lett
– volume: 149
  start-page: 1633
  year: 1998
  end-page: 1648
  article-title: Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda‐infected cells
  publication-title: Genetics
– volume: 131
  start-page: 544
  year: 2007
  end-page: 556
  article-title: Dissecting timing variability in yeast meiosis
  publication-title: Cell
– volume: 344
  start-page: 965
  year: 2004
  end-page: 976
  article-title: Efficient attenuation of stochasticity in gene expression through post‐transcriptional control
  publication-title: J Mol Biol
– volume: 16
  start-page: 026108
  year: 2006
  article-title: The effect of negative feedback on noise propagation in transcriptional gene networks
  publication-title: Chaos
– volume: 38
  start-page: 5938
  year: 1988
  end-page: 5940
  article-title: Fast, accurate algorithm for numerical simulation of exponentially correlated colored noise
  publication-title: Phys Rev A
– volume: 2
  start-page: 41
  year: 2006
  article-title: Noise in transcription negative feedback loops: simulation and experimental analysis
  publication-title: Mol Syst Biol
– volume: 234
  start-page: 133
  year: 2005
  end-page: 143
  article-title: A feedforward loop motif in transcriptional regulation: induction and repression
  publication-title: J Theor Biol
– volume: 38
  start-page: 1082
  year: 2006
  end-page: 1087
  article-title: Dual feedback loops in the GAL regulon suppress cellular heterogeneity in yeast
  publication-title: Nat Genet
– volume: 444
  start-page: 643
  year: 2006
  end-page: 646
  article-title: Variability and memory of protein levels in human cells
  publication-title: Nature
– volume: 31
  start-page: 69
  year: 2002
  end-page: 73
  article-title: Regulation of noise in the expression of a single gene
  publication-title: Nat Genet
– volume: 100
  start-page: 11980
  year: 2003
  end-page: 11985
  article-title: Structure and function of the feed‐forward loop network motif
  publication-title: Proc Natl Acad Sci USA
– volume: 252
  start-page: 546
  year: 1974
  end-page: 549
  article-title: Comparison of classical and autogenous systems of regulation in inducible operons
  publication-title: Nature
– volume: 98
  start-page: 8614
  year: 2001
  end-page: 8619
  article-title: Intrinsic noise in gene regulatory networks
  publication-title: Proc Natl Acad Sci USA
– volume: 307
  start-page: 1965
  year: 2005
  end-page: 1969
  article-title: Noise propagation in gene networks
  publication-title: Science
– volume: 427
  start-page: 415
  year: 2004
  end-page: 418
  article-title: Summing up the noise in gene networks
  publication-title: Nature
– volume: 22
  start-page: 403
  year: 1976
  end-page: 434
  article-title: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions
  publication-title: J Comput Phys
– year: 1992
– volume: 307
  start-page: 1962
  year: 2005
  end-page: 1965
  article-title: Gene regulation at the single‐cell level
  publication-title: Science
– volume: 2
  start-page: 36
  year: 2005
  end-page: 45
  article-title: Noise characteristics of feedforward loops
  publication-title: Phys Biol
– volume: 304
  start-page: 1811
  year: 2004
  end-page: 1814
  article-title: Control of stochasticity in eukaryotic gene expression
  publication-title: Science
– volume: 439
  start-page: 608
  year: 2006
  end-page: 611
  article-title: Gene network shaping of inherent noise spectra
  publication-title: Nature
– volume: 99
  start-page: 12795
  year: 2002
  end-page: 12800
  article-title: Intrinsic and extrinsic contributions to stochasticity in gene expression
  publication-title: Proc Natl Acad Sci USA
– volume: 16
  start-page: 026103
  year: 2006
  article-title: Stochastically driven genetic circuits
  publication-title: Chaos
– volume: 123
  start-page: 1025
  year: 2005
  end-page: 1036
  article-title: Real‐time kinetics of gene activity in individual bacteria
  publication-title: Cell
– volume: 5
  start-page: e239
  year: 2007
  article-title: Heritable stochastic switching revealed by single‐cell genealogy
  publication-title: PLoS Biol
– volume: 16
  start-page: 026102
  year: 2006
  article-title: Frequency domain analysis of noise in simple gene circuits
  publication-title: Chaos
– volume: 439
  start-page: 861
  year: 2006
  end-page: 864
  article-title: Origins of extrinsic variability in eukaryotic gene expression
  publication-title: Nature
– volume: 422
  start-page: 633
  year: 2003
  end-page: 637
  article-title: Noise in eukaryotic gene expression
  publication-title: Nature
– volume: 323
  start-page: 785
  year: 2002
  end-page: 793
  article-title: Negative autoregulation speeds the response times of transcription networks
  publication-title: J Mol Biol
– volume: 100
  start-page: 4551
  year: 2003
  end-page: 4556
  article-title: Frequency domain analysis of noise in autoregulated gene circuits
  publication-title: Proc Natl Acad Sci USA
– volume: 315
  start-page: 1716
  year: 2007
  end-page: 1719
  article-title: Tunability and noise dependence in differentiation dynamics
  publication-title: Science
– volume: 3
  start-page: 71
  year: 2007
  article-title: Noise in timing and precision of gene activities in a genetic cascade
  publication-title: Mol Syst Biol
– volume: 35
  start-page: 4464
  year: 1987
  end-page: 4466
  article-title: Dynamical systems: a unified colored‐noise approximation
  publication-title: Phys Rev A
– volume: 1
  start-page: 36
  year: 2007
  article-title: Facile: a command‐line network compiler for systems biology
  publication-title: BMC Syst Biol
– volume: 97
  start-page: 68102
  year: 2006
  article-title: Signal detection, modularity, and the correlation between extrinsic and intrinsic noise in biochemical networks
  publication-title: Phys Rev Lett
– volume: 405
  start-page: 590
  year: 2000
  end-page: 593
  article-title: Engineering stability in gene networks by autoregulation
  publication-title: Nature
– volume: 317
  start-page: 526
  year: 2007
  end-page: 529
  article-title: Noise in gene expression determines cell fate in
  publication-title: Science
– ident: e_1_2_7_42_1
  doi: 10.1038/nature05316
– ident: e_1_2_7_47_1
  doi: 10.1016/j.jmb.2004.09.073
– ident: e_1_2_7_10_1
  doi: 10.1038/msb4100081
– ident: e_1_2_7_8_1
  doi: 10.1038/nature01546
– ident: e_1_2_7_14_1
  doi: 10.1038/msb4100068
– volume-title: Markov Processes: an Introduction for Physical Scientists
  year: 1992
  ident: e_1_2_7_18_1
– ident: e_1_2_7_28_1
  doi: 10.1073/pnas.2133841100
– ident: e_1_2_7_43_1
  doi: 10.1073/pnas.0736140100
– ident: e_1_2_7_9_1
  doi: 10.1063/1.2204354
– volume-title: Stochastic Processes in Physics and Chemistry
  year: 1990
  ident: e_1_2_7_53_1
– ident: e_1_2_7_52_1
  doi: 10.1063/1.2209571
– ident: e_1_2_7_36_1
  doi: 10.1126/science.1098641
– ident: e_1_2_7_37_1
  doi: 10.1016/S0022-2836(02)00994-4
– ident: e_1_2_7_3_1
  doi: 10.1093/genetics/149.4.1633
– ident: e_1_2_7_38_1
  doi: 10.1126/science.1106914
– ident: e_1_2_7_19_1
  doi: 10.1016/j.cell.2005.09.031
– ident: e_1_2_7_35_1
  doi: 10.1038/ng1869
– ident: e_1_2_7_7_1
  doi: 10.1038/35014651
– ident: e_1_2_7_13_1
  doi: 10.1103/PhysRevLett.97.168302
– ident: e_1_2_7_27_1
  doi: 10.1088/1478-3975/4/1/006
– ident: e_1_2_7_50_1
  doi: 10.1103/PhysRevLett.97.068102
– ident: e_1_2_7_22_1
  doi: 10.1103/PhysRevA.35.4464
– ident: e_1_2_7_48_1
  doi: 10.1073/pnas.162041399
– ident: e_1_2_7_17_1
  doi: 10.1016/0021-9991(76)90041-3
– ident: e_1_2_7_32_1
  doi: 10.1038/ng869
– ident: e_1_2_7_12_1
  doi: 10.1103/PhysRevA.38.5938
– ident: e_1_2_7_34_1
  doi: 10.1126/science.1109090
– ident: e_1_2_7_51_1
  doi: 10.1073/pnas.151588598
– ident: e_1_2_7_16_1
  doi: 10.1021/jp993732q
– ident: e_1_2_7_31_1
  doi: 10.1038/nature04785
– ident: e_1_2_7_39_1
  doi: 10.1038/nbt1253
– ident: e_1_2_7_11_1
  doi: 10.1126/science.1070919
– ident: e_1_2_7_45_1
  doi: 10.1016/j.cell.2004.09.008
– ident: e_1_2_7_23_1
  doi: 10.1038/nrg1615
– ident: e_1_2_7_33_1
  doi: 10.1038/nature02257
– ident: e_1_2_7_29_1
  doi: 10.1126/science.298.5594.824
– ident: e_1_2_7_40_1
  doi: 10.1038/252546a0
– ident: e_1_2_7_21_1
  doi: 10.1063/1.2208927
– ident: e_1_2_7_24_1
  doi: 10.1371/journal.pbio.0050239
– ident: e_1_2_7_4_1
  doi: 10.1038/nature04194
– ident: e_1_2_7_26_1
  doi: 10.1126/science.1140818
– ident: e_1_2_7_41_1
  doi: 10.1063/1.2211787
– ident: e_1_2_7_6_1
  doi: 10.1038/ng1616
– ident: e_1_2_7_46_1
  doi: 10.1126/science.1137455
– ident: e_1_2_7_49_1
  doi: 10.1529/biophysj.107.110403
– ident: e_1_2_7_20_1
  doi: 10.1016/j.jtbi.2004.11.010
– ident: e_1_2_7_54_1
  doi: 10.1038/nature04281
– ident: e_1_2_7_5_1
  doi: 10.1038/ng1807
– ident: e_1_2_7_15_1
  doi: 10.1088/1478-3967/2/1/005
– ident: e_1_2_7_2_1
  doi: 10.1038/msb4100113
– ident: e_1_2_7_25_1
  doi: 10.1016/S0006-3495(01)75949-8
– ident: e_1_2_7_30_1
  doi: 10.1016/j.cell.2007.09.044
– ident: e_1_2_7_44_1
  doi: 10.1186/1752-0509-1-36
– reference: 16372021 - Nature. 2006 Feb 16;439(7078):861-4
– reference: 9898048 - Phys Rev A Gen Phys. 1987 May 15;35(10):4464-4466
– reference: 12183631 - Science. 2002 Aug 16;297(5584):1183-6
– reference: 12417193 - J Mol Biol. 2002 Nov 8;323(5):785-93
– reference: 17569828 - Science. 2007 Jul 27;317(5837):526-9
– reference: 17379809 - Science. 2007 Mar 23;315(5819):1716-9
– reference: 15369668 - Cell. 2004 Sep 17;118(6):675-85
– reference: 12399590 - Science. 2002 Oct 25;298(5594):824-7
– reference: 16822040 - Chaos. 2006 Jun;16(2):026108
– reference: 17406085 - Phys Biol. 2007 Mar;4(1):48-59
– reference: 16699522 - Nature. 2006 Jun 15;441(7095):840-6
– reference: 12687005 - Nature. 2003 Apr 10;422(6932):633-7
– reference: 17155441 - Phys Rev Lett. 2006 Oct 20;97(16):168302
– reference: 17033664 - Nat Biotechnol. 2006 Oct;24(10):1235-40
– reference: 16822039 - Chaos. 2006 Jun;16(2):026107
– reference: 16086016 - Nat Genet. 2005 Sep;37(9):937-44
– reference: 16822035 - Chaos. 2006 Jun;16(2):026103
– reference: 15790856 - Science. 2005 Mar 25;307(5717):1962-5
– reference: 12237400 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12795-800
– reference: 15166317 - Science. 2004 Jun 18;304(5678):1811-4
– reference: 9691025 - Genetics. 1998 Aug;149(4):1633-48
– reference: 16452980 - Nature. 2006 Feb 2;439(7076):608-11
– reference: 17299413 - Mol Syst Biol. 2007;3:71
– reference: 17122776 - Nature. 2006 Nov 30;444(7119):643-6
– reference: 14749823 - Nature. 2004 Jan 29;427(6973):415-8
– reference: 16883354 - Mol Syst Biol. 2006;2:41
– reference: 17704155 - Biophys J. 2007 Dec 1;93(11):3753-61
– reference: 17981121 - Cell. 2007 Nov 2;131(3):544-56
– reference: 17683566 - BMC Syst Biol. 2007;1:36
– reference: 4431516 - Nature. 1974 Dec 13;252(5484):546-9
– reference: 14530388 - Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):11980-5
– reference: 17026206 - Phys Rev Lett. 2006 Aug 11;97(6):068102
– reference: 12671069 - Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4551-6
– reference: 16715097 - Nat Genet. 2006 Jun;38(6):636-43
– reference: 15790857 - Science. 2005 Mar 25;307(5717):1965-9
– reference: 11438714 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8614-9
– reference: 16360033 - Cell. 2005 Dec 16;123(6):1025-36
– reference: 16936734 - Nat Genet. 2006 Sep;38(9):1082-7
– reference: 10850721 - Nature. 2000 Jun 1;405(6786):590-3
– reference: 15883588 - Nat Rev Genet. 2005 Jun;6(6):451-64
– reference: 11967532 - Nat Genet. 2002 May;31(1):69-73
– reference: 15721042 - J Theor Biol. 2005 May 7;234(1):133-43
– reference: 16773083 - Mol Syst Biol. 2006;2:2006.0033
– reference: 11720979 - Biophys J. 2001 Dec;81(6):3116-36
– reference: 17803359 - PLoS Biol. 2007 Sep;5(9):e239
– reference: 16822034 - Chaos. 2006 Jun;16(2):026102
– reference: 9900341 - Phys Rev A Gen Phys. 1988 Dec 1;38(11):5938-5940
– reference: 15544806 - J Mol Biol. 2004 Dec 3;344(4):965-76
– reference: 16204855 - Phys Biol. 2005 Mar;2(1):36-45
SSID ssj0038182
Score 2.3534546
Snippet Stochasticity is both exploited and controlled by cells. Although the intrinsic stochasticity inherent in biochemistry is relatively well understood, cellular...
Abstract Stochasticity is both exploited and controlled by cells. Although the intrinsic stochasticity inherent in biochemistry is relatively well understood,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 196
SubjectTerms Algorithms
Amplification
biochemical networks
Cell cycle
Computer simulation
EMBO10
EMBO26
extrinsic noise
Fluctuations
Gene expression
Gene Expression Regulation
Gene Regulatory Networks
intrinsic noise
Models, Biological
Noise
Proteins
Proteins - genetics
RNA polymerase
Standard deviation
Stochastic Processes
stochastic simulation algorithm
Stochastic systems
Stochasticity
Time series
Variables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQBRIXxJuFAnsoF9Cq68f6caSIigsVEiD1ZvmpViqbKmmQ-PfM2JuUFQEuHBNPIu_4sz2zHn8fIQcQMSg1KNZFb1QnfAydS73rsg7SCZo1U76ITaiTE316aj79IvWFNWGVHrg67pDKPuGFSIiLpZBucIxllhX3gzJIt4Wrb6_MJpmqazBuQ2y6jQcfDr-tfC2b5HS2_xSa_l2x5e8lkttz0nkUW7ah47vkzhQ_tm9rv--RG2m8T25VRckfDwhKFy-WKbaw5sIfwRC0-WKNl0QKvlo3xhbCvXDmkJ-5BfQkMJ2KYceH5Ovx-y_vPnSTQkIXILKiXTYp6pyl0zzI7Bw1MQsNCaZLOTKWRE7KM-Zzn7lEaRfU4HNcDJkH1_vEH5G9cTGmJ6R1MvHIk6Hae6GDN14MEQfSgd9pZg15vfGbDRN9OKpYXNhyjM21BSdXUUtOG3KwNb6srBm7zY5wALYmSHVdvgAA2AkA9l8AaMj-ZvjsNP9WFhIr-I2BfKghL7fNMHPwOMSNabFeWWoUrHdG_NlCGshmme4b8rii4fphNBKtMWhRM5zMHmXeMp6fFfZuvI_DDPTr1QZR193e6aM3BW5_86P9-PmIFc24p__Do8_I7VoVgy-a9sne1XKdnpOb4fvV-Wr5oky0n9mvKvM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQAYlLy5uUAjmUCygisR0_ji2i4kJVCZB6s2zHppVKFm26lfj3zNjZlKgLEuIajyU_vrFn4pn5CNkHi0HKVtKqc1pW3HW-sqG2VVReWN5ERaVLZBPy-FidnuqTMTYHc2FyfYjphxtqRjqvUcGtG8Y0cQxc_z64HAqJWdS3m4ZJBDXlJ-uDGO8imvMheYWsTGN6HjS8-63z7EJKdfs3GZs3Yyanh9O5WZvupaOd_5zRfbI9GqTlQUbQA3Ir9A_J3UxR-fMRQS7kxTJ0JRziMBDY0zJerDDrJAG2tH1Xgv3ozywWfC4BjgFEx-ja_jH5evThy_uP1Ui5UHkw1Zoq6tCpGIVVzItobaO7yBV4rDbEjtLAY5COUhfryARyxSCpn2W8jczb2gX2hGz1iz48I6UVgXUs6EY5x5V32vG2Q2RYIQAEtCBv1utu_FiPHGkxLkx6F2fKwHpklkzWFGR_Ev6Ry3BsFjvEDZxEsHZ2-rBYfjOjKppG1AFTbMHTElzY1lIaaZTMtVJjAbeC7K2334wKPRjw1KCPBgerIK-mZlBFfF-xfVisBtNoCQeo5n-WEBrcY6rqgjzNaLqejMLKbRRa5Axns6nMW_rzs1QOHBN8qIZxvV4j8nrYG9fobQLh39bRfPp8SBMJ3e4_ST8n93I8Df6i2iNbl8tVeEHu-KvL82H5MmnnL7eoO8A
  priority: 102
  providerName: Wiley-Blackwell
Title Colored extrinsic fluctuations and stochastic gene expression
URI https://link.springer.com/article/10.1038/msb.2008.31
https://onlinelibrary.wiley.com/doi/abs/10.1038%2Fmsb.2008.31
https://www.ncbi.nlm.nih.gov/pubmed/18463620
https://www.proquest.com/docview/2300649306
https://www.proquest.com/docview/19707094
https://www.proquest.com/docview/69191280
https://pubmed.ncbi.nlm.nih.gov/PMC2424296
https://doaj.org/article/160e0647576646a5a22f2f73b5792517
Volume 4
WOSCitedRecordID wos000256459000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1744-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038182
  issn: 1744-4292
  databaseCode: M~E
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 1744-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038182
  issn: 1744-4292
  databaseCode: M7P
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1744-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038182
  issn: 1744-4292
  databaseCode: 7X7
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1744-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038182
  issn: 1744-4292
  databaseCode: BENPR
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1744-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038182
  issn: 1744-4292
  databaseCode: PIMPY
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1744-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038182
  issn: 1744-4292
  databaseCode: M2O
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1744-4292
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0038182
  issn: 1744-4292
  databaseCode: WIN
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoCxIX3oVAWXIoF1DUxE78OCEWtaKHXSIeYjlFdmzTSiUpmy4S_56x4-wqYumFi6XEc7A94_HYHn8fQocQMTBWMJxoJViSK10n0qQysbymMs8sx0x5sgk2n_PFQpThwK0LaZWDT_SOWre1OyM_glAZVk8BEe6by5-JY41yt6uBQmMH7TmUBOxT98rBE7vFCIc3efBx9KNTffIkyUarkAfr3xZh_p0oub4tHceyfjE6ufu_3biH7oQwNH7b2819dMM0D9Ctnpjy90PkGJDbpdExuG5oCWgythcr99bEm2ksGx1D1FifSQfzHIMRGhANObXNI_Tl5Pjzu_dJIFpIagjQssQKo7m1VHJSUytlJrTNOexTpbEaY5NbwxTGyqaWUMcQ46j8JMkLS2qZKkP20W7TNuYJiiU1RBMjMq5UzmslVF5oZw-SUlA9jtCrYeCrOqCQOzKMi8rfhhNegZZ6bkySRehwLXzZg29sF5s6Da5FHGK2_9Euv1dhAlYZTY17WAv7K5pTWUiMLbaMqIIJB9sWoYNBYVWYxl210VaEXqyrYQK6WxXZmHbVVZlg4DZF_m8JKmBTjHkaoce9OW06wx1eG4YaNjK0UVfGNc35mQcBd896sIB2vRxMctPsrWP02tvrdeNYzT5Nsaeee3r9YDxDt_u0GXcSdYB2r5Yr8xzdrH9dnXfLCdrBeQklWzBf8gnamx7Py48Tf-AB5Qx_mPiZCjXl6az8Bl9fT-d_ALl9Q-k
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAQX3hRDoT60F5DVeNfZxwEhClSN2kSRKFI5ubv2Lq3UOiVpQP1T_EZm_EhkEXrrgWOyI2t3_c1jvTPzAWxixCBlT7Iot1pGic2zyLiuibzKhElir5i0JdmEHA7V0ZEercDvphaG0iobm1ga6nyc0TfybQyV0XtqjHDfX_yIiDWKblcbCo0KFvvu6hce2abv-p_w_W4xtvv58ONeVLMKRBlGI3HktcuV98IonglvTKxznyg8lBnnc8Zc4p20jFnf9VwQHQrx1hme9DzPTNc6js-9BasJgb0Dq6P-YPStsf3k_lhdBYg_ts-ntkrX5HHL75X0AMti2r9TM-f3s-3ouXR_uw_-t417CPfrQDv8UGnGI1hxxWO4U1FvXj0B4ngeT1weonPClSNWQ382o2qaUhFDU-QhxsXZiaFG1iGqmUPROmu4eApfb2Tuz6BTjAv3HEIjHM-507GyNlGZ1Tbp5YR4IwSCmwXwpnnRaVb3WSe6j7O0vO_nKkVUVOyfPA5gcy58UbUXWS62Q4iZi1BP8PKP8eR7WpuYNBZdR6XDeIIUiTA9w5hnXnLbk5oa0wWw3gAkrQ3VNF2gI4CN-TCaGLo3MoUbz6ZprCU6Bp38W0JoPPYz1Q1grYLvYjGKOtIxHJEtYLeW0h4pTk_KNudUuMQ0zmurUYHFtJfu0dtSP67bx3TwZYeV5Hovrt-MDbi7dzg4SA_6w_2XcK9KEqLvbuvQuZzM3Cu4nf28PJ1OXtcWIITjm9adPzHQmxE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQC4gL5U2g0BzKBRQ1sR0_jhRYgYDVSoDUm2XHNq1UstVuF6n_nhknmzZiQUJc44nkx8x4bM98HyH7EDFIWUtaeKdlwZ1vChtKW0TVCMurqKh0iWxCTqfq6EjP-gs3rIXp8CGGCze0jOSv0cDDmY99nThmrv9Yui4XEsuot3kNXhaRnfls7YlxM6JdQSQvkJapr8-DhoMrP492pATcvyna_D1pcng5Hce1aWOa7PzvkO6Q231Imr_udOguuRbae-RGR1J5cZ8gG_J8EXwObhx6Aquax9MV1p0klc1t63OIIJtji5DPOShkANE-v7Z9QL5N3n19877oSReKBoK1qog6eBWjsIo1IlpbaR-5gjOrDdFTGngM0lHqYhmZQLYYpPWzjNeRNbZ0gT0kW-28DY9JbkVgngVdKee4apx2vPaoG1YIUAOakZfriTdNj0iOxBinJr2MM2VgPjqeTFZlZH8QPuuAODaLHeIKDiKInp0-zBffTW-MphJlwCJbOGsJLmxtKY00SuZqqRHCLSO76_U3vUkvDZzV4B8NR6yM7A3NYIz4wmLbMF8tTaUluFDN_ywhNByQqSoz8qhTp8vBKMRuo9AiR4o2Gsq4pT05ToDgWOJDNfTrxVolL7u9cY5eJS382zyaz18OaaKhe_JP0nvk5uztxHz6MP34lNzqkmvwvmqXbJ0vVuEZud78PD9ZLp4nS_0FqfQ_Jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Colored+extrinsic+fluctuations+and+stochastic+gene+expression&rft.jtitle=Molecular+systems+biology&rft.au=Shahrezaei%2C+Vahid&rft.au=Ollivier%2C+Julien+F&rft.au=Swain%2C+Peter+S&rft.date=2008&rft.issn=1744-4292&rft.volume=4&rft.spage=196&rft.epage=196&rft_id=info:doi/10.1038%2Fmsb.2008.31&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-4292&client=summon